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Abstract 

Embedded systems are everywhere. Increasingly they are used in areas such as 

industrial control, where there are strict requirements on the quality of control (QoC), 

cost, dependability and security. 

 

There is a trend towards multicore systems and more integration of mixed-criticality 

functions. In this project we address systems composed of multicore processors, where 

the cores are interconnected using a time-triggered network-on-chip (TTNoC). 

 

The objective of the project is to develop a simulator for control applications on 

TTNoC-based multicore systems. The simulator will be used to evaluate the QoC of 

different system implementations in terms of the scheduling policy used for the tasks, 

the routing and the scheduling policy used for the messages and the allocation of 

resources. 
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Notations and Symbols 

 

BCET Best Case Execution Time 

C Computation time 

EDF Earliest Deadline First 

ET Event-Triggered 

D Task relative deadline 

di Absolute deadline of the ith task instance 

fi Finishing time of the ith task instance 

© Phase 

     Continuous-time model of the plant 

h Nominal sampling period of a control application 

  (z) Discrete-time model of a actuator system 

      Discrete-time model of a controller system 

      Discrete-time model of a sampler system 

Jio Input-output jitter 

JS Sampling jitter 

Lio Input-output latency 

Ls Sampling latency 

LQG Linear Quadratic Gaussian 

   Natural frequency of a process 

   Probability density function 

Q Positive semi-definite cost matrix 

QoC Quality of Control 

RM Rate monotonic 



iv   Notations and Symbols 

ri Realease time of the ith task instance 

si Start time of the ith task instance 

  Time resolution of the JITTERBUG timing model 

  Continuous time variable 

   Discrete time variable 

T Task period 

TT Time-Triggered 

TTNoC Time-Triggered Network-on-Chip 

  Task 

   Actuator task 

   Controller task 

   Sampler task 

   Generic task 

  Vector of system inputs 

  Input noise that affects the plant 

WCET Worst Case Execution Time 

  System output vector 

  System state vector 
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1. Introduction 

 

 

“Real-time systems are computing systems that must react within precise time 

constraints to events in the environment. As a consequence, the correct behavior of 

these systems depends not only on the value of the computation but also on the time 

at which the results are produced. A reaction that occurs too late could be useless or 

even dangerous.” [1]  

 

The spectrum of applications that involve real-time systems is very large, ranging from 

banking transactions or small embedded systems, like ordinary CD-players, to nuclear 

plant or space mission control systems.  

 

The basic constraint to deal with in a real-time system is time. [2] Depending on the 

consequences of not meeting the time constraints, i.e. missing deadlines, real-time 

systems can be distinguished in three classes: hard, firm and soft real-time systems. In 

case of a hard real-time system, missing a deadline can result in a catastrophic 

consequence. Soft real-time systems tolerate deadline misses, but they result in 

degraded performance. Similarly, firm systems tolerate infrequent deadline misses, but 

the results produced after their deadlines are discarded. 

 

Many real-time systems are control systems. They are used to command, manage or 

regulate other systems. There are two classes of control systems: open and closed loop 

systems, also called feedback control systems. In this thesis we will only consider 

closed loop control systems. A generic model for a closed loop control system is shown 

in Figure 1.1. The process, which, in the control theory literature, is also referred to as 

the plant, represents the system that needs to be controlled. In a closed loop system 



2   1 Introduction 

the process is constantly monitored in order to ensure that its behavior complies with 

the desired behavior. Observations about the process are being collected by the 

sampler, also known as sensor or measurement device. Based on these observations, 

the controller computes a control signal, which is meant to compensate for the 

deviations of the plant from the desired behavior. This control signal is applied to the 

plant via the actuator. 

  

 

Figure 1.1 Feedback control system 

 

An example of a closed loop control system could be a vehicle fitted with a cruise 

controller. The purpose of a cruise controller is to maintain a constant speed set by 

the driver. The process in this case is the vehicle, the cruise control system is the 

controller, the sampler is represented by the wheel speed sensors and the actuator 

could be an electrically controlled vacuum actuator that controls the throttle. The 

cruise controller constantly reads the speed from the wheel speed sensors and 

compares it with the desired speed. Deviations from the desired speed will be 

compensated by accordingly adjusting the throttle via the vacuum actuator.  

 

1.1 Thesis Objectives 

The goal of this thesis is to develop a simulator, further referred to as SIMULATOR, for 

hard real-time feedback controllers which run on TTNoC-based multicore systems. 

The SIMULATOR should be able to evaluate the control performance of these 

controllers under various system configurations.  

 

1.2 Thesis Overview 

This thesis is structured as follows: 

 

Chapter 2 describes the application and architecture models used in this thesis. 

This chapter also describes the JITTERBUG models that are used to evaluate the 

control performance of the simulated control applications. 
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Chapter 3 focuses on the implementation details of the SIMULATOR.  

 

Chapter 4 analyzes the impact that different design decisions concerning the 

hardware configuration, scheduling policies, task mapping, frame routing or 

frame scheduling, have on the control performance of a control application. 

 

Chapter 5 concludes the thesis. 

 



 

2. System Model 

This chapter describes the application and the architecture models used in this thesis.  

 

2.1 Application Model 

The applications executed by the SIMULATOR are modelled as directed, acyclic graphs 

of tasks, further called task precedence graphs. A task is a sequence of instructions 

that, in the absence of other activities, is continuously executed by a processor until 

completion. The task precedence graph is a rooted graph, meaning that it has exactly 

one node, called the root, which has no predecessors. A directed edge in the graph 

denotes a dependency between the connected tasks. More specifically, the task that 

the edge points to, i.e. successor task, depends on the task that the edge leaves from, 

i.e. predecessor task, in the sense that the predecessor task must finish execution and, 

eventually, produce some data before the successor task can start executing. 

 

 

Figure 2.1 Examples of application models: (a) task graph for a generic application 
and (b) task graph for a control application.  
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There are two types of applications that the SIMULATOR must handle: generic 

applications and control applications.  

 

A control application is a real-time application that implements the functionality of a 

controller in a control loop. The operations performed by a controller resume to 

reading the input data from the sampler, executing the control algorithm and sending 

the control command to the actuator.  These three types of operations are modelled 

with control tasks, i.e.: sampler tasks (  ), controller tasks (  ) and actuator tasks 

(  ). There is a natural precedence between these tasks: the sampler tasks must read 

the sampled data first and make it available to the controller tasks, which further 

compute the control signals and send them through the actuator tasks to the actuator. 

Examples of both generic and control application task precedence graphs are given in 

Figure 2.1. 

 

Generic applications are those real-time applications that are not involved in control 

loops. The tasks of a generic application will further be called generic tasks (       . 

We include also the generic applications in the application model as in particular cases 

they can share the computational resources with the control applications, and 

therefore they can delay the execution of the control tasks. 

 

 

Figure 2.2 Periodic task timing parameters 

 

As mentioned previously, real-time applications are composed of tasks which are the 

basic executable entities in the system. All the tasks in the system are periodic tasks. 

A periodic task consists of an infinite sequence of task instances or jobs which are 

released with a constant period. A periodic task is characterized by the following 

timing parameters: 

 Computation time (C) – the time necessary for a task instance to execute when 

the processor is fully allocated to it. In most of the cases it is nearly impossible 

to know the execution times of each task instance, and therefore a more 

realistic way to express the computation times is through their lower and upper 

bounds. The lower bound of the execution times is called best-case execution 

time (BCET), while the upper bound is called worst-case execution time 
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(WCET).  The computation times of the tasks ran by the SIMULATOR can 

either randomly vary between their BCET and WCET or they can be fixed and 

equal to WCET. 

 Period (T) – it is the time period between successive task activations. 

 Relative deadline (D) – it is the maximum time allowed for a task instance to 

finish execution. 

 Release time (ri) – it is the time at which the ith instances of a task is created. 

The release time of the first instance of a task is called phase (©). Given that a 

task instance is created regularly, we can agree that            . 

 Start time (si) – it is the time at which the ith job effectively starts executing.  

 Finishing time (fi) – it is the time at which ith job finishes its execution. 

 Absolute deadline (di) – it is the time before which the ith instance of the task 

must complete its execution (       ).  

 

Control applications are designed to run periodically with a period (h), also called 

nominal sampling period, imposed by the dynamics of the controlled processes. This 

implies that all the tasks of a control application have their periods equal to the 

sampling period of the application. In most cases this sampling interval is selected 

such that            , where    is the bandwidth of the closed-loop system [3].   
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2.2 Architecture Model 

The TTNoC-based multicore system considered in this thesis consists of processing 

elements (PE) interconnected by a time-triggered network on chip (TTNoC). An 

example of a TTNoC-based multicore system is depicted in Figure 2.3.  

 

 

Figure 2.3 Example of a TTNoC-based multicore system with three processing 
elements connected through a network of three switches 

 

2.2.1 Processing Elements 

A processing element represents the hardware component on which tasks are executed. 

It comprises a processing unit and a memory unit and it has direct access to external 

signals through input-output ports. The multicore system implements a heterogeneous 

architecture in which the processing elements can be specialized for different functions. 

They also have different clock domains. 

 

Each PE is configured to execute a set of periodic tasks. The order in which the 

instances of the tasks are executed is established according to a predefined criterion, 

called a scheduling policy. The scheduling algorithm, which implements a given 

scheduling policy, differentiates between four states that a task instance can have (see 

Figure 2.4) and designates the job that should be executed only from those jobs that 

are in the READY or RUNNING states.  

 

When a job is created it is assigned the RELEASED state. The job remains in this 

state until it receives a notification that its predecessor job has finished execution. 

Along with this notification it also receives the data that its predecessor job might 

have sent to it. Once such a notification is received, the job changes its state to 

READY. Based on the implemented scheduling policy, the scheduler can dispatch the 
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job for execution, situation in which its state is set to RUNNING. If the scheduling 

policy supports preemption, the running job can be preempted in favor of another job, 

situation in which its state is set back to READY. When a job has run long enough to 

have completed execution, its state is set to TERMINATED.  

 

 

 

Figure 2.4 Job states 

 

There are three scheduling policies that can be configured on each PE: static-cyclic 

scheduling, fixed-priority (FP) and earliest deadline first (EDF) scheduling.  

