
Design and Implementation of
Analysis and Optimization Tool for

Embedded Systems aiming at
Increased Interoperability

Adam Kordianowski

Supervised by

Paul Pop

Andrzej Napieralski

Kongens Lyngby 2010

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Abstract

Embedded systems are nowadays present in every area of people lives. Their
complexity is constantly increasing and they have tight requirements in terms
of performance, energy consumption, reliability, size and cost. Hence, the task
of designing embedded systems is getting more difficult.

Designers today use complex tools that help them in synthesizing an implemen-
tation that fulfills all the requirements. Several tools have to work in conjunction
to produce the desired result. In this thesis we evaluate three interoperabil-
ity approaches: (i) full integration at the source-code level using shared data
structures, (ii) tool integration using XML files and (iii) tool integration using
object-oriented databases for data exchange.

To evaluate the interoperability approaches, we have focused on three design
tasks: (i) mapping, (ii) voltage scaling and (iii) schedulability analysis. The
first design task is to find the best mapping of functions to the processing ele-
ments in the given architecture. Dynamic voltage scaling, which is the second
design task, allows to choose appropriately voltage levels for all functions so
that the power consumption is minimized without performance or reliability
degradation. The third design task, schedulability analysis, is used to deter-
mine whether all the functions in the system will meet their desired deadlines.

We have designed and implemented an analysis and optimization tool that per-
forms all three design tasks. The optimization is performed using a Simulated
Annealing meta-heuristic. The integration of the tool modules implementing the

ii

analysis, design transformation and optimization functions has been performed
using all three mentioned interoperability approaches. We have discussed both
advantages and disadvantages of each considered interoperability approach and
have evaluated their impact on the performance of the implementation in terms
of runtime and the quality of the produced solution.

iii

iv Contents

Contents

Abstract i

1 Introduction 1

1.1 Embedded system design . 1
1.2 Motivation . 2
1.3 Overview . 3

2 Preliminaries 5

2.1 System model . 5
2.2 Optimization and meta-heuristics 10

3 System model representation 13

3.1 Overview . 13
3.2 Task representation . 14
3.3 Processing element representation 16
3.4 Mapping of tasks onto hardware architecture 18

4 Interoperability 23

4.1 Sharing data between tools . 23
4.2 Communication between tools . 29

5 Tool design 31

5.1 Separation into modules . 31
5.2 Integrated tool . 35
5.3 Inter-operation of tools . 35

6 Implementation 39

6.1 Choice of language . 39
6.2 System model representation . 41

vi CONTENTS

6.3 Interoperability framework . 50

7 Comparison of approaches 57

7.1 Overall comparison . 57
7.2 Tool sets comparison . 58

8 Conclusions 61

8.1 Future work . 61

A Protocol definition 65

B Data sharing 69

B.1 XML schema . 69
B.2 ODL description . 70

C Required applications 73

List of Figures

2.1 Architecture . 6

3.1 Class diagram of Task . 14

3.2 Class diagram of TaskInstance 15

3.3 Class diagram of OperMode . 17

3.4 Class diagram of ProcElem . 18

3.5 Class diagram of ProcElemMap 19

3.6 Class diagram of Mapping . 21

5.1 Class diagram of SA . 34

5.2 Integrated tool design . 35

5.3 Inter-operation of tools design . 36

5.4 Class diagram of server classes 37

6.1 Class diagrams of RMTask and RMTaskInstance 41

viii LIST OF FIGURES

6.2 Class diagram of socket library 54

Listings

4.1 XML example - books collection 26
4.2 TGFF example - auto-indust-cords from E3S 27
6.1 responseTime method from class RMTaskInstance 42
6.2 reliability method from class RMTaskInstance 43
6.3 Constructor of ProcElem class 44
6.4 taskPlace() method in ProcElemMap class 45
6.5 degreeOfSchedulability() method in ProcElemMap class . . . 46
6.6 findById() method in Mapping class 48
6.7 reliability() and reliabilityReplication()methods in Mapping

class . 49
6.8 toXML() method of ProcElem class 51
6.9 toDB() method of ProcElem class 51
6.10 fromXML() method of ProcElem class 52
6.11 fromDB() method of ProcElem class 53
6.12 Message structure . 54
B.1 XML schema . 69
B.2 ODL description . 70

x LISTINGS

Chapter 1

Introduction

1.1 Embedded system design

Embedded systems have become much more complex over last years. Following
the growth of their complexity, models used in design and methodologies have
to change as well.
As described in [18], first (in 1970s) embedded systems designers used transistor
models. Such way of presenting the systems was suitable, however, only for
simple systems, consisting limited number of transistors. As the systems grew,
the more abstract models were used. And so throughout the years the design
models changed through gate-level models (1980s), register transfer level (RTL
in 1990s), to designing at the system level nowadays. The difference between
those models lays in the level of abstraction that hides lower level details from
the designer, therefore allowing him not to be concerned about them.
When it comes to design methodology used in the embedded system, it can be
divided into three main levels:

• functional level

• mapping level

• implementation level

2 Introduction

At functional level the behaviour and main requirements of the system are de-
scribed. Here also the verification of the models is performed making sure that
all constraints will be satisfied (e.g. system will not enter the deadlock). At the
same time multiple hardware architectures, that will enable the system to fulfill
its task, are composed.
Further the mapping of the functional model onto the hardware architecture is
done. In this step designer performs the design space exploration attempting to
choose the best of composed architectures that will fulfill performance (speed,
power consumption), and other requirements.
Last level in the design methodology is implementation of the embedded system.
Here the lower-level specification of the system is created. This level may not
necessarily end by having ready product. It rather generates the specification
and requirements for next phase in development.
Note that all those levels in the methodology may give the input to the higher
level, taking design back to that level. Such feedback from lower levels, where
more details are available and some of the problems become visible, aims at
creating better final design, and so the product.
As it is crucial to have very low time-to-market of the embedded system, mis-
takes and possible problems should be found and fixed as early as possible in
the design process. Fault found at the implementation level, means in many
cases going back to the higher design levels and fixing it there. This results in
necessity to redo the earlier stages, which in turn results in the longer design
process and higher time-to-market.
There are plenty of tools helping the designers in their task. Lavagno and
Passerone in [18] mention tools for functional design like Simulink ([19]) or IBM
Rational Rose RealTime ([14]). They also give examples of function-architecture
codesign tools like Artisan Software Real Time Studio ([22]).

1.2 Motivation

As described in previous section, the design of the embedded system is the
complex and challenging process. Designer’s decisions during first stages highly
influence the overall design, and, if done wrongly, have a significant impact on
the product success.
One of the most important and difficult decisions is the mapping of functional
tasks to the processing elements (NP-hard problem, as discussed in [25]). This
decision impacts not only the schedulability of the system, but also the power
consumption and reliability, as different processors may have different energy
characteristics and mean time between faults.
As embedded systems become more portable with continuous grow of complexity
(e.g. mobile phones), the battery life becomes the issue. Therefore, together

1.3 Overview 3

with mapping of tasks, designers may want to use dynamic voltage and frequency
scaling (DVFS), and make some tasks being executed at lower voltage making
the energy consumption smaller as well. Such decision, on the other hand,
makes the tasks being executed for longer time (voltage is proportional to the
frequency), and be more vulnerable to faults (less reliable). As discussed in [30]
the static reliability-aware power management (RA-PM) is again NP-hard.
Note that both mapping and deciding on voltage levels for tasks have to be done
together, as one influences another, and both impact the schedulability, as well
as reliability and power consumption.
This thesis aims to create the design tool that will cope with above two problems.
Furthermore, an attempt is made to create the framework that will allow joining
multiple tools, and make them cooperate with each other. Such framework
would allow using simple tools that work together to achieve complex task,
instead of creating complex systems that are capable of solving limited number
of problems.

1.3 Overview

Following chapters will describe work done throughout this project. Following
this chapter, in chapter 2 we will cover preliminary knowledge that will be used
in this thesis, namely used theoretical model of embedded system (section 2.1)
and meta-heuristics used for in optimization process (section 2.2).
In chapter 3 we will design data structures that should represent the embedded
system model. We will discuss how tasks (section 3.2), processing elements (sec-
tion 3.3) and finally mapping of software to architecture is represented (section
3.4).
Further in chapter 4 we will take a closer look at possibilities that we have when
creating interoperability framework. We will first look at technologies allowing
data sharing among the tools (section 4.1), and communication between them
(section 4.2).
Having discussed all aspects needed for design of both integrated tool and inter-
operable tool set, let us in chapter 5 make the actual design. First in section 5.1,
let us distinguish independent modules, that could run as separate applications
in case of tool set. This section also already includes design aspects of integrated
tool. All additional information for designing it are provided in further section
5.2. That chapter concludes with discussion of different aspects of designed tool
set (section 5.3).
Next, in chapter 6 we move our attention to actual implementation. We, how-
ever, limit our attention here to only some major aspects and decisions that were
done during this phase of the project. Full understanding of all implementation
details is, therefore, left for looking at actual source code. In this chapter we will

4 Introduction

first justify choice of programming language used (section 6.1). Further we will
look first at implementation of embedded system representation (section 6.2),
which was designed in chapter 3. Chapter will conclude with implementation
issues regarding interoperability framework (section 6.3).
In last but one, chapter 7, we will compare all three approaches that were taken
to achieve the same task, namely integrated tool, and two tool sets, one using
files and second using database. We will also discuss reasons for obtaining such
results.
This thesis will conclude with providing in chapter 8 general ideas for future
development and improvement for tools that were made.

Chapter 2

Preliminaries

In this chapter the preliminaries for the thesis will be presented. This includes
defining of system models (in 2.1), which will cover both hardware and software
architecture. Afterwards, the theory regarding the optimization method shall
be presented, together with the heuristic algorithm actually used (2.2).

2.1 System model

2.1.1 Hardware architecture model

Let us consider the hardware platform first. It consists of multiple processing
elements (PEi), connected with each other by communication channels e.g.
buses. Each processing element is capable of dynamic voltage scaling and has
well-defined set of operating modes, M = {Λ0,Λ1, ...,Λn}. Each operating mode
is defined by: Λk = {sk, fk, pk}, where:

• sk is the speed of the processing element when running at operating mode
k measured in Hz

• fk is relative voltage level of the operating mode

6 Preliminaries

PE
1

Bus

PE
2

Figure 2.1: Architecture

• pk being the power consumption when processing element runs at given
operating mode.

Example architecture is shown in the figure 2.1. Each processing element runs
the real-time operating system with the static priority scheduler (e.g. rate mono-
tonic). Any faults within the execution of the task can be detected after it is
finished.

2.1.2 Fault model

During their operations, embedded systems may be affected by various faults.
These faults may happen due to hardware errors (usually permanent faults),
electromagnetic fields affecting the processing elements and/or memory, or oth-
ers. Faults can be divided into two categories: permanent and transient. When
permanent fault occurs, it can be removed only by changing the affected hard-
ware. Until that the fault will be present with every subsequent execution.
Transient faults, on the other hand, usually disappear before the next execution
of the task. As the transient faults happen more often ([30]), focus of this thesis
will be on them.
Transient faults follow the Poisson distribution with the rate λ. This will be
referred as the fault rate. Fault rate as described in [31] is affected by the
operating mode (voltage level) and given by formula:

λ(f) = λ010
d(1−f)
1−fmin (2.1)

Response time analysis (2.1.4) also require minimum time between faults (also
referred to as the fault period). Fault period is given by the designer and
corresponds to the application reliability goal (see section 2.1.5). If time between
two faults happening is not less than the fault period, then the reliability goal
for the application shall be met. This follows the approach presented in [8].

2.1 System model 7

2.1.3 Application model

Having architecture and fault model, let us move to the application model.
The application consists of set of tasks. For simplicity of the response time
analysis let those tasks be independent and not share any resources. These two
assumptions, however, can be loosen, if more advanced analysis techniques shall
be applied.
Each task of the application, Pi = {ci, Ti, Di}, is defined by three parameters:

• ci being the number of cycles required to execute the task in the worst
case (for simplicity we assume that this value is independent of processing
element on which the task is running)

• task period, Ti, measured in seconds

• deadline, Di, for the task to be executed.

Having worst-case execution cycles, we can calculate rather simply worst-case
execution time, Ck

i , using equation:

Ck
i =

ci

sk
(2.2)

In case the system detects an error during the task execution, the task is re-
executed at the maximum speed. Priority statically assigned to this task is not
changed.

2.1.4 Response time analysis

One of most important requirement for the embedded systems is that all tasks
have to meet their deadlines, i.e. in the worst-case scenario their execution must
terminate within the deadline. Analysis that verifies fulfilling of this requirement
is response time analysis.
As described in [5] we can find the worst-case response time of the task using
the following formula:

rki = Ck
i +Bi +

∑

j∈hp(i)

⌈

rki
Tj

⌉

C
kj

j

8 Preliminaries

As already assumed, tasks do not share any resources. Therefore, we can take
Bi = 01.
Following the approach presented in [8] we assume that an error can happen in
any of the tasks, however, not more often than a fault period TF (see 2.1.2).
Response time calculation taking this into account is as follows:

rki = Ck
i +

∑

j∈hp(i)

⌈

rki
Tj

⌉

C
kj

j +

⌈

rki
TF

⌉

maxj∈hp(i)∪i

(

Ck
j

)

(2.3)

Let us also define the degree of schedulability, as presented in [20]. This will
help us in driving the heuristics towards better solutions in case the current one
is not schedulable (see 2.2). Degree would be then defined as:

degree =

{

c1 =
∑n

i=0 max(0, ri −Di) if c1 > 0

c2 =
∑n

i=0 ri −Di if c1 = 0
(2.4)

Note that in case of the unschedulable system, value of degree of schedulability
is always positive (condition for first equation is satisfied, and there exists at
least one task for which ri −Di is greater than 0; schedulable tasks in this sum
do not count, as ri −Di for them is negative).
For schedulable systems, value of degree of schedulability is always non-positive
(negative or zero).

2.1.5 Reliability of application

As already described in section 2.1.2, the designer of the system specifies the
reliability goal: value representing the minimum reliability that must be met by
the embedded system.
To calculate the reliability of the application let us define first the reliability
of the task as in [21]. Reliability of the task is the probability that it executes
successfully.

Ri = e−λ(fk)C
k
i (2.5)

In case of faults the tasks can be re-executed. The reliability of the task with
the possibility of re-execution is the probability of any execution of the task
to be successful. In general the task can be re-executed multiple (kf) times.
As the re-executed task is run at the maximum speed, the λ(f) is in fact λ0.

1In case of tasks sharing resources the appropriate resource sharing protocol would have to
be set (like Priority Inheritance Protocol or Priority Ceiling Protocol); then Bi is calculated
accordingly. See [9] for details.

2.1 System model 9

The reliability of the re-execution can be therefore calculated using following
formula:

Ri = 1−
(

1− e−λ0Ci
)kf

(

1− e−λ(fk)C
k
i

)

(2.6)

In case of important tasks, the system designer may want some them be repli-
cated to another processing element or elements. In such a case both replicas
may be voltage scaled differently. The general formula for the reliability of
replicated tasks is as follows:

Ri = 1−
∏

(

1− e
−λfki

C
ki
i

)

(2.7)

Reliability of application is the probability of all tasks executed successfully. It
is therefore product of reliabilities of all tasks:

R =
∏

Ri (2.8)

Normal convention for providing the value of reliability is to specify number
of nines that must follow the decimal point. And therefore the reliability:
0.9999994 is referred to as six nines (and four).

2.1.6 Energy consumption

When it comes to the energy consumption, let us first remind well-known for-
mula from physics that energy is product of power and time.

