
A Simulator for Control
Applications on TTNoC-based

Multicore Systems

Andrei Cibu

Kongens Lyngby 2014

Abstract

Embedded systems are everywhere. Increasingly they are used in areas such as

industrial control, where there are strict requirements on the quality of control (QoC),

cost, dependability and security.

There is a trend towards multicore systems and more integration of mixed-criticality

functions. In this project we address systems composed of multicore processors, where

the cores are interconnected using a time-triggered network-on-chip (TTNoC).

The objective of the project is to develop a simulator for control applications on

TTNoC-based multicore systems. The simulator will be used to evaluate the QoC of

different system implementations in terms of the scheduling policy used for the tasks,

the routing and the scheduling policy used for the messages and the allocation of

resources.

Preface

This thesis was prepared at the Department of Informatics and Mathematical

Modelling of the Technical University of Denmark in fulfillment of the requirements

for acquiring a M.Sc. in Computer Science and Engineering. The work was carried out

between September 23, 2013 and April 07, 2014 and it amounts to the equivalent of

32.5 ECTS credits.

The work was supervised by Associate Professor Paul Pop.

Kongens Lyngby, April 2014

Andrei Cibu, s111445

Notations and Symbols

BCET Best Case Execution Time

C Computation time

EDF Earliest Deadline First

ET Event-Triggered

D Task relative deadline

di Absolute deadline of the ith task instance

fi Finishing time of the ith task instance

© Phase

 Continuous-time model of the plant

h Nominal sampling period of a control application

 (z) Discrete-time model of a actuator system

 Discrete-time model of a controller system

 Discrete-time model of a sampler system

Jio Input-output jitter

JS Sampling jitter

Lio Input-output latency

Ls Sampling latency

LQG Linear Quadratic Gaussian

 Natural frequency of a process

 Probability density function

Q Positive semi-definite cost matrix

QoC Quality of Control

RM Rate monotonic

iv Notations and Symbols

ri Realease time of the ith task instance

si Start time of the ith task instance

 Time resolution of the JITTERBUG timing model

 Continuous time variable

 Discrete time variable

T Task period

TT Time-Triggered

TTNoC Time-Triggered Network-on-Chip

 Task

 Actuator task

 Controller task

 Sampler task

 Generic task

 Vector of system inputs

 Input noise that affects the plant

WCET Worst Case Execution Time

 System output vector

 System state vector

Contents

Abstract .. i

Preface .. ii

Notations and Symbols .. iii

1. Introduction ... 1

1.1 Thesis Objectives .. 2

1.2 Thesis Overview ... 2

2. System Model ... 4

2.1 Application Model .. 4

2.2 Architecture Model ... 7

2.2.1 Processing Elements ... 7

2.2.2 Time Triggered Network on Chip .. 9

2.3 Control Application Modelling in JITTERBUG ... 10

2.3.1 Signal Model .. 10

2.3.2 Timing Model .. 12

2.4 Design Metrics .. 13

2.4.1 Timing Parameters .. 13

2.4.2 Cost Computation ... 16

3. Design and Implementation .. 17

3.1 Requirements .. 18

3.2 TTNoC-Based Multicore System Simulator ... 19

vi

3.3 Input/Output Files ... 25

3.3.1 SIMULATOR Configuration File ... 25

3.3.2 System Configuration File ... 26

3.3.3 Block Description File .. 32

3.3.4 JITTERBUG Script ... 33

3.4 User Interface Design and Description ... 34

4. Design Optimizations ... 37

4.1 Case Study: Three Inverted Pendulums ... 37

4.1.1 Single Processing Element Configuration ... 39

4.1.2 Two Processing Elements Configuration .. 44

4.1.3 Three Processing Elements Configuration.. 51

5. Conclusion .. 59

6. Bibliography ... 60

Appendix A ... 62

System Configuration File – XML schema ... 62

Appendix B ... 66

Static Scheduling Tables for Case 2-3 .. 66

Static Task and Communication Scheduling Tables for Case 3-3 67

1. Introduction

“Real-time systems are computing systems that must react within precise time

constraints to events in the environment. As a consequence, the correct behavior of

these systems depends not only on the value of the computation but also on the time

at which the results are produced. A reaction that occurs too late could be useless or

even dangerous.” [1]

The spectrum of applications that involve real-time systems is very large, ranging from

banking transactions or small embedded systems, like ordinary CD-players, to nuclear

plant or space mission control systems.

The basic constraint to deal with in a real-time system is time. [2] Depending on the

consequences of not meeting the time constraints, i.e. missing deadlines, real-time

systems can be distinguished in three classes: hard, firm and soft real-time systems. In

case of a hard real-time system, missing a deadline can result in a catastrophic

consequence. Soft real-time systems tolerate deadline misses, but they result in

degraded performance. Similarly, firm systems tolerate infrequent deadline misses, but

the results produced after their deadlines are discarded.

Many real-time systems are control systems. They are used to command, manage or

regulate other systems. There are two classes of control systems: open and closed loop

systems, also called feedback control systems. In this thesis we will only consider

closed loop control systems. A generic model for a closed loop control system is shown

in Figure 1.1. The process, which, in the control theory literature, is also referred to as

the plant, represents the system that needs to be controlled. In a closed loop system

2 1 Introduction

the process is constantly monitored in order to ensure that its behavior complies with

the desired behavior. Observations about the process are being collected by the

sampler, also known as sensor or measurement device. Based on these observations,

the controller computes a control signal, which is meant to compensate for the

deviations of the plant from the desired behavior. This control signal is applied to the

plant via the actuator.

Figure 1.1 Feedback control system

An example of a closed loop control system could be a vehicle fitted with a cruise

controller. The purpose of a cruise controller is to maintain a constant speed set by

the driver. The process in this case is the vehicle, the cruise control system is the

controller, the sampler is represented by the wheel speed sensors and the actuator

could be an electrically controlled vacuum actuator that controls the throttle. The

cruise controller constantly reads the speed from the wheel speed sensors and

compares it with the desired speed. Deviations from the desired speed will be

compensated by accordingly adjusting the throttle via the vacuum actuator.

1.1 Thesis Objectives

The goal of this thesis is to develop a simulator, further referred to as SIMULATOR, for

hard real-time feedback controllers which run on TTNoC-based multicore systems.

The SIMULATOR should be able to evaluate the control performance of these

controllers under various system configurations.