 

The static-cyclic scheduling is an offline scheduling policy which executes the tasks in 

a predefined order and at fixed moments of time. It is configured through a scheduling 

table in which it is stated what task should be running at any given time. The entries 

in the table correspond to a period of time, called hyper-period, which covers a 

repeating execution pattern of the tasks. The scheduling table is reiterated every time 

the hyper-period expires. In most cases the hyper-period is equal to the least common 

multiple of the periods of the tasks that are to be scheduled. The static-cyclic 

scheduling policy does not support preemption.   

 

In the fixed-priority scheduling the tasks are scheduled based on a priority attribute 

that each task is assigned at design time. A particular case of fixed-priority scheduling 

is the rate-monotonic (RM) policy. This involves setting the priority of the tasks 

proportional to their rates, i.e. the higher the rates (or the smaller the periods), the 

higher the priorities. The RM scheduling is particularly import as it is an optimal 

scheduling policy among all FP scheduling policies, “in the sense that no other fixed-

priority algorithms can schedule a task set that cannot be scheduled by RM” [1]. By a 

task set that can be scheduled, or a schedulable task set, we understand that all tasks 

in the set finish execution within their timing constraints. Fixed-priority scheduling is 

a preemptive scheduling policy: a task can be preempted by any newly released task 

that has a higher priority.  
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The earliest deadline first scheduling is a dynamic preemptive scheduling policy that 

selects tasks for execution based on their absolute deadlines. The task with the earliest 

absolute deadline gets the processor. EDF is an optimal scheduling policy among all 

scheduling policies, in the sense that if a task set is schedulable, EDF can find a 

schedule for it [1]. 

 

2.2.2 Time Triggered Network on Chip 

The TTNoC is modelled as an undirected graph of network components, i.e. network 

interfaces (NI) and network switches (NS). A network interface is a network 

component that connects a PE to the network, whereas a network switch is a network 

component that links several other network components. 

 

We call the link between two network components a dataflow link. This is a full-

duplex communication channel. An ordered sequence of dataflow links that connect 

one NI to another is called a dataflow path.  

Communication Policy 

The data transmitted over the network is packed in frames. Each frame is configured 

to follow a fixed dataflow path from source to destination. Therefore, a frame can have 

a single source and only a single destination. The frames are designed to transport 

data that originates from a single task.  

 

The TTNoC supports two traffic classes: time-triggered (TT) and event-triggered 

(ET) frames. TT frames are transmitted over the network based on transmission 

schedule tables that must be defined on each network component. ET frames, on the 

other hand, are transmitted over a dataflow link only if all the following conditions are 

met:  

 There are no TT frames scheduled for transmission over the dataflow link. 

 The time to the next transmission of a TT frame over the dataflow link is 

greater than the amount of time required for the ET frame to complete its 

transmission.  

 There is no ongoing transmission of another ET frame over the dataflow link. 

 The ET frame has the highest priority among the ET frames that are to be 

transmitted on the same channel.   
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The ET and TT traffic classes resemble the time-triggered and the rate-constraint 

traffic classes defined in the TTEthernet protocol. Also the integration of the TT 

traffic with the ET traffic is similar to the timely block policy in the TTEthernet 

protocol. [4] 

 

2.3 Control Application Modelling in JITTERBUG 

The control performance of a control application is evaluated using JITTERBUG and it 

is based on the timing parameters determined for each control task during the 

simulation of the system. JITTERBUG “is a MATLAB-based toolbox that allows the 

computation of a quadratic performance criterion for a linear control system under 

various timing conditions”. [5] It offers a convenient way to quickly evaluate how 

sensitive a control system is to sampling delay, latencies and jitter. Based on linear 

quadratic Gaussian (LQG) theory and jump linear systems, JITTERBUG can evaluate 

the performance of a system if it has knowledge of the sampling periods and latency 

distributions in the control loop. 

 

For a control system to be analyzed in JITTERBUG, it has to be described by two 

models: a signal model and a timing model.  

 

2.3.1 Signal Model 

The signal model is a representation of the linear continuous- and discrete-time 

systems in the control loop with their connections. The signal model of the closed loop 

control systems handled by the SIMULATOR is depicted in Figure 2.5. The plant is 

described by a continuous-time system     . The sampler, the controller and the 

actuator are described by the discrete-time systems      ,       and   (z) 

respectively. The connections between the systems in the control loop are indicated 

with arrows. The plant can be affected by input noise. The input noise is represented 

by the signal  . 
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Figure 2.5 JITTERBUG signal model for a closed loop control system 

 

In JITTERBUG, continuous-time and discrete-time systems can be specified in either 

state-space or transfer-function forms [5]. 

 

The state-space form for a continuous-time system is described by 

 

 ̇                        

                                                               

                                                 

 

where A, B and C are constant matrices and    is a continuous-time white-noise 

process (input noise) with zero mean and covariance     and    is a discrete-time 

white-noise process (measurement noise) with zero mean and covariance   . 

 

In transfer-function form, the continuous-time system must be specified as 

 

          (          )                     

                                                               

 

where      is a strictly proper transfer function, i.e. the degree of the numerator is 

less than the degree of the denominator,    is a continuous-time white-noise process 

with zero mean and covariance     and    is a discrete-time white-noise process with 

zero mean and covariance   . 

 

The state-space form for the discrete-time systems is 
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where    and    are discrete-time white-noise processes with zero mean and covariance 

 

    (
      

      
)(

      

      
)

 

  

 

In transfer function form, discrete-time systems are given as 

 

           (             )                   

                                                                     

 

where      is a proper transfer function and    and    are discrete-time white-noise 

processes with zero mean and covariance    defined in (3.4). 

 

2.3.2 Timing Model 

The timing model is a representation of the delays encountered in the control loop. It 

consists of a list of connected timing nodes. Each timing node is associated with a time 

delay. This association indicates that the system waits for that time until it advances 

to the next node. A timing node can also be associated with one or more discrete-time 

systems. Such an association indicates that the discrete-time system(s) is/are updated 

when the node is entered. Delays are described by discrete-time probability density 

functions                      , where       represents the probability of a delay of 

   seconds,   being the time-grain of the model, i.e. the minimum representable time 

in the system.  

 

The timing model can represent both periodic and aperiodic systems. We consider only 

period systems in our analysis. The periodicity of a system is modelled by considering 

the first timing node in the model to be periodic. This node will be entered at times 

which are multiple of the time period. A consequence of this is that the cumulated 

time delays in the timing model cannot exceed the period, as the system will restart 

when the period expires. This behavior models hard deadlines in real time systems and 

it matches the application model described previously. 

 

The JITTERBUG timing model used by the SIMULATOR is depicted in Figure 2.6. The 

timing nodes are represented by circles and the discrete-time systems by rectangles. 
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The first node, illustrated with a double circle, is a periodic node, having the period 

equal to the period of the simulated control application.  

  

 

Figure 2.6 JITTERBUG timing model of the supported systems 

 

The only delays that we expect on the signal path occur in the controller block. We 

differentiate between two types of delays: sampling latencies (Ls) and input-output 

latencies (Lio). The sampling latency is the time from the start of a controller cycle, i.e. 

multiple of the sampling period, when the sampler task is instantiated until it starts to 

execute. Therefore the process is considered to be actually sampled only when the 

sampler task becomes active. This delay can be dealt with only by revising the used 

scheduling policy. The input-output latency is the delay from when the process is 

sampled, i.e. sampler task starts, until the actuator task finishes execution. Sources of 

input-output delays are the scheduling policy, the non-zero execution times of the 

tasks and the inter-task data communication delays. 

 

The signal model in Figure 2.6 can therefore be interpreted as: at the beginning of 

each period a random sampling delay (Ls) is waited until the output of the process is 

sampled, i.e the sampler block is executed (HS). Then it takes another random input-

output delay (Lio) until the controller block (HC) is executed. As soon as the controller 

block computes the control signal, the actuator block (HA) is activated.  

 

2.4 Design Metrics 

2.4.1 Timing Parameters 

In the ideal case the sampling period would be constant, i.e. the output of the process 

would be sampled at times which are exact multiples of the sampling period. 

Moreover, the control signal would be computed instantly once the plant is sampled. 

In reality, things are different. A control application, i.e. the controller, consists of 

several tasks responsible with reading the data from the sensors, running the control 
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algorithm and sending the control signal to the actuator. All these tasks are subject to 

scheduling and their execution times are non-zero. This basically means that there are 

latencies associated with the controller.  

 

 

Figure 2.7 Controller timing. From [6] 

 

We define next the timing parameters (see also Figure 2.7) that characterize the 

delays in the controller: 

 Sampling latency (Ls) – it is the time passed from the release of the sampling 

task until it actually starts executing. We consider that the process is sampled 

only when the sampling task starts to execute.  

 Sampling jitter (JS) – it characterizes the variation of the sampling latency. It is 

the difference between the maximum and the minimum sampling latencies. 

      
      

    

 Input-ouput latency (Lio) – it is the time from when the sampler task starts 

executing until the actuator task finishes executing. 

 Input-output jitter (Jio) – it is a measure of the variation in the input-output 

latency and it is defined as the difference between the maximum and the 

minimum input-output latencies:        
       

   . 

 

Sampling jitter 

A constant sampling latency has no impact on the performance of the controller as the 

sampling interval would remain equal to the nominal one. A variation of the sampling 

latency instead, i.e. the sampling jitter, translates into a variation of sampling interval, 

causing the control performance to degrade. Sampling jitter compensation methods, 

e.g. constant adjustment of the parameters of the controller based on the length of the 

last sampling interval [6], exist, but they are not in the concern of this thesis. 
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Input-output latency 

In the control theory it is well known that “a constant input-output latency decreases 

the phase margin of the control system, and that it introduces a fundamental 

limitation on the achievable closed-loop performance” [6]. There are ways to account 

for a constant input-output delay when designing the control system. 

 

The main sources for input-output latencies are: 

 the non-zero execution times of the tasks in the controller; 

 scheduler-induced latencies, i.e. the waiting periods before getting the processor 

or the preemption times; 

 communication-induced latencies, i.e. time that it takes for a frame to be 

transmitted over the network. 

 

In order to reduce the input-output latencies we can address their sources. The 

communication-induced latencies can be reduced by mapping the tasks that exchange 

the most data preferably to the same PE. If the system configuration does not allow 

this, then one could try to increase the priorities of the frames, if they are event-

triggered, or pick different dataflow paths that would result in reduced transmission 

times.  

