
9/27/11	

1	

System-‐Level	 Design	 of	 	
Digital	 Microfluidic	 Biochips	

Paul	 Pop	
Technical	 University	 of	 Denmark	
	
Acknowledgements:	
Elena	 Ma@ei,	 Mirela	 Alistar,	 Jan	 Madsen	 (DTU)	
Krishnendu	 Chakrabarty	 (Duke	 Univ.)	

2	

Outline	
 Digital	 microfluidic	 biochips	

 Architecture	 model:	 module	 vs.	 rouMng-‐based	
  ApplicaMon	 model	

 Top-‐level	 design	 flow	
 Design	 tasks	

 Recent	 research	
 Module-‐based	 synthesis	
 RouMng-‐based	 synthesis	

 Challenges	
 Fault-‐tolerant	 applicaMons	
 Pin-‐constrained	 design	

9/27/11	

2	

3	

Architecture	 model	

Biochip	 from	 Duke	 University	

2.1 Biochip Architecture 13

(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected

4	

ElectroweAng	 on	 Dielectric	

9/27/11	

3	

5	

OperaBons,	 cont.	

Transport	 on	 3-‐phase	
inner	 bus	 Droplet	 dispensing	

Reservoir	 loading	

(0.1M	 KCL	 with	 dye)	

6	

Reconfigurability	
	
	 	 	 	 	

S2	

R2	

B	

S3	

S1	 W	

R1	

	
  Dispensing	
  DetecMon	
	
	
  SpliYng/Merging	
  Storage	
  Mixing/DiluMon	

Non-‐reconfigurable	

Reconfigurable	

9/27/11	

4	

7	

OperaBon	 execuBon:	 Module	 based	
	
	 	 	 	 	

S2	

R2	

B	

S3	

S1	 W	

R1	

OperaMon	 Area	 (cells)	 Time	 (s)	

Mix	 2	 x	 4	 3	

Mix	 2	 x	 2	 4	

DiluMon	 2	 x	 4	 4	

DiluMon	 2	 x	 2	 5	

Module	 library	

2 x 4
module

8	

OperaBons:	 Mixing	
 Droplets	 can	 move	 anywhere	

 Fixed	 area:	 	
module-‐based	 	
operaMon	 execuMon	

 Unconstrained:	
rouBng-‐based	
operaMon	 execuMon	

9/27/11	

5	

9	

OperaBon	 execuBon:	 RouBng	 based	

 Droplets	 can	 move	 anywhere	
	
 Constrained	 to	 a	 module	

 We	 know	 the	 compleMon	 Mme	 from	
the	 module	 library.	

 Unconstrained,	 any	 route	
 How	 can	 we	 find	 out	 the	 	
operaMon	 compleMon	 Mmes?	

10	

ApplicaBon	 model:	 	
from	 this…	

Architectural-Level Synthesis

21

the patient’s blood can signal organ damage or dysfunction prior to observable micro-
scopic cellular damages or other symptoms. Protocols for enzyme-kinetic measure-
ments of metabolites are suitable for droplet-based microfluidics implementation. The
feasibility of performing a colorimetric glucose assay on a digital microfluidic biochip
has been successfully demonstrated in experiments [6,31].

The glucose assay performed on the biochip is based on Trinder’s reaction, a
colorimetric enzyme-based method. The enzymatic reactions involved in the assay:

In the presence of glucose oxidase, glucose can be enzymatically oxidized to
gluconic acid and hydrogen peroxide. Then, in the presence of peroxidase, the
hydrogen peroxide reacts with 4-amino antipyrine (4-AAP) and N-ethyl-N-sulfo-
propyl-m-toluidine (TOPS) to form violet-colored quinoneimine, which has an
absorbance peak at 545 nm. Based on this colorimetric reaction, a complete glucose
assay can be performed following three steps, namely, transportation, mixing, and
optical detection, as shown in Figure 2.1. Sample droplets containing glucose and
reagent droplets containing glucose oxidase, peroxidase, 4-AAP, and TOPS are
dispensed into the microfluidic array from droplet reservoirs. They are then trans-
ported toward a mixer, where droplets of the sample and the reagent are mixed
together, and the enzymatic reaction happens during the mixing. A droplet of the
product is moved to the location of the optical detector. The optical detection is
performed using a green LED and a photodiode. The glucose concentration can be
detected from the absorbance, which is related to the concentration of colored
quinoneimine. Experiments have shown that the results from the digital microfluidic
biochip match well with the reference values obtained from conventional measure-
ments [6].

In addition to glucose assays, the detections of other metabolites such as lactate,
glutamate, and pyruvate in a digital microfluidic biochip have also been demonstrated
recently [6]. Furthermore these assays can be integrated together to form a multi-
plexed

in vitro

 diagnostics on different human physiological fluids, which can be
performed concurrently on a microfluidic biochip.

FIGURE

 2.1

Photos of different steps of a glucose assay carried out on a digital microfluidic
biochip [6].

Glucose H O O Gluconic2 2
Glucose Oxidase+ + → AAcid H O

2H O -AAP TOPS Qu

2 2

2 2
Peroxidase

+

+ + →4 iinoneimine H O2+ 4

9009_C002.fm Page 21 Monday, July 24, 2006 7:07 PM

Glucose	 assay	 steps	 on	 the	 biochip	

Architectural-Level Synthesis

21

the patient’s blood can signal organ damage or dysfunction prior to observable micro-
scopic cellular damages or other symptoms. Protocols for enzyme-kinetic measure-
ments of metabolites are suitable for droplet-based microfluidics implementation. The
feasibility of performing a colorimetric glucose assay on a digital microfluidic biochip
has been successfully demonstrated in experiments [6,31].

The glucose assay performed on the biochip is based on Trinder’s reaction, a
colorimetric enzyme-based method. The enzymatic reactions involved in the assay:

In the presence of glucose oxidase, glucose can be enzymatically oxidized to
gluconic acid and hydrogen peroxide. Then, in the presence of peroxidase, the
hydrogen peroxide reacts with 4-amino antipyrine (4-AAP) and N-ethyl-N-sulfo-
propyl-m-toluidine (TOPS) to form violet-colored quinoneimine, which has an
absorbance peak at 545 nm. Based on this colorimetric reaction, a complete glucose
assay can be performed following three steps, namely, transportation, mixing, and
optical detection, as shown in Figure 2.1. Sample droplets containing glucose and
reagent droplets containing glucose oxidase, peroxidase, 4-AAP, and TOPS are
dispensed into the microfluidic array from droplet reservoirs. They are then trans-
ported toward a mixer, where droplets of the sample and the reagent are mixed
together, and the enzymatic reaction happens during the mixing. A droplet of the
product is moved to the location of the optical detector. The optical detection is
performed using a green LED and a photodiode. The glucose concentration can be
detected from the absorbance, which is related to the concentration of colored
quinoneimine. Experiments have shown that the results from the digital microfluidic
biochip match well with the reference values obtained from conventional measure-
ments [6].