E = Pt

This formula can be directly used to calculate the energy consumed by the task,
as we have the power consumption for each operating mode that task could run
at, as well as its worst-case execution time, when run at this operating mode.
Note, however, that in such a case the tasks that run rarely but for long time
would dominate the energy consumption over the tasks that run for shorter time
but frequently. As this is not the case in real-life systems, we shall make some
adjustments to the formula. It should take into consideration also how often
the tasks run comparing to others.
To do this, let us first define the application period, (TAPP), as the smallest
common multiple of all the tasks periods. Then let us define for each task
the coefficient that will catch how many times the task is executed within the
application period:

ϕi =
Ti

TAPP
(2.9)

10 Preliminaries

We shall, therefore, calculate the energy consumption for the application period.
Energy consumption for the task is given by the formula:

Ei = pkiC
k
i ϕi (2.10)

Total energy consumption is the sum of energies consumed by all the tasks
within the application period:

E =
∑

Ei (2.11)

Note that when calculating the energy consumed by the system, we assume
that no faults occur. We shall, therefore, try to minimize the best-case energy
consumption.

2.2 Optimization and meta-heuristics

As described in section 1.2, the tool designed and implemented as part of this
thesis attempts to solve NP-hard problems, namely mapping application to
the hardware architecture, and setting statically the voltage levels for all tasks
within the application.
To make it possible to solve problems from the NP-hard set, tool must perform
the design space exploration attempting to find the optimal solution for given
problem. To achieve this use of meta-heuristic algorithms is necessary. This
will not guarantee finding the optimal solution, but such guarantee cannot be
given in reasonable amount of time. In this thesis the simulated annealing (first
presented in [17]) is used for this purpose.
In general meta-heuristic algorithms aim at finding the minimum or maximum
value of the function of multiple independent variables. This function is usually
called the cost function, and this name will also be used in this thesis. Cost
function should capture how good the current solution is i.e. how far is it from
the optimal one. This makes defining the right cost function crucial for finding
solution close to optimal.
Very important thing for cost function is that it must catch whether the current
solution satisfy the constraints or not. If any of the constraint in is not met
(solution is not feasible), the cost function should give appropriate penalty,
therefore making it far from the optimal one. This will prevent such solutions
to be considered, even if all other parameters make the value of the functions
close to the optimal value. Furthermore, as already discussed in section 2.1.4,
cost function should drive the algorithm towards better solutions even if the
current solution is not feasible. This means that the value of cost function in
case any constraint not being met should not be the same in all cases.
In our case, two constraints are present:

2.2 Optimization and meta-heuristics 11

• system must be schedulable

• reliability goal must be satisfied

In case of system being schedulable, as already mentioned, degree of schedula-
bility captures the penalty size. In case of reliability goal, the size of penalty
may be dependent on the difference from the reliability goal (similarly to degree
of schedulability).

2.2.1 Simulated annealing

Simulated annealing takes its name from the metallurgical process: annealing,
in which the metal is repeatably heat and cooled, aiming at creating near-perfect
crystal structure (see [28]).
The algorithm uses the neighbourhood search technique. In this technique the
move is done always to the neighbour of the current solution. Algorithm ter-
minates when it reaches the maximum number of failed attempts to find better
solution then the current.
The algorithm is given in Algorithm 1.

As one may see, simulated annealing uses the randomize method to look for
the better solution in the neighbourhood. Moreover, when looking for better
solutions in the neighbourhood of current one, it may accept, under certain
conditions, move to worse solution (of course without updating the best solution
found). Possibility of such moves is reduced with time, as the temperature is
lowered (this is the similarity to the annealing process in metallurgy, in which
with lower temperature the possibility for an particle to move in crystal structure
gets smaller).

12 Preliminaries

Algorithm 1 Simulated annealing algorithm

{ maxNA - maximum number of attempts to find the better solution among
the neighbours
x - current best solution
f - cost function
T - current temperature
ǫ - cooling rate }

input

maxNA, x, T, ǫ

while NA 6= maxNA do

for i = 0 to TL do

xnew ← random neighbour(X)
∆ = f(x)− f(xnew)
if ∆ > 0 then

NA← 0
x← xnew

if f(x) > f(xbest) then
xbest ← X

end if

else if e∆/T > random real(0, 1) then
NA← 0
x← xnew

else

NA← NA+ 1
end if

end for

T ← ǫ ∗ T
end while

return xbest

Chapter 3

System model representation

Having described models of the embedded systems, let us now consider their
representation in the tool that is created in as a result of this thesis. Therefore,
we shall start with general overview of approach taken to achieve this (3.1).
Next the representation of application model (3.2) followed by representation of
the hardware architecture model (3.3) is described. The chapter concludes with
the description of mapping of application model onto the architecture (3.4).

3.1 Overview

One of the main requirements when doing design of the system model represen-
tation is the separation of the input models from the processed ones. The aim
in designing the data structures was to clearly distinguish data provided by the
designer, and do not change them as the tools run.
Data provided by the designer that shall not change consists mostly of:

• task characteristics including task deadline and its period

• processing elements characteristics with operating modes that it consists
available

14 System model representation

Task
name: String
wce: Double
deadline: Double
period: Double
k: Integer
 <<constructor>> Task(name: String, wce: Double, deadline: Double, period: Double, k: Integer)
 <<constructor>> Task(name: String, wce: Double, period_deadline: Double, k: Integer)
 getName(): String
 getWce(): Double
 getDeadline(): Double
 getPeriod(): Double
 getFaultTolerance(): Integer
 createInstance(t: TaskInstance)
 createInstance(op: OperMode, k: Integer)
 createInstance(op: OperMode, op: OperMode, k: Integer)
 operator>(other: Task): Boolean
 operator<(other: Task): Boolean

Figure 3.1: Class diagram of Task

On the other hand, data that changes throughout the tool run mostly consists
of:

• mapping of tasks to the processing elements

• operating mode at which the task is going to be run, and what is related
to this, its worst case execution time

Another important aspect is the robustness of data structures that should allow
easy further development on the top of those structures. Therefore, data struc-
tures created should be prepared for being the base classes for more specialized
classes.
Note that presented design of data structures is not final, and may be a little
changed during further design. This chapter only attempts to link the system
model from section 2.1. Any further changes that will be necessary will be de-
scribed in following chapters. Following sections will go more in depth with all
data structures.

3.2 Task representation

3.2.1 Task

As already mentioned in previous section, data structures representing the tasks
should separate the designer input data, that does not change, from data chang-
ing while the program runs. Let us, therefore, define abstract class Task that
will be container for all constant data related to tasks. This class is presented
in figure 3.1.
As this shall be the base class (it is abstract), notice that it contains protected

3.2 Task representation 15

Task

TaskInstance
wcet: Double
reWcet: Double
k: Integer

 <<constructor>> TaskInstance(t: Task, op: OperMode, k: Integer)
 <<constructor>> TaskInstance(t: Task, op: OperMode, reExecOp: OperMode, k: Integer)
 getWcet(): Double
 getReWcet(): Double
 getFaultTolerance(): Integer
 responseTime(prevRespTime: Double, hpTasks[]: TaskInstance, hpNum: int, faultPeriod: Double): Double
 responseTime(hpTasks[]: Task, hpNum: int, faultPeriod: Double): Double
 reliability(): Double
 changeMode(op: OperMode)
 changeReExecMode(op: OperMode)
 changeFaultTolerance(k: Integer)

1
task

Figure 3.2: Class diagram of TaskInstance

data present in most models of tasks encountered in embedded systems: worst-
case execution1, deadline and period. Additionally, to allow fault tolerance task
designer may set for each task number of faults that it should tolerate (k)2 to
achieve the reliability goal. For identification purposes there is name of the task
as well.
Class have two constructors setting all its attributes. One of them is used to
simplify creating task in case the deadline and period are the same. Also note
that there are no methods for setting protected attributes, but only for obtain-
ing them (get*). This guarantees that tasks are read-only for application.
As it will be necessary to tell the task with the higher priority (e.g. when cal-
culating response time analysis), methods overloading < and > operators (or
others performing the same task) seems reasonable for this purpose.

3.2.2 Task instantiation

Having defined basic class for the task representation, let us move on to repre-
senting instance of this task. It will contain additional information about the
task that is already scheduled, relate it to the operating mode at which it shall
be executed, and contain information about necessary number of re-executions
of the task. For this purpose let us define class TaskInstance, diagram of which
is presented in figure 3.2.
TaskInstance can be created having object of Task class (in fact one needs the
object of non-abstract class derived from Task) using one of createInstance()
methods. You then need to provide operating modes (for normal execution and
for re-execution) at which the task should be run, as well as number of possible
re-executions.
It is again an abstract class, and requires implementation of its methods. It con-

1As described in section 2.1.3 we consider in this thesis worst-case execution time. How-
ever, this parameter can also be treated as worst-case execution time, if operating modes in
processing element have relative speeds, and not absolute ones (see section 3.3 for details)

2This fault tolerance can be achieved by both re-execution and replication.

16 System model representation

tains two worst-case execution times, one when the task is executed normally,
second in case it needs to be re-executed (as stated in section 2.1.3 it should
be re-executed at maximum speed)3. Both times are calculated using equation
2.2 (inputing speed from related operating mode) when the instance is created,
or the operating mode is changed. There shall be no possibility to change it
directly.
Class also give the methods to calculate worst-case response time of the task.
Method requires set of higher priority tasks, and fault period (if applicable).
Recalling equation 2.3, one may notice that to obtain response time multiple
iterations have to be made. Normally one shall start setting initial response
time to worst case execution time of the task (worst-case response time cannot
be smaller then the worst-case execution time), and iterating continues until
the response time converges. Notice, however, that response time is not smaller
then the response time of higher priority tasks. Therefore, one may as well start
iterating from the response time of higher priority task.
As the reliability of the task requires only information about worst-case execu-
tion time and value of λ(f) for the operating mode (see formulas 2.5 and 2.6),
it is possible to calculate it here as well. To achieve this, let us define method
reliability() that shall calculate the reliability depending on the value of k,
using either only equation 2.5 (for k=0), or equation 2.6 (for k>0). It is, however,
not possible to calculate at this level reliability of replicated tasks, unless in-
cluding in class Task notion of all objects of class TaskInstance that are based
on it. This is not meant, as would require changing the Task object while the
tool is running.

3.3 Processing element representation

Having represented the application model let us now move to the hardware ar-
chitecture representation. As described in section 2.1.1 hardware model consists
of multiple processing elements connected by some communication channel. As
application contains set of independent tasks that do not share resources, no
communication channel between the processing elements is necessary to repre-
sent here.

3As TaskInstance does not connect task to the processing element, but only to operating
modes, at this level of abstraction re-execution at maximum speed cannot be enforced.

3.3 Processing element representation 17

OperMode
name: String
speed: Double
consPow: Double
voltageLevel: Double
lambda: Double

 <<constructor>> OperMode(speed: Double, power: Double, voltage: Double, lambda: Double)
 <<constructor>> OperMode(speed: Double, power: Double, voltage: Double)
 <<constructor>> OperMode(speed_voltage: Double, power: Double)
 setName(n: String)
 getName(): String
 getSpeed(): Double
 getConsPow(): Double
 getVoltageLevel(): Double
 getLambda(): Double
 setLambda(lambda0: Double, d: Double, minVolLev: Double)
 operator<(other: OperMode): Boolean
 operator>(other: OperMode): Boolean

Figure 3.3: Class diagram of OperMode

3.3.1 Operating mode

Let us start by defining class OperMode representing operating mode of process-
ing element. It is presented in figure 3.3.
Class attributes represent all parameters of the operating mode: speed, power
consumption per time unit, and relative voltage level. Note, however, that speed
may be both absolute and relative, therefore making it possible to use in the
task definition worst-case execution time and worst-case execution cycles. If the
speed of operating mode is relative (0 ≤ s ≤ 1), the worst-case execution in
task representation stands for worst-case execution time. Otherwise, worst-case
execution in task representation stands for worst-case execution cycles4. In both
cases formula 2.2 holds.
Taking advantage of λ(f) depending only on the relative frequency (or voltage)
that is constant in each operating mode, we shall give the opportunity to calcu-
late it once only (using formula 2.1), and store it as an attribute lambda in this
class. It shall decrement the number of necessary calculations during heuristic
search.
To make it possible to compare operating modes with respect to their speeds in
simple way, as it was with comparing priorities of tasks, the < and > operators
shall be defined (or dedicated methods providing the same functionality).
Note the existence of method allowing change of name of operating mode. This
is due to fact that the name of operating mode shall depend also on the pro-
cessor to which operating mode belongs. However, at the time object of this
class is created, no processing element is defined yet (see following subsection
for constructing processing element object), therefore making it necessary to
provide set method.

4Correctness of input data is responsibility of person using the tool. Tool does not check
if the corresponding attributes match

18 System model representation

ProcElem
name: String
nModes: Integer

 <<constructor>> ProcElem(name: String, modes[]: OperMode, nModes: int, l: Double, d: Double)
 <<constructor>> ProcElem(name: String, modes[]: OperMode, nModes: int)
 getName(): String
 getModes(): OperMode[]
 getNModes(): int
 getMode(id: int): OperMode
 checkMode(mode: OperMode): Boolean

OperMode *
modes

Figure 3.4: Class diagram of ProcElem

3.3.2 Processing element

Next let us move to definition of ProcElem class, presented in figure 3.4.
Class ProcElem may be considered mostly as the container of operating modes
(objects of OperMode class) that it can run. Therefore, most of logic connected
to processing element is not here, but in class already discussed in previous
section. This class mostly provides accessing methods for this collection. Note
that again putting operating modes is not allowed, and may be done only in the
constructor.
Object of this class can be constructed either only with name and set of oper-
ating modes. In this case, set of operating modes need to be complete (all data,
including value of λ(f) function, in operating modes is present, and operating
modes are already sorted). Otherwise, one needs to provide data necessary
for calculating value of λ(f) specific for this all operating modes. In this case
the collection of operating modes provided as argument is first sorted from the
slowest to the fastest, and then each operating mode has the lambda variable
calculated and set by means of setLambda() method. This is recommended
way of creating the processing element.

3.4 Mapping of tasks onto hardware architec-

ture

Having defined basic data structures to represent the task (together with its
instance that is scheduled for execution) and processing element (with it’s op-
erating modes), let us now move to definition of how the application model is
mapped to particular hardware architecture. Such mapping is done at two levels
of abstraction. Firstly, instances of tasks, already being related to the operating
mode with which they are going to be run, are related to particular instance of
processing element. Secondly, all instances of processing elements are related
together into one mapped architecture. Both levels are described in following
subsections.

3.4 Mapping of tasks onto hardware architecture 19

ProcElem

ProcElemMap
id: Integer

 <<constructor>> ProcElemMap()
 <<constructor>> ProcElemMap(id: Integer, pe: ProcElem, op: OperMode)
 <<constructor>> ProcElemMap(id: Integer, pe: ProcElem, tasks: TaskInstance[], op: OperMode, l: Double)
 getId(): Integer
 getPe(): ProcElem
 getTasks(): TaskInstance[]
 getTasksSize(): Integer
 getTask(id: Integer): TaskInstance
 getTask(task: Task): TaskInstance
 getLCM(): Double
 setLCM(l: Double)
 taskPlace(t: Task): iterator
 finalChangeTaskOperMode(t: Task, op: OperMode)
 sortTasksInsts()
 checkTask(t: Task): Boolean
 getTaskFaultTolerance(t: Task): Integer
 scheduleTask(t: Task, k: Integer, op: OperMode): Boolean
 scheduleTask(t: Task, k: Integer, opIndex: Integer): Boolean
 removeTask(t: Task): Boolean
 changeTaskOperMode(t: Task, op: OperMode): Boolean
 changeTaskOperMode(t: Task, opIndex: Integer): Boolean
 changeTaskFaultTolerance(t: Task, k: Integer): Boolean
 degreeOfSchedulability(faultPeriod: Double): Double
 energyConsumed(): Double

TaskInstance

OperMode

1
pe

*
tasks

1 reExecMode

Figure 3.5: Class diagram of ProcElemMap

3.4.1 Mapping onto processing element

First abstraction level groups all tasks that shall be executed at one physical
processing element (instance of processing element) from the architecture. Let
us therefore define class ProcElemMap presented in figure 3.5
This class shall contain the reference to object of ProcElem class, which stores
all the information about the type of processing element being used, including
collection of its operating modes. ProcElemMap also contains the collection of
TaskInstance objects, representing all the tasks that are scheduled on this unit.
This class should provide methods that will allow to schedule and remove the
task, as well as change the operating mode or number of tolerated faults for
each of them. Both operations should be safe to use. It should not be possi-
ble to schedule task that is already on given processing element, or attempt to
remove the task that is not there. Moreover, changing the operating mode of
task, should be possible only to operating mode that is present on the process-
ing element to which tasks are mapped (this cannot be validated on the task
instance level, as there is no notion of processing element).

