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Abstract

In this paper we present an approach for the mapping
optimization of fault-tolerant embedded systems for safety-
critical applications. Processes and messages are statically
scheduled. Process re-execution is used for recovering from
multiple transient faults. We call process recovery transparent
if it does not affect operation of other processes. Transparent
recovery has the advantage of fault containment, improved
debugability and less memory needed to store the fault-tolerant
schedules. However, it will introduce additional delays that can
lead to violations of the timing constraints of the application.
We propose an algorithm for the mapping of fault-tolerant
applications with transparency. The algorithm decides a
mapping of processes on computation nodes such that the
application is schedulable and the transparency properties
imposed by the designer are satisfied. The mapping algorithm
is driven by a heuristic that is able to estimate the worst-case
schedule length and indicate whether a certain mapping
alternative is schedulable.

1. Introduction

Transient faults are becoming the most common types of faults
in modern electronic components due to raising levels of
integration in semiconductors, lower voltage levels, and higher
operational frequency. Causes of transient faults are
electromagnetic interference, cosmic radiation, power supply
fluctuations, and many others.

Transient faults are often discriminated from intermittent
faults, or internal system disturbances [2], which could result
from electromagnetic interference of internal components,
crosstalk, or overheating. The approaches presented in this
paper are suitable for tolerating both transient and intermittent
faults. Although transient and intermittent faults do not lead to
a permanent damage of the circuit, errors caused by them can be
fatal for many safety-critical applications, such as those used in
avionics, automotive, factory automation and medical systems.

Researchers have proposed several hardware architecture
solutions, such as MARS [15], TTA [16] and XBW [4], that rely
on hardware replication to tolerate a single permanent fault in
any of the components of a fault-tolerant unit. Such approaches
can be used for tolerating transient faults as well, but they incur

a very large hardware cost if the number of transient faults is
larger than one. An alternative to such purely hardware-based
solutions are approaches such as re-execution, replication, and
checkpointing.

Several researchers have shown how the schedulability of an
application can be guaranteed at the same time with appropriate
levels of fault-tolerance using pre-emptive priority based
scheduling [1, 3, 9, 22]. Considering their high degree of
predictability, researchers have also proposed approaches for
integrating fault-tolerance into the framework of static
scheduling [14]. A simple heuristic for combining several static
schedules in order to mask fault-patterns through replication is
proposed in [5], without, however, considering any timing
constraints. This approach is used as the basis for cost and fault-
tolerance trade-offs within the Metropolis environment [17].

Fohler [7] proposes a method for joint handling of aperiodic
and periodic processes by inserting slack for aperiodic
processes in the static schedule, such that the timing constraints
of the periodic processes are guaranteed. In [8] he equates the
aperiodic processes with fault-tolerance techniques that have to
be invoked on-line in the schedule table slack to handle faults.
Overheads due to several fault-tolerance techniques, including
replication, re-execution and recovery blocks, are evaluated.

When re-execution is used in a distributed system,
Kandasamy [12] proposes a list-scheduling technique for
building a static schedule that can mask the occurrence of faults,
making the re-execution transparent. Slacks are inserted into
the schedule in order to allow the re-execution of processes in
case of faults. The faulty process is re-executed, and the
processor switches to an alternative schedule that delays the
processes on the corresponding processor, making use of the
slack introduced. The authors propose an algorithm for
reducing the necessary slack for re-execution. This algorithm
has later been applied to the fault-tolerant transmission of
messages on a time-division multiple-access bus [13]. In [11],
we have proposed a fine-grained approach to scheduling with
transparency by handling fault-containment at the application-
level instead of resource-level, thus offering the designer the
possibility to trade-off transparency for performance. We have
proposed a conditional scheduling algorithm for the synthesis
of fault tolerant schedules that can handle the transparency/
performance trade-offs imposed by the designer, without
introducing unnecessary delays.

* This work was partially supported by the National Graduate School in Computer Science (CUGS) of Sweden.