 

The scheduler-induced latencies can be reduced by assigning higher priorities to the 

tasks in case of FP scheduling, or setting shorter deadlines in case of EDF scheduling. 

Also a non-preemptive scheduler could be used to avoid preemption. Any of these 

approaches have an impact on some other applications running in the system. 

 

The latencies caused by the non-zero computation times of the tasks could be reduced 

by separating the calculation of the control signal part of the control algorithm from 

the part that updates its internal states. In this way, the control signal can be 

computed and sent to the actuator before updating the internal states, therefore the 

delay from sampling to actuation is reduced [6].  

Input-output jitter 

The input-output jitter represents the variation of the input-output latency. If present, 

it causes degraded control performance [7]. There are several jitter compensation 

schemes [6] [7] that could be implemented to reduce the effects of the jitter on the 

control performance, but they are not in the scope of this thesis.   
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2.4.2 Cost Computation 

The performance of a control system is evaluated using JITTERBUG based on the 

timing parameters determined during the simulation of the system. By knowing the 

distributions of the latencies in the system, JITTERBUG computes a quadratic 

performance criterion, further referred to as cost function. 

 

The cost function does not capture all the aspects of a control loop, therefore it does 

not fully characterize the performance of a system, but it provides an easy way to 

quickly evaluate different controller configurations. The goal is to minimize the cost 

function. Higher values suggest that a system is less stable, i.e. more oscillatory, and 

infinite values mean that the system is unstable. [8]   

 

The cost function that evaluates the performance of a controller in a closed loop is 

given by 

 

     
   

 

 
∫ (

    
    

)
 

 (
    
    

)
 

 

   

 

where  , referred to as cost matrix, is a positive semi-definite matrix and   and   are 

the state and the input vectors of the plant. 

 

 



 

3. Design and Implementation 

The SIMULATOR consists of two main parts. There is a part that simulates the 

execution of a TTNoC-based multicore system and a part that evaluates a quadratic 

performance criterion for the control applications that are executed on the system. 

These two parts are implemented using different technologies. The system simulation 

part is implemented in .NET, using the C# programing language, while the 

computation of the quadratic performance criteria is performed in MATLAB using the 

JITTERBUG toolbox [5].  

 

 

Figure 3.1 SIMULATOR - information flow diagram 

 

By following the information flow diagram, depicted in Figure 3.1, we can briefly 

summarize the way SIMULATOR works. It starts by reading an .xml file, further called 

the system configuration file, which contains the setup of the multicore system. Once 
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the system is configured, the simulation can start. The outcome of the simulation is a 

set of timing parameters corresponding to each control application. By using these 

timing parameters and the description functions of the systems involved in the control 

loops, the tool generates JITTERBUG models and stores them in MATLAB script files 

(*.m files). The scripts are evaluated in MATLAB, through a MATLAB COM Server. 

The results of the evaluations are imported back into the application and displayed in 

an output window. 

 

3.1 Requirements 

In this project we intend to build a tool for simulating control applications that run on 

TTNoC-based multicore systems. The simulator must therefore implement the 

following requirements: 

 It must support any application that has the characteristics described in the 

application model. The number of applications that are simulated at a time 

must not be restricted. 

 It must handle all hardware configurations that comply with the architecture 

model, including heterogeneous architectures.  

 It must implement the fixed-priority, earliest deadline first and static cyclic 

task scheduling policies. 

 It must support both event-triggered and time-triggered frame classes. 

 It must be easily configurable through a configuration file. 

 It must impose hard deadline constraints on all the tasks, i.e. the tasks that do 

not finish execution before their deadlines are to be discarded.  

 Application instances which do not finish before their deadlines will be 

considered as having input-output latencies equal to their period plus an extra 

clock cycle. This is in agreement with the JITTERBUG signal model, which 

interprets all latencies greater than the period of the application as deadline 

misses and the cost is penalized accordingly..  

 It must display task execution and network communication timing diagrams 

based on the logs collected during the simulation of the system. The task 

execution diagrams will only include tasks of control applications. 

 It must display the timing parameters determined from simulation for each 

control application, i.e. sampling latency and input-output latency probability 

distributions. 

 It must display the calculated QoC for each control application. 
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3.2 TTNoC-Based Multicore System Simulator 

The SIMULATOR was developed in the C# programming language and it was designed 

as a stand-alone application.   

 

The MulticoreSystem class is the class that orchestrates the simulation of a multicore 

system. It is basically an in-memory representation of a multicore system. It contains 

references to all the processing elements, to the TT network that connects them, to 

the applications that are configured to run in the system and to the frames that are to 

be transmitted over the network. At initialization, it reads the system configuration 

file and it configures the system accordingly. For the multicore system to pass the 

configuration stage it must be ensured that the configuration file complies with the 

schema given in Appendix A. 

 

 

Figure 3.2 Multicore system - UML Class Diagram 

 

The Run() method in the MulticoreSystem class launches the simulation of the 

multicore system. It triggers the activation of the PEs and the TTNoC at times that 

are multiple of their internal clock periods. The clock periods of the internal timers in 

the PEs and the TTNoC are expected to be evenly divisible by the smallest of these 

periods.  

 

Before describing the behavior of a processing element on activation, we introduce the 

classes that implement the application model. As stated section 2.1, there are two 

types of applications that the simulator supports: generic and control applications. 
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They are implemented by the GenericApplication and the ControlApplication classes 

respectively (see Figure 3.4), the latter extending the former. Each application 

represents a directed graph of Task objects that corresponds to a task precedence 

graph. The graph is implemented by the generic class Graph, using adjacency lists. 

Both application classes extend the Graph class depicted in Figure 3.3.   

 

 

Figure 3.3 Graph – UML Class Diagram. 

 

A task is implemented by the Task class. This class holds information about the 

configurable timing parameters of a task, i.e. period, BCET, WCET and its relative 

deadline, and it logs the execution of the tasks during the simulation of the system. 

The task execution logs are used to derive the timing parameters of the control 

applications. The calculation of the timing parameters, based on the logged data, is 

performed in the CalculateTimingParameters() method implemented by the 

ControlApplication class. 

 

The actual schedulable entities in the simulator, i.e. the jobs, are instances of the Job 

class. They mimic the successive instances of a task. A job inherits the properties of a 

task, including its dependencies. 

 

The execution of a task, materialized through its jobs, is tracked in a task execution 

log, which is implemented as a list of TaskExecutionLog objects. There is such an 

object associated with every job of a task. The Task class provides the CreateJob() 

method which creates a new job and adds an entry for it in the execution log. An 

execution log entry stores information such as the release time, the response time or 

the active times of a job. It also tracks whether the execution of a job was aborted due 

to missed deadline. A job updates its execution log by calling the LogRunningJob(), 

LogJobTerminated() or LogJobAborted() methods provided by its parent task. 
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Figure 3.4 Applications – UML Class Diagram. 

 

The jobs are executed by the processing elements in the system, which are 

implemented by the ProcessingElement class. The implementation is in accordance 

with architecture model. Each processing element is designated to execute jobs for a 

given set of tasks. The jobs are allocated the computing resources according to a 

schedule determined by the employed scheduler. A scheduler must implement the 

ITaskScheduler interface. This interface defines only one method, i.e. 

GetRunningJob(), which returns a reference to the job that should run at a given 

time. The current implementation of the SIMULATOR includes three scheduling policies: 

fixed priority, earliest deadline first and static cyclic scheduling, implemented in the 

TaskPriorityBasedScheduler, TaskEarliestDeadlineFirstScheduler and 

TaskStaticCyclicScheduler classes respectively.  

 

All scheduler classes use job lists to store the active jobs. A job is considered to be 

active if it did not complete its execution or it did not miss its deadline. All jobs that 

miss their deadlines are aborted, this being in compliance with the hard deadline 

constraints policy. These commonalities are implemented in the TaskScheduler class 

which is extended by the three scheduler classes. 
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Figure 3.5 Processing elements – UML Class Diagram. 

 

The selection of a job for execution depends partly on the scheduling policy 

implemented by the scheduler and partly on the state of the job. The possible states of 

a job are: RELEASED, READY, RUNNING and TERMINATED. Right after 

creation, a job enters the RELEASED state. It remains in this state until the data 

from the jobs that it depends on becomes available. The data exchanged by the jobs is 

packed in a message-like form that contains information about the job that produced 

it and the job that should consume it. We call such a message an inter-job message. 

The inter-job messages are stored in the local memory of a processing element until 

they are consumed by the jobs they are addressed to. When all the inter-job messages 

that a job expects become available, the state of the job switches to READY. A job 

that is in the READY state can be selected for execution by the scheduler. The 

processing element simulates the execution of a job by calling the job’s Run() method. 

When a job is executing, its state changes to RUNNING, the execution is logged and 

the remaining execution time of the job is decremented. If the remaining execution 

time reaches zero, the state of the job is set to TERMINATED. The total execution 

time of a job is equal to the WCET of the parent task, or to a random time between 

BCET and WCET, depending on whether the simulator is configured to use fixed or 

random execution times. When the job completes execution, it produces inter-job 

messages addressed to all of its consumer jobs. These messages are inserted into the 

local memory of the PE. 
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Besides the selection of jobs for execution, a scheduler is also responsible with the 

creation of new jobs. The FP and EDF schedulers create new jobs at the beginning of 

each task period, whereas the static cyclic scheduler creates a new job when the entry 

in the static schedule table indicates the start of a new job. A static schedule table is 

implemented as a list of TaskStaticSchedulingTableEntry objects, which store the 

start time and the duration of the execution of a given task. 

 

Job scheduling and job execution are triggered within the Run() method of the 

processing element. This method is called from the MulticoreSystem class at discrete 

times that are multiples of the internal clock period of the PE. 

 

Those inter-job messages produced by the jobs that finished execution that are 

addressed to jobs located on other nodes, are packed by the processing element in 

their corresponding frames. The frames are passed to the network interface to be 

transmitted over the network.   

 

The time-triggered network in the multicore system is implemented by the NoC class. 

It fully complies with the architecture model defined in section 2.2.2. As shown in 

Figure 3.6, this class represents a graph of NetworkComponent objects. The edges in 

the graph are the dataflow links that connect the network components.  

 

The definitions of the frames that the network must handle are stored in objects of 

class Frame. These objects also store the frame transmission logs. A transmission log 

contains the times when a frame instance was transmitted over a dataflow link. The 

information from the logs is used to determine the frame transmission latencies. The 

actual entities that are transferred over the network correspond to frame instances and 

they are of type FrameInstance. A frame instance inherits all the properties of a 

frame. 