At this level of abstraction one may perform already some analysis, therefore
moving most of calculation effort to lower levels of abstractions (if possible).
Let us point out that for set of independent tasks response time of one task
depends on tasks having higher priority and executed on the same processing

20 System model representation

element. As all necessary data in our case is already available, we may at this
level find response time for all tasks, using methods responseTime() from class
TaskInstance.
Taking the closer look at the definition of degree of schedulability (formula 2.4),
one may see that the value of degree is calculated using c1 formula if system is
not schedulable, and using c2 otherwise. Also note that c1 takes into considera-
tion only tasks that missed their deadlines, and ignores rest of them. It is also
true that system is not schedulable if task set on any of processing elements is
not schedulable (i.e. if task sets on all processing elements are schedulable, then
the system is also schedulable). Therefore, it is possible to redefine the degree of
schedulability making it being sum of partial degrees, if all of them are smaller
or equal 0, or sum of positive partial degrees otherwise. Such definition, which is
equivalent to original formula, allows us to calculate partial degree of schedula-
bility already at this level of abstraction. Partial degree may be calculated using
the original formula (2.4). Calculation of both, response times for all tasks and
partial degree of schedulability, is done in degreeOfSchedulability() method.
Next possibile analysis at this level is calculating energy consumed. Recalling
equation 2.11 total energy is sum of energies of individual tasks. As energy con-
sumed on one of the processing elements does not influence energy consumption
of another, we may define partial energy consumption at the processing element
level. Then the total energy consumed for the system is the sum of those par-
tial consumptions. This is done using energyConsumed() method. Note that
for finding the energy consumption one needs the application period (in fact
number of times task occurs within the application period, see formulas 2.9 and
2.10). Therefore, when scheduling tasks least common multiple of task periods
needs to be calculated. Such calculation is done first at the processing element
mapping level, and then on system level (and updated downwards if necessary).
There is no possibility of calculating further reliability at this level of abstrac-
tion. One could be tempted to do so, recalling formula 2.8, which makes the
reliability the product of individual reliability of tasks. However, reliability of
task may depend on its instances on multiple processing elements (in case of
replication), information about which is available only on higher level of ab-
straction described next.

3.4.2 Processing elements collection

Highest abstraction level is the collection of all processing elements (architec-
ture) with tasks mapped onto them. Class representing this level is Mapping,
and is presented in figure 3.6.
This class contains collection of objects of lower level of abstraction, namely of
ProcElemMap class. It gives methods for adding and removing new processing
elements. In this way it should be possible to look at different architectures

3.4 Mapping of tasks onto hardware architecture 21

Mapping
nextId: Integer

 <<constructor>> Mapping()
 <<constructor>> Mapping(pem: ProcElemMap[])
 <<constructor>> Mapping(id: Integer, pem: ProcElemMap[])
 getPeMap(): ProcElemMap[]
 getPeMapElem(id: Integer): ProcElemMap
 getPeMapSize(): Integer
 findById(id: Integer, index: Integer): Boolean
 checkMove(from: Integer, to: Integer, t: Task): Boolean
 finalScheduleTask(index: Integer, t: Task)
 finalRemoveTask(index: Integer, t: Task): Boolean
 reliabilityReplication(): Double
 addProcElem(pe: ProcElem): Integer
 removeProcElem(id: Integer): Boolean
 scheduleTask(id: Integer, t: Task, k: Integer, op: OperMode): Boolean
 scheduleTask(id: Integer, t: Task, k: Integer,, opIndex: Integer): Boolean
 removeTask(id: Integer, t: Task): Boolean
 moveTask(from: Integer, to: Integer, t: Task, opMode: OperMode): Boolean
 moveTask(from: Integer, to: Integer, t: Task, opModeIndex: Integer): Boolean
 replicateTask(from: Integer, t: Task, to: Integer): Boolean
 degreeOfSchedulability(faultPeriod: Double): Double
 energyConsumed(): Double
 reliability(): Double

ProcElemMap *
peMap

Figure 3.6: Class diagram of Mapping

while looking for optimal solution for the embedded system design. Moreover,
it provides set of wrapper methods that allow scheduling and removing of tasks
(at this point it is necessary to specify the processing element on which opera-
tion should be performed). Note that, unlike tasks being uniquely scheduled on
processing elements, architecture may contain of multiple processing elements of
the same type. Therefore, when adding new processing element unique identifier
should be assigned to it. Also for tasks once scheduled on processing element
methods to move it to another are available. It is also possible to replicate the
task by removing one fault tolerated by re-execution and making a replica of
it on another processing element. The same method can be used for moving
number of tolerable faults between two processing elements (in case the task is
already scheduled on the target processing element).

As this is the highest level of abstraction, all analysis have to be finalized (final
results should be available). As already mentioned in previous section, final
energy consumption calculations are made by consolidating (summing) the par-
tial results of them (in method energyConsumed()). When it comes to degree
of schedulability (method degreeOfSchedulability()), the summation is per-
formed as long as all processing elements have the partial degree smaller or equal
to zero. In case of any processing element having value above zero, system is
known to be non-schedulable. In such case previous sum of partial degrees is
discarded, and from this point only partial degrees that are greater then 0 are
taken into consideration (including first encountered).
Here we may also finally calculate the total reliability of the system. To achieve
this, mapping object must be able to tell number of replicas of all tasks in the
system together with processing elements to which they are scheduled. Having
this information, the product of all tasks’ reliabilities is being made as stated in
formula 2.8 (in method reliability()). If a task has more then one instance

22 System model representation

(is replicated), the total reliability of all replicas is calculated using formula 2.7
in method reliabilityReplication(). Otherwise, method from task instance
is used (as described in section 3.2).

Chapter 4

Interoperability

Let us now move to the different area of investigation in this thesis: attempting
to make the framework for interoperability of multiple tools. Following section
(4.1) will describe major issues and ways of sharing data among different tools.
In particular two possible approaches are brought to reader’s attention. First
method is using files to exchange information (4.1.1), and the second using
external database system (4.1.2). Finally, as the tools must inform each other
about the operation status, a look at possible communication methods (4.2) is
made.

4.1 Sharing data between tools

Working environment of embedded system designer usually consists of multi-
ple tools, each performing either single very specialized task (e.g. calculate the
worst-case execution of given task), or complex ones that help during whole
design process. Those tools are usually written using different programming
languages and technologies. Even in case of complex and almost complete de-
sign tools, it may be still necessary to use the result produced by one tool in
another, or even to make them work together to achieve goal set by the designer.
To make it possible for multiple tools to cooperate with each other, they must

24 Interoperability

share information, and in many cases communicate with each other (e.g. send
the information regarding successfully performed task). In case of tightly cou-
pled tools both things can be achieved using the same technique, i.e. tool could
send the result of its work together with information about task being success-
fully performed (see 4.2 for more details on such approach). This, however,
requires all tools to be aware of each other, and produces problem when new
needs to be incorporated or replace existing one. In such situation, not only new
tool would need to be prepared for such cooperation, but most likely the older
ones would also require some modifications. Moreover, in some cases output of
one tool is required by multiple tools, of which producing application may be
not aware, and not prepared for.
Examples of such cases may be easily found when looking at the embedded sys-
tems design methodology, as described in 1.1. Let us consider mapping level of
the design as an example1. To perform the mapping, tool requires input from
functional design level, which is both functional model of application and pos-
sible hardware architectures. Result of this stage must be verified and can be
considered as an input for the next design step. However, as already mentioned,
further phases of the process will not only use the output of the mapping, but
may also impact the mapping. In such situation making all separate tools able
to communicate effectively possible, would be tremendous task. Much smarter
idea would be to provide the data store into which the tools may put produced
data, and where they may find the required ones. For tools tightly intercon-
nected this will not make communication unnecessary, but will make the whole
set of tools more interoperable with others by making results available in com-
mon datastore.

When it comes to possible storage of data one may consider mostly two op-
tions: files, that would be readable for other tools, or putting all necessary data
into some database. They are described in more details in following subsections
(files in 4.1.1, and databases in 4.1.2). One may also consider memory sharing
between tools. This, however, is very dependent on both platform and program-
ming language that one uses. As usage of one platform and one programming
language only cannot be assumed in our case, this approach is not developed
further in this thesis.

1Designed tool will work exactly at this level in design methodology.

4.1 Sharing data between tools 25

4.1.1 Files

One of easiest way to create datastore is to put all information into file or files.
Such files may be either binary or in ASCII format. Great advantage of binary
files comparing to those in text format is their size: data stored in binary format
is usually smaller then text representation of the same structure (unless struc-
tures themselves consist only information in text form). Binary files require
good description about the structure of the file that may depend on size of basic
data types used to create such file. As simple example let us look at sizes of
integer variables in C programming language. C standard (see [16] for latest
committee draft) defines all data types, however, about their maximum sizes
it states only that their implementation defined values shall be equal or greater
in magnitude (absolute value) to those shown, with the same sign[16, p. 21].
This makes the size of long different when using 32 and 64-bit GCC compiler.
In first case size of long would be 4 bytes (32-bits), whereas in second 8 bytes
(64-bits). This difference could make the binary data file created on 32-bit pro-
cessors will be unreadable on 64-bit machines, unless special measures will be
applied in the file format that will define strictly its structure, therefore making
file format definitions much more complex.
Unlike binary format, text file format provides human readability, and when size
is not an issue, seems to be more and more preferred option. Text files are more
platform independent, as text representation will be read by all the systems in
the same way2. One of the most popular textual formats nowadays is XML
(Extensible Markup Language), created by W3C in 1996 (current 5th edition of
the 1.0 recommendation can be found in [27]). It provides the possibility to rep-
resent arbitrary data structures using tree structured elements. Each element
falls between opening and closing tags. All child elements are placed within
parent element. Example XML file representing books by author is presented
in listing 4.1. As one may see, the root object in example is books and contains
two child elements author. Each of those child contains also attribute name.
Further, each author element contains three child elements book that have in
turn child elements title and year.
Strong advantage of XML format is large number of parsers giving opportunity
to be used in most of programming languages without necessity of creating your
own.
XML format is base for other more specialized formats that shall represent and
store particular structures or information like GraphML or SVG.
When talking about design of embedded systems one should also consider TGFF
(Task Graphs For Free) (first defined in [10]) format. TGFF allows to create

2This is not true when file format is dependent on line endings, as three most popular
operating systems use different characters to represent this: Linux and most of UNIX systems
use linefeed (0x0A), MacOS up to version 9 carriage return (0x0D), and Windows both in
mentioned order. Note that current versions of MacOS use the same representation as Linux.

26 Interoperability

Listing 4.1: XML example - books collection
<?xml version=” 1.0 ” encoding=”UTF−8” ?>
<books>

<author name=”Tom Clancy”>
<book>

< t i t l e>The Hunt f o r Red October</ t i t l e>
<year>1984</ year>

</book>
<book>

< t i t l e>Red Storm Ris ing</ t i t l e>
<year>1986</ year>

</book>
<book>

< t i t l e>Patr i o t Games</ t i t l e>
<year>1987</ year>

</book>
</ author>
<author name=”Robert Ludlum”>

<book>
< t i t l e>The Bourne Id en t i t y</ t i t l e>
<year>1980</ year>

</book>
<book>

< t i t l e>The Bourne Supremacy</ t i t l e>
<year>1986</ year>

</book>
<book>

< t i t l e>The Bourne Ultimatum</ t i t l e>
<year>1990</ year>

</book>
</ author>

</books>

pseudo random task graphs that are useful as benchmarks for the research pur-
poses, in particular hardware-software co-design. In TGFF files multiple pro-
cessing elements are defined, together with specification for execution of specific
simple tasks (like basic calculations). From those tasks tool may generate the
task graphs that could be inputed into analysis tools. As all graphs are com-
posed of tasks that worst case executions (and possibly other parameters) are
given for each architecture, the analysis and finding e.g. optimal mapping can
be performed. Example TGFF file, taken from the Embedded Systems Synthe-
sis Benchmarks Suite (E3S) version 0.93, is shown in listing 4.2.
As one May see, there is first definition of task graph consisting of 6 connected
tasks. Task graph has defined period and hard deadline. Further, there are def-
initions of processors with overall characteristics (like price or power) followed
by specification of different tasks that can be executed. In this example there
are two AMD processors. TGFF also defines possible communication links that
can be used. In this example it is VME and USB 2.0.

Although file storage seem very reasonable and is permanent, there is quite
big drawback of using them in the tools, namely time. Files are constantly
written to and read from hard drive which significantly increases time required
to access data. If files shall be used for exchange information in the design space

3File was cut to reasonable size. Original file is much larger, and would not fit as an
example.

4.1 Sharing data between tools 27

Listing 4.2: TGFF example - auto-indust-cords from E3S
@HYPERPERIOD 0.0009

@COMMUNQUANT 0 {
0 4E3
1 8E3
2 15E3
3 1E3
}

@TASK GRAPH 0 {
PERIOD 0.0009

TASK sr c TYPE 45
TASK can1 TYPE 0
TASK fp TYPE 1
TASK can2 TYPE 0
TASK pulse TYPE 12
TASK sink TYPE 45

ARC a0 0 FROM src TO can1 TYPE 0
ARC a0 1 FROM can1 to fp TYPE 0
ARC a0 1 FROM fp TO can2 TYPE 0
ARC a0 2 FROM can2 TO pulse TYPE 0
ARC a0 3 FROM pulse TO s ink TYPE 1

HARD DEADLINE d0 0 ON s ink AT 0.0003
}

AMD ElanSC520−133 MHz
@PROC 0 {
p r i c e bu f f e r ed preempt power commun energy bit i o e n e r g y b i t id l e power

33 1 1 .6 0 0 0 .16
#−−
type ve r s i on va l i d task t ime preempt time code b i t s task power
Angle to Time Conversion
0 0 1 9e−06 150E−6 6 .9 e+04 1 .6

Basic f l o a t i n g point
1 0 1 2 .3 e−05 150E−6 5 .8 e+04 1 .6

Pulse Width Modulation
12 0 1 4 .5 e−06 150E−6 1 .4 e+04 1 .6

src−s ink
45 0 1 1e−05 150E−6 80 1 .6

}

AMD K6−2 450
@PROC 1 {
p r i c e bu f f e r ed preempt power commun energy bit i o e n e r g y b i t id l e power

88 1 11 .3 0 0 1 .1
#−−
type ve r s i on va l i d task t ime preempt time code b i t s task power
Angle to Time Conversion
0 0 0 0 150E−6 0 11

Basic f l o a t i n g point
1 0 0 0 150E−6 0 11

Pulse Width Modulation
12 0 0 0 150E−6 0 11

src−s ink
45 0 1 1e−05 150E−6 80 11

}

@LINK 0 {
u s e p r i c e c on t a c t p r i c e pa ck e t s i z e b i t t ime power contact s
VME (Tundra SCV64 + t r an s c e i v e r)

0 180 1 2 .27E−9 10.35 4
}

@LINK 1 {
u s e p r i c e c on t a c t p r i c e pa ck e t s i z e b i t t ime power contact s
USB 2.0 (Cypress CY7C68013−100AC)

0 14.19 1 2 .08E−3 0 .66 4
}

@MEMORY 8388608 1

28 Interoperability

exploration, those time penalty will significantly decrease the performance of the
search. One should therefore look for the alternative way of storing data to be
shared.