In addition to glucose assays, the detections of other metabolites such as lactate,
glutamate, and pyruvate in a digital microfluidic biochip have also been demonstrated
recently [6]. Furthermore these assays can be integrated together to form a multi-
plexed

in vitro

 diagnostics on different human physiological fluids, which can be
performed concurrently on a microfluidic biochip.

FIGURE

 2.1

Photos of different steps of a glucose assay carried out on a digital microfluidic
biochip [6].

Glucose H O O Gluconic2 2
Glucose Oxidase+ + → AAcid H O

2H O -AAP TOPS Qu

2 2

2 2
Peroxidase

+

+ + →4 iinoneimine H O2+ 4

9009_C002.fm Page 21 Monday, July 24, 2006 7:07 PM

Trinder’s	 reacMon,	 a	 colorimetric	 enzyme-‐based	 method	

22

Digital Microfluidic Biochips

2.2.2 S

EQUENCING

 G

RAPH

 M

ODEL

The behavioral description of an example of a multiplexed

in vitro

 diagnostics is
shown in Figure 2.2. Four types of human physiological fluids — plasma, serum,
urine, and saliva — are sampled and dispensed into the microfluidic biochip. Next,
each type of physiological fluid is assayed for glucose, lactate, pyruvate, or glutamate
measurement. For each enzymatic assay, the droplets containing the suitably mod-
ified reagents (e.g., glucose oxidase, peroxidase, 4-AAP, and TOPS for glucose
measurement) are dispensed into the microfluidic array from the relevant reservoirs.
The result of each type of bioassays can be detected using a dedicated optical
absorbance measurement device.

An abstract model of a bioassay behavior at the architectural level can be developed
in terms of operations and the dependencies between them. We use the sequencing
graph model from high-level synthesis [47]. We assume that there are a total of

n

ops

operations. The sequencing graph is acyclic and polar. There are two vertices, called
source

v

0

 and sink

v

k

,

 that present the first and last no-operation task, where

k

=

n

ops

+

 1.
Hence the sequencing graph

G

(

V,

E

) has vertex set

V

=

 {

v

i

:

i

=

 0, 1, …,

k

} in one-to-
one correspondence with the set of assay operations, and edge set

E

=

 {(

v

i

, v

j

):

i,

j

=

 0, 1, …,

k

} representing dependencies. With each node

v

i

,

 we associate a weight

d

(

v

i

), which denotes the time taken for operation

v

i

.

 The details of these operations
and the resources that these operations use are as follows. (We assume that

m

 types
of physiological fluids are assayed for

n

 types of enzymatic measurements.)

2.2.2.1 Input Operations

These operations consists of the generation of the droplets of samples (

S

i

,

i

=

 1, …,

m

)
or reagents (

R

i

,

i

=

 1, …,

n

) from the on-chip reservoir, which are then dispensed
into the microfluidic array. These operations are represented using the nodes shown in
Figure 2.3. There are

m

+

 n

 types of input operations (denoted by

I

i

,

i

=

 1, …,

m

+

 n

),
where

I

j

,

j

=

 1, …,

m,

 represents the generation and dispensing of droplets of sample

S

j

.

Similarly,

I

j

+

m

,

j

=

 1, …,

 n,

 denotes the operation for reagent

R

j

.

Assumption 1:

 We assume that the time required to generate and dispense droplets
from the reservoir is determined mainly by the system parameters, such as the aspect
ratio of the channel gap to electrode gap [58]. The properties of the fluid have little
impact on the operation time. This assumption has been verified by experimental data [58].

FIGURE 2.2

One example of multiplexed

in vitro

 diagnostics.

Sample Reagent Enzymatic Assay

Plasma: S1 Glucose Measurement

Lactate Measurement

Pyruvate Measurement

Glutamate Measurement

R1

R2

R3

R4

Serum: S2

Urine: S3

Saliva: S4

9009_C002.fm Page 22 Monday, July 24, 2006 7:07 PM

Several	 such	 reacMons	 assays	 in	 parallel:	
“in-‐vitro	 diagnosMcs”	 applicaMon	

Reconfigurable	
architecture	

2.1 Biochip Architecture 13

(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected

9/27/11	

6	

11	

ApplicaBon	 model:	 	
…to	 this—an	 acyclic	 directed	 graph	

24 Biochip Architecture and System Model

Figure 2.8: Mixing Stage of the Polymerase Chain Reaction Assay

Figure 2.9: In-Vitro Diagnostics on Physiological Fluids

“in-‐vitro	 diagnosMcs”	
applicaMon	

12	

Another	 applicaBon	 example:	
“Colorimetric	 protein	 assay”	

2.4 Case Studies 25

Figure 2.10: Colorimetric Protein Assay

9/27/11	

7	

13	

Operation Area (cells) Time (s)
Mixing 2x2 6
Mixing 2x3 5
Mixing 2x4 4

Dilution 2x2 6
Dilution 2x3 5
Dilution 2x4 3
Storage 1x1 –

System-‐level	 design	 tasks	
	
	

Scheduling	

Binding	

Placement	 &	 rouBng	

AllocaBon	

S1

S2

S3 B

R1

R2

W

Store

Mixer1

Mixer2

D
ilu
te
r

Detector

Mixer1

Mixer2

Diluter

Store

Detector

O7

O9

O3
O11
O10 O4

1 2

3

4

5 6

7

10

8

9

In S1 In R 1

Mix

Detect

In S2 In B

Dilute
In R 2

Mix

Detect

Source

Sink

14	

My	 moBvaBon:	 	
adapt	 familiar	 design	 methods	 to	 a	 new	 area	

FPGA	 Digital	 biochip	
Transistors	

Net	 Wires	

Clock	 lines	

Control	 electrodes	

Reservoirs	

Transparent	 cells	

RAM	

MulMplexer	

CLBs	

Mixers	

Transport	 bus	

OpMcal	 detectors	

Basic	
Devices	

Configured	 FPGA	 Configured	 biochip	

Tiles	

Systems	

9/27/11	

8	

15	

Module-‐Based	 Synthesis	

16	

Module-‐Based	 Synthesis	
O7

O8

O9

9/27/11	

9	

17	

Module-‐Based	 Synthesis	
O7

O8

O9

18	

Module-‐Based	 Synthesis	

O7 1x4

O8 1x4

9/27/11	

10	

19	

Module-‐Based	 Synthesis	

O9 2x4

O10 1x4

20	

Module-‐Based	 Synthesis	

O9 2x4

O10 1x4

9/27/11	

11	

21	

Module-‐Based	 Synthesis	

22	

Problem	 FormulaBon	
 Given	

  ApplicaMon:	 graph	
  Biochip:	 array	 of	 electrodes	
  Library	 of	 modules	

 Determine	
 AllocaBon	 of	 modules	 from	 modules	 library	
  Binding	 of	 modules	 to	 operaMons	 in	 the	 graph	
  Scheduling	 of	 operaMons	
  Placement	 of	 modules	 on	 the	 array	