 

The transmission of the frames instances over the network is simulated by repeatedly 

calling the Run() method of the NoC class. Every call to Run() simulates the 

transmission of the amount of data that corresponds to one network clock cycle. This 

method triggers the data transmission in all of the network components, by calling 

their respective Run() methods. 

 

The NetworkComponent class implements the network communication policy. It 

serves as the base class for the NetworkInterface and the NetworkSwitch classes, 

which correspond to the network interfaces and the network switches in the TTNoC. 
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The only difference between these two is the fact that only a network interface can 

introduce a new frame instance in the network.  

 

 

Figure 3.6 TTNoC – UML Class Diagram. 

 

Each network component has an input buffer, i.e. SharedFrameBuffer, where it stores 

all the received frame instances, and several output ports, one for each dataflow link.  

 

The network communication policy is implemented in the Run() method of the 

NetworkComponent class. The transmission of the TT frames is scheduled according 

to a static frame scheduler deployed on the network component and implemented by 

the FrameStaticCyclicScheduler class. The scheduler returns, through the 

GetFramesToSend() method, the TT frames that are to be transmitted at a given 

time. These frames, if present in the input buffer, are immediately moved to the 

appropriate output port. 

 

The transmission of an ET frame, on the other hand, on an output channel is only 

allowed if all the following conditions are met: 

 There are no TT frames scheduled for transmission on the output channel; 
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 The time to the next transmission of a TT frame on the output channel is 

greater than the amount of time required for the event-triggered frame to 

complete its transmission. The time until the next send of a TT frame is 

returned by the TimeToNextTTSend() method provided by the static 

scheduler. 

 There is no ongoing transmission of another event-triggered frame on the 

output channel 

 The event-triggered frame has the highest priority among the event-triggered 

frames that are to be transmitted on the same output channel.   

 

A frame instance is kept in an output port until it is completely transmitted. The 

transmission of a frame instance is simulated by calling its TransferPacket() method. 

This method decrements the remaining number of packets and it logs the transmission 

by calling the LogFrameSending() method of its parent frame. When the number of 

packets reaches 0, the frame instance is removed from the output port and it is 

inserted into the input buffer of its destination network component.  

 

At the end of the simulation, when all the timing information is collected, the 

SIMULATOR generates JITTERBUG models for all of the control applications, by calling 

the GenerateJitterbugScript() method in the MatlabBridge utility class. These models 

are evaluated then by a MATLAB COM server object which is invoked in the 

EvaluateJitterbugScript() method provided by the same utility class. 

 

The simulation results are displayed in an output window which is built using the 

WPF framework.  

 

3.3 Input/Output Files 

3.3.1 SIMULATOR Configuration File 

The settings of the SIMULATOR are stored in the App.config file, which is located in 

the same folder as the application. These settings include: 

 
JitterbugToolboxPath Local path to the JITTERBUG toolbox. 
JitterbugModelsOutputPath Folder where the JITTERBUG scripts are to be saved. 
SimulationTime Length of the simulation, expressed in seconds. 
SystemConfigurationFile Path to the system configuration file. 
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3.3.2 System Configuration File 

The system configuration file contains information about the architecture of the 

multicore system and the applications and the frames that are handled by the system. 

Figure 3.1 shows an overview of the structure of this file as generated from its schema 

(see Appendix A), using <oXygen/> XML Developer1. 

 

 

Figure 3.7: Structure of the system configuration file 

 

The .xml file is basically divided into four main sections where the real-time 

applications, processing elements, time-triggered network and the frames are to be 

configured. 

Applications 

The list of applications that are to be handled by the system must be inserted as child 

elements of the Application element. There are two types of supported applications: 

generic and control applications, identified in the .xml file by the GenericApplication 

and ControlApplication elements respectively. 

                                      
1 <oXygen/> XML Developer is a tool for XML development. It can be downloaded at 
http://www.oxygenxml.com/xml_developer.html 
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A GenericApplication element has the following attributes: 

 
Id Number that uniquely identifies an application. 
Name String that represents the name of the application. 
UseFixedTaskExecutionTimes Flag that indicates whether the application tasks have fixed 

execution times, i.e. equal to their WCETs, or the execution 

times randomly vary between BCET and WCET. 

 

Besides the attributes of a generic application, a control application has a few extra 

attributes, most of them containing information about the control loop components. 

The attributes that are characteristic to a control application are the following: 

  
Period Sampling period of the control application expressed in 

seconds. This value will be passed as period to all the tasks 

that belong to this application. 
Phase The amount of time to delay the start of the first instance of 

the application. This is an optional parameter. By default the 

phase is considered equal to 0.  
G String representing the path to the MATLAB function file that 

describes the controlled process. The function must return a 

strictly proper continuous-time LTI system in state-space, 

transfer function, or pole-zero-gain form. 
H_S String representing the path to the MATLAB function that 

describes the sampling block. The function must return a 

discrete-time LTI system in state-space or transfer function 

form. 
H_C String representing the path to the MATLAB function that 

describes the controller block. The function must return a 

discrete-time LTI system in state-space or transfer function 

form. 
H_A String representing the path to the MATLAB function that 

describes the actuator block. The function must return a 

discrete-time LTI system in state-space or transfer function 

form. 
CostMatrix String representing a valid positive semi-definite matrix 

expressed in MATLAB code. This matrix corresponds to the Q  

matrix used in the definition of the cost function evaluated in 

JITTERBUG.  
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InputNoiseCovarianceMatr

ix 
String representing a valid matrix expressed in MATLAB code. 

It corresponds to the covariance matrix of the input noise 

(R1c) that disturbs the controlled process. 
MeasurementNoiseCovarian

ceMatrix 
String representing a valid matrix expressed in MATLAB code. 

It corresponds to the covariance matrix of the measurement 

noise (R2). 

 

As described in Chapter 2, applications are made of tasks, which are organized in 

precedence graphs. As a consequence of this, a real-time application, either generic or 

control application, contains a list of tasks and task dependencies organized under the 

Tasks and the TaskDependencies elements. An application must contain at least one 

task in order to be considered valid.  

 

There are some slight differences between the definitions of a control application task 

and a generic application task. We will cover first their common attributes and specify 

then the specific ones. Any task should be defined within a Task element which 

includes the following attributes: 

 
Id Number that uniquely identifies a task within an application. 
Name String that represents the name of the task. 
BCET Best-case execution time of the task, expressed in number of 

clock cycles, hence BCET is dependent on the clock rate of the 

processing element on which the task is executed. 
WCET Worst-case execution time of the task, expressed in number of 

clock cycles, hence WCET is dependent on the clock rate of 

the processing element on which the task is executed. 
Priority Number representing the priority level of a task. The higher 

the value, the higher the priority. This is an optional attribute 

and it is only used in case a priority-based scheduling policy is 

employed, i.e. FP. 

 

Unlike the tasks of a control application which all inherit the period of the application, 

the tasks of a generic application must be specified a period. This is done in the 

following attribute, which is part of the Task element: 

 
Period Period of a task given in seconds. It is an optional attribute 

which is used with non-static scheduling policies, i.e. FP and 

EDF. 
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The tasks of a control application are specialized tasks, therefore they must be 

specified their types. This is done in the following attribute: 

 
Type String representing the type of the task. The possible values 

are: “Sampler”, “Controller” and “Actuator”. 

 

The dependencies/precedencies between tasks are established through the 

TaskDependency elements. Each TaskDependency element defines a dependency 

between two tasks, through the following attributes: 

 
ProducerTaskId ID of the task which produces some data that another task 

waits for, or which must finish execution before another task 

can start, i.e. producer task. 
ConsumerTaskId ID of the task which depends on the producer task.  

 

Processing elements 

The configurations for the processing elements are grouped under the 

ProcessingElements XML node. A multicore system must contain at least one 

processing element in order to be validated. All the configuration data for a PE is 

contained within a ProcessingElement node. The attributes of a ProcessingElement are 

the following: 

 
Id Number that uniquely identifies a PE. 
Name String representing the name of a PE. 
ClockPeriod Number representing the internal clock period of a PE, 

expressed in seconds. 
SchedulingPolicy String representing the type of the scheduling policy 

configured on the PE. The possible values are: “FP”, “SC” and 

“EDF” and they correspond to fixed-priority, static-cyclic and 

earliest deadline first scheduling policies respectively.  

 

If a static cyclic scheduler is configured to run on a PE, then the ProcessingElement 

node must include the definition of the static table used by the task scheduler. A 

static table can be defined within a SchedulingTable node. It has one attribute, i.e. 

Period, which represents the hyper-period of the static-cyclic scheduler expressed in 

seconds. The actual entries of the table are defined as a list of Entry elements. An 

Entry element has the following attributes: 
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Time Number representing the time, relative to the period of the 

scheduler, when a task should start running. The time is 

expressed in seconds. 
Duration Number representing the amount of time, expressed in 

seconds, for which a task should be running. 
TaskId ID of the task that the entry corresponds to. 
ApplicationId ID of the application that owns the task. 

 

The mapping of tasks to PEs is done within the ProcessingElement node in the 

HostedTasks section. We can map any number of tasks to a PE. Each mapping is 

registered through a HostedTask element which has the following attributes: 

 
Id ID of the task that is to be executed on the PE. 
ApplicationId ID of the application that owns the task. 

  

Time-triggered network 

The configuration of the TT network is contained in the TTNetwork section. By 

design the internal clocks of all network elements are synchronized and have the same 

clock rates. The clock period of the network is set through the ClockPeriod attribute and 

it is to be expressed in seconds. 

 

As described in the architecture model, the TTNoC is made of linked network 

components, which can be either network interfaces or network switches. In the 

configuration file there is no difference between the two. They are both configured as 

network components. SIMULATOR categorizes them based on their IDs. If the ID of a 

network component matches the ID of a PE, then the parser creates a network 

interface and attaches it to the PE, or it creates a network switch otherwise. The 

network components are defined in the NetworkComponents section, within the 

NetworkCompenent elements. A network component has the following attributes: 

 
Id Number that uniquely identifies a network component. If it 

matches the ID of a PE, the SIMULATOR instantiates a 

network interface, or a network switch otherwise. 
Name String representing the name of the network component. 
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Each network component must include a timetable based on which the TT frames 

routed through it are being transmitted. The timetable is defined in the 

SchedulingTable element. It has one attribute, i.e. Period, which represents the period 

of the TT transmission expressed in seconds. The actual entries in the table are 

defined as a list of Entry elements, each of these elements having the following 

attributes:  

 
Time Number representing the time, expressed in seconds, relative 

to the period of the TT scheduler, when the transmission of a 

TT frame should start. 
Duration Number representing the amount of time, expressed in 

seconds, allocated to the transmission of a TT frame. 
FrameId ID of the frame that the entry corresponds to. 