In [10] we have shown how re-execution and active
replication can be combined in an optimized implementation
that leads to a schedulable fault-tolerant application without
increasing the amount of employed resources. Design
optimization was based on a heuristic and contained three
stages, scheduling, mapping and fault tolerance policy
assignment. The algorithms were iterating until a first
schedulable fault-tolerant solution was found. However, the
approach in [10] was incapable of handling transparency
properties customized by the designer and could not be used for
trading-off transparency for performance. Therefore, in this
work we focus on mapping optimization of fault-tolerant
embedded systems such that the application is not only
schedulable but also transparency properties imposed by the
designer are satisfied.

Experiments have shown that due to its long runtime the
conditional scheduling algorithm from [11] cannot be used
inside an optimization loop. Therefore, in this paper, we
propose a fast scheduling heuristic, which is able to estimate the
worst-case schedule length, thus guiding an iterative mapping
optimization. The heuristic can accurately indicate whether a
certain mapping alternative is schedulable.

The next two sections present the system architecture and the
application model, respectively. Section4 discusses the
importance of considering transparency properties during
mapping optimization. Section5 proposes a mapping
optimization strategy and mapping algorithm. Section 6
presents our schedule length estimation heuristic. The
evaluation of the proposed approaches, including a real-life
example, is presented in Section 7.

2. System Model

We consider architectures composed of a set A\’of nodes which
share a broadcast communication channel. The communication
channel is statically scheduled such that one node at a time has
access to the bus, according to the schedule determined off-line.

We have designed a software architecture which runs on the
CPU in each node, and which has a real-time kernel as its main
component [14]. The processes activation and message
transmission is done based on the local schedule tables.

In this paper we are interested in fault-tolerance techniques
for tolerating transient faults, which are the most common faults
in today’s embedded systems. We have generalized the fault-
model from [12] that assumes that one single transient fault may
occur on any of the nodes in the system during the application
execution. In our model, we consider that at most k transient
faults may occur anywhere in the system during one operation
cycle of the application. The number of faults can be larger than
the number of processors in the system. Several transient faults
may occur simultaneously on several processors, as well as
several faults may occur on the same processor.

The error detection and fault-tolerance mechanisms are part
of the software architecture. We assume a combination of
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Figure 1. Re-execution

hardware-based (e.g., watchdogs, signature checking) and
software-based error detection methods, systematically
applicable without any knowledge of the application (i.e., no
reasonableness and range checks) [20]. The error detection
overhead is considered as part of the process worst-case
execution time. We assume that all faults can be found using
such detection methods, i.e., no byzantine faults which need
voting on the output of replicas for detection. The software
architecture, including the real-time kernel, error detection and
fault-tolerance mechanisms are themselves fault-tolerant. In
addition, we assume that message fault-tolerance is achieved at
the communication level, for example through hardware
replication of the bus.

We use re-execution for tolerating faults. Let us consider the
example in Fig. 1, where we have process P, and a fault-
scenario consisting of k=2 transient faults that can happen
during one cycle of operation. In the worst-case fault scenario
depicted in Fig. 1, the first fault happens during the process P,’s
first execution, and is detected by the error detection
mechanism. After a worst-case recovery overhead of L= 5 ms,
depicted with a light gray rectangle, P, will be executed again.
Its second execution in the worst-case could also experience a
fault. Finally, the third execution of P; will take place without
fault.

3. Application Model

We model an application A(Y E) as a set of directed, acyclic,
polar graphs G(¥, £) € A. Each node P; € ¥ represents one
process. An edge ¢;; € Efrom P; to P; indicates that the output
of P; is the input of P,. A process can be activated after all its
inputs have arrived and it issues its outputs when it terminates.
Processes are non-preemptable and thus cannot be interrupted
during their execution.

The communication time between processes mapped on the
same processor is considered to be part of the process worst-
case execution time and is not modeled explicitly.
Communication between processes mapped to different
processors is performed by message passing over the bus.

The mapping of a process in the application is determined by
a function M vV — N, where A is the set of nodes in the
architecture. For a process P; € ¥, M(P,) is the node to which P;
is assigned for execution. We know the worst-case execution
time C, of process P;, when executed on M(P;). We also
consider that the size of the messages is given.