1.2 Thesis Overview

This thesis is structured as follows:

Chapter 2 describes the application and architecture models used in this thesis.

This chapter also describes the JITTERBUG models that are used to evaluate the

control performance of the simulated control applications.

1.2 Thesis Overview 3

Chapter 3 focuses on the implementation details of the SIMULATOR.

Chapter 4 analyzes the impact that different design decisions concerning the

hardware configuration, scheduling policies, task mapping, frame routing or

frame scheduling, have on the control performance of a control application.

Chapter 5 concludes the thesis.

2. System Model

This chapter describes the application and the architecture models used in this thesis.

2.1 Application Model

The applications executed by the SIMULATOR are modelled as directed, acyclic graphs

of tasks, further called task precedence graphs. A task is a sequence of instructions

that, in the absence of other activities, is continuously executed by a processor until

completion. The task precedence graph is a rooted graph, meaning that it has exactly

one node, called the root, which has no predecessors. A directed edge in the graph

denotes a dependency between the connected tasks. More specifically, the task that

the edge points to, i.e. successor task, depends on the task that the edge leaves from,

i.e. predecessor task, in the sense that the predecessor task must finish execution and,

eventually, produce some data before the successor task can start executing.

Figure 2.1 Examples of application models: (a) task graph for a generic application
and (b) task graph for a control application.

2.1 Application Model 5

There are two types of applications that the SIMULATOR must handle: generic

applications and control applications.

A control application is a real-time application that implements the functionality of a

controller in a control loop. The operations performed by a controller resume to

reading the input data from the sampler, executing the control algorithm and sending

the control command to the actuator. These three types of operations are modelled

with control tasks, i.e.: sampler tasks (), controller tasks () and actuator tasks

(). There is a natural precedence between these tasks: the sampler tasks must read

the sampled data first and make it available to the controller tasks, which further

compute the control signals and send them through the actuator tasks to the actuator.

Examples of both generic and control application task precedence graphs are given in

Figure 2.1.

Generic applications are those real-time applications that are not involved in control

loops. The tasks of a generic application will further be called generic tasks (.

We include also the generic applications in the application model as in particular cases

they can share the computational resources with the control applications, and

therefore they can delay the execution of the control tasks.

Figure 2.2 Periodic task timing parameters

As mentioned previously, real-time applications are composed of tasks which are the

basic executable entities in the system. All the tasks in the system are periodic tasks.

A periodic task consists of an infinite sequence of task instances or jobs which are

released with a constant period. A periodic task is characterized by the following

timing parameters:

 Computation time (C) – the time necessary for a task instance to execute when

the processor is fully allocated to it. In most of the cases it is nearly impossible

to know the execution times of each task instance, and therefore a more

realistic way to express the computation times is through their lower and upper

bounds. The lower bound of the execution times is called best-case execution

time (BCET), while the upper bound is called worst-case execution time

6 2 System Model

(WCET). The computation times of the tasks ran by the SIMULATOR can

either randomly vary between their BCET and WCET or they can be fixed and

equal to WCET.

 Period (T) – it is the time period between successive task activations.

 Relative deadline (D) – it is the maximum time allowed for a task instance to

finish execution.

 Release time (ri) – it is the time at which the ith instances of a task is created.

The release time of the first instance of a task is called phase (©). Given that a

task instance is created regularly, we can agree that .

 Start time (si) – it is the time at which the ith job effectively starts executing.

 Finishing time (fi) – it is the time at which ith job finishes its execution.

 Absolute deadline (di) – it is the time before which the ith instance of the task

must complete its execution ().

Control applications are designed to run periodically with a period (h), also called

nominal sampling period, imposed by the dynamics of the controlled processes. This

implies that all the tasks of a control application have their periods equal to the

sampling period of the application. In most cases this sampling interval is selected

such that , where is the bandwidth of the closed-loop system [3].

2.2 Architecture Model 7

2.2 Architecture Model

The TTNoC-based multicore system considered in this thesis consists of processing

elements (PE) interconnected by a time-triggered network on chip (TTNoC). An

example of a TTNoC-based multicore system is depicted in Figure 2.3.

Figure 2.3 Example of a TTNoC-based multicore system with three processing
elements connected through a network of three switches

2.2.1 Processing Elements

A processing element represents the hardware component on which tasks are executed.

It comprises a processing unit and a memory unit and it has direct access to external

signals through input-output ports. The multicore system implements a heterogeneous

architecture in which the processing elements can be specialized for different functions.

They also have different clock domains.

Each PE is configured to execute a set of periodic tasks. The order in which the

instances of the tasks are executed is established according to a predefined criterion,

called a scheduling policy. The scheduling algorithm, which implements a given

scheduling policy, differentiates between four states that a task instance can have (see

Figure 2.4) and designates the job that should be executed only from those jobs that

are in the READY or RUNNING states.

When a job is created it is assigned the RELEASED state. The job remains in this

state until it receives a notification that its predecessor job has finished execution.

Along with this notification it also receives the data that its predecessor job might

have sent to it. Once such a notification is received, the job changes its state to

READY. Based on the implemented scheduling policy, the scheduler can dispatch the

8 2 System Model

job for execution, situation in which its state is set to RUNNING. If the scheduling

policy supports preemption, the running job can be preempted in favor of another job,

situation in which its state is set back to READY. When a job has run long enough to

have completed execution, its state is set to TERMINATED.

Figure 2.4 Job states

There are three scheduling policies that can be configured on each PE: static-cyclic

scheduling, fixed-priority (FP) and earliest deadline first (EDF) scheduling.

The static-cyclic scheduling is an offline scheduling policy which executes the tasks in

a predefined order and at fixed moments of time. It is configured through a scheduling

table in which it is stated what task should be running at any given time. The entries

in the table correspond to a period of time, called hyper-period, which covers a

repeating execution pattern of the tasks. The scheduling table is reiterated every time

the hyper-period expires. In most cases the hyper-period is equal to the least common

multiple of the periods of the tasks that are to be scheduled. The static-cyclic

scheduling policy does not support preemption.