4.1.2 Databases

When storage and sharing of data is necessary one should definitely consider
usage of database systems. There are multiple types of databases. Normally
the one that are thought of are relational databases, that store information in
well defined tables, and allow relations between them. Those databases use SQL
for defining queries. Most popular database systems of this type are MySQL
(see [1]), PostgreSQL (see [3]).
There are, however, more databases types to consider. Some of them are
promoted by NoSQL movement (see [29]), like key/value or object oriented
databases. All those database types try to break the popularity of relational
databases, offering different models for storing data that in many cases is more
convenient to use, at the same time fulfilling database requirements, like ACID4

for database transactions.
In key/value, each information is associated with particular key. Their advan-
tage is quickness of finding required information, as search is done only through
keys, that are usually sorted. One should not, however, think of them as having
very limited functionality. Most of those databases allow storing typical data
structures (like lists) as value of the key. Problem with those databases is dif-
ficulty of storing more complex data structures, for which creating key is not
obvious. Known examples are: Cassandra from Apache Foundation5 (see [11]),
or Redis (see [4]).
With grown popularity of object-oriented programming languages, the necessity
for them to use databases appeared. Despite language built-in support to store
objects in relational databases (like it is in Ruby) most languages that support
object-orientation put the necessity of transformations between table records
and objects on the developer. Although such transformations are possible, they
require additional work to be done, and in case of companies additional costs of
developing the application. Therefore, the need for databases allowing storage
and retrieval of objects appeared. Such databases shall provide most of the fea-
tures of data structures used in object-oriented programming: classes, instances
and inheritance.
According to [2] object database standards were defined by Object Data Man-
agement Group (ODMG), that completed it’s work by publishing ODMG 3.0
standard [6] in 2001. It consists of following major components:

4ACID - atomicity, consistency, isolation, durability
5Used by e.g.: Facebook or Twitter

4.2 Communication between tools 29

• Object Model defining common data model, which should be supported
by ODMG 3.0 applications

• Object Specification Languages (namely Object Definition Language, ODL,
and Object Interchange Format, OIF); first one is used for definitions of
data structures in the database, whereas second one defines the file format
in which those data may be stored

• Object Query Language (OQL) for searching and updating the database;
similar to SQL

• C++, Smalltalk and Java bindings of ODMG implementations to specific
object-oriented programming language

Further work on this standard is currently done by Object Management Group
(OMG) that according to [2] plans to release 4th version of the standard that
would follow up with most recent changes in database systems.
As the place where many resources related to object database management sys-
tems, ODBMS.ORG provides the list of available applications, both commercial
(like Objectivity/DB [15] or Caché [24]) and free (like EyeDB [23]).

4.2 Communication between tools

All tasks performed together by multiple agents require communication between
them. It includes asking for performing specific operation (together with input
data for it), information about it’s status and signaling that operation was
completed (either successfully or with an error). As sharing data was already
discussed, in this section we will concentrate on ways to ask different task to
perform particular operation (i.e. Remote Procedure Calls). In cases when tools
are tightly interconnected, methods described here can replace already defined
in 4.1 for data exchanging purposes, as calling different methods require argu-
ment passing. However, as already discussed sharing data could be seen in more
general way.
When it comes to calling another process, one may consider various APIs6 that
will help in achieving this. One may consider in this case Java RMI, or .NET
Remoting. Although it would be tempting to use one of them, due to their
easiness in implementation phase, one should remember that both of them are
language specific APIs, and using them enforces using specific programming
language in the interoperability framework. As this is against our main require-
ment, neither of those technologies may be used in this case.

6Application Programming Interface

30 Interoperability

More general API with support for multiple programming languages and oper-
ating systems is CORBA7. Defined by Object Management Group (OMG) in
middle 90s standard, allows applications running not necessarily on the same
machine, to interact with each other8. Available to variety of programming
languages (including C/C++, Java, Smalltalk, Ruby and Python), and not de-
pendent on the system running, CORBA would seem great solution for the
purpose of interoperability framework.
However, multiple technical issues with CORBA made it not being used widely
in more recent years, leaving place for Web technologies like SOAP. Those issues
and problems are described in [13]. Firstly, CORBA’s API is very complex, mak-
ing it hard to use by the developers, which in turn increases both development
time and number of defects. Another important aspects of CORBA pointed out
by Henning are security, and more importantly lack of versioning, that allowed
only software updates that were backward compatible.
In case when in procedure calls whole objects do not need to be send to another
application, but only their unique identifiers (like in case when the database
system is used), one may consider usage of sockets to transfer messages. Those
messages could follow both well-known protocol (like XML-RPC or SOAP) or
simple protocol defined for the purpose of the application. Socket usage does not
depend on the operating system that is running underneath, nor the program-
ming language used for creating of the application. Moreover, various libraries
provide methods that may simplify usage of rather low level sockets. Moreover,
if well-known protocol is to be used, one may also find the library that supports
it.

7Common Object Request Broker Architecture
8In fact most technologies used for remote procedure calls treat communication with process

running on the same host is special case of communication with process running on different
host on the network.

Chapter 5

Tool design

Having described how the system model is going to be represented and methods
for making multiple tools interoperable, let us now move to the design of the
tool itself. Firstly, let us divide functionality of the tool, and therefore itself
into separate modules (5.1). Then let us take a brief look at the design of the
integrated tool (5.2), followed by design of set of tools that should work together
(5.3). The interoperability design is further divided into communication between
those tools (5.3.1), and use of files (5.3.2) and database (5.3.3) for data sharing.

5.1 Separation into modules

When dividing the functionality into parts, let us first recall what the tool ac-
tually should do. As described in 1.2 the tool should perform the design space
exploration and try to find out the optimal solution for mapping of tasks onto
processing elements together with deciding voltage levels for each of them1.
Design space exploration can be done using heuristic algorithm that takes the
initial solution, and outputs the best solution that was found during the search.
As described in 2.2 the goodness of given solution is captured by the cost func-
tion, therefore allowing the algorithm to look for extreme value of it.

1As problems are NP-hard, no guarantee of finding the optimal solution could be given.

32 Tool design

During the search the solutions needs to be modified to find more and more
optimal ones. Those transformations should produce one random solution from
the neighbourhood of current, as it is required in case of simulated annealing.
The design however should not limit the possibility to only random transforma-
tion, but shall allow the generating also the whole neighbourhood, if required.
Distinction shall be, however, made between random solution and set of solu-
tions.
Note here that algorithm does not require the knowledge of structures used,
and may leave it to methods calculating the cost function or performing solu-
tion transformation.
Taking all above into account, let us distinguish here four modules into which
the functionality of the tool can be divided:

• Requesting module
This module is responsible mostly for interactions with the user. In cases
when user does not specify himself the initial mapping, it shall also gen-
erate the initial solution that will be an input to the heuristic algorithm.

• Heuristic algorithm module
This module should implement heuristic search algorithm (in our case
it would be Algorithm 1). It does not require any informations about
representation of system model.

• Cost function module
This module calculates the value of the cost function for given solution.

• Transformation module
This module modifies given solution by changing one of the parameters,
therefore creating the new solution being in the neighbourhood. It should
also be able to create the set of solutions (whole neighbourhood), in case
the heuristic algorithm requires that.

How the modules are interconnected precisely depends whether all of them are
integrated into one tool, or they are standalone tools that cooperate with each
other. Both situations are described in following sections (5.2 and 5.3).
Design of each of those modules is quite straightforward. Let us therefore look
only at two of them, namely cost function and heuristics.

5.1.1 Cost function module

At first glance quite simple module seems to be the one that calculates value of
cost function. Most importantly it consists of one method that is responsible

5.1 Separation into modules 33

for doing the calculations of the cost function, based on energy consumed by
the questioned solution, its schedulability and reliability. In the simple case we
are interested only that designed system fulfills its requirements and consumes
minimal energy. Let us therefore define the cost function as follows:

c(d, r, E) = Wdd+Wrr +WeE (5.1)

As one see in equation 5.1 cost function depends on three parameters. One of
them is (E) is the energy consumed by the system (with its weight We). As we
are in this case interested only that degree of schedulability is smaller or equal
0, let us define parameter d as follows:

d =

{

degree if degree > 0

0 otherwise
(5.2)

Such defined parameter will make the cost function ignore the degree of schedu-
lability for systems that are schedulable and make the penalty on the systems
that are not. This penalty is controlled bye Wd in equation 5.1.
Similar approach to one from equation 5.2 is taken when defining the parameter
representing the reliability of the system (equation 5.3). Here we are, however,
interested in knowing how far our reliability is from the reliability goal. If it
does not fulfill this requirement, appropriate penalty is given.

r =

{

Rg −R if Rg −R > 0

0 otherwise
(5.3)

By controlling the weights of parameters in cost function we can drive the heuris-
tic search towards the results that we want to obtain.
However, when designing such module one should make it more configurable,
therefore, allowing user to find the best solution for him. Consider that e.g.
in case of incremental design, we are also interested in leaving time slots for
possible future tasks to be scheduled on the same architecture. Therefore, cost
function module should allow changing not only weights, but also way that
parameters are calculated. To provide such functionality let us redefine formu-
las for calculating parameters (5.2 and 5.3) and slightly cost function (5.1) to
following.

d =

{

degree− dg if degree− dg > 0 or Cd = 1

0 otherwise
(5.4)

r =

{

Rg −R if Rg −R > 0 or Cr = 1

0 otherwise
(5.5)

e =

{

E − Eg if E − Eg > 0 or Ce = 1

0 otherwise
(5.6)

c(d, r, e) = Wdd+Wrr +Wee (5.7)

34 Tool design

SA
temperature: Double
coolingRate: Double
delta: Double
curSol: Solution
bestSol: Solution

 <<constructor>> SA(initSol: Solution, startTemp: Double, coolRate: Double)
 Run(maxNA: Integer, tempLength: Integer)
 getBestSol(): Solution
 getProbability(): Double
 CalcDifference(sol1: Solution, sol2: Solution): Double
 costFunct(Solution s): Double
 randomNeighbour(Solution s): Solution

Figure 5.1: Class diagram of SA

One may notice that we can distinguish two types of parameters: those that
we want to minimize (degree and energy), and one that we want to maximize
(reliability). Due to this we have different order of subtraction: in case of
maximizing value we subtract actual value from goal, and in case of minimizing
it is another way round.
Note that for Cd = 0 and dg = 0 formula 5.4 is the same as 5.2. Also for
Cr = 0, formula 5.5 is the same as 5.3. Also in case when Eg = 0 cost function
presented in 5.7 is the same as one shown in 5.1. Therefore, by controlling
variables Cd, Ce and Cr, as well as weights Wd, We and Wr we may ignore or
take into consideration each of the parameters, and so customize cost function
to our needs. All goals shall be included in the representation of highest level
of system model, i.e. in the Mapping class.

5.1.2 Heuristic algorithm module

As described in section 2.2 heuristic algorithm used here is simulated annealing.
Module that implements this is made of class SA presented in diagram 5.1.
On the class diagram one may notice presence of private methods for getting
random neighbouring solution and cost function. Those methods are respon-
sible for interfacing with other modules only, and do not perform those tasks
themselves. From the class design one may notice that obtaining the result re-
quires three steps to be taken. Firstly the object of the class can be constructed
defining initial solution, starting temperature and cooling rate. Then one should
run the algorithm, defining additionally two parameters that are dependent on
each run of the algorithm, namely temperature length and maximum number
of not accepted moves. Finally, after the algorithm terminates one may obtain
the best solution.
Data type Solution is type that depends on type of tool (whether it is one
integrated tool, or many tools operate together). The same type is used in
transformation module.

5.2 Integrated tool 35

Requesting

Heuristic algorithmCost function Transformation

Figure 5.2: Integrated tool design

5.2 Integrated tool

As one may see from the overall design of integrated tool, shown in figure 5.2,
the central module is the one responsible for heuristic algorithm. It provides
an interface to the requesting module, allowing it to start design space explo-
ration. Furthermore, the heuristic module requires two modules that help them
achieving its task. Therefore, it is a client to both transformation module and
cost function module.
In case of integrated tool all communication is done by calling methods that do
exist in the same address space, and therefore no special communication method
nor protocol is required. Therefore, modules here do not require any additions
comparing to those presented before, and can be seen in the same way as were
presented in section 5.1.
In case of integrated tool, type Solution refers to class Mapping, defined in
section 3.4.

5.3 Inter-operation of tools

Let us now take a closer look at the design of interoperation of multiple tools
that will perform the same task. The overall design of the tool set is presented
in figure 5.3.
First thing to notice comparing to figure 5.2 is encapsulation of each of modules
presented in section 5.1 into server components (and applications). Additionally
one may see presence of main server application, to which client connects and
sends requests. Main server is then responsible for routing of messages between
server applications actually performing their specific tasks.
It would be tempting to think that this approach adds unnecessarily complexity
by placing functionality that could be in heuristic algorithm server into separate
application. Note, however, that this makes each application providing only

36 Tool design

Requesting

Heuristic algorithm Server

Heuristic algorithm

Cost function Server

Cost function

Transformation Server

Transformation
Main Server

Figure 5.3: Inter-operation of tools design

necessary service. It also allowed to create each of the servers in simple way.
As presented in figure 5.4 each of server classes inherit from common class
Server that consists all necessary logic of the server, like sending and receiving
messages, and common handler for incoming messages.
Design of the modules themselves should not be much affected by the fact that
they are separate applications now. However, in some cases additional elements
were necessary to be added. Such case is e.g. information about the socket in the
heuristic module to which all requests should be sent (this is socket connection
with main server application). Additionally, in case of tool set, type Solution

cannot be Mapping anymore, as tools do not share address space. It is string
containing unique identifier instead.
Let us now move into more details regarding more specific issues with set of tools,
namely communication between them (section 5.3.1) and then handling of data
sharing, first by means of files (5.3.2) and then using database management
system (5.3.3).

5.3.1 Communication

From considerations in section 4.2 let us choose sockets with own protocol as the
way of communication between tools. This solution is not hard to implement and
does not require much more work comparing to other possibilities. Moreover,
as already mentioned, it does not depend on the platform, as notion of sockets
is independent of the platform.

5.3 Inter-operation of tools 37

Server
serverPort: Integer
servSock: ServerSocket

 <<constructor>>Server()
 parseParams(argc: Integer, argv: String[])
 run()
 handleMessage(msg: Message, sock: Socket)
 serverLoop(sock: Socket)
 cleanupMapping(mapping: Mapping)

HeuristicServerTransformServerCostingServer

MainServer
heuristicPort: Integer
costFunPort: Integer
transformPort: Integer
heuristicSock: Socket
costFunSock: Socket
transformSock: Socket

 bestSolution(msg: Message, sock: Socket)
 neighbour(msg: Message, sock: Socket)
 value(msg: Message, sock: Socket)

Figure 5.4: Class diagram of server classes

Let us therefore define the following basic protocol rules for communication:

1. All messages are in plain ASCII format. No termination symbol is used2.

2. Each message consists of three fields:

• type of message

• command being sent

• payload

3. Payload is subdivided into two fields:

• number of items in the payload

• items themselves

4. Fields of the message, as well as the items in payload are separated with
space character (0x20 in ASCII code). Therefore, no space character is
allowed in any of the fields.

5. Not recognized messages are dropped.

6. Messages are not acknowledged.

Note that protocol does not contain any error handling built-in, as well as no
guarantees about message transmission. This makes the protocol simple both
to design and implement, and is enough for purpose of this thesis.
For full definition of all possible messages (types and commands), please see the
appendix A.