All processes and messages belonging to a process graph G;
have the same period T; = T, which is the period of the process
graph. A deadline D ;, <T' is imposed on each process graph ;.
In addition, processes can have associated individual release
times and deadlines. If communicating processes are of
different periods, they are combined into a hyper-graph
capturing all process activations for the hyper-period (LCM of
all periods). For the purposes of mapping and scheduling we use
a merged application graph §G obtained by merging all the
graphs in the application, and which has a period equal to LCM
of the periods of all constituent graphs [18].

4. Mapping with Transparency

Transparent recovery has the advantages of fault containment,
improved debugability and less memory needed to store the
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Figure 2. Application with Transparency

fault-tolerant schedules. A designer would like to introduce as
much transparency as possible. However, transparency will
introduce delays that can violate the timing constraints of the
application.

We consider a fine-grained approach to transparency as in
[11]. The designer specifies desired degree of transparency by
declaring certain processes and messages as frozen. A frozen
process or message has a fixed start time regardless of the
occurrence of faults in the rest of the application (frozen
processes and messages are depicted using squares). The
debugability of the application is improved by transparency
because it is easier to observe the behavior of frozen processes
and messages in alternative schedules that correspond to
different fault scenarios.

Let us illustrate the timing overhead introduced with
transparency. Fig. 2 depicts two alternative schedules of the
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Figure 3. Mapping and Frozen Processes
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Figure 4. Mapping and Frozen Messages

application composed of four processes and three messages,
where process P and messages m, and m; are frozen. Since P;,
m, and m; are frozen they should be scheduled at one single
time independently of external fault occurrences. For example,
re-executions of process P, in case of faults on Fig. 2b must not
affect the start time of process P;. As a result, even if no faults
happen in process P,, as illustrated on Fig. 2c, process P will
have to be delayed. Process P; experiences two faults and is re-
executed. Due to transparency, the idle time between processes
P, and P; cannot be utilized, which leads to a long schedule of
412 ms. Similarly, idle times are introduced before messages n1,
and m;, such that re-executions of processes P, and P, do not
affect the sending times of these messages. Contrary, message
m; can be sent at different times. In both alternative schedules
message m; is sent immediately after process P,. m; will be
delayed only if process P, experiences faults (as shown with the
grey rectangle labelled “m;” on the bus).

Transparency properties of applications have to be taken into
account during design optimization. In our application model,
given an application A(‘Y E) we will capture the transparency
using the function T V —frozen, where v; € ¥ is a node in the
application graph, which can be either a process or a
communication message.

4.1 Motivational Examples

In this work we are interested to find a mapping of processes
such that the delays introduced due to the frozen processes are
reduced. To illustrate the issues related to mapping with
transparency, we will discuss two examples, one with a frozen
process, presented in Fig. 3 and one with frozen messages,
presented in Fig. 4.



In Fig.3 we consider an application consisting of six
processes, P, to P that have to be mapped on an architecture
consisting of two computation nodes connected to a bus. We
assume that there can be at most £ = 2 faults during one cycle of
operation. The worst-case execution times for each process on
each computation node are depicted in the table next to the
architecture. Furthermore, let us assume that process P, is
frozen (depicted with a rectangle in the application graph in
Fig. 3). We impose a deadline of 300 ms for the application (a
thick line crossing the figure). If we decide the mapping without
considering the transparency requirement on P,, we obtain the
optimal mapping depicted in Fig. 3a (processes P,, P, and Ps
are mapped on node N,; P, P; and P, are mapped on node N,).
If transparency is ignored, the application is schedulable in all
possible fault scenarios; it meets the deadline even in case of the
worst-case fault scenario shown in Fig. 3b.