 Such	 that	 	
  the	 applicaMon	 execuMon	 Mme	 is	 minimized	

9/27/11	

12	

23	

Reconfigurability	

24	

Reconfigurability	

9/27/11	

13	

25	

Reconfigurability	

26	

Reconfigurability	

9/27/11	

14	

27	

Reconfigurability	

28	

Reconfigurability	

9/27/11	

15	

29	

Reconfigurability	

30	

Reconfigurability	

9/27/11	

16	

31	

Reconfigurability	

32	

Reconfigurability	

9/27/11	

17	

33	

Reconfigurability	

34	

Reconfigurability	

9/27/11	

18	

35	

Reconfigurability	

36	

Reconfigurability	

9/27/11	

19	

37	

Reconfigurability	

Without	 dynamic	 	
reconfiguraBon:	 t+18	

38	

SoluBon	
 Binding	 of	 modules	 to	 operaMons	

 Schedule	 of	 the	 operaMons	
  Placement	 of	 modules	 performed	 	
inside	 scheduling	

 Placement	 of	 the	 modules	
  Free	 space	 manager	 based	 on	 [Bazargan	 et	 al.	
2000]	 that	 divides	 free	 space	 on	 the	 chip	 into	
overlapping	 rectangles	

 Other	 soluMons	 proposed	 in	 the	 literature:	
  Integer	 Linear	 Programming	
  Simulated	 Annealing	 	 	

Tabu	 Search	

List	 Scheduling	

	 	 	 	 	 	 	 	 	 	 	 	 Maximal	 Empty	 Rectangles	 	

9/27/11	

20	

39	

Dynamic	 Placement	 Algorithm	

OperaMon	 Module	

O7	 (mix)	 M1	 (2x2)	

O1	 (diluter)	 D2	 (2x5)	

40	

Dynamic	 Placement	 Algorithm	

9/27/11	

21	

41	

Dynamic	 Placement	 Algorithm	

42	

Dynamic	 Placement	 Algorithm	

9/27/11	

22	

43	

Dynamic	 Placement	 Algorithm	

44	

RouBng-‐Based	 Synthesis	

9/27/11	

23	

45	

RouBng-‐Based	 Synthesis	
O7

O8

O9

46	

RouBng-‐Based	 Synthesis	

9/27/11	

24	

47	

RouBng-‐Based	 Synthesis	

48	

RouBng-‐Based	 Synthesis	

9/27/11	

25	

49	

RouBng-‐Based	 Synthesis	

50	

RouBng-‐Based	 Synthesis	

9/27/11	

26	

51	

RouBng-‐Based	 Synthesis	

52	

RouBng-‐Based	 Synthesis	

9/27/11	

27	

53	

RouBng-‐Based	 Synthesis	

54	

RouBng-‐Based	 Synthesis	

9/27/11	

28	

55	

RouBng-‐Based	 Synthesis	

56	

When	 will	 the	 operaBons	 complete?	

  For	 module-‐based	 synthesis	 we	 know	 the	
comple'on	 'me	 from	 the	 module	 library.	

  But	 now	 there	 are	 no	 modules,	 	
the	 droplets	 can	 move	 anywhere:	

  How	 can	 we	 find	 out	 the	 	
operaMon	 comple'on	 'mes?	

9/27/11	

29	

57	

Characterizing	 operaBons	

  If	 the	 droplet	 does	 not	 move:	 	
very	 slow	 mixing	 by	 diffusion	

  If	 the	 droplet	 moves,	 how	 long	
does	 it	 take	 to	 complete?	

 Mixing	 percentages:	
p0, p90, p180 ?

58	

Characterizing	 operaBons	

 We	 know	 how	 long	 an	
operaMon	 takes	 on	 modules	

 StarMng	 from	 this,	 can	
determine	 the	 percentages?	

9/27/11	

30	

59	

Decomposing	 modules	
Safe,	 conservaMve	 esMmates	
p90 = 0.1%, p180 = -0.5%,
p0 = 0.29% and 0.58%

Moving	 a	 droplet	 one	 cell	 takes	 0.01	 s.	

60	

RouBng-‐Based	 Synthesis	

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

9/27/11	

31	

61	

RouBng-‐Based	 Synthesis	

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

62	

RouBng-‐	 vs.	 Module-‐Based	 Synthesis	

9/27/11	

32	

63	

RouBng-‐	 vs.	 Module-‐Based	 Synthesis	

Module-‐Based	 Synthesis	 RouBng-‐Based	 Synthesis	

64	

Problem	 FormulaBon	
 Given	

  ApplicaMon:	 graph	
  Biochip:	 array	 of	 electrodes	
  Library	 of	 non-‐reconfigurable	 devices	

 Determine	
 Droplet	 routes	 for	 all	 reconfigurable	 operaMons	
 AllocaBon	 and	 binding	 of	 non-‐reconfigurable	 modules	 from	 a	 library	
  Scheduling	 of	 operaMons	