2This guarantees the same behaviour on different operating systems. Message complete-
ness, however, is not taken care of in this case.

38 Tool design

5.3.2 Using files for objects exchange

As discussed in section 4.1.1 there are quite few possibilities when it comes to
storing data in files, including binary and text format. Solution that seems to
be the most reasonable for purpose of this thesis, is the XML file format. XML
makes it possible to define arbitrary structures and variety of parsers for most
programing languages.
To make conversion straightforward, defined XML schema should be as close to
those representing system model as possible. Therefore, let the top element be
tool (XML allows only one top element in file and we want to have only one file
containing all necessary information). Its child elements shall represent tasks
and processing elements, as well as the whole mapping. As operating modes
are strictly connected to processing element, they should be defined as child
elements of them. Whole mapping should be also included in one element and
its children.
Whole structure of the XML file is defined using XML schema that can be found
in appendix B.1.

5.3.3 Using database for objects exchange

As discussed in section 4.1.2 despite well know and commonly used relational
databases, there are plenty of other database types that could be used for data
exchange. As the design of data structures follow object-oriented approach, us-
ing object-oriented database seems reasonable choice for this thesis. As there
exists standard for such database management systems, let us take advantage
of it, and create design of used data structures in ODL. Class specifications are
presented in appendix B.2. This representation is direct translation of classes
described in chapter 3 of this thesis to Object Definition Language.
Worth mentioning here is that although database system software may allow
to generate code in desired programming language, such code may strongly be
dependent on the database used. As we aim to have the same implementation
of the data structures for all possible cases, there will be still translation from
generated classes to those defined and used in other variants of the tool. Still
having such transformations might be seen as losing an advantage of object
databases, as in case of more popular relational databases such transformation
would be needed anyway. Note, however, that transformations in case of rela-
tional databases seem more complicated, and possibly would require more work
during implementation.

Chapter 6

Implementation

Having discussed design of the tool, let us now move on to description of the
implementation. It is, however, not an intention of this chapter to describe
everything in detail. Instead an overview and most important decisions and
non-trivial issues are described.
Following sections will discuss firstly the choice of implementation language.
Further they will describe implementation issues with representation of system
models (section 6.2), that were designed in chapter 3. After this we shall move
to interoperability framework (6.3), first describing sharing of data (6.3.1), and
then communication between processes (6.3.2).

6.1 Choice of language

Let us start this discussion with the choice of programing language. This deci-
sion affects implementation process itself as well as the final tool. On the other
hand, it is also affected by the design methodology chosen at the beginning.
In case of this thesis, object-oriented design was chosen, leaving still choice be-
tween multiple languages, as many that are used today offer object-oriented
techniques. Most popular, and worth mentioning here are C++, Java, C#,
and Python. Although those languages offer possibility to make object-oriented

40 Implementation

code, they differ in the level of abstraction, and e.g. usage of resources like
memory. Good example here is C++ that unlike others does not offer garbage
collection, leaving memory management to the developer. On the other hand,
it does not require any runtime environment or interpreter (despite dynamically
linked libraries1) that run underneath. Being compiled directly to binary repre-
sentation has also a drawback: it is dependent on the architecture and operating
system on which it shall be run. Therefore, it is necessary to build such code
from the sources, before it can actually be used. As this is an academic project
it is not an issue, as sources are freely available.
Due to different levels of abstraction, the complexity and size of the code is
different for each of those languages. The same functionality implemented in
Python will for sure take less lines of code than when written in Java, which in
place will take less code than C++. Although measurement of lines of code is
issue of many discussions, it is well-known fact, that maintenance cost increases
with amount of code that is written. Furthermore, with complexity increment
possibility of making errors occurring also increases.
Choosing programing language also affects the performance of created applica-
tion. It is a fact that with the increased level of abstraction at which language
operates, the performance is lower. In case of mentioned languages that require
runtime environments, worse performance seems straightforward: additional
layer is present that needs to be translated first to processor operations. In case
of Python it is directly the code written by developer (as it is interpreted at
the runtime), whereas Java and C# compiles original source to byte-code, that
is then interpreted by the JRE2. As the tool that is going to be implemented
performs design space exploration, which takes significant amount of iterations
in heuristic algorithm before terminating, performance is major concern. There-
fore to provide reasonable performance, despite using optimized algorithms, one
should consider using language offering low level of abstraction3.
Taking all above into consideration, the decision was made that programing
language that should be used is C++. It offers object-oriented programming,
does not require any additional runtime environment, and provide probably the
lowest level of abstraction from all languages offering object-orientation.
Before moving to actual description of the implementation, let us also point
out, that all tools that are going to be developed (integrated tool, and two sets
of interoperable tools) in all cases when it is possible, should have the same
code base, therefore, limiting number of repetition in the sources. In cases of
small differences between, we will use pre-processor instructions and different
compilation flags to execute appropriate code for the tool.

1It should be, however, noted here that unless using very specialized libraries, standard
ones are present in all operating systems nowadays.

2Java Runtime Environment
3It should be stated, however, that creating such tool in assembly language is not reasonable

choice, as code size would be enormous and difficult to maintain, and todays compilers are in
many cases much better in optimizing higher level languages (like C), then years ago.

6.2 System model representation 41

Task

RMTask

 <<constructor>> RMTask(name: String, wce: Double, deadline: Double, period: Double, k: Integer)
 <<constructor>> RMTask(name: String, wce: Double, period_deadline: Double, k: Integer)
 createInstance(t: TaskInstance)
 createInstance(op: OperMode, k: Integer)
 createInstance(op: OperMode, op: OperMode, k: Integer)
 operator>(other: Task): Boolean
 operator<(other: Task): Boolean

TaskInstance

RMTaskInstance

 <<constructor>> TaskInstance(t: Task, op: OperMode, k: Integer)
 <<constructor>> TaskInstance(t: Task, op: OperMode, reExecOp: OperMode, k: Integer)
 responseTime(prevRespTime: Double, hpTasks[]: TaskInstance, hpNum: int, faultPeriod: Double): Double
 responseTime(hpTasks[]: Task, hpNum: int, faultPeriod: Double): Double
 reliability(): Double

Figure 6.1: Class diagrams of RMTask and RMTaskInstance

6.2 System model representation

In chapter 3, we divided there constant data (like information about tasks or
processing elements) from the one that changes during design space exploration
(mapping). Let us here follow the structure of chapter 3, showing the most
interesting parts of the implementation.

6.2.1 Task representation

There are two classes representing tasks of the system model. First one, Task
represents constant data, and in general is read-only for the environment. Sec-
ond class is TaskInstance that represents scheduled instance of task and relates
to the operating mode at which it should be executed. As shown in figures 3.1
and 3.2 both classes should be abstract, leaving methods specific to schedul-
ing (like calculating of response time analysis and deciding which task has
higher priority) to inheriting classes. Therefore, let us define classes that in-
herit from Task and TaskInstance and implement rate-monotonic scheduling.
Those classes, with methods that they implement, are shown in figure 6.1.

42 Implementation

Implementation of Task and RMTask classes does not contain any issues that
need a discussion. Classes are simple, and their implementations straightfor-
ward. More interesting part here is implementation of task instantiations meth-
ods for calculating worst-case response time. As described in 3.2.2 there are
two methods that allow such calculation, as we noticed there that worst-case
response time of task cannot be smaller then the one of higher priority task.
Therefore, one of methods start with argument representing response time of
one priority higher task. Second method (one without this argument) is only
wrapper for the first one. It would be tempting here to use default arguments
values allowed by C++ language. Note, however, that default arguments must
be present as last ones in argument lists, and if there are more then one, they
need to have different types. In responseTime methods there is already de-
fault argument for fault period (defaulting to 0), which is of type double. As
response times are of the same type, using this technique would result in am-
biguity and compilation error. If faultPeriod argument is greater than 0 (if
provided value is smaller than 0, it is set to 0 beforehand), responseTime()
method first finds greatest value of worst-case execution time of re-execution
of higher priority tasks, that can contribute to re-execution necessity. Then it
loops using equation 2.3. This equation enforces convergence as stop condition
(two subsequent iteration produce the same result). However, to avoid infinite
loops, the counter is introduced that will terminate the loop if it exceeds certain
maximum number of iterations. Both methods are presented in listing 6.1.

Listing 6.1: responseTime method from class RMTaskInstance
double RMTaskInstance : : responseTime (double prevRespTime ,

const TaskInstance ∗∗hpTasks , int hpNum,
double f au l tPe r i od) const

{
/∗ Maximum wo r s t−c a s e e x e c u t i o n o f t h e h i g h e r p r i o r i t y t a s k s and c u r r e n t
∗ t a s k ∗/

double maxWcet = reWcet ;
i f (f au l tPe r i od < 0 . 0) f au l tPe r i od = 0 . 0 ;
i f (f au l tPe r i od > 0 . 0) {

for (int i =0; i<hpNum; i++) {
i f (hpTasks [i]) {

// Get me t h o d s h a v e t o b e u s e d h e r e , a s we u s e
// p o i n t e r t o T a s k I n s t a n c e c l a s s (e r r o r t h a t
// r eWce t i s p r o t e c t e d)
// A l t e r n a t i v e l y c a s t i n g c o u l d b e u s e d
maxWcet = (hpTasks [i]−>getReWcet () > maxWcet &&

hpTasks [i]−>getFaultTolerance ()
> 0) ?

hpTasks [i]−>getReWcet () : maxWcet ;
}

}
}

/∗ Re s p o n s e t im e i s i n i t i a l l y s e t t o w o r s t c a s e e x e c u t i o n t im e ∗/
double responseTime = prevRespTime ;
double old ;
unsigned counter = 0 ;

/∗ I t e r a t e a s l o n g a s t h e r e s p o n s e t im e i s d i f f e r e n t f r om p r e v i o u s l y
∗ f o u n d o r t h e maximum number o f i t e r a t i o n s i s e x c e e d e d ∗/

do {
old = responseTime ;
responseTime = wcet ;

/∗ I n t e r f e r e n c e f r om h i g h e r p r i o r i t y t a s k s due t o p r e em p t i o n ∗/
for (int i = 0 ; i < hpNum; ++i) {

i f (hpTasks [i]) {
// Get me t h o d s h a v e t o b e u s e d h e r e , a s we u s e

6.2 System model representation 43

// p o i n t e r t o T a s k I n s t a n c e c l a s s (e r r o r t h a t
// w c e t i s p r o t e c t e d)
// A l t e r n a t i v e l y c a s t i n g c o u l d b e u s e d
responseTime +=

c e i l (o ld /hpTasks [i]−>task−>getPer iod ())
∗ hpTasks [i]−>getWcet () ;

}
}

/∗ P o s s i b l e re−e x e c u t i o n due t o f a u l t ∗/
i f (f au l tPe r i od > 0 . 0) {

responseTime += c e i l (o ld / f au l tPe r i od) ∗ maxWcet ;
}

// I n c r em e n t c o u n t e r
counter++;

} while (responseTime != old && counter < MAX ITERATIONS) ;

return responseTime ;
}

double RMTaskInstance : : responseTime (const TaskInstance ∗∗hpTasks ,
int hpNum, double f au l tPe r i od) const

{
return responseTime (wcet , hpTasks , hpNum, f au l tPe r i od) ;

}

Also worth looking at is method for calculating local (meaning only taking into
account instance of this task on one processing element) reliability of task. It
calculates first the normal reliability of task, using equation 2.5, and then if
necessary uses it to calculate reliability of task being re-executed.
In case of reliability we are using numbers of type long double that are very
close to 0 or 1. To avoid treating such numbers as 0 or 1, we need to create pro-
tection mechanism. In C++ cfloat header provides constants characterizing
given system about the precision and accuracy regarding floating point values
for each type. Useful here is constant LDBL EPSILON that defines the smallest
possible value that if added to 0 will create result recognized as different from 0.
Same value if decremented from 1 will make the result different from 1. There-
fore, to avoid reliability being 0 or 1, we should make sure that results we are
getting are within range 0+LDBL EPSILON and 1-LDBL EPSILON. This method is
presented in listing 6.2.

Listing 6.2: reliability method from class RMTaskInstance
long double RMTaskInstance : : r e l i a b i l i t y () const

{
long double r e l i a b i l i t y = 0 . 0 ;

long double no rma lRe l i ab i l i t y =
exp(−opMode−>getLambda () ∗ wcet) ;

// I t can b e s o c l o s e t o 1 , t h a t w i l l b e t r e a t e d a s i t . Make i t t h e n
// d i s t i n g u i s h a b l e f r om 1 .
i f (no rma lRe l i ab i l i t y > 1 − LDBL EPSILON) {

no rma lRe l i ab i l i t y = 1 − LDBL EPSILON;
}

i f (k == 0) {
r e l i a b i l i t y = no rma lRe l i ab i l i t y ;

} else {
long double r eEx e cRe l i a b i l i t y =

exp(−reOpMode−>getLambda () ∗ reWcet) ;

// I t can b e s o c l o s e t o 1 t h a t s u b t r a c t e d f r om 1 w i l l p r o d u c e 0
// r e s u l t . Make t h e d i f f e r e n c e t h e n minimum d i s t i n g u i s h a b l e f r om
// 0 .

44 Implementation

i f (r eEx e cRe l i a b i l i t y > 1 − LDBL EPSILON) {
r eEx e cRe l i a b i l i t y = 1 − LDBL EPSILON;

}

long double reExecPower = pow(1 − r eExecRe l i ab i l i t y , k) ;

// I t can b e s o c l o s e t o 0 t h a t m u l t i p l i e d w i l l p r o d u c e 0 , and
// s o r e l i a b i l i t y o f 1 . Make t h e d i f f e r e n c e t h e n minimum
// d i s t i n g u i s h a b l e f r om 0 .
i f (reExecPower < LDBL EPSILON) {

reExecPower = LDBL EPSILON;
}

long double probAl lFa i l = reExecPower ∗ (1 − no rma lRe l i ab i l i t y) ;
i f (probAl lFa i l < LDBL EPSILON) {

probAl lFa i l = LDBL EPSILON;
}

r e l i a b i l i t y = 1 − probAl lFa i l ;
}

return r e l i a b i l i t y ;
}

Note that this approach is followed in all methods that calculate reliability. One
may argue that it does not provide fully accurate results. However, it should
be mentioned that results in this case are lowered, leaving designer on the safe
side.

6.2.2 Processing element representation

Unlike representing of tasks, classes designed in section 3.3 are not abstract, and
therefore we may implement their functionality directly without need of class
inheritance.
Implementation of first class described in the design (OperMode) was quite
straightforward and did not require any specific work. Note only that over-
loaded operators < and > differentiate modes on three levels: first speed is taken
into account then, voltage level, and if both mentioned are equal, consumed
power. In the second class (ProcElem) worth mentioning seems to be the con-
structor. It needs first to sort operating modes increasingly, leaving the slowest
with lowest voltage level first in the array. Sorting was done using bubble sort
algorithm. After that failure rate (λ) together with name (needed when put
into XML format) is set for each operating mode. Constructor is presented in
listing 6.3.