In the fixed-priority scheduling the tasks are scheduled based on a priority attribute

that each task is assigned at design time. A particular case of fixed-priority scheduling

is the rate-monotonic (RM) policy. This involves setting the priority of the tasks

proportional to their rates, i.e. the higher the rates (or the smaller the periods), the

higher the priorities. The RM scheduling is particularly import as it is an optimal

scheduling policy among all FP scheduling policies, “in the sense that no other fixed-

priority algorithms can schedule a task set that cannot be scheduled by RM” [1]. By a

task set that can be scheduled, or a schedulable task set, we understand that all tasks

in the set finish execution within their timing constraints. Fixed-priority scheduling is

a preemptive scheduling policy: a task can be preempted by any newly released task

that has a higher priority.

2.2 Architecture Model 9

The earliest deadline first scheduling is a dynamic preemptive scheduling policy that

selects tasks for execution based on their absolute deadlines. The task with the earliest

absolute deadline gets the processor. EDF is an optimal scheduling policy among all

scheduling policies, in the sense that if a task set is schedulable, EDF can find a

schedule for it [1].

2.2.2 Time Triggered Network on Chip

The TTNoC is modelled as an undirected graph of network components, i.e. network

interfaces (NI) and network switches (NS). A network interface is a network

component that connects a PE to the network, whereas a network switch is a network

component that links several other network components.

We call the link between two network components a dataflow link. This is a full-

duplex communication channel. An ordered sequence of dataflow links that connect

one NI to another is called a dataflow path.

Communication Policy

The data transmitted over the network is packed in frames. Each frame is configured

to follow a fixed dataflow path from source to destination. Therefore, a frame can have

a single source and only a single destination. The frames are designed to transport

data that originates from a single task.

The TTNoC supports two traffic classes: time-triggered (TT) and event-triggered

(ET) frames. TT frames are transmitted over the network based on transmission

schedule tables that must be defined on each network component. ET frames, on the

other hand, are transmitted over a dataflow link only if all the following conditions are

met:

 There are no TT frames scheduled for transmission over the dataflow link.

 The time to the next transmission of a TT frame over the dataflow link is

greater than the amount of time required for the ET frame to complete its

transmission.

 There is no ongoing transmission of another ET frame over the dataflow link.

 The ET frame has the highest priority among the ET frames that are to be

transmitted on the same channel.

10 2 System Model

The ET and TT traffic classes resemble the time-triggered and the rate-constraint

traffic classes defined in the TTEthernet protocol. Also the integration of the TT

traffic with the ET traffic is similar to the timely block policy in the TTEthernet

protocol. [4]

2.3 Control Application Modelling in JITTERBUG

The control performance of a control application is evaluated using JITTERBUG and it

is based on the timing parameters determined for each control task during the

simulation of the system. JITTERBUG “is a MATLAB-based toolbox that allows the

computation of a quadratic performance criterion for a linear control system under

various timing conditions”. [5] It offers a convenient way to quickly evaluate how

sensitive a control system is to sampling delay, latencies and jitter. Based on linear

quadratic Gaussian (LQG) theory and jump linear systems, JITTERBUG can evaluate

the performance of a system if it has knowledge of the sampling periods and latency

distributions in the control loop.

For a control system to be analyzed in JITTERBUG, it has to be described by two

models: a signal model and a timing model.

2.3.1 Signal Model

The signal model is a representation of the linear continuous- and discrete-time

systems in the control loop with their connections. The signal model of the closed loop

control systems handled by the SIMULATOR is depicted in Figure 2.5. The plant is

described by a continuous-time system . The sampler, the controller and the

actuator are described by the discrete-time systems , and (z)

respectively. The connections between the systems in the control loop are indicated

with arrows. The plant can be affected by input noise. The input noise is represented

by the signal .

2.3 Control Application Modelling in Jitterbug 11

Figure 2.5 JITTERBUG signal model for a closed loop control system

In JITTERBUG, continuous-time and discrete-time systems can be specified in either

state-space or transfer-function forms [5].

The state-space form for a continuous-time system is described by

 ̇

where A, B and C are constant matrices and is a continuous-time white-noise

process (input noise) with zero mean and covariance and is a discrete-time

white-noise process (measurement noise) with zero mean and covariance .

In transfer-function form, the continuous-time system must be specified as

 ()

where is a strictly proper transfer function, i.e. the degree of the numerator is

less than the degree of the denominator, is a continuous-time white-noise process

with zero mean and covariance and is a discrete-time white-noise process with

zero mean and covariance .

The state-space form for the discrete-time systems is

12 2 System Model

where and are discrete-time white-noise processes with zero mean and covariance

 (

)(

)

In transfer function form, discrete-time systems are given as

 ()

where is a proper transfer function and and are discrete-time white-noise

processes with zero mean and covariance defined in (3.4).

2.3.2 Timing Model

The timing model is a representation of the delays encountered in the control loop. It

consists of a list of connected timing nodes. Each timing node is associated with a time

delay. This association indicates that the system waits for that time until it advances

to the next node. A timing node can also be associated with one or more discrete-time

systems. Such an association indicates that the discrete-time system(s) is/are updated

when the node is entered. Delays are described by discrete-time probability density

functions , where represents the probability of a delay of

 seconds, being the time-grain of the model, i.e. the minimum representable time

in the system.

The timing model can represent both periodic and aperiodic systems. We consider only

period systems in our analysis. The periodicity of a system is modelled by considering

the first timing node in the model to be periodic. This node will be entered at times

which are multiple of the time period. A consequence of this is that the cumulated

time delays in the timing model cannot exceed the period, as the system will restart

when the period expires. This behavior models hard deadlines in real time systems and

it matches the application model described previously.

The JITTERBUG timing model used by the SIMULATOR is depicted in Figure 2.6. The

timing nodes are represented by circles and the discrete-time systems by rectangles.

2.4 Design Metrics 13

The first node, illustrated with a double circle, is a periodic node, having the period

equal to the period of the simulated control application.

Figure 2.6 JITTERBUG timing model of the supported systems

The only delays that we expect on the signal path occur in the controller block. We

differentiate between two types of delays: sampling latencies (Ls) and input-output

latencies (Lio). The sampling latency is the time from the start of a controller cycle, i.e.

multiple of the sampling period, when the sampler task is instantiated until it starts to

execute. Therefore the process is considered to be actually sampled only when the

sampler task becomes active. This delay can be dealt with only by revising the used

scheduling policy. The input-output latency is the delay from when the process is

sampled, i.e. sampler task starts, until the actuator task finishes execution. Sources of

input-output delays are the scheduling policy, the non-zero execution times of the

tasks and the inter-task data communication delays.