 

The full-duplex connections between the network components, i.e. the data flow links, 

are defined in the DataFlowLinks section. This section contains a list of DataFlowLink 

elements, each having the following attributes: 

 
FromNetwCompId ID of a network component that defines the data link. 
ToNetwCompId ID of the other network component that defines the data link. 

 

Frames 

The definitions of the frames handled by the TT network are contained within the 

Frames section in the Frame elements. The attributes that configure a frame are the 

following: 

 
Id Number that uniquely identifies a frame. 
Name String representing the name of the frame. 
AssociatedAppId ID of the application that the frame is associated with. By 

definition, a frame carries data packets between two tasks of 

the same application.  
SourceTaskId ID of the sender task. 
DestinationTaskId ID of the destination task. 
Size Size of the frames given in number of network clock cycles 

needed for a frame to be transmitted. 
Type String representing the type of the frame. It can be either 

“TT” (i.e. time-triggered) or “ET” (i.e. event-triggered). 
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Priority Number representing the priority level of a frame. The higher 

the value, the higher the priority. This is an optional 

attribute and it is only used if the frame is of type “ET”. 

 

Each frame is assigned a route that it can follow through the network, route which is 

configured in the DataFlowPath node. The path is basically expressed as a list of 

network components IDs, contained within NetwComp elements. Note that the order 

of the elements in this list is very important. The first and the last network 

components in the list must be network interfaces corresponding to the source and the 

destination PEs.  

 

3.3.3 Block Description File 

The dynamics of the systems involved in a feedback control loop, i.e. the plant, the 

sampler, the controller and the actuator must be described in separate MATLAB 

function files. These system description MATLAB functions take no parameters and 

return a single value, which can be either a transfer-function model, a state-space 

model or a pole-zero gain model. As required by MATLAB, the names of the files that 

contain functions must match the names of the functions they contain. 

 

An example of such a block description function is given in Listing 3-1. It returns a 

discrete-time state-space model of an LQG controller computed using the lqgdesign 

function from the JITTERBUG toolbox. 

  

Listing 3-1 Example of a block description function 

function C = Controller( ) 

 

s = tf('s'); 

o = 6.7; 

P = o^2/(s^2-o^2);       

R1c = 1/o;                         % Continuous-time input noise 

R2 = 0.0001;                       % Discrete-time measurement noise 

Qc = diag([1 1]);                  % Cost function 

 

h = 0.030;                         % Sampling period 

tau = 0.006;                       % Assumed input-output delay 

 

C = lqgdesign(P,Qc,R1c,R2,h,tau);  % LQG controller 

end 
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3.3.4 JITTERBUG Script 

The SIMULATOR uses the timing information, i.e. sampling and input-output latencies, 

collected during the simulation of the control applications, to build JITTERBUG models 

which are evaluated in MATLAB. These models are saved as .m files, one for each 

control application. The name of an .m file includes the name of the control 

application that it corresponds to, followed by a timestamp, i.e. the time when the file 

was generated ([APPPLICATION_NAME]_[yyyyMMdd]_[hhmmss].m). We further 

refer to files that contain JITTERBUG models as JITTERBUG scripts. 

 

A JITTERBUG script fully describes a feedback control system in terms of both timing 

and signal models (see section 2.3. for the description of these models), based on which 

it computes a quadratic performance criterion. An example of a generated JITTERBUG 

script is given in Listing 3-2. The logic implemented by a JITTERBUG script resumes 

to: 

1. Configure the MATLAB search path to include the locations of the JITTERBUG 

toolbox and of the block description functions. 

2. Initialize a new JITTERBUG system by calling initjitterbug. This function must 

be provided with the period of the system, i.e. the sampling period of the 

control application, and the granularity of the time-discretization. We consider 

the time granularity as being the smallest clock period of a PE that executes 

tasks from the studied application. 

3. Construct the timing model. A timing node is added by calling the   

addtimingnode function. The first timing node is assigned the probability 

distribution of the sampling latency, whereas the second timing node is 

assigned the probability distribution of the input-output latency. 

4. Construct the signal model. The process is expected to be a continuous system, 

therefore it will be added using the addcontsys function. This function will be 

passed as input also the expression of the performance criterion that is to be 

evaluated. The sampler, controller and actuator are assumed to be discrete 

systems and they are added using adddiscsys function. 

5. Evaluate the performance criterion. This is achieved by calling the calcdynamics 

and calccost functions. 

 

Listing 3-2  Example of a JITTERBUG script 

addpath(‘C:\Jitterbug');                   % Path to Jitterbug toolbox 

addpath(‘C:\BlockDefinitions\Plant’);      % Path to the plant description function 

addpath(‘C:\BlockDefinitions\Sampler’);    % Path to the sampler description function 

addpath(‘C:\BlockDefinitions\Controller’); % Path to the controller description function 

addpath(‘C:\BlockDefinitions\Actuator’);   % Path to the actuator description function 

 

h = 0.010;         % Sampling period 
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dt = 0.001;        % Time-grain 

 

P = Process();     % Plant 

S = Sampler();     % Sampler 

C = Controller();  % Controller 

A = Actuator();    % Actuator 

 

sampL = [1 0 0 0 0 0 0 0 0 0 0];          % Sampling latency probability distribution 

ioL = [0 0 0 0 0 0 0 0 0.01 0 0.33 0.66]; % Input-output latency probability distribution 

 

N = initjitterbug(dt, h);           % Initialize Jitterbug 

 

% timing model definition 

 

N = addtimingnode(N, 1, sampL, 2);  % Add node 1 (the periodic node) 

N = addtimingnode(N, 2, ioL, 3);    % Add node 2 

N = addtimingnode(N, 3, [1], 4);    % Add node 3 - no delay 

N = addtimingnode(N, 4);            % Add node 4 

 

% signal model definition  

 

N = addcontsys(N, 1, P, 4, diag([1 1]), 1/20, 0.0001); % Add the plant 

N = adddiscsys(N, 2, S, 1, 2);      % Add the sampler (S) to timing node 2 

N = adddiscsys(N, 3, C, 2, 3);      % Add the controller (C) to timing node 3 

N = adddiscsys(N, 4, A, 3, 4);      % Add the actuator (A) to timing node 4 

 

%cost computation 

 

N = calcdynamics(N);                % Calculate the internal dynamics 

J = calccost(N);                    % Calculate the cost 

  

 

3.4 User Interface Design and Description 

 

The SIMULATOR displays the results of a simulation in an output window, as depicted 

in Figure 3.8. 

 

The output window is basically divided into two regions. The upper region displays a 

Gantt chart that captures the allocation of the computational resources among tasks 

and the transmission of frames between the network components during the entire 

simulation time. The lower region displays the simulation summaries and the 

quadratic costs calculated for every control application. 

 

The Gantt chart, in the upper region, includes timelines for every PE and for every 

dataflow link in the TTNoC. Each timeline is labelled with the name of a PE, or with 

the names of the end nodes of a dataflow link, separated by an arrow. The rectangles 

displayed on the timelines represent the time intervals when frame instances are being 

transferred or when task instances execute. All rectangles are color coded. There are 

different colors assigned to different frames and all the instances of a frame share the 

same color. Similarly, there are different colors assigned to different applications and 
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all the task instances of a control application share the same color. The association 

between colors and control applications, or frames, is given in the legend from the 

right-hand side of the chart. Every rectangle in the chart is also assigned an identifier, 

displayed inside the rectangle. This identifier can be a number representing the 

instance number of a frame, or it can be a string representing the name and the 

instance number of a task. 

 

 

Figure 3.8 Output window 

 

 

The lower part of the output window accommodates a list of simulation summaries for 

each control application. A simulation summary displays the control performance of a 

control application along with two normalized histograms depicting the input-output 
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and the sampling latency distributions, as they result from the simulation of the 

system. The width of the bins in each histogram is equal to the smallest clock period 

among the clock periods of the PEs that execute tasks owned by the application that 

the histogram corresponds to. As the control applications handled by the SIMULATOR 

are considered to have hard deadlines, the latencies in their execution must not exceed 

their periods. This means that the last bin in a histogram should correspond to the 

period of the application. This is valid in all the cases where no deadline misses are 

encountered during simulation. If there are deadline misses though, we add an extra 

bin, marked in red, which corresponds to a delay that is one clock cycle longer than 

the application period. 

 

The output window depicted in Figure 3.8 displays the results of the simulation of 

three control applications, i.e. “App1”, “App2” and “App3”, on a multicore system 

comprising two processing elements, i.e. “PE1” and “PE2”, connected through a 

network switch, i.e. “NS1”. There are two dataflow links in the network: one between 

the network interface of “PE1” and the network switch “NS1”, and another one 

between the network interface of “PE2” and the network switch “NS1”. The TT 

network is configured to handle five frames, i.e. “mSC3”, “mCA1”, “mSC2”, “mCA3” 

and “mSC1”. Considering this system configuration, the Gantt chart includes four 

timelines for the two dataflow links, one timeline for each direction, and two timelines 

for the PEs. We give now a few examples of how the results should be interpreted. 

The bottom timeline in the Gantt chart indicates that job 1 of task “S” of application 

“App3” starts to execute on the processing element “PE1” at moment 0 and finishes its 

execution after 1ms. A situation of preemption is shown on the same timeline at time t 

= 10ms when the instance 1 of task “C” of application “App1” is preempted for 2ms by 

the second instance of task “S” of application “App3”. The transmission of the first 

instance of frame “mSC3” from “PE1” to “NS1” starts at t=1ms and it ends at 

t=1.25ms. The simulation summary for application “App3” shows that the 

performance criterion for this application evaluates to infinity, meaning that the plant 

controlled by application “App3” is unstable in the current setup. We can see that in 

about 66% of the cases the controller misses to deliver the control signal before 

deadline, this being the reason for the instability. 