Listing 6.3: Constructor of ProcElem class
ProcElem : : ProcElem (std : : s t r i n g n , OperMode ∗∗om, unsigned nm, double l ,

double d)
: name(n) , modes (om) , nModes (nm)

{
/∗ The s e mus t b e non−z e r o t o c o n t i n u e ∗/
i f (! modes | | ! nModes) {

return ;
}

/∗ S o r t o p e r a t i n g modes (b u b b l e s o r t) ∗/

6.2 System model representation 45

bool changed = f a l s e ;
do {

changed = f a l s e ;
for (unsigned i = 0 ; i < nModes − 1 ; ++i) {

i f (∗(modes [i]) > ∗(modes [i +1])) {
OperMode ∗tmp = modes [i] ;
modes [i] = modes [i +1] ;
modes [i +1] = tmp ;
changed = true ;

}
}

} while (changed) ;

/∗ Minimum v o l t a g e l e v e l ∗/
double minVolLev = modes[0]−> getVol tageLeve l () ;

/∗ S e t f a i l u r e r a t e f o r e a c h o p e r a t i n g mode ∗/
for (unsigned i = 0 ; i < nm; ++i) {

s t r ings t r eam ss ;
s s << name << ”OpMode” << i ;
modes [i]−>setName (s s . s t r ()) ;
modes [i]−>setLambda (l , d , minVolLev) ;

}
}

6.2.3 Mapping of tasks onto hardware architecture

As described in section 3.4 mapping is done at two levels. First instances of
tasks are mapped to processing element in ProcElemMap class, and then all pro-
cessing elements with tasks mapped are collected in Mapping class.
Let us first take a look at some parts of ProcElemMap implementation. As one
may see from figure 3.5, all methods available for handling scheduled tasks use
class Task for referencing what task should be affected. In C++ such refer-
encing is done using const *Task, which allows to pass only pointer (which is
faster then copying object) and guarantees that this pointer will not be used to
change the object itself.
To allow quick finding of higher priority tasks that are scheduled on the same
processing element (this is necessary when calling already described responseTime()
method), all task instances are sorted by the priority. To prevent repeatable
sorting of vector storing tasks, scheduleTask methods use taskPlace method
that finds where in the vector new task should be inserted. This method uses
binary search, and is presented in listing 6.4. Same method is used in order
to check if task is already scheduled on this processing element, when second
argument, defaulted to false, is set to true.

Listing 6.4: taskPlace() method in ProcElemMap class
std : : vector<TaskInstance ∗>:: i t e r a t o r ProcElemMap : : taskPlace (const Task ∗ task ,

bool onlyFound)
{

// P l a c e when t h e t a s k s h o u l d b e p u t i n t h e v e c t o r o f t a s k s
std : : vector<TaskInstance ∗>:: i t e r a t o r p lace = tasks . begin () ;

// L e f t and r i g h t l i m i t s
unsigned l = 0 ;
unsigned r = tasks . s i z e () ;

// F ind t h e p l a c e wh e r e t h e t a s k s h o u l d b e p l a c e d i n v e c t o r

46 Implementation

while (l <= r && r != 0) {
unsigned mid = (l + r) / 2 ;
std : : vector<TaskInstance ∗>:: i t e r a t o r tmp = place + mid ;
const Task ∗ t = (∗tmp)−>task ;
const Task ∗nt = NULL;
i f (mid + 1 < ta sks . s i z e ()) {

nt = (∗(tmp+1))−>task ;
}

// Cov e r s p e c i a l c a s e when t a s k w i t h same p r i o r i t y i s p r e s e n t .
// T h i s i s a l s o t h e c a s e when we wan t t o f i n d t h i s p a r t i c u l a r
// t a s k .
i f (! (∗ t < ∗ task) && ! (∗ t > ∗ task)) {

place = tmp ;
break ;

// Chec k i f t h e p l a c e f o u n d i s e x a c t l y b e t w e e n l o w e r and h i g h e r
// p r i o r i t y t a s k
} else i f (nt) {

i f (∗ t > ∗ task && ∗nt < ∗ task) {
i f (onlyFound) {

place = tasks . end () ;
} else {

place = ++tmp ;
}
break ;

}
}

// P r e p a r e f o r n e x t i t e r a t i o n
i f (∗ task > ∗ t) {

r = mid ;
i f (r > 0)

r−−;
} else {

l = mid + 1 ;
}

// Cov e r c a s e when t a s k s h o u l d b e p l a c e d a t t h e end
i f (l == tasks . s i z e ()) {

place = tasks . end () ;
break ;

}
}

return place ;
}

taskPlace needs to be defined twice, as in different situations we require usage
of iterator or const iterator. Difference between both of them is only type
of iterator used.
Let us also take a look at method calculating degree of schedulability for the
processing element using equation 2.4. As described before, it takes advantage
of fact that worst-case response time is greater then worst-case response time
for higher priority task. Therefore it first calculate response time for highest
priority task, not specifying starting value (in this case method will take the
worst-case execution time of the task as starting point), and providing empty
array of higher priority tasks. Afterwards it prepares array for higher priority
tasks that will be filled in before calculating response time for each task. In
this loop we will make use of second responseTime(), as we keep previously
calculated response time. We should also remember whether system is so far
schedulable or not. In case it becomes unschedulable degree of schedulability
calculated so far should be discarded, and from this moment, we add only dif-
ferences between response times and deadlines for unschedulable tasks. Code
for this method is presented in listing 6.5.

6.2 System model representation 47

Listing 6.5: degreeOfSchedulability() method in ProcElemMap class

double ProcElemMap : : deg r e eOfSchedu lab i l i t y (double f au l tPe r i od) const

{
double degree = 0 . 0 ;
double prev ;
bool s chedu lab l e = true ;

// I f t h e r e a r e no t a s k s s c h e d u l e d , t h e n f o r s u r e i t i s 0
i f (ta sks . s i z e () != 0) {

// C a l c u l a t e r e s p o n s e t im e f o r t a s k w i t h h i g h e s t p r i o r i t y
degree = tasks [0]−> responseTime (NULL, 0 , f au l tPe r i od) ;
prev = degree ;
degree −= tasks [0]−> task−>getDeadl ine () ;

// Chec k i f s c h e d u l a b l e s o f a r
i f (degree > 0) {

s chedu lab l e = f a l se ;
}

// The r e can b e a t mos t number o f t a s k s − 1 h i g h e r p r i o r i t y
// t a s k s
const TaskInstance ∗∗hpTasks = (const TaskInstance ∗∗)

new TaskInstance ∗ [t a sks . s i z e () −1] ;

// C a l c u l a t e r e s p o n s e t im e f o r a l l l o w e r p r i o r i t y t a s k s
for (unsigned i = 1 ; i < ta sks . s i z e () ; ++i) {

double dead l ine = tasks [i]−>task−>getDeadl ine () ;

// Add t h e h i g h e r p r i o r i t y t a s k t o t h e a r r a y
hpTasks [i −1] = tasks [i −1];

// C a l c u l a t e r e s p o n s e t im e f o r t h e t a s k
prev = tasks [i]−>responseTime (prev , hpTasks , i ,

f au l tPe r i od) ;

// Chec k i f s c h e d u l a b l e
i f (prev > dead l ine && schedu lab l e) {

s chedu lab l e = f a l s e ;
degree = 0 . 0 ;

}

// Add t h i s t a s k t o d e g r e e o f s c h e d u l a b i l i t y u n l e s s t h i s
// t a s k i s s c h e d u l a b l e and t h e s y s t em i s n o t
// i f (! (p r e v <= d e a d l i n e && ! s c h e d u l a b l e)) {
i f (prev > dead l ine | | s chedu lab l e) {

degree += prev − dead l ine ;
}

}

// F r e e memory r e s e r v e d f o r t h e h i g h e r p r i o r i t y t a s k s
delete [] hpTasks ;

}

// Re t u r n f o u n d d e g r e e o f s c h e d u l a b i l i t y
return degree ;

}

Calculation of total degree of schedulability is done in Mapping class, discussed
below, and only sums up results of this method for each of processing elements.
It of course also keeps track whether system is schedulable or not, similarly to
methods presented here.

As other methods in this class are straightforward, let us move to highest ab-
straction level in the system model, namely Mapping class. As described in
3.4.2 each processing element is assigned unique id, using which it will be refer-
enced. This produces similar problem to finding tasks scheduled on processing
element, so let us look at method responsible for it: findById(). Similarly to
taskPlace() method, it uses search algorithm from divide and conquer group,
that is enhanced version of binary search adopted to our identifier policy. The

48 Implementation

only difference lays in the way we divide the set of processing elements. In case
of binary search we always divided it into half. However, let us observe that
mapping assigns new identifier to processing element by incrementing previous
one starting from 0, making them equal to indexes in the vector of ProcElemMap
objects. Therefore, by checking first index that is equal to id, algorithm will
terminate successfully immediately, unless some processing elements were re-
moved from vector. If on the other hand there were removed objects, iteration
will find the object with higher identifier than the one that we looked for. It is
then possible to find out number of objects that were removed, and change the
lower limit accordingly by this number. This will make the algorithm converged
faster to the solution that we looked for (if it exists). Implementation of this
algorithm is presented in listing 6.6.

Listing 6.6: findById() method in Mapping class
bool Mapping : : f indById (unsigned id , unsigned &index) const

{
bool s t a tu s = f a l s e ;
unsigned l e f t = 0 ;
unsigned r i gh t = peMap . s i z e () − 1 ;

// Our f i r s t g u e s s w o u l d b e t h e c a s e when no r em o v a l s f r om a r r a y d i d
// happen , i . e . i n d e x == i d
unsigned po in t e r = id ;
i f (po in te r > r i gh t) {

po in te r = r i gh t ;
}

/∗
∗ We moved t h e b i n a r y s e a r c h c o n d i t i o n t o t h e end o f t h e l o o p . As t h e
∗ f i r s t g u e s s i s t h e a c t u a l i d we a r e l o o k i n g f o r . I n c a s e o f no
∗ r emo v a l s , i t w i l l b r e a k i mm e d i a t e l y .
∗/

while (true) {
// S t o r e t h e i d i n t em p o r a r y v a r i a b l e n o t t o c a l l f u n c t i o n many
// t i m e s
unsigned tmp = peMap [po in te r] . get Id () ;

i f (tmp == id) {
index = po inte r ;
s t a tu s = true ;
break ;

} else i f (tmp > id) {
/∗
∗ Th i s w i l l i n c r e a s e a l s o t h e l o w e r b ound o f t h e s e a r c h
∗ and t h e r e f o r e f u r t h e r r e d u c e number o f i t e r a t i o n s
∗ n e c e s s a r y .
∗/

// Th i s v a l u e w i l l a l w a y s b e a t l e a s t 0
l e f t = po int e r − (tmp − id) ;
r i gh t = −−po int e r ;

} else {
l e f t = ++po inte r ;

}

// B i n a r y s e a r c h c o n d i t i o n
i f (r i gh t < l e f t) {

break ;
}
po in te r = (r i gh t − l e f t) / 2 ;
po in te r += l e f t ;

}

// Re t u r n t h e s t a t u s ; i n d e x i s r e t u r n e d t h r o u g h a r g um e n t s
return s t a tu s ;

}

Another methods worth looking at are those calculating reliability. We already
saw methods that calculate local reliability of the task (listing 6.2), and here

6.2 System model representation 49

let us see how the reliability is calculated when replication occurs. As shown
in equation 2.8 final reliability is product of reliabilities of all tasks in the sys-
tem. However, as seen from 2.7, we should not consider replicas of tasks as
independent ones. We should at this level keep information about all replicas of
tasks. Let us, therefore, create in the Mapping class multimap called replicas

object that will have Task as its key, and identifier of processing element as
value. In C++ STL4 multimap, unlike map, allows multiple values for one key,
and provides methods to count and access them. It is therefore ideal container
for storing information about task replicas. To make the comparison simple,
without necessity to define equality operator for class Task, let us use pointer
to this structure as a key. Then when calculating total reliability we should first
verify, whether task exists more then once in replicas, and then use method
reliabilityReplication() that finds reliability of single task being replicated.
As we stored identifier of processing element to which it is mapped, it is easy to
obtain the task instance itself. Those methods also guarantee that we will not
consider any task more then once (multimap is sorted by its key). We also used
here the same methods to overcome limited accuracy of floating point values.
Implementation of both methods are presented in listing 6.7.

Listing 6.7: reliability() and reliabilityReplication() methods in
Mapping class
∗/

long double Mapping : : r e l i a b i l i t y () const

{
long double r e l i a b i l i t y = 1 . 0 ;

const Task ∗prev = NULL;
std : : multimap<const Task∗ , unsigned > : : c o n s t i t e r a t o r i t ;
for (i t=r e p l i c a s . begin () ; i t != r e p l i c a s . end () ; ++i t) {

i f (i t−> f i r s t == prev) {
continue ;

}
i f (r e p l i c a s . count (i t−> f i r s t) > 1) {

r e l i a b i l i t y ∗= r e l i a b i l i t yR e p l i c a t i o n (i t) ;
} else {

const TaskInstance ∗ t = peMap [i t−>second] . getTask (i t−> f i r s t) ;
r e l i a b i l i t y ∗= t−>r e l i a b i l i t y () ;

}
prev = it−> f i r s t ;

}

return r e l i a b i l i t y ;
}

long double Mapping : : r e l i a b i l i t yR e p l i c a t i o n (std : : multimap<const Task∗ ,
unsigned > : : c o n s t i t e r a t o r ptr) const

{
long double r e l i a b i l i t yP r o du c t = 1 . 0 ;
std : : multimap<const Task∗ , unsigned > : : c o n s t i t e r a t o r i t ;
for (i t=r e p l i c a s . equa l range (ptr−> f i r s t) . f i r s t ;

i t != r e p l i c a s . equa l range (ptr−> f i r s t) . second ;
++i t) {

const TaskInstance ∗ t = peMap [i t−>second] . getTask (i t−> f i r s t) ;

long double t a s kR e l i a b i l i t y = t−>r e l i a b i l i t y () ;

// I t can b e s o c l o s e o t 1 t h a t s u b t r a c t e d f r om 1 w i l l p r o d u c e 0
// r e s u l t , and s o r e l i a b i l i t y p r o d u c t o f 0 . Make t h e d i f f e r e n c e
// t h e n minimum d i s t i n g u i s h a b l e f r om 0 .
i f (t a s kR e l i a b i l i t y > 1 − LDBL EPSILON) {

t a s kR e l i a b i l i t y = 1 − LDBL EPSILON;

4Standard Template Library

50 Implementation

}

r e l i a b i l i t yP r o du c t ∗= (1 − t a s kR e l i a b i l i t y) ;
}

// I t can b e s o c l o s e t o 0 t h a t s u b t r a c t e d f r om 1 w i l l p r o d u c e 1 r e s u l t ,
// and s o r e l i a b i l i t y o f 1 . Make t h e d i f f e r e n c e t h e n minimum
// d i s t i n g u i s h a b l e f r om 0 .
i f (r e l i a b i l i t yP r o du c t < LDBL EPSILON) {

r e l i a b i l i t yP r o du c t = LDBL EPSILON;
}

return 1 .0 − r e l i a b i l i t yP r o du c t ;

Please also note here, that maintaining replicas object is done inside methods
responsible for scheduling, moving and replicating tasks. Therefore, it is always
up-to-date, and it is not necessary to recreate it every time we calculate the
reliability.

6.3 Interoperability framework

Let us now move on to implementation of interoperability framework. We will
concentrate here on the ways in which data is shared between tools (section
6.3.1), namely, how it is converted between different representations, and then
on the communication methods (section 6.3.2).

6.3.1 Sharing data framework

Unless tools are using shared memory, they need to convert data to the form that
will be readable for other tools. As decided in section 5.3 tool will use two types
of shared medias for data exchange: XML files (design of this was presented
in section 5.3.2), and object-oriented database (design of this was presented in
section 5.3.3). Both methods are done in similar way, and therefore will be de-
scribed together. Note, however, that storing and retrieving information from
database is only possible in case of tool using database system5. Therefore,
our discussions should concentrate on this case, as it contain implementation of
both database and XML conversions.
Before describing how transformations were done, let us first mention tools that
are used with this transformation. In case of database, EyeDB database man-
agement system was used [23]. It was already described in section 4.1.2. For
parsing of XML files Xerces-C++ XML Parser [12], an open source parser sup-
porting both DOM and SAX parsing methods.

5This can be, however, easily changed if necessary.