The signal model in Figure 2.6 can therefore be interpreted as: at the beginning of

each period a random sampling delay (Ls) is waited until the output of the process is

sampled, i.e the sampler block is executed (HS). Then it takes another random input-

output delay (Lio) until the controller block (HC) is executed. As soon as the controller

block computes the control signal, the actuator block (HA) is activated.

2.4 Design Metrics

2.4.1 Timing Parameters

In the ideal case the sampling period would be constant, i.e. the output of the process

would be sampled at times which are exact multiples of the sampling period.

Moreover, the control signal would be computed instantly once the plant is sampled.

In reality, things are different. A control application, i.e. the controller, consists of

several tasks responsible with reading the data from the sensors, running the control

14 2 System Model

algorithm and sending the control signal to the actuator. All these tasks are subject to

scheduling and their execution times are non-zero. This basically means that there are

latencies associated with the controller.

Figure 2.7 Controller timing. From [6]

We define next the timing parameters (see also Figure 2.7) that characterize the

delays in the controller:

 Sampling latency (Ls) – it is the time passed from the release of the sampling

task until it actually starts executing. We consider that the process is sampled

only when the sampling task starts to execute.

 Sampling jitter (JS) – it characterizes the variation of the sampling latency. It is

the difference between the maximum and the minimum sampling latencies.

 Input-ouput latency (Lio) – it is the time from when the sampler task starts

executing until the actuator task finishes executing.

 Input-output jitter (Jio) – it is a measure of the variation in the input-output

latency and it is defined as the difference between the maximum and the

minimum input-output latencies:

 .

Sampling jitter

A constant sampling latency has no impact on the performance of the controller as the

sampling interval would remain equal to the nominal one. A variation of the sampling

latency instead, i.e. the sampling jitter, translates into a variation of sampling interval,

causing the control performance to degrade. Sampling jitter compensation methods,

e.g. constant adjustment of the parameters of the controller based on the length of the

last sampling interval [6], exist, but they are not in the concern of this thesis.

2.4 Design Metrics 15

Input-output latency

In the control theory it is well known that “a constant input-output latency decreases

the phase margin of the control system, and that it introduces a fundamental

limitation on the achievable closed-loop performance” [6]. There are ways to account

for a constant input-output delay when designing the control system.

The main sources for input-output latencies are:

 the non-zero execution times of the tasks in the controller;

 scheduler-induced latencies, i.e. the waiting periods before getting the processor

or the preemption times;

 communication-induced latencies, i.e. time that it takes for a frame to be

transmitted over the network.

In order to reduce the input-output latencies we can address their sources. The

communication-induced latencies can be reduced by mapping the tasks that exchange

the most data preferably to the same PE. If the system configuration does not allow

this, then one could try to increase the priorities of the frames, if they are event-

triggered, or pick different dataflow paths that would result in reduced transmission

times.

The scheduler-induced latencies can be reduced by assigning higher priorities to the

tasks in case of FP scheduling, or setting shorter deadlines in case of EDF scheduling.

Also a non-preemptive scheduler could be used to avoid preemption. Any of these

approaches have an impact on some other applications running in the system.

The latencies caused by the non-zero computation times of the tasks could be reduced

by separating the calculation of the control signal part of the control algorithm from

the part that updates its internal states. In this way, the control signal can be

computed and sent to the actuator before updating the internal states, therefore the

delay from sampling to actuation is reduced [6].

Input-output jitter

The input-output jitter represents the variation of the input-output latency. If present,

it causes degraded control performance [7]. There are several jitter compensation

schemes [6] [7] that could be implemented to reduce the effects of the jitter on the

control performance, but they are not in the scope of this thesis.

16 2 System Model

2.4.2 Cost Computation

The performance of a control system is evaluated using JITTERBUG based on the

timing parameters determined during the simulation of the system. By knowing the

distributions of the latencies in the system, JITTERBUG computes a quadratic

performance criterion, further referred to as cost function.

The cost function does not capture all the aspects of a control loop, therefore it does

not fully characterize the performance of a system, but it provides an easy way to

quickly evaluate different controller configurations. The goal is to minimize the cost

function. Higher values suggest that a system is less stable, i.e. more oscillatory, and

infinite values mean that the system is unstable. [8]

The cost function that evaluates the performance of a controller in a closed loop is

given by

∫ (

)

 (

)

where , referred to as cost matrix, is a positive semi-definite matrix and and are

the state and the input vectors of the plant.

3. Design and Implementation

The SIMULATOR consists of two main parts. There is a part that simulates the

execution of a TTNoC-based multicore system and a part that evaluates a quadratic

performance criterion for the control applications that are executed on the system.

These two parts are implemented using different technologies. The system simulation

part is implemented in .NET, using the C# programing language, while the

computation of the quadratic performance criteria is performed in MATLAB using the

JITTERBUG toolbox [5].

Figure 3.1 SIMULATOR - information flow diagram

By following the information flow diagram, depicted in Figure 3.1, we can briefly

summarize the way SIMULATOR works. It starts by reading an .xml file, further called

the system configuration file, which contains the setup of the multicore system. Once

18 3 Design and Implementation

the system is configured, the simulation can start. The outcome of the simulation is a

set of timing parameters corresponding to each control application. By using these

timing parameters and the description functions of the systems involved in the control

loops, the tool generates JITTERBUG models and stores them in MATLAB script files

(*.m files). The scripts are evaluated in MATLAB, through a MATLAB COM Server.

The results of the evaluations are imported back into the application and displayed in

an output window.

3.1 Requirements

In this project we intend to build a tool for simulating control applications that run on

TTNoC-based multicore systems. The simulator must therefore implement the

following requirements:

 It must support any application that has the characteristics described in the

application model. The number of applications that are simulated at a time

must not be restricted.

 It must handle all hardware configurations that comply with the architecture

model, including heterogeneous architectures.

 It must implement the fixed-priority, earliest deadline first and static cyclic

task scheduling policies.

 It must support both event-triggered and time-triggered frame classes.

 It must be easily configurable through a configuration file.

 It must impose hard deadline constraints on all the tasks, i.e. the tasks that do

not finish execution before their deadlines are to be discarded.

 Application instances which do not finish before their deadlines will be

considered as having input-output latencies equal to their period plus an extra

clock cycle. This is in agreement with the JITTERBUG signal model, which

interprets all latencies greater than the period of the application as deadline

misses and the cost is penalized accordingly..