 Such	 that	
  the	 applicaMon	 compleMon	 Mme	 is	 minimized	

9/27/11	

33	

65	

Proposed	 SoluBon	

66	

Proposed	 SoluBon	

Meet

Execute

9/27/11	

34	

67	

Proposed	 SoluBon	

Meet

Execute

Minimize the time
until the droplet(s)
arrive at destination

Minimize the completion
time for the operation

68	

GRASP-‐Based	 HeurisBc	
 Greedy	 Randomized	 AdapMve	 Search	 Procedure	

 	 For	 each	 droplet:	
  Determine	 possible	 moves	
  Evaluate	 possible	 moves	
  Make	 a	 list	 of	 	

best	 N	 possible	 moves	
  Perform	 a	 randomly	 	

chosen	 possible	 move	

9/27/11	

35	

69	

GRASP-‐Based	 HeurisBc	
  Greedy	 Randomized	 AdapMve	 Search	 Procedure	

 	 For	 each	 droplet:	
  Determine	 possible	 moves	
  Evaluate	 possible	 moves	
  Make	 a	 list	 of	 	

best	 N	 possible	 moves	
  Perform	 a	 randomly	 	

chosen	 possible	 move	

70	

GRASP-‐Based	 HeurisBc	
  Greedy	 Randomized	 AdapMve	 Search	 Procedure	

 	 For	 each	 droplet:	
  Determine	 possible	 moves	
  Evaluate	 possible	 moves	
  Make	 a	 list	 of	 	

best	 N	 possible	 moves	
  Perform	 a	 randomly	 	

chosen	 possible	 move	

9/27/11	

36	

71	

GRASP-‐Based	 HeurisBc	
  Greedy	 Randomized	 AdapMve	 Search	 Procedure	

 	 For	 each	 droplet:	
  Determine	 possible	 moves	
  Evaluate	 possible	 moves	
  Make	 a	 list	 of	 	

best	 N	 possible	 moves	
  Perform	 a	 randomly	 	

chosen	 possible	 move	

72	

GRASP-‐Based	 HeurisBc	
  Greedy	 Randomized	 AdapMve	 Search	 Procedure	

 	 For	 each	 droplet:	
  Determine	 possible	 moves	
  Evaluate	 possible	 moves	
  Make	 a	 list	 of	 	

best	 N	 possible	 moves	
  Perform	 a	 randomly	 	

chosen	 possible	 move	

9/27/11	

37	

73	

Experimental	 EvaluaBon	

RouMng-‐Based	 Synthesis	 (RBS)	 vs.	 to	 Module-‐Based	 Synthesis	 (MBS)	
	
	
	
	
	
	
	
	

Table 2: Results for the real-life applications

Application Area Best Average Standard dev.
RBS MBS RBS MBS RBS MBS

8 × 9 68.43 72.94 68.77 77.81 0.16 2.12
In-vitro 8 × 8 68.87 82.12 69.13 102.37 0.14 13.58

(28 operations) 7 × 8 69.12 87.33 69.46 111.18 0.17 12.26
11 × 11 113.63 184.06 117.51 205.30 4.65 8.38

Proteins 11×10 114.33 185.91 119.62 202.14 6.63 8.84
(103 operations) 10 × 10 115.65 208.90 120.65 219.17 7.73 7.89

Table 3: Results for synthetic benchmarks

Operations Area1 Average1 Best1 Area2 Average2 Best2 Area3 Average3 Best3
RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS

10 6 × 6 39.92 42.61 39.12 42.61 5 × 7 39.95 76.1 39.55 76.1 5 × 6 40.97 102.9 40.46 102.9
20 8 × 8 50.18 52.71 49.73 52.71 7 × 8 50.95 53.62 50.5 49.01 7 × 7 51.74 60.06 51.19 49.81
30 8 × 8 65.96 72.84 64.73 67 7 × 8 67.79 84.08 66.92 76.4 7 × 7 69.68 95.54 68.42 82.49
40 8 × 8 61.93 102.69 61.18 91.97 7 × 8 63.74 111.47 63.01 98.25 7 × 7 65.85 131.63 64.75 99.29
50 9 × 10 83.89 86.99 83.27 82.4 9 × 9 84.76 93.5 84.02 87.21 8 × 9 86.34 101.59 85.37 87.03
60 9 × 9 94.98 100.44 93.82 89.90 8 × 10 95.15 104.80 94.34 95.70 8 × 9 95.85 122.42 94.39 106.7
70 10 × 10 179.97 194.91 140.4 153.8 9 × 11 197.05 182.99 155.93 164.01 9 × 10 186.02 233.57 147.39 162.41
80 10 × 10 112.98 124.98 112.38 113.4 9 × 10 113.48 139.26 112.43 124.75 9 × 9 114.23 147.86 113.6 133.87
90 11 × 11 139.33 180.64 128.08 127.41 10 × 10 144.23 215.76 131.32 149.68 9 × 10 148.59 227.02 136.94 156.31
100 11 × 11 172.15 325.57 153.06 285.05 10 × 10 172.46 321.87 154.09 255.97 9 × 11 170.17 325.66 153.08 278.63

required for performing other operations. Because of the constraint
on the number of available reservoirs on a given chip, creating a
dispensed droplet at tcurrent is not always possible. In this case, the
input operation is bound using a greedy approach to the reservoir
that will be available at the earliest time. We use the same approach
for determining the binding of detection operations to optical de-
vices.
Due to its randomized nature, the algorithm in Fig. 6 might pro-

duce different results for different runs, with the same inputs. The
algorithm terminates when all operations have been synthetized,
and returns the solution Ψ (line 32). Our route-based synthesis ap-
proach is given a time limit, and runs repeatedly RoutingBasedSyn-
thesis from Fig. 6 until the time limit is reached, collecting the best
solution Ψ in terms of the application completion time δG.

5. EXPERIMENTAL EVALUATION
In order to evaluate our proposed approach, we have used two-

real life examples and ten synthetic benchmarks. The GRASP-
derived algorithm was implemented in Java (JDK 1.6), running on
SunFire v440 computers with UltraSPARC IIIi CPUs at 1,062 GHz
and 8 GB of RAM. The module library used for all the experiments
is shown in Table 1.
In our experiments we were interested to determine the improve-

ment that can be obtained by using Routing-Based Synthesis (RBS)
compared to Module-Based Synthesis (MBS). For MBS, we have
used the Tabu Search-based synthesis approach we have proposed
in [9].
Table 2 presents the results obtained by using RBS and MBS for

two real-life applications: (1) In-vitro diagnosis on human phys-
iological fluids (IVD) [15], which has 28 operations and (2) the
colorimetric protein assay (103 operations) [14], utilized for mea-
suring the concentration of a protein in a solution. Table 2 presents
the best solution (in terms of the application completion time δG),

in columns 3 and 4. The comparison is made for three progres-
sively smaller areas for both approaches, using a time limit of 10
minutes for both synthesis approaches.

As we can see, eliminating the concept of “virtual modules” and
allowing the operations to perform on any route on the microfluidic
array can lead to significant improvements in terms of application
completion time, allowing us to use smaller areas and thus reduce
costs. Using routing-based synthesis is particularly important for
more constrained synthesis problems, when knowing the exact lo-
cation of all droplets on the array, leads to more efficient space us-
age. For example, in the most constrained case for the colorimetric
protein assay, the 10 × 10 array, we have obtained an improvement
of 44.95% in the schedule length.