 

Even though the SIMULATOR handles also generic applications that share the 

computational resources with the control applications, only the data collected from the 

control applications is displayed in the output window. This was a design decision 

meant to avoid cluttering the view. 



 

4. Design Optimizations 

In this chapter we analyse the impact that different design decisions concerning the 

hardware configuration, scheduling policies, task mapping, frame routing or frame 

scheduling, have on the performance of the control applications. 

4.1 Case Study: Three Inverted Pendulums 

We chose to analyze the performance of three control applications running on a 

multicore system. The control applications are responsible for simultaneously 

stabilizing three inverted pendulums. This case study is inspired from [6]. 

 

 

Figure 4.1 Three inverted pendulums that are to be simultaneously stabilized using a 
single multicore system. From [6]. 

 

The three inverted pendulums have different lengths ( ) of 0.22m, 0.1m and 0.025m, 

and natural frequencies (  ) of approximately 6.7rad/s, 10rad/s and 20rad/s 

respectively (   √  ⁄ ). Each of the three pendulums can be described by the linear 

transfer function 
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The pendulums are considered to be disturbed by continuous-time input noise with the 

variance         and discrete-time measurement noise with the variance        .  

 

The control applications implement discrete-time LQG controllers which are designed 

to minimize the continuous-time cost function 

     
   

∫ (           )  
 

 

 

We use this cost function as the control performance evaluation criterion. The cost 

matrix in this case is   (
  
  

). 

  

The nominal sampling periods ( ) of the controllers are chosen such that         

    [3]. Table 4-1 presents the configuration of the control applications, including their 

decomposition in tasks. The tasks are imposed the following precedence constraint: the 

controller tasks depend on the sampler tasks and the actuator tasks depend on the 

controller tasks. 

 

Table 4-1 Configuration of the control applications 

Application Sampling 
period 
[ms] 

Task Task type BCET  
[clock cycles] 

WCET  
[clock cycles] 

 
A1 

 
30 

τS Sampler 1 1 

τC Controller 2 3 

τA Actuator 1 2 

 
A2 

 
20 

τS Sampler 1 1 

τC Controller 2 4 

τA Actuator 1 2 

 
A3 

 
10 

τS Sampler 1 1 

τC Controller 2 3 

τA Actuator 1 1 

 

In the ideal case where the control applications execute at their nominal sampling 

periods and they encounter no sampling jitter, no input-output latency or no input-

output jitter, the cost function evaluates to 3.206, 3.229 and 3.271, for A1, A2 and A3 

respectively. In more realistic scenarios the latencies cannot be avoided, therefore the 

costs are expected to increase. We analyse next a few of such scenarios. 

 

In the cases where RM scheduling policy is employed we use the priorities defined in  

in Table 4-2. 
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Table 4-2 RM priority assignment 

Application A1 A2 A3 

Task τS τC τA τS τC τA τS τC τA 
Priority 1 1 1 2 2 2 3 3 3 

 

4.1.1 Single Processing Element Configuration 

The simplest hardware configuration includes only one processing element, with all 

tasks mapped to it. 

 

 

Figure 4.2 Single PE configuration  

 

The processing element is set to run with a clock period of 1ms. Considering the 

WCET for the tasks given in Table 4-1, it can be determined that the processor is 

overloaded, i.e. the processor utilization is 105%, and therefore we expect that not all 

tasks finish execution before their deadlines (the processor utilization represents the 

fraction of processor time spent in the execution of the task set). This configuration is 

interesting for analyzing how the control applications handle the deadline miss 

situations. 

Case 1-1: RM Scheduling with Fixed Task Execution Times 

In this case we employ a rate-monotonic scheduling policy and we consider the 

computation time of each task to be equal to its WCET. The simulation is set to run 

for 60ms, which corresponds to the hyper-period of the schedule.  

 

According to the results of the simulation, depicted below, the cost function for 

control application A1  evaluates to infinity. This indicates that application A1 fails to 

stabilize its inverted pendulum. The reason for the instability is that in half of the 

cases, application A1 does not finish before deadline. This results in an actual sampling 

period of 60ms (i.e. twice as big as the nominal sampling period), which the controller 

is not designed to handle. RM scheduling implies that the tasks of application A1 have 



40   4 Design Optimizations 

the lowest priority, causing them to be preempted by the higher priority tasks of A2 

and A3. 

Table 4-3 Simulation results for Case 1-1 

 

 

 

 
 

We have to note that, given the fact that application A3 has the highest priority, it is 

not affected by any scheduling delays, and therefore it achieves a good control 

performance. Application A2, on the other hand, encounters a high input-output 

latency of 12ms, compared to its total computation time of 7ms, which degrades the 

QoC. The constant sampling latency does not have any influence on the control 

performance of application A2 and it could be removed completely by configuring the 

phase of the application to 5ms. 
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Case 1-2: RM Scheduling with Random Task Execution Times 

In this case we employ a rate-monotonic scheduling policy and the tasks are configured 

to have random execution times. The simulation time was increased to 1s. 

 

Using random execution times, between BCET and WCET, for all tasks, leads to 

decreased processor utilization. This means that it is likely to encounter less deadline 

misses for application A1. The simulation results confirm this expectation. Application 

A1 encounters less deadline misses than before and it manages to stabilize the 

pendulum, even though the control performance is poor (i.e. the cost, 4.851, is 

relatively high). The costs for applications A2 and A3 are better than in the previous 

case. This is because of their reduced input-output latency determined by the reduced 

computation times. 

Table 4-4 Simulation results for Case 1-2 
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Case 1-3: EDF Scheduling with Fixed Task Execution Times 

In this case we analyse the behaviour of the three control applications under EDF 

scheduling. The tasks are considered to have constant computation times equal to 

their WCETs. The simulation was run for a period of 60ms. 

 

Compared to Case 1-1, where we used RM scheduling, the results obtained in this case 

are consistently better, in the sense that all three controllers manage to stabilize the 

plants they are associated with. In this case application A3 misses its deadline in one 

sixth of the cases and this causes a significant degradation of its QoC. By analysing 

the task execution timing diagram in Table 4-5, we observe that the 6th instance of 

application A3 does not finish in time. This is caused by the fact that at time t=50ms 

when the jobs of application A3 are released they are assigned the same priority as of 

all the other jobs already in the queue, all having the same absolute deadline d=60ms, 

and therefore the jobs of application A3 have to wait for the other jobs to finish.  

 

Table 4-5 Simulation results for Case 1-3 
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Case 1-4: EDF Scheduling with Fixed Task Execution Times and 2x Clock Rate 

In this case we employ EDF scheduling with fixed task execution times and we double 

the clock rate of the processing element, i.e. the clock period is 500ns. This results in 

halved WCETs for all the tasks. The simulation was run for a period of 60ms and the 

results are displayed below.  

 

All control applications finish in time and their control performance is improved.  

 

Table 4-6 Simulation results for Case 1-4 
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4.1.2 Two Processing Elements Configuration 

Using a faster processor to reach a desired control performance, i.e. to minimize the 

total cost, is not always an option. The alternative is to use a multicore system 

instead.  

 

In this section we consider a hardware configuration that includes two processing 

elements connected through a single dataflow link. Each processing element runs with 

a clock period of 1ms. The TTNoC is configured to operate with a transmission clock 

period of 250ns. 

 

In our analysis we consider two possible ways of mapping the tasks to the processing 

elements. The first task-to-PE mapping is depicted in Figure 4.3. It involves mapping 

the sampler tasks to one processing element, while the remaining tasks are mapped to 

the second processing element. Such a mapping may be appropriate in those cases 

where a specialized processing element is used to process the measurement data.     
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Figure 4.3 Task mapping 1: map the sampler tasks to PE1 and the rest of the tasks to 
PE2 

 

The definitions of the frames that are used to transfer data between the tasks are 

given in Table 4-7.  

 

Table 4-7 Frames corresponding to task mapping 1 

Frame Associated 
application 

Source task Destination 
task 

Transmission 
time [ms] 

Priority Route 

mSC1 A1 τS τC 0.5 1 N1-N2 

mSC2 A2 τS τC 0.25 2 N1-N2 

mSC3 A3 τS τC 0.25 3 N1-N2 

 

Case 2-1: Task Mapping 1 - RM Scheduling and ET Frames 

In this case we simulate the system configuration given in Figure 4.3. Both processing 

elements employ rate-monotonic scheduling policies. All the frames in the network are 

event-triggered. The simulation is set to run for 60ms.  

 

The results of the simulation show that all applications finish in time and they 

perform reasonably well. Application A3, which is the most sensitive to delays, does 

not encounter any scheduling induced latencies. The only source for its increased 

input-output latency is the transmission time of frame mSC3. Applications A1 and A2 

experience increased input-output latencies because of preemption. 

 

Table 4-8 Simulation results for Case 2-1 
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Case 2-2: Task Mapping 1 - EDF Scheduling and ET Frames 

Under this specific system configuration, changing the scheduling policies from RM to 

EDF does not bring any improvement in the control performance. The results that we 

obtain are the same as in the previous case. 

 

Table 4-9 Simulation results for Case 2-2 

 



4.1 Case Study: Three Inverted Pendulums 47 

 

 

 
 

Case 2-3: Task Mapping 1 - Static-cyclic Scheduling and ET Frames 

Designed to demonstrate the capabilities of the simulator, this case evaluates the 

performance of the control applications under static cyclic scheduling. The scheduling 

tables are given in Appendix B. The schedule was not optimized for performance. 

Instead it introduces more input-output jitter for all the three applications. This leads 

to increased costs, i.e. degraded control performance.  

 

Table 4-10 Simulation results for Case 2-3 
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We consider now a different mapping of the tasks to the processing elements. This 

mapping is depicted in Figure 4.4. 

 

 

Figure 4.4 Task mapping 2 
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In order to ensure the data flow between the tasks we have to define new frames. They 

are described in Table 4-11. 

 

Table 4-11 Frames corresponding to task mapping 2 

Frame Associated 
application 

Source task Destination 
task 

Transmission 
time [ms] 

Priority Route 

mSC1 A1 τS τC 0.5 1 N2-N1 

mCA1 A1 τC τA 0.25 1 N1-N2 

mSC2 A2 τS τC 0.25 2 N2-N1 

mSC3 A3 τS τC 0.25 3 N1-N2 

mCA3 A3 τC τA 0.5 3 N2-N1 

 

Case 2-4: Task Mapping 2 - RM Scheduling and ET Frames 

The new system configuration was simulated employing RM scheduling policies on 

both processing elements. The frames were configured as event-triggered frames.  