If the same mapping determined in Fig. 3a is used in the case
of transparency, obtained solution is depicted in Fig. 3c.
However, in this case, the deadline will not be met due to the
delay introduced by the frozen process P,. A mapping that
makes the system schedulable even in the worst-case fault
scenario and with a frozen P, is shown in Fig. 3d. According to
this mapping, processes P;, P,, P,, Ps; and P4 are mapped on
node N, and only process P; is mapped on node N,.
Counterintuitively, this mapping is not balanced and
communications are increased compared to the previous
mapping, since we send message m,, which is two times larger
than message m,.

Another example, illustrating the importance of considering
frozen messages during the mapping process, is depicted in
Fig. 4. The application consists of six processes, P, to Py. Let
us consider that all messages are frozen. This means that
messages will have the same start time on the bus regardless of
the fault scenario. The optimal mapping, ignoring transparency,
is presented in Fig. 4a. The application meets the deadline even
in the worst case fault scenario as shown in Fig. 4b. This
mapping is balanced and communications are minimized. Once
we introduce transparency, the application becomes
unschedulable, as illustrated in Fig. 4c. However, considering
the transparency requirements during scheduling leads to a
schedulable  solution depicted in Fig.4d. Again,
counterintuitively, the solution in Fig. 4d is not balanced and
instead of one message two messages are sent via the bus.

The examples presented have shown that transparency
properties have to be carefully considered during mapping and

OptimizationStrategy(G k, \; Z D)

1 My, = InitialMapping(g)

2 [:=CondScheduling(G k, A, My, )
3 if / < Dthen return 2,
4 while not_termination do

5 Mpe, = IterativeMapping(G k, N; My )
6  I:=CondScheduling(G k, A, Mo, T)

7 if /< Dthen return 94,

8 M, = FindNewlnit(G , M,,,)

9 end while

10 return no_solution

end OptimizationStrategy

Figure 5. Optimization Strategy

true F]:i FPI FPi /\Fp1 Fp1 /\Ffi FP1 /\FP1 /\FP2
P 0 |35 70
P, 30 100 65 90
m 31 100 66
ny 105 105 105
n; 120 120

Figure 6. Conditional Schedule Table

that mapping solutions which are optimal for non-transparent
solution are inefficient when transparency is introduced.

5. Optimization Strategy

Our mapping optimization strategy, outlined in Fig.5,
determines a mapping M for application 4 on computation
nodes A such that the application is schedulable and the
transparency requirements 7 are satisfied. The optimization
strategy receives as input the application graph G the maximum
number of faults k in the system period, the architecture A;
transparency requirements Z and deadline D. The output of the
algorithm is a mapping M of processes to nodes, and a
conditional schedule table for processes and messages.

A conditional schedule table captures the alternative fault
scenarios. Each column in the table corresponds to actual fault
occurrences, and each row to a process or a message. A part of
a conditional schedule table is depicted in Fig. 6. For example,
process P; will always start at 0, e.g. at the beginning of each
execution cycle. The notions F 3 and FPI indicate the presence
and absence of a fault in process P}, respectively. For example,
process P, will start at 30 if there is no fault in process P}, at 100
in case of two faults in process P, and at 65 in case of one fault
in P,. Similarly, Fp, indicates a fault in process P,. For
example, process P, will be re-executed at 90 if its first
execution has failed.

The design problem outlined above is NP complete [21]. Our
strategy, presented in Fig.5, is to address separately the
mapping and scheduling. We start by determining an initial
mapping M,,;, with the InitialMapping function in line 1. This is
a straightforward mapping that balances processor utilization
and minimizes communications. The schedulability of the
resulted system is evaluated with the conditional scheduling
algorithm from [11] (lines 2-3). If the initial mapping is
unschedulable, then we iteratively improve the mapping of
processes on the critical path of the worst-case fault scenario
aiming at finding a schedulable solution (lines 4-9). For this
purpose, we use a hill-climbing heuristic, which combines a
greedy algorithm and a method to recover from a local
optimum.