Moreover, the routing-based approach determines a complete so-
lution for the problem, while for the module-based synthesis a post-
synthesis step is necessary to determine the routing, which means
additional delays.

Both RBS and MBS implementations are stochastic; random de-
cisions during the exploration process can lead to slightly different
results. To determine the quality of the RBS implementation, we
have run RBS and MBS 50 times. The best results for RBS and
MBS, presented in columns 3 and 4 in Table 2, respectively, are
collected after 50 runs. The average and standard deviation over
the 50 runs compared to the best application completion time δG
are also reported in Table 2. As we can see, the difference between
RBS and MBS is larger in the average case, and the standard devi-
ation with RBS is very small, which means that RBS consistently
finds solutions which are very close to the best solution found over
the 50 runs.

In a second set of experiments we have compared RBS with
MBS on ten synthetic applications. We have generated a set of
synthetic graphs using Task Graphs For Free (TGFF) [5]. We have
manually modified the graphs in order to capture the characteristics
of biochemical applications. The graphs are composed of 10 up to

74	

Discussion	
 Module-‐based	 vs.	 rouBng-‐based	

 Module-‐based	 needs	 an	 extra	 rouMng	 step	 between	 the	 modules;	
RouMng-‐based	 performs	 unified	 synthesis	 and	 rouMng	

 Module-‐based	 wastes	 space:	 only	 one	 module-‐cell	 is	 used;	
RouMng-‐based	 exploits	 bemer	 the	 applicaMon	 parallelism	

 Module-‐based	 can	 contain	 the	 contaminaMon	 to	 a	 fixed	 area;	
 We	 have	 extended	 rouMng-‐based	 to	 address	 contaminaMon	

 Hybrid	 approaches	 are	 also	 possible	
 Non-‐rectangular	 modules	
 Droplet-‐aware	 module-‐based	 synthesis	
  Area-‐constrained	 rouMng-‐based	 synthesis	

9/27/11	

38	

75	

Non-‐rectangular	 modules	

76	

Droplet-‐Aware	 OperaBon	 ExecuBon	
80 Module-Based Synthesis with Droplet-Aware Operation Execution

(a) Microfluidic array (b) Application graph

Figure 7.2: Microfluidic array and application graph

Let us assume that the available module library is the one captured by Table 2.1.
We consider the same execution time for mixing and dilution operations. We
have to select modules from the library while trying to minimize the application
completion time and place them on the 8 × 8 chip. We ignore the position of
droplets inside modules, and we wrap the modules in segregation cells.

One solution to the problem when considering black-box operation execution is
presented in Figure 7.3, where the following modules are used: one 2 × 4 mixer
(4 × 6 with segregation area), one 2 × 4 diluter (4 × 6 with segregation area),
one 1 × 4 mixer (3 × 6 with segregation area) and two 2 × 3 diluters (4 × 5
with segregation area). The resulted schedule for this allocation is shown in
Figure 7.3a.

Considering the graph in Figure 7.2b and the allocation presented above, Fig-
ure 7.3a presents the optimal schedule in the case when do not consider the
position of droplets inside the virtual modules. We consider that input opera-
tions are scheduled for execution as follows: Ostart

1 = Ostart
2 = Ostart

3 = Ostart
4

= 0 s, Ostart
8 = Ostart

9 = Ostart
10 = Ostart

11 = 2.9 s. For space reasons, we do not
show the schedule of input operations, however the starting times of the recon-
figurable operations shown in Figure 7.3a do take into consideration the time
required for dispensing the droplets on the microfluidic array. The placement
for the allocation and schedule is as indicated in Figures 7.3b–c.

The schedule presented in Figure 7.3a is optimal for the given allocation consid-
ering that the positions of droplets inside modules are unknown during operation
execution. Therefore, modules are surrounded by segregation cells which ensure

9/27/11	

39	

77	

Droplet-‐Aware	 OperaBon	 ExecuBon	

78	

Droplet-‐Aware	 OperaBon	 ExecuBon	

9/27/11	

40	

79	

Area-‐constrained	 rouBng-‐based	 synthesis	

80	

Area-‐constrained	 rouBng-‐based	 sysnthesis	

9/27/11	

41	

81	

Synthesis	 Challenges:	 Faults	

Electrode	 degradaMon	

Electrode	 short	

Hindered	 transportaMon	 Imperfect	 spliYng	

82

•  Verify correctness of fluidic operations in bioassay
–  Monitor bioassay status to find errors
–  Parameters for monitoring: volume of product droplet, sample

concentration, others?
•  Correct errors as soon as possible

–  Re-execute only the erroneous part of bioassay

•  Drawback of current synthesis tools
–  Only provide a “data path”, no control or feedback mechanism
–  Monitor bioassay result at the end and re-execute the entire assay

to correct errors

Motivation for Error Recovery

O0 	
O1 	

O2 	

Error
detected 	

No error 	

No error 	 Need control-path design for
error detection and recovery	

9/27/11	

42	

83

Droplet Detection Mechanisms
  Capacitive-sensing circuit for

volumetric test
  Optical detection for

concentration test

Capacitive-sensing circuit
(M. G. Pollack, PhD Thesis 2001)�

Photo-diode detector (Srinivasan et al.,
MicroTAS’03)

Thin-film MSM detector (S.-W. Seo, PhD
Thesis 2003)

84	

Fault-‐tolerant	 graph:	 	
captures	 fault	 scenarios	 due	 to	 split	 operaBons	

  A	 sensing	 operaMon	 is	 introduced	 a@er	 each	 split	
  If	 the	 split	 was	 OK,	 the	 graph	 conMnues	
  If	 the	 split	 was	 NOT	 OK,	 we	 retry:	 insert	 a	 merge	
operaMon	 followed	 by	 another	 split	
AssumpMon:	 at	 most	 two	 consecuMve	 errors	

of volumes divided by the mean, is ±2% for microdialysis
applications and ±10% in drug discovery applications. We
consider that a split operation is faulty if it results in droplets
with volumes below a given threshold. The threshold is given
by the designer and depends on the application.

Our fault model assumes a maximum of k faults, given
a biochip architecture and a biochemical application. These
faults can appear in any split operation and have to be tolerated.
The error is detected using on-chip volume sensors. The
sensors have to be placed on the top of existing electrodes.
One of the resulted droplets, after a split, has to be routed to
the sensor. The sensing operation can take up to five seconds,
depending on the sensor type [15].