 

The results of the simulation show an improvement in the performance of applications 

A1 and A2. This is because their input-output latencies were decreased. Application A3 

performs worse because of the additional frame transmission times that contribute to 

an increased input-output latency. 

 

Table 4-12 Simulation results for Case 2-4 
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Case 2-5: Task Mapping 2 - RM Scheduling and ET Frames on a Heterogeneous 

System 

In this simulation we cover the case of heterogeneous systems that contain processing 

elements that are clocked at different rates. We configure the clock period of PE1 to 

500ns, while PE2 runs with a clock period of 1ms. The results show an improvement in 

the control performance of the applications because of the reduced input-output 

latencies.  

Table 4-13 Simulation results for Case 2-5 
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4.1.3 Three Processing Elements Configuration 

In this section we consider a hardware configuration that includes three processing 

elements, each of them having the clock period of 1ms. The TT network that connects 

them comprises three network switches. They are connected as depicted in Figure 4.5. 

The network is configured to run with a clock period of 250ns.  

 

 

Figure 4.5 Multicore system comprising three processing elements 
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Case 3-1: Single Application per PE 

We consider first the case in which the applications are mapped to different processing 

elements. As expected, the simulation results indicate an improved control 

performance. There are no scheduling- and no communication-induced latencies. This 

is the ideal mapping for this task set.  

 

In a more realistic scenario, there would be more applications than the available 

processing elements, or the applications would contain tasks that could be executed 

simultaneously with other tasks, and therefore a different mapping would produce 

better results.   

Table 4-14 Simulation results for Case 3-1 
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In the following cases we use the task-to-PE mapping depicted in Figure 4.6. We set 

the phase of application A3 to 1ms.  In order to determine how the frame routing 

influences the QoC, we plan to use two different routings for the frame mSC3. 

 

A first frame routing is depicted in Figure 4.6. The dashed lines in the picture indicate 

the dataflow paths followed by the frames that carry data between the connected 

tasks.  

 

 

Figure 4.6 Frame Routing 1 

 

Table 4-15 contains the configurations of the frames handled by the TT network. We 

have highlighted the table entry corresponding to frame mSC3 as our further analysis 

focuses on the performance penalties that delays in the transmission of this frame 

bring. 

Table 4-15 Frames configuration 

Frame Associated 
application 

Source 
task 

Destination 
task 

Sending 
time (ms) 

Priority Route 

mCA1 A1 τC τA 0.75 1 N1-NS1-N2 

mSC3 A3 τS τC 0.25 2 N1-NS1-NS3-N3 

mSC2 A2 τS τC 1 1 N2-NS1-NS3-N3 

mCA2 A2 τC τA 0.25 1 N3-NS3-NS1-N2 

 

Case 3-2: Frame Routing 1 - RM scheduling and ET frames 

In this case we employ rate-monotonic scheduling on the three PEs and we use event-

triggered frames. The results for a 60ms simulation are given below.  

 



54   4 Design Optimizations 

We can notice the input-output jitter in the execution of application A3, which 

appears to be caused by high transmission delays encountered by the first, the third 

and the fifth instances of frame mSC3. By inspecting the frame transmission timing 

diagram in Table 4-16, we can see that frame mSC3 is delayed by frame mSC2. This 

happens because the two frames share a dataflow segment, consisting of dataflow links 

[NS1-NS3] and [NS3-PE3], which is entered by frame mSC2 a little before frame mSC3. 

As preemption is not supported in data transmission, frame mSC3 has to wait for the 

other frame to be transmitted, even though it has a higher priority. 

  

Table 4-16 Simulation results for Case 3-3 
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Case 3-3: Frame Routing 1 - Static-cyclic scheduling with TT and ET frames 

As described in chapter 2, the TTNoC implements the timely block policy to deal with 

conflicts between TT and ET transmissions. Therefore one way reduce the 

transmission latency of frame mSC3 is to configure mSC3 as a TT frame while keeping 

mSC2 as ET. This ensures that mSC2 does not delay the transmission of mSC3.  

 

Besides mSC3, we also configure mCA1 and mCA2  as TT frames and we employ a 

static task scheduler designed to reduce the input-output latencies for applications A1 

and A2. Both the task and the communication scheduling tables are given in Appendix 

B.  

 

The results of the simulation, presented below, confirm an improvement in the control 

performance of application A3, as its input-output latency is reduced and the jitter is 

removed completely. There is also an improvement in the QoC of applications A1 and 

A2. 

Table 4-17 Simulation results for Case 3-5 
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Case 3-4: Frame Routing 2 - RM scheduling and ET frames 

Another possible way of reducing the transmission latency of frame mSC3, in a context 

where all the frames are event-triggered, is to change its dataflow path as depicted in 

Figure 4.7. The rerouting reduces the length of the network segment shared with 

frame mSC2 to only one dataflow link, i.e. [NS3-N3]. 

 

 

Figure 4.7 Frame Routing 2: frame mSC3 routed via NS2 

 

The new configuration of the frames is given in Table 4-18. 

 

Table 4-18 Frame definitions 

Frame Associated 
application 

Source 
task 

Destination 
task 

Transmission 
time [ms] 

Priority Route 

mCA1 A1 τC τA 0.75 1 N1-NS1-N2 

mSC3 A3 τS τC 0.25 1 N1-NS1-NS2-NS3-N3 

mSC2 A2 τS τC 1 2 N2-NS1-NS3-N3 

mCA2 A2 τC τA 0.25 1 N3-NS3-NS1-N2 

 

 

By simulating the system for a period of 60ms, we get the results from below. Because 

it has a shorter transmission time, frame mSC3 manages to reach NS3 before frame 

mSC2 does, while taking a longer route. 
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Table 4-19 Simulation results for Case 3-2 

 

 

 

 
 

 



 

5. Conclusion 

In this thesis we have proposed a tool that simulates control applications running on 

TTNoC based multicore systems. This tool provides an easy, quick and efficient way 

to evaluate the QoC of the simulated control applications. It supports highly 

customizable multicore system architectures. 

 

We demonstrated de functionality of the SIMULATOR by simulating various system 

configurations. Based on the results of the simulations we could identify causes for 

degraded control performance and we suggested ways to address them.  The 

simulations also revealed the importance of the design decisions concerning the 

hardware configuration, scheduling policies, task mapping, frame routing or frame 

scheduling.  
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Appendix A 

System Configuration File – XML schema 

 

Listing 0-1 System configuration file – XML schema 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> 

 

  <xs:complexType name="genericApplicationType"> 

    <xs:sequence> 

      <xs:element name="Tasks"> 

        <xs:complexType> 

          <xs:sequence maxOccurs="1"> 

            <xs:element maxOccurs="unbounded" name="Task" type="genericAppTaskType"/> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="TaskDependencies"> 

        <xs:complexType> 

          <xs:sequence maxOccurs="1" minOccurs="1"> 

            <xs:element maxOccurs="unbounded" minOccurs="0" name="TaskDependency" 

              type="taskDependencyType"/> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

    </xs:sequence> 

    <xs:attribute name="Id" type="xs:int" use="required"/> 

    <xs:attribute name="Name" type="xs:string" use="required"/> 

    <xs:attribute name="UseFixedTaskExecutionTimes" type="xs:boolean" use="required"/> 

  </xs:complexType> 

  <xs:complexType name="genericAppTaskType"> 

    <xs:attribute name="Id" type="xs:int" use="required"/> 

    <xs:attribute name="Name" type="xs:string" use="required"/> 

    <xs:attribute name="BCET" type="xs:int" use="required"/> 

    <xs:attribute name="WCET" type="xs:int" use="required"/> 

    <xs:attribute name="Priority" type="xs:int" use="optional"/> 

    <xs:attribute name="Period" type="xs:decimal"/> 

  </xs:complexType> 

  <xs:complexType name="controlApplicationType"> 

    <xs:sequence> 

      <xs:element name="Tasks"> 

        <xs:complexType> 

          <xs:sequence maxOccurs="1"> 
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            <xs:element maxOccurs="unbounded" name="Task" type="controlAppTaskType"/> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="TaskDependencies"> 

        <xs:complexType> 

          <xs:sequence maxOccurs="1" minOccurs="1"> 

            <xs:element maxOccurs="unbounded" minOccurs="0" name="TaskDependency" 

              type="taskDependencyType"/> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

    </xs:sequence> 

    <xs:attribute name="Id" type="xs:int" use="required"/> 

    <xs:attribute name="Name" type="xs:string" use="required"/> 

    <xs:attribute name="UseFixedTaskExecutionTimes" type="xs:boolean" use="required"/> 

    <xs:attribute name="Period" type="xs:decimal" use="required"/> 

    <xs:attribute name="Phase" type="xs:decimal"/> 

    <xs:attribute name="G" type="xs:string" use="required"/> 

    <xs:attribute name="H_S" type="xs:string"/> 

    <xs:attribute name="H_C" type="xs:string"/> 

    <xs:attribute name="H_A" type="xs:string"/> 

    <xs:attribute name="CostMatrix" type="xs:string" use="required"/> 

    <xs:attribute name="InputNoiseCovarianceMatrix" type="xs:string" use="required"/> 

    <xs:attribute name="MeasurementNoiseCovarianceMatrix" type="xs:string" use="required"/> 

  </xs:complexType> 

  <xs:complexType name="controlAppTaskType"> 

    <xs:attribute name="Id" type="xs:int" use="required"/> 

    <xs:attribute name="Name" type="xs:string" use="required"/> 

    <xs:attribute name="BCET" type="xs:int" use="required"/> 

    <xs:attribute name="WCET" type="xs:int" use="required"/> 

    <xs:attribute name="Priority" type="xs:int" use="optional"/> 

    <xs:attribute name="Type" use="required"> 

      <xs:simpleType> 

        <xs:restriction base="xs:string"> 

          <xs:enumeration value="Sampler"/> 

          <xs:enumeration value="Controller"/> 

          <xs:enumeration value="Actuator"/> 

        </xs:restriction> 

      </xs:simpleType> 

    </xs:attribute> 

  </xs:complexType> 

  <xs:complexType name="taskDependencyType"> 

    <xs:attribute name="ProducerTaskId" type="xs:int" use="required"/> 

    <xs:attribute name="ConsumerTaskId" type="xs:int" use="required"/> 

  </xs:complexType> 

  <xs:complexType name="processingElementType"> 

    <xs:sequence> 

      <xs:element maxOccurs="1" minOccurs="1" name="HostedTasks"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element maxOccurs="unbounded" minOccurs="0" name="HostedTask"> 