 It must display task execution and network communication timing diagrams

based on the logs collected during the simulation of the system. The task

execution diagrams will only include tasks of control applications.

 It must display the timing parameters determined from simulation for each

control application, i.e. sampling latency and input-output latency probability

distributions.

 It must display the calculated QoC for each control application.

3.2 TTNoC-Based Multicore System Simulator 19

3.2 TTNoC-Based Multicore System Simulator

The SIMULATOR was developed in the C# programming language and it was designed

as a stand-alone application.

The MulticoreSystem class is the class that orchestrates the simulation of a multicore

system. It is basically an in-memory representation of a multicore system. It contains

references to all the processing elements, to the TT network that connects them, to

the applications that are configured to run in the system and to the frames that are to

be transmitted over the network. At initialization, it reads the system configuration

file and it configures the system accordingly. For the multicore system to pass the

configuration stage it must be ensured that the configuration file complies with the

schema given in Appendix A.

Figure 3.2 Multicore system - UML Class Diagram

The Run() method in the MulticoreSystem class launches the simulation of the

multicore system. It triggers the activation of the PEs and the TTNoC at times that

are multiple of their internal clock periods. The clock periods of the internal timers in

the PEs and the TTNoC are expected to be evenly divisible by the smallest of these

periods.

Before describing the behavior of a processing element on activation, we introduce the

classes that implement the application model. As stated section 2.1, there are two

types of applications that the simulator supports: generic and control applications.

20 3 Design and Implementation

They are implemented by the GenericApplication and the ControlApplication classes

respectively (see Figure 3.4), the latter extending the former. Each application

represents a directed graph of Task objects that corresponds to a task precedence

graph. The graph is implemented by the generic class Graph, using adjacency lists.

Both application classes extend the Graph class depicted in Figure 3.3.

Figure 3.3 Graph – UML Class Diagram.

A task is implemented by the Task class. This class holds information about the

configurable timing parameters of a task, i.e. period, BCET, WCET and its relative

deadline, and it logs the execution of the tasks during the simulation of the system.

The task execution logs are used to derive the timing parameters of the control

applications. The calculation of the timing parameters, based on the logged data, is

performed in the CalculateTimingParameters() method implemented by the

ControlApplication class.

The actual schedulable entities in the simulator, i.e. the jobs, are instances of the Job

class. They mimic the successive instances of a task. A job inherits the properties of a

task, including its dependencies.

The execution of a task, materialized through its jobs, is tracked in a task execution

log, which is implemented as a list of TaskExecutionLog objects. There is such an

object associated with every job of a task. The Task class provides the CreateJob()

method which creates a new job and adds an entry for it in the execution log. An

execution log entry stores information such as the release time, the response time or

the active times of a job. It also tracks whether the execution of a job was aborted due

to missed deadline. A job updates its execution log by calling the LogRunningJob(),

LogJobTerminated() or LogJobAborted() methods provided by its parent task.

3.2 TTNoC-Based Multicore System Simulator 21

Figure 3.4 Applications – UML Class Diagram.

The jobs are executed by the processing elements in the system, which are

implemented by the ProcessingElement class. The implementation is in accordance

with architecture model. Each processing element is designated to execute jobs for a

given set of tasks. The jobs are allocated the computing resources according to a

schedule determined by the employed scheduler. A scheduler must implement the

ITaskScheduler interface. This interface defines only one method, i.e.

GetRunningJob(), which returns a reference to the job that should run at a given

time. The current implementation of the SIMULATOR includes three scheduling policies:

fixed priority, earliest deadline first and static cyclic scheduling, implemented in the

TaskPriorityBasedScheduler, TaskEarliestDeadlineFirstScheduler and

TaskStaticCyclicScheduler classes respectively.

All scheduler classes use job lists to store the active jobs. A job is considered to be

active if it did not complete its execution or it did not miss its deadline. All jobs that

miss their deadlines are aborted, this being in compliance with the hard deadline

constraints policy. These commonalities are implemented in the TaskScheduler class

which is extended by the three scheduler classes.

22 3 Design and Implementation

Figure 3.5 Processing elements – UML Class Diagram.

The selection of a job for execution depends partly on the scheduling policy

implemented by the scheduler and partly on the state of the job. The possible states of

a job are: RELEASED, READY, RUNNING and TERMINATED. Right after

creation, a job enters the RELEASED state. It remains in this state until the data

from the jobs that it depends on becomes available. The data exchanged by the jobs is

packed in a message-like form that contains information about the job that produced

it and the job that should consume it. We call such a message an inter-job message.

The inter-job messages are stored in the local memory of a processing element until

they are consumed by the jobs they are addressed to. When all the inter-job messages

that a job expects become available, the state of the job switches to READY. A job

that is in the READY state can be selected for execution by the scheduler. The

processing element simulates the execution of a job by calling the job’s Run() method.

When a job is executing, its state changes to RUNNING, the execution is logged and

the remaining execution time of the job is decremented. If the remaining execution

time reaches zero, the state of the job is set to TERMINATED. The total execution

time of a job is equal to the WCET of the parent task, or to a random time between

BCET and WCET, depending on whether the simulator is configured to use fixed or

random execution times. When the job completes execution, it produces inter-job

messages addressed to all of its consumer jobs. These messages are inserted into the

local memory of the PE.

3.2 TTNoC-Based Multicore System Simulator 23

Besides the selection of jobs for execution, a scheduler is also responsible with the

creation of new jobs. The FP and EDF schedulers create new jobs at the beginning of

each task period, whereas the static cyclic scheduler creates a new job when the entry

in the static schedule table indicates the start of a new job. A static schedule table is

implemented as a list of TaskStaticSchedulingTableEntry objects, which store the

start time and the duration of the execution of a given task.

Job scheduling and job execution are triggered within the Run() method of the

processing element. This method is called from the MulticoreSystem class at discrete

times that are multiples of the internal clock period of the PE.

Those inter-job messages produced by the jobs that finished execution that are

addressed to jobs located on other nodes, are packed by the processing element in

their corresponding frames. The frames are passed to the network interface to be

transmitted over the network.

The time-triggered network in the multicore system is implemented by the NoC class.

It fully complies with the architecture model defined in section 2.2.2. As shown in

Figure 3.6, this class represents a graph of NetworkComponent objects. The edges in

the graph are the dataflow links that connect the network components.