If an error is detected (the volume is below or above the
given threshold), the resulted droplets are merged back. They
have to be routed to the same place on the chip, and the
merging is instantaneous. The split operation will have to be
performed again, followed by sensing and, in case of error,
by merge. In the worst-case, a split will have to be performed
k + 1 times, to tolerate the maximum k faults that can happen
in the application. The last split does not have to be followed
by a sensing operation, since we know it will not experience
an error: all faults have already happened. Note, however, that
these k faults can happen in any of the split operations of the
application.

B. Biochemical Application Model

A biochemical application is modeled using a sequential
directed acyclic graph G(V,E) [13], where each node Oi ∈ V
represents an operation. The binding of operations to modules
in the architecture is captured by the function B : V → A ,
where A is the set of the allocated modules from the given
library L . An edge ei j ∈ E from Oi to O j indicates that the

Fig. 2: Biochemical application model example

Fig. 3: Fault-Tolerant Sequencing Graph (FTSG)

output droplet obtained after Oi finishes, will be used as input
for O j. An operation can be activated after all its inputs have
arrived and it issues its outputs when it terminates. We assume
that, for each operation Oi, we know the execution time C

Mk
i on

module Mk = B (Oi), where it is assigned for execution. Fig. 2
depicts part of an application, which consists of 15 operations
O1–O15, and it involves a series of mixing operations (O1, O2,
O3, O5, O6) followed by split operations (O4, O7). Operations
O10–O15 are input operations. In operation O8 one of the
resulted droplets after the O7 split is routed to a waste reservoir
and in O9 we perform a detection operation on the other
droplet. Each operation has a predecessor and a successor, thus
we have introduced two NOP nodes, as source and sink nodes
(i.e., the graph is polar). Let us consider that the operation
O1 is bound to a 2× 4 mixing module denoted by M1 (i.e.,
B (O1) = M1). Then, according to Table I, the execution time
for O1 will be 3 s. We consider routing as part of an operation
time. In this paper we use the data from [14], which allows us
to approximate that the time required to route the droplet one
cell is 0.01 s, an order of magnitude smaller than operation
times, see Table I.

Such a model does not capture the fault occurrences during
split operations. In this paper, we propose a fault-tolerant
sequencing graph G (V ,E ∪EC), see Fig. 3. In G , each split
operation is followed by a sensing operation which detects if
a fault has occurred. For example, operation O16 in Fig. 3 is a
sensing operation for split operation O4. Note that operations
O8–O15 from Fig. 2 are depicted in Fig. 3 as “...” due to
space constraints. During a sensing operation, one of the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

of volumes divided by the mean, is ±2% for microdialysis
applications and ±10% in drug discovery applications. We
consider that a split operation is faulty if it results in droplets
with volumes below a given threshold. The threshold is given
by the designer and depends on the application.

Our fault model assumes a maximum of k faults, given
a biochip architecture and a biochemical application. These
faults can appear in any split operation and have to be tolerated.
The error is detected using on-chip volume sensors. The
sensors have to be placed on the top of existing electrodes.
One of the resulted droplets, after a split, has to be routed to
the sensor. The sensing operation can take up to five seconds,
depending on the sensor type [15].

If an error is detected (the volume is below or above the
given threshold), the resulted droplets are merged back. They
have to be routed to the same place on the chip, and the
merging is instantaneous. The split operation will have to be
performed again, followed by sensing and, in case of error,
by merge. In the worst-case, a split will have to be performed
k + 1 times, to tolerate the maximum k faults that can happen
in the application. The last split does not have to be followed
by a sensing operation, since we know it will not experience
an error: all faults have already happened. Note, however, that
these k faults can happen in any of the split operations of the
application.

B. Biochemical Application Model

A biochemical application is modeled using a sequential
directed acyclic graph G(V,E) [13], where each node Oi ∈ V
represents an operation. The binding of operations to modules
in the architecture is captured by the function B : V → A ,
where A is the set of the allocated modules from the given
library L . An edge ei j ∈ E from Oi to O j indicates that the

Fig. 2: Biochemical application model example

Fig. 3: Fault-Tolerant Sequencing Graph (FTSG)

output droplet obtained after Oi finishes, will be used as input
for O j. An operation can be activated after all its inputs have
arrived and it issues its outputs when it terminates. We assume
that, for each operation Oi, we know the execution time C

Mk
i on

module Mk = B (Oi), where it is assigned for execution. Fig. 2
depicts part of an application, which consists of 15 operations
O1–O15, and it involves a series of mixing operations (O1, O2,
O3, O5, O6) followed by split operations (O4, O7). Operations
O10–O15 are input operations. In operation O8 one of the
resulted droplets after the O7 split is routed to a waste reservoir
and in O9 we perform a detection operation on the other
droplet. Each operation has a predecessor and a successor, thus
we have introduced two NOP nodes, as source and sink nodes
(i.e., the graph is polar). Let us consider that the operation
O1 is bound to a 2× 4 mixing module denoted by M1 (i.e.,
B (O1) = M1). Then, according to Table I, the execution time
for O1 will be 3 s. We consider routing as part of an operation
time. In this paper we use the data from [14], which allows us
to approximate that the time required to route the droplet one
cell is 0.01 s, an order of magnitude smaller than operation
times, see Table I.

Such a model does not capture the fault occurrences during
split operations. In this paper, we propose a fault-tolerant
sequencing graph G (V ,E ∪EC), see Fig. 3. In G , each split
operation is followed by a sensing operation which detects if
a fault has occurred. For example, operation O16 in Fig. 3 is a
sensing operation for split operation O4. Note that operations
O8–O15 from Fig. 2 are depicted in Fig. 3 as “...” due to
space constraints. During a sensing operation, one of the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

9/27/11	

43	

85	

Straighaorward	 scheduling	

Adding	 worst-‐case	 slack	 a@er	 each	 split	 to	 allow	 for	 recovery	

Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

86	

Scheduling	 the	 fault-‐tolerant	 graph:	
backup	 schedules	 for	 fault	 scenarios	

Fault-‐tolerant	 schedule	 for	 two	 faults	 in	 O7	

Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

9/27/11	

44	

87	

Scheduling	 the	 fault-‐tolerant	 graph:	
backup	 schedules	 for	 fault	 scenarios	

Fault-‐tolerant	 schedule	 for	 faults	 in	 O4	 and	 O7	 Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

88

Another approach: Control-Path Design
•  Add checkpoints to monitor outcomes of fluidic operations

–  Checkpoint: storage of the intermediate product droplet
–  Add checkpoints based on error-propagation estimates

•  Assign each checkpoint a re-execution subroutine
–  Subroutine: fluidic operations between checkpoints
–  Correct the detected error by re-executing the subroutine

  Status at
checkpoints

  C1: Pass
  C2: Fail
  C3: Pass

  Re-execution
subroutine for C2

  Operations O1
 and O2

9/27/11	

45	

89

Control-Path Design
•  Error detection at the checkpoint

–  Performed for intermediate product droplet at the checkpoint
–  Concentration test (using photo-detector)
–  Volumetric test (using capacitive-sensing circuit)

•  Droplet preparation for re-execution subroutine
–  Copy droplets are consumed during re-execution of a subroutine
–  Output droplets of operations (O0, O5) feeding inputs of subroutine

O0 	

O5 	

copy droplets 	

90
90

Control-Path Design
•  Implementation flow for error recovery at checkpoint C2

Input: product droplet from operation O2

Store product droplet at on-chip
storage unit at checkpoint C2

Move to on-chip detector
 for error-detection

 Error ? 	