              <xs:complexType> 

                <xs:attribute name="Id" type="xs:int" use="required"/> 

                <xs:attribute name="ApplicationId" type="xs:int" use="required"/> 

              </xs:complexType> 

            </xs:element> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

      <xs:element minOccurs="0" name="SchedulingTable"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element maxOccurs="unbounded" minOccurs="0" name="Entry"> 

              <xs:complexType> 

                <xs:attribute name="Time" type="xs:decimal" use="required"/> 

                <xs:attribute name="Duration" type="xs:decimal" use="required"/> 
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                <xs:attribute name="TaskId" type="xs:int" use="required"/> 

                <xs:attribute name="ApplicationId" type="xs:int" use="required"/> 

              </xs:complexType> 

            </xs:element> 

          </xs:sequence> 

          <xs:attribute name="Period" type="xs:decimal" use="required"/> 

        </xs:complexType> 

      </xs:element> 

    </xs:sequence> 

    <xs:attribute name="Id" type="xs:int" use="required"/> 

    <xs:attribute name="Name" type="xs:string" use="required"/> 

    <xs:attribute name="ClockPeriod" type="xs:decimal" use="required"/> 

    <xs:attribute name="SchedulingPolicy" use="required"> 

      <xs:simpleType> 

        <xs:restriction base="xs:string"> 

          <xs:enumeration value="FP"/> 

          <xs:enumeration value="SC"/> 

          <xs:enumeration value="EDF"/> 

        </xs:restriction> 

      </xs:simpleType> 

    </xs:attribute> 

  </xs:complexType> 

  <xs:complexType name="networkComponentType"> 

    <xs:sequence> 

      <xs:element name="SchedulingTable" minOccurs="0"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element maxOccurs="unbounded" minOccurs="0" name="Entry"> 

              <xs:complexType> 

                <xs:attribute name="Time" type="xs:decimal" use="required"/> 

                <xs:attribute name="Duration" type="xs:decimal" use="required"/> 

                <xs:attribute name="FrameId" type="xs:int" use="required"/> 

              </xs:complexType> 

            </xs:element> 

          </xs:sequence> 

          <xs:attribute name="Period" type="xs:decimal" use="required"/> 

        </xs:complexType> 

      </xs:element> 

    </xs:sequence> 

    <xs:attribute name="Id" type="xs:int" use="required"/> 

    <xs:attribute name="Name" type="xs:string"/> 

  </xs:complexType> 

  <xs:complexType name="frameType"> 

    <xs:sequence> 

      <xs:element name="DataFlowPath"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element maxOccurs="unbounded" name="NetwComp" minOccurs="2"> 

              <xs:complexType> 

                <xs:attribute name="Id" type="xs:int" use="required"/> 

              </xs:complexType> 

            </xs:element> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

    </xs:sequence> 

    <xs:attribute name="Id" type="xs:int" use="required"/> 

    <xs:attribute name="Name" type="xs:string" use="required"/> 

    <xs:attribute name="AssociatedAppId" type="xs:int" use="required"/> 

    <xs:attribute name="SourceTaskId" type="xs:int" use="required"/> 

    <xs:attribute name="DestinationTaskId" type="xs:int" use="required"/> 

    <xs:attribute name="Size" type="xs:int" use="required"/> 

    <xs:attribute name="Priority" type="xs:int"/> 

    <xs:attribute name="Type" use="required"> 

      <xs:simpleType> 

        <xs:restriction base="xs:string"> 

          <xs:enumeration value="ET"/> 
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          <xs:enumeration value="TT"/> 

        </xs:restriction> 

      </xs:simpleType> 

    </xs:attribute> 

  </xs:complexType> 

  <xs:element name="SystemConfiguration"> 

    <xs:complexType> 

      <xs:all> 

        <xs:element name="Applications"> 

          <xs:complexType> 

            <xs:sequence> 

              <xs:choice maxOccurs="unbounded"> 

                <xs:element name="ControlApplication" type="controlApplicationType"/> 

                <xs:element name="GenericApplication" type="genericApplicationType"/> 

              </xs:choice> 

            </xs:sequence> 

          </xs:complexType> 

        </xs:element> 

        <xs:element name="ProcessingElements"> 

          <xs:complexType> 

            <xs:sequence> 

              <xs:element maxOccurs="unbounded" minOccurs="1" name="ProcessingElement" 

                type="processingElementType"/> 

            </xs:sequence> 

          </xs:complexType> 

        </xs:element> 

        <xs:element name="TTNetwork"> 

          <xs:complexType> 

            <xs:all> 

              <xs:element name="NetworkComponents"> 

                <xs:complexType> 

                  <xs:sequence> 

                    <xs:element maxOccurs="unbounded" name="NetworkComponent" 

                      type="networkComponentType" minOccurs="0"/> 

                  </xs:sequence> 

                </xs:complexType> 

              </xs:element> 

              <xs:element minOccurs="1" name="DataFlowLinks"> 

                <xs:complexType> 

                  <xs:sequence> 

                    <xs:element maxOccurs="unbounded" minOccurs="0" name="DataFlowLink"> 

                      <xs:complexType> 

                        <xs:attribute name="FromNetwCompId" type="xs:int" use="required"/> 

                        <xs:attribute name="ToNetwCompId" type="xs:int" use="required"/> 

                      </xs:complexType> 

                    </xs:element> 

                  </xs:sequence> 

                </xs:complexType> 

              </xs:element> 

            </xs:all> 

            <xs:attribute name="ClockPeriod" type="xs:decimal" use="required"/> 

          </xs:complexType> 

        </xs:element> 

        <xs:element name="Frames"> 

          <xs:complexType> 

            <xs:sequence> 

              <xs:element maxOccurs="unbounded" minOccurs="0" name="Frame" type="frameType"/> 

            </xs:sequence> 

          </xs:complexType> 

        </xs:element> 

      </xs:all> 

    </xs:complexType> 

  </xs:element> 

</xs:schema> 

 



 

Appendix B 

Static Scheduling Tables for Case 2-3 

Table 0-1 Static task scheduling table on PE1 

Time 

[ms] 

Duration 

[ms] 

Application Task 

0 1 A3 τS 

1 1 A1 τS 

2 1 A2 τS 

10 1 A3 τS 

20 1 A3 τS 

21 1 A2 τS 

30 1 A3 τS 

31 1 A1 τS 

40 1 A3 τS 

41 1 A2 τS 

50 1 A3 τS 

 

 

Table 0-2 Static task scheduling table on PE2 

Time 

[ms] 

Duration 

[ms] 

Application Task 

2 3 A3 τC 

5 1 A3 τA 

6 3 A1 τC 
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9 4 A2 τC 

13 3 A3 τC 

16 1 A3 τA 

17 2 A2 τA 

19 2 A1 τA 

22 3 A3 τC 

25 1 A3 τA 

26 4 A2 τC 

30 2 A2 τA 

32 3 A3 τC 

35 3 A1 τC 

38 1 A3 τA 

39 2 A1 τA 

42 3 A3 τC 

45 1 A3 τA 

46 4 A2 τC 

50 2 A2 τA 

52 3 A3 τC 

55 1 A3 τA 

 

Static Task and Communication Scheduling Tables for 

Case 3-3 

Table 0-3 Static task scheduling table on PE1 

Time 

[ms] 

Duration 

[ms] 

Application Task 

1 1 A3 τS 

2 1 A1 τS 

3 3 A1 τC 

11 1 A3 τS 

21 1 A3 τS 

31 1 A3 τS 
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32 1 A1 τS 

33 3 A1 τC 

41 1 A3 τS 

51 1 A3 τS 

 

Table 0-4 Static task schedule table on PE2 

Time 

[ms] 

Duration 

[ms] 

Application Task 

0 1 A2 τS 

8 2 A1 τA 

12 2 A2 τA 

20 1 A2 τS 

32 2 A2 τA 

38 2 A1 τA 

40 1 A2 τS 

52 2 A2 τA 

 

Table 0-5 Static task schedule table on PE3 

Time 

[ms] 

Duration 

[ms] 

Application Task 

3 3 A3 τC 

6 1 A3 τA 

7 4 A2 τC 

13 3 A3 τC 

16 1 A3 τA 

23 3 A3 τC 

26 1 A3 τA 

27 4 A2 τC 

33 3 A3 τC 

36 1 A3 τA 

43 3 A3 τC 

46 1 A3 τA 

47 4 A2 τC 
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53 3 A3 τC 

56 1 A3 τA 

 

 

 

Table 0-6 Static frame schedule table on NI1 

Time 

[ms] 

Duration 

[ms] 

Frame 

2 0.25 mSC3 

6 0.75 mCA1 

12 0.25 mSC3 

22 0.25 mSC3 

32 0.25 mSC3 

36 0.75 mCA1 

42 0.25 mSC3 

52 0.25 mSC3 

 

 

Table 0-7 Static frame schedule table on NI3 

Time 

[ms] 

Duration 

[ms] 

Frame 

11 0.25 mCA2 

31 0.25 mCA2 

51 0.25 mCA2 

 

 

Table 0-8 Static frame schedule table on NS1 

Time 

[ms] 

Duration 

[ms] 

Frame 

2.25 0.25 mSC3 

6.75 0.75 mCA1 

11.5 0.25 mCA2 

12.25 0.25 mSC3 

22.5 0.25 mSC3 

31.5 0.25 mCA2 

32.25 0.25 mSC3 
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36.75 0.75 mCA1 

42.25 0.25 mSC3 

51.5 0.25 mCA2 

52.25 0.25 mSC3 

 

Table 0-9 Static frame schedule table on NS3 

Time 

[ms] 

Duration 

[ms] 

Frame 

2.5 0.25 mSC3 

11.25 0.25 mCA2 

12.5 0.25 mSC3 

22.75 0.25 mSC3 

31.25 0.25 mCA2 

32.5 0.25 mSC3 

42.5 0.25 mSC3 

51.25 0.25 mCA2 

52.5 0.25 mSC3 

 


