

My motivation: adapt familiar design methods to a new area						
	FPGA	Digital biochip				
Basic Devices	Transistors	Control electrodes				
	Net Wires	Reservoirs				
	Clock lines	Transparent cells				
	RAM	Mixers				
Tiles	Multiplexer	Transport bus				
	CLBs	Optical detectors				
Systems	Configured FPGA	Configured biochip				
		14				

Problem Formulat	ion
- Given	
Application: graph	
 Biochip: array of electrodes 	
Library of modules	
Determine	
Allocation of modules from modules library	
Binding of modules to operations in the graph	
Scheduling of operations	
Placement of modules on the array	
Such that	
the application execution time is minimized	
	22

	Solution
Binding of modules to operations	Tabu Search
 Schedule of the operations Placement of modules performed inside scheduling 	List Scheduling
 Placement of the modules Free space manager based on [Bazargan et a 2000] that divides free space on the chip into overlapping rectangles 	Maximal Empty Rectangles II.
 Other solutions proposed in the literatu Integer Linear Programming Simulated Annealing 	ire:
	38

outing-Based Synthesis (F	RBS) vs. to Mod	dule-Based Sv	nthesis (M l
Application	Area	B	act
Application	Aita	RBS	MBS
	8 × 9	68.43	72.94
In-vitro	8×8	68.87	82.12
(28 operations)	7×8	69.12	87.33
	11 × 11	113.63	184.06
Proteins	11×10	114.33	185.91
(103 operations)	10×10	115.65	208.90

73

Discussion Module-based vs. routing-based Module-based needs an extra routing step between the modules; Routing-based performs unified synthesis and routing Module-based wastes space: only one module-cell is used; Routing-based exploits better the application parallelism Module-based can contain the contamination to a fixed area; • We have extended routing-based to address contamination • Hybrid approaches are also possible Non-rectangular modules Droplet-aware module-based synthesis Area-constrained routing-based synthesis 74

Time Cost for Control Path Design

- Part 1: time cost for the storage of the intermediate product droplet at the checkpoint (can be omitted)
- Part 2: time cost for transporting the intermediate product droplet to an on-chip detector (can be omitted)
- Part 3: time cost for error-detection
 - Typically 5 seconds for an LED-photodiode detector
 - Capacitive-sensing circuit operates at relatively high frequency (15 kHz)
- Part 4: time cost for implementing the re-execution subroutine
 - Sub-part 1: time cost for retrieving stored copy droplets and bringing to inputs of fluidic operations in the subroutine
 - Sub-part 2: time cost for re-executing the subroutine (e.g., operations O_1 and O_2 for checkpoint C_2)

91

 Softwa Map bioas memory A re-execu program (so 	say syn say syn ution sut	or Ro thesis re proutine ram)	llbac sults to s	k Recov software in mi onds to a fragr	(ery cro-controlle nent of
Subprogram for checkpoint C ₂	Address	Fluidic operation	Duration (seconds)	Resource	Module placement
	0083	<i>O</i> ₀	0-6	4-electrode mixer	(2,2)
	0084	<i>C</i> ₁	7-12	Detector 1	(1,1)
	0085	<i>O</i> ₁	13-21	2x3-array dilutor	(3,3)
	0086	O ₂	22-27	2x4-array dilutor	(2,4)
	0087	<i>C</i> ₂	28-33	Detector 1	(1,1)
	0088	<i>O</i> ₅	7-15	2x3-array dilutor	(5,6)
	0089	<i>C</i> ₃	16-21	Detector 2	(10,1)
	0090	<i>O</i> ₃	30-35	2x4-array dilutor	(6,2)
	0091	<i>O</i> ₄	36-42	4-electrode mixer	(4,6)
S	oftware co	orrespondii	ng to the b	bioassay synthes	s result

Control Software for Protein Assay

- Map control-path-based protein assay synthesis results to software program in micro-controller memory
- C_4 to C_7 are checkpoints for operations Dlt_4 to Dlt_7

Subprogram for	Address	Fluidic operation	Duration (seconds)	Resource	Module placement
checkpoint C ₅	0011	Dlt ₄	46-53	4-electrode dilutor	(3,1)
	0012	<i>C</i> ₄	54-59	Detector 1	(1,1)
	0013	Dlt ₅	76-81	2x4-array dilutor	(5,3)
	0014	<i>C</i> ₅	82-87	Detector 3	(5,1)
	0015	Dlt ₆	56-61	2x4-array dilutor	(1,5)
	0016	<i>C</i> ₆	62-67	Detector 1	(1,1)
	0017	Dlt ₇	58-70	2x2-array dilutor	(5,3)
	0018	C ₇	71-76	Detector 2	(1,10)
	Software	correspond	ding to the	bioassay synthesi 99	S