A new mapping alternative M,,,, is obtained with a greedy
algorithm, IterativeMapping, line 5, which is presented in the
next section. Since lterativeMapping is a greedy heuristic it will
very likely end up in a mapping M,,,, which is a local
minimum. In order to explore other areas of the design space,
we will restart the IterativeMapping heuristic with a new initial
solution AM,,;, which should not lead to the same local minimum.
As recommended in the literature [19], an efficient way to find
such a new initial mapping is the following. Given the actual
solution M, we apply an optimization run using a new cost
function different from the global schedule length, which is
used as a cost function in the optimization so far. This



lterativeMapping(G k, A\ M, 9)

1 improvement := true

2 lhest := ScheduleLength(g k, A, M, 7)
3 while improvement do

for each P, € crdo
foreach N; # N.do
10 ChangeMapping(#4, P;, N;)
11 |ew := ScheduleLengthEstimation(g k, AL M, T)
12 RestoreMapping (M)

4 improvement = false

5 ’Dbest:= a; Nbest:= %)
6 CP:=FindCP(G)

7  SortCP(cp)

8

9

13 if]o < lpest then

14 Pbest = Pi; Nbest:= Nj; lbest = Inew

15 improvement := true

16 end if

17  end for

18 end for

19 if improvementthen ChangeMapping(M, Ppgsy Npesy)
20 end while

21 return M

end lterativeMapping

Figure 7. Iterative Mapping Heuristic (IMH)

optimization run will produce a new mapping M,,, and is
implemented by the function FindNewlInit (line 8). This function
runs a simple greedy iterative mapping, which is aiming at an
optimal load balancing of the nodes.

If the solution produced by lterativeMapping is schedulable,
then the optimization will stop (line 7). However, a termination
criterion is needed in order to terminate the mapping
optimization if no solution is found. A termination criterion,
which we obtained empirically and which produced very good
results, is to limit the number of iterations without improvement
0 Ny, k- In(N,, ;). where Ny, is the number of
processes, N4 1S the number of computation nodes, and k is
the maximum number of faults in the system period.

5.1 Iterative Mapping

IterativeMapping depicted in Fig. 7 is a greedy algorithm that
incrementally changes the mapping M until no further
improvement (line 3) is possible. Our approach is to tentatively
change the mapping of processes on the critical path of the
application graph G The critical path CP is found by the
function FindCP (line 6). Each process P; € CPon the critical
path is tentatively moved to each node in A, We evaluate each
move in terms of schedule length, considering transparency
properties 7Tand the number of faults & (line 11). The calculation
of the schedule length should, in principle, be performed by the
scheduling function ConditionalScheduling, presented by us in
[11]. However, the scheduling takes too long time to be used
inside such an iterative optimization loop. Therefore, we have
developed a fast schedule length estimation heuristic,
ScheduleLengthEstimation, which is used to guide the
InitialMapping heuristic. The estimation heuristic is presented in
Section 6.2.

After evaluating possible alternatives, the best move
composed of the best process P,,, and the best computation
node N,,,, is selected (lines 13-16). This move is conserved if

leading to improvement (line 19). IterativeMapping will stop if
there is no further improvement.

6. Scheduling Heuristics

The conditional schedule table introduced in Section 5 is
produced by the ConditionalScheduling algorithm from [11].
The ConditionalScheduling algorithm wuses an internal
representation of the possible fault scenarios, captured by a
fault-tolerant conditional process graph presented in the next
section.

The ConditionalScheduling algorithm traces all alternative
scheduling paths corresponding to fault scenarios. The number
of alternative paths to investigate is growing exponentially with
the number of processes and, especially, with the number of
faults. Hence, the execution time of the ConditionalScheduling
algorithm is also growing exponentially as our experiments in
Section 7 show. In Section 6.2 we propose a fast schedule
length estimation heuristic, which is also based on the fault-
tolerant conditional process graph representation, that is able to
approximate the schedule length without generating the
conditional schedule table.