The definitions of the frames that the network must handle are stored in objects of

class Frame. These objects also store the frame transmission logs. A transmission log

contains the times when a frame instance was transmitted over a dataflow link. The

information from the logs is used to determine the frame transmission latencies. The

actual entities that are transferred over the network correspond to frame instances and

they are of type FrameInstance. A frame instance inherits all the properties of a

frame.

The transmission of the frames instances over the network is simulated by repeatedly

calling the Run() method of the NoC class. Every call to Run() simulates the

transmission of the amount of data that corresponds to one network clock cycle. This

method triggers the data transmission in all of the network components, by calling

their respective Run() methods.

The NetworkComponent class implements the network communication policy. It

serves as the base class for the NetworkInterface and the NetworkSwitch classes,

which correspond to the network interfaces and the network switches in the TTNoC.

24 3 Design and Implementation

The only difference between these two is the fact that only a network interface can

introduce a new frame instance in the network.

Figure 3.6 TTNoC – UML Class Diagram.

Each network component has an input buffer, i.e. SharedFrameBuffer, where it stores

all the received frame instances, and several output ports, one for each dataflow link.

The network communication policy is implemented in the Run() method of the

NetworkComponent class. The transmission of the TT frames is scheduled according

to a static frame scheduler deployed on the network component and implemented by

the FrameStaticCyclicScheduler class. The scheduler returns, through the

GetFramesToSend() method, the TT frames that are to be transmitted at a given

time. These frames, if present in the input buffer, are immediately moved to the

appropriate output port.

The transmission of an ET frame, on the other hand, on an output channel is only

allowed if all the following conditions are met:

 There are no TT frames scheduled for transmission on the output channel;

3.3 Input/Output Files 25

 The time to the next transmission of a TT frame on the output channel is

greater than the amount of time required for the event-triggered frame to

complete its transmission. The time until the next send of a TT frame is

returned by the TimeToNextTTSend() method provided by the static

scheduler.

 There is no ongoing transmission of another event-triggered frame on the

output channel

 The event-triggered frame has the highest priority among the event-triggered

frames that are to be transmitted on the same output channel.

A frame instance is kept in an output port until it is completely transmitted. The

transmission of a frame instance is simulated by calling its TransferPacket() method.

This method decrements the remaining number of packets and it logs the transmission

by calling the LogFrameSending() method of its parent frame. When the number of

packets reaches 0, the frame instance is removed from the output port and it is

inserted into the input buffer of its destination network component.

At the end of the simulation, when all the timing information is collected, the

SIMULATOR generates JITTERBUG models for all of the control applications, by calling

the GenerateJitterbugScript() method in the MatlabBridge utility class. These models

are evaluated then by a MATLAB COM server object which is invoked in the

EvaluateJitterbugScript() method provided by the same utility class.

The simulation results are displayed in an output window which is built using the

WPF framework.

3.3 Input/Output Files

3.3.1 SIMULATOR Configuration File

The settings of the SIMULATOR are stored in the App.config file, which is located in

the same folder as the application. These settings include:

JitterbugToolboxPath Local path to the JITTERBUG toolbox.
JitterbugModelsOutputPath Folder where the JITTERBUG scripts are to be saved.
SimulationTime Length of the simulation, expressed in seconds.
SystemConfigurationFile Path to the system configuration file.

26 3 Design and Implementation

3.3.2 System Configuration File

The system configuration file contains information about the architecture of the

multicore system and the applications and the frames that are handled by the system.

Figure 3.1 shows an overview of the structure of this file as generated from its schema

(see Appendix A), using <oXygen/> XML Developer1.

Figure 3.7: Structure of the system configuration file

The .xml file is basically divided into four main sections where the real-time

applications, processing elements, time-triggered network and the frames are to be

configured.

Applications

The list of applications that are to be handled by the system must be inserted as child

elements of the Application element. There are two types of supported applications:

generic and control applications, identified in the .xml file by the GenericApplication

and ControlApplication elements respectively.

1 <oXygen/> XML Developer is a tool for XML development. It can be downloaded at
http://www.oxygenxml.com/xml_developer.html

3.3 Input/Output Files 27

A GenericApplication element has the following attributes:

Id Number that uniquely identifies an application.
Name String that represents the name of the application.
UseFixedTaskExecutionTimes Flag that indicates whether the application tasks have fixed

execution times, i.e. equal to their WCETs, or the execution

times randomly vary between BCET and WCET.

Besides the attributes of a generic application, a control application has a few extra

attributes, most of them containing information about the control loop components.

The attributes that are characteristic to a control application are the following:

Period Sampling period of the control application expressed in

seconds. This value will be passed as period to all the tasks

that belong to this application.
Phase The amount of time to delay the start of the first instance of

the application. This is an optional parameter. By default the

phase is considered equal to 0.
G String representing the path to the MATLAB function file that

describes the controlled process. The function must return a

strictly proper continuous-time LTI system in state-space,

transfer function, or pole-zero-gain form.
H_S String representing the path to the MATLAB function that

describes the sampling block. The function must return a

discrete-time LTI system in state-space or transfer function

form.
H_C String representing the path to the MATLAB function that

describes the controller block. The function must return a

discrete-time LTI system in state-space or transfer function

form.
H_A String representing the path to the MATLAB function that

describes the actuator block. The function must return a

discrete-time LTI system in state-space or transfer function

form.
CostMatrix String representing a valid positive semi-definite matrix

expressed in MATLAB code. This matrix corresponds to the Q

matrix used in the definition of the cost function evaluated in

JITTERBUG.

28 3 Design and Implementation

InputNoiseCovarianceMatr

ix
String representing a valid matrix expressed in MATLAB code.

It corresponds to the covariance matrix of the input noise

(R1c) that disturbs the controlled process.
MeasurementNoiseCovarian

ceMatrix
String representing a valid matrix expressed in MATLAB code.

It corresponds to the covariance matrix of the measurement

noise (R2).

As described in Chapter 2, applications are made of tasks, which are organized in

precedence graphs. As a consequence of this, a real-time application, either generic or

control application, contains a list of tasks and task dependencies organized under the

Tasks and the TaskDependencies elements. An application must contain at least one

task in order to be considered valid.