6.3 Interoperability framework 51

Every class representing system model (and described in 6.2) have two meth-
ods that are responsible for storing objects into requested format: toXML()

and toDB() (further they both of them will be referenced as to() methods for
simplicity). Each of those methods start with check if it is within the transac-
tion (which basically defines whether method was called from outside, or from
another to() method) and if necessary starts the transaction. Note that in
case of XML format, toXML() should not be called for classes TaskInstance,
ProcElemMap and OperMode, as XML schema defines them as childs of other
objects. In case of storing data in XML format, methods create string repre-
sentation of data structures and then output it to file. In case of EyeDB output
conversion, methods create objects of classes that were created by EyeDB tools
from ODL description, and then input them to database. If particular to()

method begun the transaction, after successful execution it also ends it. Note
that in case of EyeDB, objects are available in database only after the transac-
tion is finished.
Note that none of to() methods define the target to which it should be stored.
For databases it is understandable, as database creates the identifier itself, but
in case of files, one should be able to define output file to which it should be
stored. This is done using global identifier parameter that could be set or re-
trieved. It also keeps the identifier of just stored object.
Example of to() methods for ProcElem class are shown in listings 6.8 and 6.9.

Listing 6.8: toXML() method of ProcElem class
void ProcElem : : toXML() const

{
bool s t a r t ed = f a l s e ;
i f (! i n t r a n s a c t i o n) {

beginOutputTransaction () ;
s t a r t ed = true ;

}

f i l e << ”<” << procElemName << ” ” ;

f i l e << ”name=\”” << name << ”\” ” ;

f i l e << ”>” << endl ;

for (unsigned i =0; i<nModes ; ++i) {
modes [i]−>toXML () ;

}

f i l e << ”</” << procElemName << ”>” << endl ;

p e s o i d s [name] = const cast<ProcElem ∗>(this) ;

i f (s t a r t ed) {
endOutputTransaction () ;

}
}

Listing 6.9: toDB() method of ProcElem class
void ProcElem : : toDB() const

{
bool s t a r t ed = f a l s e ;
i f (! i n t r a n s a c t i o n) {

db−>t ransact ionBeg in () ;
s t a r t ed = true ;
i n t r an s a c t i o n = true ;

}

52 Implementation

eyedb too l : : ProcElem ∗pe = new eyedb too l : : ProcElem (db) ;
pe−>setName (name) ;
pe−>setModesCount (nModes) ;
for (unsigned i =0; i < nModes ; ++i) {

const eyedb : : Oid ∗x = opMode oid (modes [i]) ;
i f (! x) {

modes [i]−>toDB () ;
x = oid ;

}
pe−>setModesOid (i , ∗x) ;

}

pe−>s t o r e () ;
c l earOid () ;
setOid (pe−>getOid ()) ;
p e s o i d s [∗ oid] = const cast<ProcElem∗>(this) ;

i f (s t a r t ed) {
db−>transactionCommit () ;
i n t r a n s a c t i o n = f a l s e ;

}

pe−>r e l e a s e () ;
}

Storing data using to()methods is simple. More complicate seems to be retriev-
ing object from the data store, as we do not have object on which such method
could be performed, we define static methods fromDB() and fromXML() (fur-
ther mentioned as from() methods). Additionally, for each defined class we
define function pointer, that will be used to run method from appropriate class.
Therefore, it will be possible to create RMTask and RMTaskInstance objects,
even though other classes may not know them. Implementation of from()

methods is then similar to to() methods: setting up transaction if necessary,
obtaining the object either from database or from parser, creating new object
and ending transaction, if we begun it. Also similar approach, by using global
variable, is used to maintain identifier of object that should be retrieved.
Example of from() methods for ProcElem class are shown in listings 6.10 and
6.11.

Listing 6.10: fromXML() method of ProcElem class
ProcElem ∗ProcElem : : fromXML()
{

ProcElem ∗ r e s u l t = NULL;

bool s t a r t ed = f a l s e ;
DOMElement ∗procElem = NULL;
i f (! i n t r a n s a c t i o n) {

beginInputTransact ion () ;
s t a r t ed = true ;
s td : : vector<DOMElement ∗> c h i l d s = parser−>getChi lds (elem , procElemName) ;
i f (c h i l d s . s i z e () <= curProcElemId) {

endInputTransact ion () ;
throw (unsigned) c h i l d s . s i z e () ;

}
procElem = ch i l d s [curProcElemId++];

} e lse {
procElem = elem ;

}

std : : vector<DOMElement ∗> c h i l d s = parser−>getChi lds (procElem ,
opModeElemName) ;

unsigned numberModes = ch i l d s . s i z e () ;
OperMode ∗∗modes = new OperMode∗ [numberModes] ;

DOMElement ∗temp = elem ;
for (unsigned i =0; i<numberModes ; ++i) {

6.3 Interoperability framework 53

elem = ch i l d s [i] ;
modes [i] = operModeFromXML () ;

}
elem = temp ;

const XMLCh ∗name = xmlch (”name”) ;
r e s u l t = new ProcElem (

xmlch (procElem−>ge tAtt r ibute (name)) ,
modes ,
numberModes
) ;

p e s o i d s [xmlch (procElem−>ge tAtt r ibute (name))] = r e s u l t ;
xmlre l (name) ;

i f (s t a r t ed) {
endInputTransact ion () ;

}

return r e s u l t ;
}

OperMode ∗OperMode : : fromXML()

Listing 6.11: fromDB() method of ProcElem class

ProcElem ∗ProcElem : : fromDB()
{

ProcElem ∗ r e s u l t = NULL;
bool s t a r t ed = f a l s e ;
i f (! i n t r a n s a c t i o n) {

db−>t ransact ionBeg in () ;
s t a r t ed = true ;
i n t r an s a c t i o n = true ;

}

eyedb : : Object ∗o ;
db−>loadObject (∗ oid , o) ;

eyedb too l : : ProcElem ∗pe = eyedb too l : : ProcElem c (o) ;

OperMode ∗∗modes = new OperMode∗ [pe−>getModesCount ()] ;
for (unsigned i =0; i<pe−>getModesCount () ; ++i) {

eyedb : : Oid ∗old = oid ;
eyedb : : Oid x = pe−>getModesOid (i) ;
o id = &x ;
modes [i] = (∗operModeFromDB) () ;
o id = old ;

}

r e s u l t = new ProcElem (
pe−>getName () ,
modes ,
pe−>getModesCount ()
) ;

i f (s t a r t ed) {
db−>transactionCommit () ;
i n t r an s a c t i o n = f a l se ;

}

pe s o i d s [∗ oid] = r e s u l t ;

pe−>r e l e a s e () ;

return r e s u l t ;
}

Quite big advantage of creating such general methods, is the possibility of ex-
changing them easily. If it would be required to use different type of database,
or change the format of XML file, the only to() and from() together with
other interfacing methods (for handling transactions) need to be reimplemented
accordingly.

54 Implementation

Socket
socket: Integer

 <<constructor>> Socket()
 <<constructor>> Socket(socket: Integer)
 send(msg: String)
 receive(max_size: Integer): String

ServerSocket
serv_addr: struct sockaddr_in
cli_addr: struct sockaddr_in
cli_addr_len: socketlen_t

 <<constructor>> ServerSocket(port: Integer)
 accept(): Socket

ClientSocket
serv_addr: struct sockaddr_in

 <<constructor>> ServerSocket(port: Integer)
 <<constructor>> ServerSocket(host: String, port: Integer)
 init(host: String, port: Integer)

SocketException
msg: String
excType: SocketExceptionType

 <<constructor>> SocketException(msg: String)
 <<constructor>> SocketException(msg: String, excType: SocketExceptionType)
 what(): String
 type(): SocketExceptionType

Figure 6.2: Class diagram of socket library

6.3.2 Communication

Unlike Java, C++ standard libraries do not offer any higher abstraction for
socket communication then C. Therefore, one have to use the same primitives
as in C. As in the tool we are creating multiple applications that should commu-
nicate using sockets, let us define library with classes that would simplify basic
support for socket communication, like setting up connection, and sending or
receiving messages. Class diagram of such library is presented in figure 6.2.
As one sees there is general class socket, that implements sending and receiving
messages, and two specific classes handling server and client side of the con-
nection. Implementation follows well-defined usage of methods and structures
defined in sys/socket.h, arpa/inet.h and sys/types.h header files, which
is not issue of this thesis. This gives us easy to use abstraction to implement
servers.
Another important issue with communication is implementation of the protocol
itself. For this we should define structure Message that will be responsible for
message exchange. Definition of this class can be seen in listing 6.12. There are
also two enum types defined that represent message type and command that is
going to be send. Value of enumeration defines then index in array of strings,
from which messages are created.

Listing 6.12: Message structure
enum Type { NULL TYPE, ASK, RETURN, ERROR, MGMT, H CONFIG, C CONFIG, CONF ACCEPT } ;

enum Command { NULL COMMAND, BEST SOLUTION, NEIGHBOUR, ALL NEIGHBOURS, VALUE,
ALL VALUES, CLOSE CONNECTION, START TEMP, COOL RATE, TEMP LNGTH,

6.3 Interoperability framework 55

NA MOVES, W DEGREE, C DEGREE, W RELIABILITY , C RELIABILITY , W ENERGY,
C ENERGY } ;

struct Message
{

enum Type type ;
enum Command command ;
std : : vector<std : : s t r ing> payload ;

std : : s t r i n g toSt r ing () ;
void f romStr ing (std : : s t r i n g s t r) ;

void send (Socket ∗ sock) ;
void r e c e i v e (Socket ∗ sock) ;

Message ()
: type (NULL TYPE) , command(NULLCOMMAND) {}

} ;

As one may see Message structure keeps the value for message type and com-
mand that is send in it, and provides methods for converting message between
text format and structure object. Additionally, it uses already discussed sockets
to transmit and receive messages.
Protocol definition also provides general messages for constructing and retriev-
ing most used valid messages. Therefore, all logic responsible for correct han-
dling of protocol is kept in one place.

56 Implementation

Chapter 7

Comparison of approaches

Having created three tools (or set of tools) doing exact the same thing, let us
compare them now. In following sections we will first describe overall results of
comparison from testing them (7.1), and then move specifically to comparison
of both created tool sets (7.2).

7.1 Overall comparison

When doing comparison here we will not look at results obtained when tool
was run, as code base during implementation for all tools was kept as close
as it was possible, and in case of algorithms performing search it was exactly
the same. Moreover, randomization in the heuristic algorithm, makes results
obtained from two subsequent runs different. Instead our focus here will be
placed on performance of each tool (or tool set). We also discuss here what had
greatest impact on such results.
Let us here look at how long it took the application to actually perform the
search. As heuristic search does perform different number of iterations, that in
case of simulated annealing can be control by number of non-acceptable moves,
temperature length and cooling ratio, we will need to consider the time needed
for execution per iteration. Assuming high number of iterations of heuristic

58 Comparison of approaches

Table 7.1: Timing results for tools

Tool Average total time Average number of
iterations

Average time per
iteration

Integrated
tool

1.75 seconds 55975 3.13E-5 seconds

Database
tool

575 seconds 56250 0.010 seconds

XML tool 847 seconds 55850 0.015 seconds

algorithm, it could be shown that its execution will dominate the time required
for processing input data and providing output to the user. Averaged results of
performed tests are shown in table 7.1.
All above tests were performed on Linux host with Intel R© i7 CoreTM 2 x 2.6
GHz with HT=21, 4GB of RAM and SATA II 7200rpm disc.

As one might have expected, the integrated tool was a lot faster in performing
the task then other to solutions and provided results almost immediately. This is
due to fact that it does not needed any conversion between different formats, nor
the multiprocess communication overhead. All calls for obtaining transformed
model or result of cost function are simple method calls, and models are stored
within the same address space, and accessible within whole applications by
pointers or references. Taking this into account, it is quite impossible to compare
it separately with other two. It is clear that in situations when time needed to
obtain solution is crucial, integrated tool is always the best choice.
Also let us point here out that this is minimal time needed by the given system
to perform such task. Time difference between integrated tool and set of tools,
may be therefore treated as a penalty of using distribution.

7.2 Tool sets comparison

Surprising could be the difference between tool set using database and one us-
ing files for data exchange. When using EyeDB database management system,
there was only small difference comparing to XML files being exchanged. To
explain this let us look here into nature of both approaches.
Let us begin here with discussing how files are handled. As it is well-known

1HT - abbreviation for Hyper Threading; Intel technology allowing almost simultaneous
execution of multiple threads on one processor core.

7.2 Tool sets comparison 59

Table 7.2: Timing results depending of CPU power management policies
Policy Total time

for files
Time per
iteration for
files

Total time
for database

Time per
iteration for
database

Power-save 1015 second 0.018 sec-
onds

939 seconds 0.016 sec-
onds

Performance 847 seconds 0.015 sec-
onds

575 seconds 0.010 sec-
onds

from computer architecture, all operations performed by processor access only
its registers, or computer memory (possibly with using caching techniques), to
which processor has access. If disk access is required, CPU orders bring data
from disk to memory. When such data is changed, depending on the writing
policy, it can be either written back to disk immediately or such writing could
be delayed. Moreover, todays operating system when having unused memory,
perform disk caching, that will allow better performance. As in case of doing
heuristic search, files are written, and read by another process in short period
of time, it is possible that this file is still kept in memory, and do not need to be
brought from hard drive again. In such case, normal penalty that is considered
when using files is minimized.
Let us now move to the database usage for sharing data. As described in [26]
EyeDB database management system uses CORBA as a technology for sharing
data with its client applications2. This in turn means that data needs to be
send from server to client, and client stores it’s own object in its private address
space in memory, which gives transmission overhead, related to most of database
systems. What is more important here is that whenever database is asked for
object that is stored there, it needs to perform search through it’s records, that
takes CPU time. In case of files this time could be used by the tool itself.
Therefore, unlike files that are disk-bound, usage of database is CPU-bound.

Very good example that shows how time needed for completing task is impacted
in case of both CPU-bound and disk-bound applications, could be comparison
of results of two runs that were done with two different power management
policies for CPU. Results of them are shown in table 7.2.
On test machine difference between those two power management policies, was
that in case of power-saving policy, CPU frequency was kept as low as possible
throughout run of the program. Basically, frequency governor was mostly keep-
ing it at lowest possible level, being 1.2GHz for each processor. On the other
hand, in case of performance CPU was kept high, whenever there was a process
using it. In general it was mostly over 2GHz for each processor.

2CORBA was already discussed in 4.2.

60 Comparison of approaches

As one sees, time difference between both tool sets is much smaller in case of
power-saving policies. However, still we see that solution that uses database
management system is faster than the one using files.

Chapter 8

Conclusions

In this thesis we created tool allowing design space exploration and finding opti-
mal solution for embedded system design. This task was achieved in three ways,
allowing comparison of different techniques for sharing data between multiple
tools.
Presented results show clearly that none of distributed tools can be compared
with the integrated one with respect to performance. Integrated tools It also
showed that choice technique in which data is being shared between tools be-
tween multiple tools is not always clear, as it may depend on the system on which
the tool is going to be run. In general, however, we consider using database for
data exchange as better solution, due to both its performance and transaction
security mechanisms.