6.1 Fault-Tolerant Conditional Process Graph

In Fig. 8 we have an application 4 modeled as a process graph
G mapped on an architecture of two nodes, which can
experience at most two transient faults. For scheduling
purposes, we convert the original application graph G into a

fault-tolerant conditional process graph (FT-CPG). In an FT-

CPG the fault occurrence information is represented as
conditional edges and the frozen processes/messages are
captured using synchronization nodes. The FT-CPG in Fig. 8b
captures all the fault scenarios that can happen during the
execution of application A4 in Fig. 8a, considering the
transparency requirements, depicted as rectangles on the
process graph G For example, the subgraph marked with
thicker edges and shaded nodes in Fig. 8b captures the

Figure 8. FT-CPG



alternative schedule corresponding to the fault scenario where
one fault happens in process P, and one fault happens in process
P,. The fault scenario for a given process execution, for
example Pj, the first execution of P, is captured by the
conditional edges FP41 (fault) and FPAI (no-fault). The
transparency requirement that, for example, P; has to be frozen,
is captured by the synchronization node P5 .

An FT-CPG is a directed acyclic graph G(VPuVCqu EyUE).
Each node P/ € V, is a regular node. A node P/ € V, with
conditional edges at the output is a conditional process that
produces a condition. The condition value produced is “true”
(denoted with F,) if P/ experiences a fault, and “false”
(denoted with sz ) if P does not experience a fault. Alternative
paths starting from such a process, which correspond to
complementary values of the condition, are disjoint'. In Fig. 8b,
process P| is a conditional process because it “produces”
condition FP1 , while P3 is aregular process. Eachnode v, e V;
is a synchromzanon node and represents a frozen process or
message (i.e., 7V, =frozen). In Fig. 8b, m§ and P§ are
synchronization nodes (depicted with a rectangle) representing
a message and a process, respectively. Synchronization nodes
take zero time to execute.

Regular and conditional processes are activated when all their
inputs have arrived. However, a synchronization node can be
activated (the process started or the message transmitted) after
inputs coming on one of the alternative paths have arrived. For
example, a transmission on the edge FPII will be enough to
activate m5 .

Eg and E are the sets of simple and conditional edges,
respectively. An edge ¢; € Egfrom P; to P; indicates that the
output of P, is the input of P, Anedgee; € EC is a conditional
edge and has an associated COHdlthIl value Such an edge is P|
to Pj in Fig.8b, with the associated condition Fp,.
Transmission on conditional edges takes place only if the
associated condition is satisfied.

In Fig. 8b we depict the FT-CPG G, which is the result of
transforming the application 4 in Fig. 8a, considering the
transparency/trade-off requirements Z(4), depicted as
rectangles on the process graph Gin Fig. 8a.

* Each process P; is transformed into a structure which models
the possible fault occurrence scenario in P;, consisting of k
conditional nodes and their corresponding conditional edges,
and one regular node. For example, process P, from Fig. 8a,
which has to handle two transient faults, is transformed to
conditional processes P} and P7, conditional edges labelled
FPI, FPI, Fp, and sz, and regular process P3 We denote with
Pi *the ]’h copy of P € A InFig. 8b, P} is the first execution
of P, P37 is second execution of P, and P; is the last
execution, which will not experience a fault, since k = 2.

* Each frozen process P; € T(A) or frozen message m; € 7(4) is
transformed into a synchronization node. For example, frozen
message m, from Fig.8a is transformed to the
synchronization node m3§ in Fig. 8b.

* Each edge e; with its regular message m; is copied into the
new FT-CPG, into as many places as necessary, to connect the
structures resulted from the transformations in the first two
steps (see Fig. 8b).

1. They can only meet in a synchronization node.

6.2 Schedule Length Estimation

The worst-case fault scenario consists of a combination of k
fault occurrences that leads to the longest schedule length. We
have proposed a conditional scheduling algorithm [11] that
examines all the fault scenarios captured by the FT-CPG,
produces the conditional schedule table, and implicitly
determines the worst-case fault scenario. However, the
algorithm is too slow for mapping optimization. Hence, in this
section, we are proposing a worst-case schedule length
estimation heuristic.

The main idea of the ScheduleLengthEstimation algorithm is
to avoid examining all the fault scenarios, which is time-
consuming. Instead, the estimation heuristic incrementally
builds a fault scenario, which is as close as possible (in terms of
resulted schedule length) to the worst case.