There are some slight differences between the definitions of a control application task

and a generic application task. We will cover first their common attributes and specify

then the specific ones. Any task should be defined within a Task element which

includes the following attributes:

Id Number that uniquely identifies a task within an application.
Name String that represents the name of the task.
BCET Best-case execution time of the task, expressed in number of

clock cycles, hence BCET is dependent on the clock rate of the

processing element on which the task is executed.
WCET Worst-case execution time of the task, expressed in number of

clock cycles, hence WCET is dependent on the clock rate of

the processing element on which the task is executed.
Priority Number representing the priority level of a task. The higher

the value, the higher the priority. This is an optional attribute

and it is only used in case a priority-based scheduling policy is

employed, i.e. FP.

Unlike the tasks of a control application which all inherit the period of the application,

the tasks of a generic application must be specified a period. This is done in the

following attribute, which is part of the Task element:

Period Period of a task given in seconds. It is an optional attribute

which is used with non-static scheduling policies, i.e. FP and

EDF.

3.3 Input/Output Files 29

The tasks of a control application are specialized tasks, therefore they must be

specified their types. This is done in the following attribute:

Type String representing the type of the task. The possible values

are: “Sampler”, “Controller” and “Actuator”.

The dependencies/precedencies between tasks are established through the

TaskDependency elements. Each TaskDependency element defines a dependency

between two tasks, through the following attributes:

ProducerTaskId ID of the task which produces some data that another task

waits for, or which must finish execution before another task

can start, i.e. producer task.
ConsumerTaskId ID of the task which depends on the producer task.

Processing elements

The configurations for the processing elements are grouped under the

ProcessingElements XML node. A multicore system must contain at least one

processing element in order to be validated. All the configuration data for a PE is

contained within a ProcessingElement node. The attributes of a ProcessingElement are

the following:

Id Number that uniquely identifies a PE.
Name String representing the name of a PE.
ClockPeriod Number representing the internal clock period of a PE,

expressed in seconds.
SchedulingPolicy String representing the type of the scheduling policy

configured on the PE. The possible values are: “FP”, “SC” and

“EDF” and they correspond to fixed-priority, static-cyclic and

earliest deadline first scheduling policies respectively.

If a static cyclic scheduler is configured to run on a PE, then the ProcessingElement

node must include the definition of the static table used by the task scheduler. A

static table can be defined within a SchedulingTable node. It has one attribute, i.e.

Period, which represents the hyper-period of the static-cyclic scheduler expressed in

seconds. The actual entries of the table are defined as a list of Entry elements. An

Entry element has the following attributes:

30 3 Design and Implementation

Time Number representing the time, relative to the period of the

scheduler, when a task should start running. The time is

expressed in seconds.
Duration Number representing the amount of time, expressed in

seconds, for which a task should be running.
TaskId ID of the task that the entry corresponds to.
ApplicationId ID of the application that owns the task.

The mapping of tasks to PEs is done within the ProcessingElement node in the

HostedTasks section. We can map any number of tasks to a PE. Each mapping is

registered through a HostedTask element which has the following attributes:

Id ID of the task that is to be executed on the PE.
ApplicationId ID of the application that owns the task.

Time-triggered network

The configuration of the TT network is contained in the TTNetwork section. By

design the internal clocks of all network elements are synchronized and have the same

clock rates. The clock period of the network is set through the ClockPeriod attribute and

it is to be expressed in seconds.

As described in the architecture model, the TTNoC is made of linked network

components, which can be either network interfaces or network switches. In the

configuration file there is no difference between the two. They are both configured as

network components. SIMULATOR categorizes them based on their IDs. If the ID of a

network component matches the ID of a PE, then the parser creates a network

interface and attaches it to the PE, or it creates a network switch otherwise. The

network components are defined in the NetworkComponents section, within the

NetworkCompenent elements. A network component has the following attributes:

Id Number that uniquely identifies a network component. If it

matches the ID of a PE, the SIMULATOR instantiates a

network interface, or a network switch otherwise.
Name String representing the name of the network component.

3.3 Input/Output Files 31

Each network component must include a timetable based on which the TT frames

routed through it are being transmitted. The timetable is defined in the

SchedulingTable element. It has one attribute, i.e. Period, which represents the period

of the TT transmission expressed in seconds. The actual entries in the table are

defined as a list of Entry elements, each of these elements having the following

attributes:

Time Number representing the time, expressed in seconds, relative

to the period of the TT scheduler, when the transmission of a

TT frame should start.
Duration Number representing the amount of time, expressed in

seconds, allocated to the transmission of a TT frame.
FrameId ID of the frame that the entry corresponds to.

The full-duplex connections between the network components, i.e. the data flow links,

are defined in the DataFlowLinks section. This section contains a list of DataFlowLink

elements, each having the following attributes:

FromNetwCompId ID of a network component that defines the data link.
ToNetwCompId ID of the other network component that defines the data link.

Frames

The definitions of the frames handled by the TT network are contained within the

Frames section in the Frame elements. The attributes that configure a frame are the

following:

Id Number that uniquely identifies a frame.
Name String representing the name of the frame.
AssociatedAppId ID of the application that the frame is associated with. By

definition, a frame carries data packets between two tasks of

the same application.
SourceTaskId ID of the sender task.
DestinationTaskId ID of the destination task.
Size Size of the frames given in number of network clock cycles

needed for a frame to be transmitted.
Type String representing the type of the frame. It can be either

“TT” (i.e. time-triggered) or “ET” (i.e. event-triggered).

32 3 Design and Implementation

Priority Number representing the priority level of a frame. The higher

the value, the higher the priority. This is an optional

attribute and it is only used if the frame is of type “ET”.

Each frame is assigned a route that it can follow through the network, route which is

configured in the DataFlowPath node. The path is basically expressed as a list of

network components IDs, contained within NetwComp elements. Note that the order

of the elements in this list is very important. The first and the last network

components in the list must be network interfaces corresponding to the source and the

destination PEs.

3.3.3 Block Description File

The dynamics of the systems involved in a feedback control loop, i.e. the plant, the

sampler, the controller and the actuator must be described in separate MATLAB

function files. These system description MATLAB functions take no parameters and

return a single value, which can be either a transfer-function model, a state-space

model or a pole-zero gain model. As required by MATLAB, the names of the files that

contain functions must match the names of the functions they contain.

An example of such a block description function is given in Listing 3-1. It returns a

discrete-time state-space model of an LQG controller computed using the lqgdesign

function from the JITTERBUG toolbox.