 Trigger
 rollback recovery
(re-execute O1 and O2)

 Implement
successive operation O4

 Yes (Fail)	 No
(Pass) 	

9/27/11	

46	

91

Time Cost for Control Path Design
•  Part 1: time cost for the storage of the intermediate product

droplet at the checkpoint (can be omitted)
•  Part 2: time cost for transporting the intermediate product

droplet to an on-chip detector (can be omitted)
•  Part 3: time cost for error-detection

–  Typically 5 seconds for an LED-photodiode detector
–  Capacitive-sensing circuit operates at relatively high frequency (15 kHz)

•  Part 4: time cost for implementing the re-execution
subroutine
–  Sub-part 1: time cost for retrieving stored copy droplets and

bringing to inputs of fluidic operations in the subroutine
–  Sub-part 2: time cost for re-executing the subroutine (e.g.,

operations O1 and O2 for checkpoint C2)

92
92

Area Cost of Control Path Design
•  Type 1: reconfigurable fluidic devices (no space cost)

–  Include storage units for the product droplets and copy droplets
–  Dynamically created using available electrodes

•  Type 2: non-reconfigurable fluidic devices
–  Mainly include photo-detectors
–  Space cost: a photo-detector occupies one electrode, and the

adjacent eight electrodes are used as the guard ring

  Type 1: storage units
  Intermediate droplets for O0, O2

and O5
  Copy droplets for O0 and O5

  Type 2: photo-detectors
  For checkpoints C1, C2 and C3

9/27/11	

47	

93

Error-Propagation Estimates
•  Add checkpoints based on error-propagation estimates

–  Add a checkpoint when output error-limit exceeds Ethreshold
•  Dispensing operation (Intrinsic error limit: EDs)

–  Output volume:

•  Transportation (Intrinsic error limit: ETran)
–  Volume loss due to adsorption at electrode surface
–  Input volume:
–  Output volume:

(1)xDsE±

(1)xI±
2 2(1)xTranI E± +

J. R. Taylor, An Introduction to Error Analysis: the Study of Uncertainties of
Physical Measurements, 1982

Assumption: Intrinsic errors are independent Gaussian random variables

94

Error-Propagation Estimates
•  Mix operation (Intrinsic error limit: EMix)

–  Volume loss due to evaporation and adsorption
–  Input volume: and
–  Output volume:

•  Split operation (Intrinsic error limit: ESlt)
–  Unevenly split due to difference in applied voltages
–  Input volume:
–  Output volume:

•  Dilution (Intrinsic error limit: EDlt)
–  Output volume:

1(1)xI±
2 2 2

1 2(1 (0.5) (0.5))xMixI I E± + +
2(1)xI±

(1)xI±
2 2(1 (2))xSltI E± +

2 2 2
1 2(1 (0.5) (0.5) (2))xDltI I E± + +

9/27/11	

48	

95

Control-Path Synthesis
•  Map a checkpoint to a storage operation and a subsequent

detection
•  Apply PRSA-based synthesis to modified sequencing graph

Incorporation of a checkpoint in a sequencing graph
(Det. refers to detection operation)

11:12 • Y. Zhao et al.

Fig. 3. The incorporation of a checkpoint in a sequencing graph (Det. refers to detection operation).

We apply the above error-propagation analysis to the bioassay sequencing
graph and calculate the error-limit for the output of each fluidic operation. The
error limit at the input of an operation is equal to the error limit at the output of
its predecessor operation. The magnitude of the error limit is increased as more
operations are considered in the sequencing graph. At some point, the derived
output error limit will exceed a predetermined threshold Ethreshold, which is ob-
tained from the precision required for the protocol and the detector sensitivity.
At this point, a checkpoint must be added. After inserting the checkpoint, the
error limit for the output of this fluidic operation is set to 0. We continue to
calculate the error limit for the outputs of the subsequent fluidic operations
until we reach the end of the protocol. In this way, the error-propagation-based
checkpoint-allocation method reduces the number of checkpoints while main-
taining coverage for all the possible failures during assay operation.

5. CONTROL-PATH SYNTHESIS

Next we discuss the implementation of the control path, a step referred to as
control-path synthesis. The goal is to incorporate control paths into the syn-
thesis of a bioassay. We incorporate checkpoints using the PRSA-based unified
synthesis method. A checkpoint is simply the storage of the intermediate prod-
uct droplet, and a subsequent detection is used for error detection. Therefore,
a storage operation and a subsequent detection operation are inserted into the
sequencing graph at the same location.

For instance, a checkpoint located between operations O2 and O3 in Figure 3
is mapped to a storage operation and a subsequent detection operation at the
same position. By applying the PRSA-based synthesis method to this modified
sequencing graph, we are able to incorporate the control path as part of the
bioassay protocol. The pseudocode for the control-path incorporation unified
synthesis method is shown in Figure 4. The parameters for the PRSA-based
synthesis method are taken from Su and Chakrabarty [2005]. The initial tem-
perature of annealing process is set to 10000, and the temperature cooling rate
is set to 0.9. The fine-tuning of these parameter values for a target bioassay is
left for future work.

The weights, α and (1 − α), where 0 < α < 1, are assigned to the criteria
of normalized area (denoted by A/Amax) and normalized bioassay completion
time (denoted by T /Tmax), respectively. Note that Amax and Tmax refer to the
maximum allowable array area and bioassay completion time, respectively. The

ACM Journal on Emerging Technologies in Computing Systems, Vol. 6, No. 3, Article 11, Pub. date: August 2010.