8.1 Future work

Work done during this thesis open many possibilities for future work, and much
space for further improvements. First of all, heuristic algorithm that is used, do
return only one solution, which it found the most optimal (basing on the pro-
vided cost function). However, this may make the cost function very complex if
it was to catch all aspects of design. In most cases there are many possible so-
lutions considered as optimal, and differing in aspects that might not be visible

62 Conclusions

only by looking at final value of cost function, As an example, let us consider
two cases. In first one the energy consumption is the smallest, however, tasks
do not leave much time space for possible further additions. Second case is
opposite of the first one: energy is higher, however, tasks scheduled leave time
space for additions that may come with time. Let us in this example assume,
that differences between energy and degree of schedulability in those two cases,
are such that cost function returns very close (or even equal) result. For the
heuristic algorithm there will be no difference between those two solutions, and
they will be equally optimal. However, those differences matter for the designer,
and it would be much better if both such solutions would be presented allow-
ing designer to choose among them. Such set of optimal solutions from which
designer should be able to choose, is called Paretto optimal set of solutions.
Although in current implementation it is possible to obtain the Paretto optimal
solutions from the tool by running it multiple times with different settings of
cost function, possible improvement would be to obtain them in one go.
Furthermore, system model used throughout this thesis and in created tool is
quite simple, and therefore not very realistic. We considered here only set of
independent tasks, that do not share resources, whereas in embedded systems
known from everyday life tasks are interconnected and dependent on each other.
They also share resources, for example communication bus or memory. More-
over, model of architecture considered here is relatively simple. Architecture
consists only of multiple processing elements, and does not include buses that
allow tasks them to communicate. We assumed in addition that tasks can be
run at only discrete speeds that are available in processing elements. [7] de-
scribes, however, possibility of running tasks on processing elements, with dis-
crete voltage levels, at virtually any speed by creating so called PWM-modes.
Such PWM-mode can be created by running task at two different voltage levels,
therefore creating illusion of continuous speed possibilities. Such considerations
require also more realistic models of the processors that allow dynamic volt-
age scaling. Major things that our simple model lacks are the penalties that
are present during operating mode changes: time required by the processor to
switch to another operating, as well as power consumed by the processor during
switching.
All above make the system model closer to reality. In turn it would allow to
analyse complex embedded systems with more accuracy, and should be consid-
ered to be done in further tool development.

Another area of improvement is the way that tools in the set are connected to-
gether. This covers both communication between them, as well as sharing data.
First thing to consider here is the use of more advanced protocol or communica-
tion method. As pointed in section 5.3.1, current protocol does not provide any
error handling, and if used in distributed manner in the network environment
(and not only on localhost) may possibly fail. Also the construction of server

8.1 Future work 63

application enforces that in case of unpredicted message received, connection is
terminated, after sending the error message to second party. This effectively
does not allow any error recovery.
Also note lack of parallelism in server applications. Each server is capable of
handling only one connection at the time. If one chooses to use such tools
in distributed manner, he will like to make them available to multiple parties,
therefore, making the parallelism in the applications crucial for operation.

64 Conclusions

Appendix A

Protocol definition

Table A.1: Definition of valid messages used in the protocol.

Type Command Description
NONE NONE This is empty message. It does not have

any specific type nor payload.

ASK

BEST SOLUTION Message that is sent towards heuristic
search module asking for the optimal
solution. Payload should consist one
identifier of initial solution.

NEIGHBOUR Message that is sent towards trans-
formation module asking for random
neighbour to the given solution. Pay-
load should consist one identifier of the
solution for which neighbour should be
found.

ALL NEIGHBOURS Although not used in simulated anneal-
ing, this message requests from trans-
formation module all neighbouring so-
lutions to the current one. Payload rep-
resents identifier of current solution.

66 Protocol definition

VALUE Message that is sent towards cost func-
tion module asking for value of cost
function for the current solution. Pay-
load should consists of one identifier of
the solution in question.

ALL VALUES Similarly to ALL NEIGHBOURS com-
mand, it is not used in simulated an-
nealing. Like previous command it is
sent to cost function module asking for
values of cost function for all solutions
that are send. Payload in this case may
consist of multiple identifiers of solu-
tions.

RETURN

BEST SOLUTION Reply to ASK BEST SOLUTION message.
Its payload is identifier of the optimal
solution that was found.

NEIGHBOUR Reply to ASK NEIGHBOUR message. Its
payload is identifier of random neigh-
bour that was found by transformation
module.

ALL NEIGHBOURS Reply to ASK ALL NEIGHBOURS mes-
sage. Its payload consists of set of iden-
tifiers that represent all neighbouring
solutions that were found by transfor-
mation module.

VALUE Reply to ASK VALUE message. Its pay-
load represents the value of the cost
function calculated by costing module.

ALL VALUES Reply to ASK ALL VALUES message. Its
payload consists of set of values of cost
function for the solutions that were in
question. Note that order of values of
cost function must be the same as the
order of solutions from the asking mes-
sage.

ERROR – Message is reply to not understand mes-
sage, or indicates any other error. After
this message server closes connection.

MGMT CLOSE CONNECTION Message requesting closure of connec-
tion. After this message is send, the
link is removed.

67

HEUR CONFIG

START TEMP Configures start temperature in heuris-
tic module with simulated annealing.
Payload contains new value of start
temperature.

COOL RATE Configures cooling rate in heuristic
module with simulated annealing. Pay-
load contains new value of cooling rate.

TEMP LENGTH Configures temperature length in
heuristic module with simulated an-
nealing. Payload contains new value of
temperature length.

NA MOVES Configures number of not accepted
moves during heuristic run with simu-
lated annealing. Payload contains new
value of non-accepted moves.

COST CONFIG

WEIGHT DEGREE Configures weight of degree of schedula-
bility in cost function module. Payload
contains new value of this weight.

CONFIG DEGREE Configures whether degree of schedu-
lability should be taken into account
when satisfying its goal in cost func-
tion module. Payload is either TRUE or
FALSE.

WEIGHT RELIABILITY Configures weight of reliability in cost
function module. Payload contains new
value of this weight.

CONFIG RELIABILITY Configures whether reliability should be
taken into account when satisfying its
goal in cost function module. Payload
is either TRUE or FALSE.

WEIGHT ENERGY Configures weight of energy in cost
function module. Payload contains new
value of this weight.

CONFIG ENERGY Configures whether energy should be
taken into account when satisfying its
goal in cost function module. Payload
is either TRUE or FALSE.

CONF ACCEPT – Message indicating that the module ac-
cepted the configuration change.

68 Protocol definition

Appendix B

Data sharing

B.1 XML schema

Listing B.1: XML schema
<?xml version=” 1.0 ”?>
<xs:schema xmlns:xs=” ht tp : //www.w3 . org /2001/XMLSchema”>

<xs : e l ement name=” too l ” type=” t o o l I n f o ”/>

<xs:complexType name=” t o o l I n f o ”>
<xs : s equence>

<xs : e l ement name=” task ” type=” ta sk In f o ”
minOccurs=”1”/>

<xs : e l ement name=”procElem” type=”procElemInfo ”
minOccurs=”1”/>

<xs : e l ement name=”mapping” type=”mappingInfo”
maxOccurs=”1”/>

</ xs : s equence>
</xs:complexType>

<xs:complexType name=” ta sk In f o ”>
<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ”/>
<x s : a t t r i b u t e name=”wce” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=” dead l ine ” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=” per iod ” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”k” type=” x s : i n t e g e r ”/>

</xs:complexType>

<xs:complexType name=” ta sk In s t anc e In f o ”>
<x s : a t t r i b u t e name=” task ” type=” x s : s t r i n g ”/>
<x s : a t t r i b u t e name=”wcet” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”reWcet” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”opMode” type=” x s : s t r i n g ”/>
<x s : a t t r i b u t e name=”reOpMode” type=” x s : s t r i n g ”/>
<x s : a t t r i b u t e name=”k” type=” x s : i n t e g e r ”/>

</xs:complexType>

<xs:complexType name=”procElemInfo ”>
<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ”/>
<xs : s equence>

70 Data sharing

<xs : e l ement name=”opMode” type=”opModeInfo”
minOccurs=”1”/>

</ xs : s equence>
</xs:complexType>

<xs:complexType name=”opModeInfo”>
<x s : a t t r i b u t e name=”name” type=” x s : s t r i n g ”/>
<x s : a t t r i b u t e name=” speed” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”consPow” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=” vo l tageLeve l ” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”lambda” type=” xs :dec ima l ”/>

</xs:complexType>

<xs:complexType name=”procElemMapInfo”>
<x s : a t t r i b u t e name=” id ” type=” x s : i n t e g e r ”/>
<x s : a t t r i b u t e name=”procElem” type=” x s : s t r i n g ”/>
<x s : a t t r i b u t e name=”lcm” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”reExecMode” type=” x s : s t r i n g ”/>
<xs : s equence>

<xs : e l ement name=” task Ins tance ” type=” ta sk In s t anc e In f o ”/>
</ xs : s equence>

</xs:complexType>

<xs:complexType name=”mappingInfo”>
<x s : a t t r i b u t e name=”nextId ” type=” x s : i n t e g e r ”/>
<x s : a t t r i b u t e name=” fau l tPe r i od ” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”degreeGoal ” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=” r e l i a b i l i t yGo a l ” type=” xs :dec ima l ”/>
<x s : a t t r i b u t e name=”energyGoal ” type=” xs :dec ima l ”/>
<xs : s equence>

<xs : e l ement name=”procElemMap” type=”procElemMapInfo”
minOccurs=”1”/>

</ xs : s equence>
</xs:complexType>

</xs:schema>

B.2 ODL description

Listing B.2: ODL description
c lass Task
{

s t r i n g name ;
double wce ;
double dead l ine ;
double per iod ;
int k ;

} ;

c lass TaskInstance
{

Task ∗ task ;
double wcet ;
double reWcet ;
OperMode ∗opMode ;
OperMode ∗reOpMode ;
int k ;

} ;

c lass ProcElem
{

s t r i n g name ;
OperMode ∗modes [] ;

} ;

c lass OperMode
{

s t r i n g name ;
double speed ;
double consPow ;
double vo l tageLeve l ;
double lambda ;

} ;

c lass ProcElemMap
{

int id ;

B.2 ODL description 71

ProcElem ∗pe ;
double lcm ;
OperMode ∗reExecMode ;
TaskInstance ∗ ta sks [] ;

} ;

c lass Mapping
{

int nextId ;
double f au l tPe r i od ;
double degreeGoal ;
double r e l i a b i l i t yGo a l ;
double energyGoal ;
ProcElemMap ∗peMap [] ;

} ;

72 Data sharing

Appendix C

Required applications

To be able to build or run created tool, two dependencies need to be installed
in the system first: Xerces-C++ XML parser (version 3.1.0 was used in the
project) and EyeDB object-oriented database management system (version 2.8.8
was used).
For installation instructions of Xerces-C++ XML parser, please consult Xerces
project webpage (http://xerces.apache.org/xerces-c/) for instructions regarding
installation on your operating system. For users of Linux systems it is advised
to check your system repository first.
For installation instructions of EyeDB, please consult EyeDB documentation
package1 and most importantly, EyeDB Installation.

Note that in this project we assumed the installation of both database man-
agement system and parser system wide, making all libraries and header files
accessible.

1http://downloads.sourceforge.net/project/eyedb/EyeDB%20documentation/2.8.8/eyedb-
doc-2.8.8.tar.gz

74 Required applications

Bibliography

[1] Mysql. http://www.mysql.com/.

[2] Object database management systems, ODBMS.ORG.
http://www.odbms.org/.

[3] Postgresql. http://www.postgresql.org/.

[4] Redis. http://code.google.com/p/redis/.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8:284–292, 1993.

[6] M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T. Stanienda,
and F. Velez. The object data standard: ODMG 3.0. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000.

[7] E. Bini, G. Buttazzo, and G. Lipari. Minimizing cpu energy in real-time
systems with discrete speed management. ACM Trans. Embed. Comput.
Syst., 8(4):1–23, 2009.

[8] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of fault-tolerant
real-time task sets. Real-Time Systems, Euromicro Conference on, 0:0029,
1996.

[9] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

http://www.mysql.com/
http://www.odbms.org/
http://www.postgresql.org/
http://code.google.com/p/redis/

76 BIBLIOGRAPHY

[10] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: task graphs for free. In
CODES/CASHE ’98: Proceedings of the 6th international workshop on
Hardware/software codesign, pages 97–101, Washington, DC, USA, 1998.
IEEE Computer Society.

[11] Apache Software Foundation. Cassandra.
http://cassandra.apache.org/.

[12] Apache Software Foundation. Xerces-C++ XML Parser.
http://xerces.apache.org/xerces-c/.

[13] M. Henning. The rise and fall of corba. Queue, 4(5):28–34, 2006.

[14] IBM. Rational rose realtime. http://www.rational.com/products/rosert.

[15] Objectivity Inc. Objectivity/DB. http://www.objectivity.com/pages/objectivity.

[16] ISO/IEC 9899:TC3. C99 standard with Technical Corrigendum 1, 2, 3 –
Committee draft. Technical report, International Organization for Stan-
dardization, Geneva, Switzerland., 7. September 2007.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[18] L. Lavagno and C. Passerone. Design of embedded systems. In R. Zurawski,
editor, Embedded Systems Handbook. CRC Press, Inc., 2004.

[19] Mathworks. Simulink and stateflow. http://www.mathworks.com.

[20] P. Pop. Analysis and Synthesis of Communication-Intensive Heterogeneous
Real-Time Systems. PhD thesis, Department of Computer and Information
Science Linköpings universitet, 2003.

[21] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles. Scheduling and voltage
scaling for energy/reliability trade-offs in fault-tolerant time-triggered em-
bedded systems. In CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesign and system syn-
thesis, pages 233–238, New York, NY, USA, 2007. ACM.

[22] Artisan Software. Real time studio. http://www.artisansw.com.

[23] SYSRA. Eyedb. http://www.eyedb.org/.

[24] Inter Systems. InterSystems caché. http://www.intersystems.com/cache.

[25] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time
tasks: an np-hard problem made easy. Real-Time Syst., 4(2):145–165, 1992.

http://cassandra.apache.org/
http://xerces.apache.org/xerces-c/
http://www.rational.com/products/rosert
http://www.objectivity.com/pages/objectivity
http://www.mathworks.com
http://www.artisansw.com
http://www.eyedb.org/
http://www.intersystems.com/cache

BIBLIOGRAPHY 77

[26] E. Viara, E. Barillot, and G. Vaysseix. The eyedb oodbms. International
Database Engineering and Applications Symposium 1999, pages 390–402,
1999.

[27] WC3. Extensible Markup Language (XML) 1.0 (Fifth edition). Technical
report, The World Wide Web Consortium, 26. November 2008.

[28] The Free Encyclopedia Wikipedia. Annealing.
http://en.wikipedia.org/wiki/Annealing_(metallurgy).

[29] The Free Encyclopedia Wikipedia. NoSQL.
http://en.wikipedia.org/wiki/NoSQL.

[30] D. Zhu and H. Aydin. Reliability-aware energy management for periodic
real-time tasks. IEEE Transactions on Computers, 99(PrePrints):1382–
1397, 2009.

[31] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on
reliability in real-time embedded systems. In ICCAD ’04: Proceedings of
the 2004 IEEE/ACM International conference on Computer-aided design,
pages 35–40, Washington, DC, USA, 2004. IEEE Computer Society.

http://en.wikipedia.org/wiki/Annealing_(metallurgy)
http://en.wikipedia.org/wiki/NoSQL

	Abstract
	1 Introduction
	1.1 Embedded system design
	1.2 Motivation
	1.3 Overview

	2 Preliminaries
	2.1 System model
	2.2 Optimization and meta-heuristics

	3 System model representation
	3.1 Overview
	3.2 Task representation
	3.3 Processing element representation
	3.4 Mapping of tasks onto hardware architecture

	4 Interoperability
	4.1 Sharing data between tools
	4.2 Communication between tools

	5 Tool design
	5.1 Separation into modules
	5.2 Integrated tool
	5.3 Inter-operation of tools

	6 Implementation
	6.1 Choice of language
	6.2 System model representation
	6.3 Interoperability framework

	7 Comparison of approaches
	7.1 Overall comparison
	7.2 Tool sets comparison

	8 Conclusions
	8.1 Future work

	A Protocol definition
	B Data sharing
	B.1 XML schema
	B.2 ODL description

	C Required applications