Considering a fault scenario X(m) where m faults have
occurred, we construct the fault scenario X(m+1) with m+1
faults in a greedy fashion. Each fault scenario X(m) corresponds
to a partial FT-CPG Gy,), which includes only paths
corresponding to the m fault occurrences considered in X(m).
Thus, we investigate processes from Gy, to determine the
process P; € GX(m) that introduces the largest delay if it
experiences the m' h11 fault (and has to be re-executed). A fault
occurrence in P; is then considered as part of the fault-scenario
X(m+1), and the iterative process continues until we reach k
faults.

In order to speed up the estimation, we do not investigate all
the processes in Gyq,,. Instead, our heuristic selects processes
whose re-executions will likely introduce the largest delay.
Candidate processes are those which have a long worst-case
execution time and those which are located on the critical path.

The ScheduleLengthEstimation heuristic is outlined in Fig. 9.
The set of all synchronization nodes £, is generated (line 1).
Priorities are assigned to all synchronization nodes (line 2). For
priority assignment we use the partial critical path function
outlined in [6]. The estimation chooses synchronization nodes
according to the assigned priorities such that it can derive their
fixed start time. For each synchronization node

ScheduleLengthEstimation(g 7 kA, M)
1 Lg= GetSynchronizationNodes(G)
2 PCPPriorityFunction(g Lg)
3 X(0) := J; y:= SinkNode(6)
4 foreach S;e £5and ydo
t

max = 0
Z:= SelectProcesses(S; G)
form:=1..kdo

foreach P,e Zdo

Gy, i = CreatePartialFTCPG(X(m - 1), P)

10 t= ListScheduling(Gyy,, ;» S)
11 endfor
12 if t,. < tthen

w o g o U

13 bnax =t} Pworst = Pi
14 end if

15 X(m):=X(m-1)+ P;
16 end for

17 Schedule(S; t,,,,)

18 end for

19 | 4 := completion_time(y)
20 return /
end ScheduleLengthEstimation

Figure 9. Schedule Length Estimation



ScheduleLengthEstimation selects a set of processes that will
potentially introduce the largest delay (line 6).

Re-executions of the selected processes are considered when
the partial FT-CPG is generated (line 9). Fault scenarios are
evaluated with a ListScheduling heuristic that stops once it
reaches a synhronization node (line 10). The fault scenario that
led to the greatest start time ¢,,,. is saved (line 15). Once the
fault scenario of k faults X(k) is obtained, the synchronization
node is scheduled.

When all synchronization nodes are scheduled, the algorithm
returns the worst-case schedule length.

7. Experimental Results

For evaluation of our mapping optimization strategy we used
applications of 20, 30, and 40 processes (all unmapped),
implemented on the architecture of 4 computation nodes. We
have varied the number of faults from 2 to 4 within one
execution cycle. The recovery overhead |1 was set to 5 ms. Thirty
examples were randomly generated for each dimension both
with random structure and graphs based on more regular
structure like trees and groups of chains. Execution times and
message lengths were assigned randomly using uniform
distribution within the 10 and 100 ms, and 1 to 4 bytes ranges,
respectively. We have selected a transparency level with 25%
frozen processes and 50% frozen messages. The experiments
were done on Pentium 4 at 2.8GHz with 1 Gb of memory.

We were first interested to evaluate the proposed heuristic for
schedule length estimation (ScheduleLengthEstimation in
Fig. 9, denoted with SE) in terms of monotonicity relative to the
ConditionalScheduling (CS) algorithm presented by us in [11].
SE is monotonous with respect to CS if for two alternative
mapping solutions M; and 44, it is true that if CS(M;) <CS(M,)
then also SE(M,) <SE(34).