96

Software for Rollback Recovery
•  Map bioassay synthesis results to software in micro-controller

memory
•  A re-execution subroutine corresponds to a fragment of

program (subprogram)
Address Fluidic

operation
Duration
(seconds

)

Resource Module
placement

0083 O0 0-6 4-electrode mixer	 (2,2)

0084 C1 7-12 Detector 1	 (1,1)

0085 O1 13-21 2x3-array dilutor	 (3,3)

0086 O2 22-27 2x4-array dilutor	 (2,4)

0087 C2 28-33 Detector 1	 (1,1)

0088 O5 7-15 2x3-array dilutor	 (5,6)

0089 C3 16-21 Detector 2	 (10,1)

0090 O3 30-35 2x4-array dilutor	 (6,2)

0091 O4 36-42 4-electrode mixer	 (4,6)

Software corresponding to the bioassay synthesis result

 Subprogram for
checkpoint C2

9/27/11	

49	

97

Implementation for Rollback Recovery at
Checkpoint C2

Micro-controller

(software programs)

Microfluidic Array

Bioassay Instructions

Bioassay Results

Time: clock cycle 28
Instruction: start 0087 (C2)

Time: clock cycle 33
Result: error detected at C2

Time: clock cycle 33
Instruction:
(1) stop 0090 (O3)
(2) stop time counter
(3) start 0085(O1) to 0087(C2)

Time: clock cycle 33
Result: no error at C2

Time: clock cycle 33
Instruction:
(1) resume following bioassay
(2) resume time counter

98
98

Evaluation Results – Protein Assay

•  103 fluidic operations
–  Buffer dispensing: DsB1-39
–  Reagent dispensing: DsR1-8
–  Binary dilution: Dlt1-39
–  Mixing operation: Mix1-8
–  Optical detection: Opt1-8

•  Error-limit threshold
–  Ethreshold = 15%

•  Checkpoint assignment
–  From sample dilution C
 to sample dilution C/64

A large-scale protein assay	

V. Srinivasan et al., Proc. SPIE 2004 	

9/27/11	

50	

99

Control Software for Protein Assay
•  Map control-path-based protein assay synthesis results to

software program in micro-controller memory
•  C4 to C7 are checkpoints for operations Dlt4 to Dlt7

Address Fluidic
operation

Duration
(seconds)

Resource Module
placement

0011 Dlt4 46-53 4-electrode dilutor	 (3,1)

0012 C4 54-59 Detector 1	 (1,1)

0013 Dlt5 76-81 2x4-array dilutor	 (5,3)

0014 C5 82-87 Detector 3	 (5,1)

0015 Dlt6 56-61 2x4-array dilutor	 (1,5)

0016 C6 62-67 Detector 1	 (1,1)

0017 Dlt7 58-70 2x2-array dilutor	 (5,3)

0018 C7 71-76 Detector 2	 (1,10)

Software corresponding to the bioassay synthesis

 Subprogram for
checkpoint C5

100

Assay Completion Time (No Error)
•  Completion time for control-path-based protein assay when

no error occurs during bioassay
–  4-detector case and 3-detector case
–  Completion time = assay time + checkpointing time

9/27/11	

51	

101
101

Assay Completion Time (With Error)
•  Completion time for the scheduled protein assay protocol

with and without control paths
–  Errors appear at intermediate points (sample concentrations)
–  Completion time = assay time + checkpointing time + recovery time

0

100

200

300

400

500

600

700

C/2 C/4 C/8 C/16 C/32 C/64
Sample concentration at which error is detected

As
sa

y
co

m
pl

et
io

n
tim

e
(s

ec
on

ds
)

Components of assay completion time:

102

Droplet Consumption (With Error)
•  No. of droplets consumed for the scheduled protein assay

protocol with and without control paths
–  Errors appear at intermediate points (sample concentrations)

C/2 C/4 C/8 C/16 C/32 C/64
0

20

40

60

80

N
o.

 o
f c

on
su

m
ed

 d
ro

pl
et

s

Sample concentration at which
 error is detected

 without control path
 with control path

9/27/11	

52	

103

Assay Completion Time for Randomly
Injected Errors

•  Average assay completion time for the scheduled protein assay protocol
–  Different numbers of errors are injected at randomly chosen dilutions
–  Results for various error-limit thresholds: 15%, 23%, 25%, 30%

0 5 10 15 20 25 30 35 40
400

450

500

550

600

650

Av
er

ag
e

as
sa

y
co

m
pl

et
io

n
tim

e
(s

ec
on

ds
)

No. of inserted errors

 Ethreshold=15%
 Ethreshold=23%
 Ethreshold=25%
 Ethreshold=30%

104

Droplet Consumption for Randomly Injected
Errors

•  Average number of consumed droplets for the scheduled protein
assay protocol
–  Different numbers of errors are injected at randomly chosen dilutions
–  Results for various error-limit thresholds: 15%, 23%, 25%, 30%

0 5 10 15 20 25 30 35 40
50

55

60

65

70

75

80

85

90

95

 Ethreshold=15%
 Ethreshold=23%
 Ethreshold=25%
 Ethreshold=30%

A
ve

ra
ge

 N
o.

 o
f c

on
su

m
ed

 d
ro

pl
et

s

No. of inserted errors

9/27/11	

53	

105

Evaluation Result – Interpolating Mixing
Architecture

•  71 fluidic operations
–  Buffer dispensing: DsB1-31
–  Dilution operation: Dlt1-35
–  Optical detection: Opt1-4

•  Error-limit threshold
–  Ethreshold = 18%

•  Checkpoint assignment
–  From sample dilutions C/2N,
 C/10.67, C/21.33, C/42.67,

and C/85.33

H. Ren et al., Transducers 2003 	

106

Assay Completion Time (No Error)
•  Completion time for control-path-based interpolating mixing

architecture when no error occurs during bioassay
–  Completion time = assay time + checkpointing time

30% 25% 23% 18%
0

50

100

150

200

250

300

350

400 19%
11%

7%
0%

A
ss

ay
 c

om
pl

et
io

n
tim

e
(s

ec
on

ds
)

Error-limit threshold (Ethreshold)

 assay operation
 checkpointing

9/27/11	

54	

107

Assay Completion Time (With Error)
•  Completion time for the scheduled interpolating mixing

architecture with and without control paths
–  Errors appear at intermediate points (sample concentrations)
–  Completion time = assay time + checkpointing time + recovery time

0

100

200

300

400

500

600

700

800

900

C/2 C/4 C/8 C/10.67 C/16 C/21.33 C/32 C/42.67 C/64 C/85.33 C/128

A
ss

ay
 c

om
pl

et
io

n
tim

e
(s

ec
on

ds
)

Sample concentration at which error is detected

108	

System-‐Level	 Design	 of	 Microfluidic	 Biochips	

9/27/11	

55	

109	

109	

Biochip	 Design	 AutomaBon	 Overview	
	