For the purpose of evaluating the monotonicity of SE, 50
random mapping changes were performed for each application.
Each of those mapping changes was evaluated with both SE and
CS. The results are depicted in Table 1. As we can see, in over
90% of the cases, SE correctly evaluates mapping decisions,
e.g. in the same way as CS. The rate of monotonicity decreases

Table 1. Monotonicity [%]

Procs. 2 3 4
20 94.20 | 90.58 | 91.65
30 89.54 | 88.90 | 91.48
40 88.91 | 86.93 | 86.32

Table 2. Execution Time [sec]

2 3 4
Procs- —Se T ¢s | SE | ¢s | SE | Cs
20 0.01 0.07 0.02 0.28 0.04 1.37
30 0.13 0.39 0.19 2.93 0.26 | 31.50
40 0.32 1.34 0.50 [ 17.02 ] 0.69 |318.88
Table 3. Mapping Improvement[%]
Procs. 2 3 4
20 32.89 | 32.20 | 30.56
30 35.62 | 31.68 | 30.58
40 28.88 | 28.11 | 28.03

slightly with the application dimension. However, it is not
influenced by increasing the number of faults.

Another important property of SE is its execution time,
presented on Table 2. Execution time of the SE is growing
linearly with the number of faults and application size. Over all
graph dimensions, the execution time of SE is always less than
1 sec. In comparison, the execution time of CS is growing
exponentially with the number of processes and the number of
faults, see Table 2, and can reach 318.88 seconds for 40
processes and 4 faults. This shows that the conditional
scheduling cannot be used inside the optimization loop, while
the scheduling heuristic is well-suited for design space
exploration.

We were also interested to evaluate our mapping optimization
strategy. Table 3 shows the improvement by mapping
optimization that considers fault tolerance with transparency
over straightforward mapping, InitialMapping on Fig. 5, which
does not consider the fault tolerance aspects. Thus, we
determined using ConditionalScheduling the schedule length for
two mapping alternatives: InitialMapping and the mapping
obtained by our OptimizationStrategy in Fig. 5. Table 3 presents
the percentage improvement in terms of schedule length of our
mapping optimization compared to the straightforward
solution. The schedule length obtained with our mapping
optimization algorithm is 30% shorter on average. This shows
that considering the fault tolerance and transparency aspects
leads to significantly better design solutions and that the ES
heuristic can be successfully used inside an optimization loop.

We were also interested to compare the solutions obtained
using ES with the case where CS is used for evaluating the
mapping alternatives. However, this comparison was possible
only for applications of 20 processes. We chose 15 synthetic
applications with 25% frozen processes and 50% frozen
messages. In terms of schedule length, in case of 2 faults, the
CS-based strategy was only 3.18% better than the ES-based. In
case of 3 faults, the difference was 9.72%, while for 4 faults the
difference in terms of obtained schedule length was of 8.94%.

Finally, we considered a real-life example implementing a
vehicle cruise controller (CC). The process graph that models
the CC has 32 processes, and is described in [18]. The CC was
mapped on an architecture consisting of three nodes: Electronic
Throttle Module (ETM), Anti-lock Breaking System (ABS) and
Transmission Control Module (TCM). We have considered a
deadline of 300 ms, k = 2 and u = 2 ms. The straightforward
solution was unschedulable even with only 25% frozen
messages and no frozen processes. However, the application
optimized with our mapping strategy, was easily schedulable
with 85% frozen messages. Moreover, we could additionally
introduce 20% frozen processes without violating timing
constraints.

8. Conclusions

In this paper we have addressed the mapping optimization of
distributed embedded systems for fault-tolerant hard real-time
applications. The processes and messages are scheduled with
static cyclic scheduling. We have employed process re-
execution as the fault-tolerance technique for tolerating
transient faults.



Transparency has the advantages of fault containment,
improved debugability and less memory needed to store the
fault-tolerant schedules. The main contribution of our approach
is the ability to consider the transparency requirements imposed
by the designer during the mapping optimization.

The mapping is driven by a schedule estimation heuristic
which is able to accurately evaluate a given mapping decision.
Our experiments have shown that the schedule estimation
heuristic is able to successfully guide the design space
exploration.

Considering the fault-tolerance and transparency
requirements during the mapping optimization process we are
able to provide transparency-aware fault tolerance under
limited resources.
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