Listing 3-1 Example of a block description function

function C = Controller()

s = tf('s');

o = 6.7;

P = o^2/(s^2-o^2);

R1c = 1/o; % Continuous-time input noise

R2 = 0.0001; % Discrete-time measurement noise

Qc = diag([1 1]); % Cost function

h = 0.030; % Sampling period

tau = 0.006; % Assumed input-output delay

C = lqgdesign(P,Qc,R1c,R2,h,tau); % LQG controller

end

3.3 Input/Output Files 33

3.3.4 JITTERBUG Script

The SIMULATOR uses the timing information, i.e. sampling and input-output latencies,

collected during the simulation of the control applications, to build JITTERBUG models

which are evaluated in MATLAB. These models are saved as .m files, one for each

control application. The name of an .m file includes the name of the control

application that it corresponds to, followed by a timestamp, i.e. the time when the file

was generated ([APPPLICATION_NAME]_[yyyyMMdd]_[hhmmss].m). We further

refer to files that contain JITTERBUG models as JITTERBUG scripts.

A JITTERBUG script fully describes a feedback control system in terms of both timing

and signal models (see section 2.3. for the description of these models), based on which

it computes a quadratic performance criterion. An example of a generated JITTERBUG

script is given in Listing 3-2. The logic implemented by a JITTERBUG script resumes

to:

1. Configure the MATLAB search path to include the locations of the JITTERBUG

toolbox and of the block description functions.

2. Initialize a new JITTERBUG system by calling initjitterbug. This function must

be provided with the period of the system, i.e. the sampling period of the

control application, and the granularity of the time-discretization. We consider

the time granularity as being the smallest clock period of a PE that executes

tasks from the studied application.

3. Construct the timing model. A timing node is added by calling the

addtimingnode function. The first timing node is assigned the probability

distribution of the sampling latency, whereas the second timing node is

assigned the probability distribution of the input-output latency.

4. Construct the signal model. The process is expected to be a continuous system,

therefore it will be added using the addcontsys function. This function will be

passed as input also the expression of the performance criterion that is to be

evaluated. The sampler, controller and actuator are assumed to be discrete

systems and they are added using adddiscsys function.

5. Evaluate the performance criterion. This is achieved by calling the calcdynamics

and calccost functions.

Listing 3-2 Example of a JITTERBUG script

addpath(‘C:\Jitterbug'); % Path to Jitterbug toolbox

addpath(‘C:\BlockDefinitions\Plant’); % Path to the plant description function

addpath(‘C:\BlockDefinitions\Sampler’); % Path to the sampler description function

addpath(‘C:\BlockDefinitions\Controller’); % Path to the controller description function

addpath(‘C:\BlockDefinitions\Actuator’); % Path to the actuator description function

h = 0.010; % Sampling period

34 3 Design and Implementation

dt = 0.001; % Time-grain

P = Process(); % Plant

S = Sampler(); % Sampler

C = Controller(); % Controller

A = Actuator(); % Actuator

sampL = [1 0 0 0 0 0 0 0 0 0 0]; % Sampling latency probability distribution

ioL = [0 0 0 0 0 0 0 0 0.01 0 0.33 0.66]; % Input-output latency probability distribution

N = initjitterbug(dt, h); % Initialize Jitterbug

% timing model definition

N = addtimingnode(N, 1, sampL, 2); % Add node 1 (the periodic node)

N = addtimingnode(N, 2, ioL, 3); % Add node 2

N = addtimingnode(N, 3, [1], 4); % Add node 3 - no delay

N = addtimingnode(N, 4); % Add node 4

% signal model definition

N = addcontsys(N, 1, P, 4, diag([1 1]), 1/20, 0.0001); % Add the plant

N = adddiscsys(N, 2, S, 1, 2); % Add the sampler (S) to timing node 2

N = adddiscsys(N, 3, C, 2, 3); % Add the controller (C) to timing node 3

N = adddiscsys(N, 4, A, 3, 4); % Add the actuator (A) to timing node 4

%cost computation

N = calcdynamics(N); % Calculate the internal dynamics

J = calccost(N); % Calculate the cost

3.4 User Interface Design and Description

The SIMULATOR displays the results of a simulation in an output window, as depicted

in Figure 3.8.

The output window is basically divided into two regions. The upper region displays a

Gantt chart that captures the allocation of the computational resources among tasks

and the transmission of frames between the network components during the entire

simulation time. The lower region displays the simulation summaries and the

quadratic costs calculated for every control application.

The Gantt chart, in the upper region, includes timelines for every PE and for every

dataflow link in the TTNoC. Each timeline is labelled with the name of a PE, or with

the names of the end nodes of a dataflow link, separated by an arrow. The rectangles

displayed on the timelines represent the time intervals when frame instances are being

transferred or when task instances execute. All rectangles are color coded. There are

different colors assigned to different frames and all the instances of a frame share the

same color. Similarly, there are different colors assigned to different applications and

3.4 User Interface Design and Description 35

all the task instances of a control application share the same color. The association

between colors and control applications, or frames, is given in the legend from the

right-hand side of the chart. Every rectangle in the chart is also assigned an identifier,

displayed inside the rectangle. This identifier can be a number representing the

instance number of a frame, or it can be a string representing the name and the

instance number of a task.

Figure 3.8 Output window

The lower part of the output window accommodates a list of simulation summaries for

each control application. A simulation summary displays the control performance of a

control application along with two normalized histograms depicting the input-output

36 3 Design and Implementation

and the sampling latency distributions, as they result from the simulation of the

system. The width of the bins in each histogram is equal to the smallest clock period

among the clock periods of the PEs that execute tasks owned by the application that

the histogram corresponds to. As the control applications handled by the SIMULATOR

are considered to have hard deadlines, the latencies in their execution must not exceed

their periods. This means that the last bin in a histogram should correspond to the

period of the application. This is valid in all the cases where no deadline misses are

encountered during simulation. If there are deadline misses though, we add an extra

bin, marked in red, which corresponds to a delay that is one clock cycle longer than

the application period.

The output window depicted in Figure 3.8 displays the results of the simulation of

three control applications, i.e. “App1”, “App2” and “App3”, on a multicore system

comprising two processing elements, i.e. “PE1” and “PE2”, connected through a

network switch, i.e. “NS1”. There are two dataflow links in the network: one between

the network interface of “PE1” and the network switch “NS1”, and another one

between the network interface of “PE2” and the network switch “NS1”. The TT

network is configured to handle five frames, i.e. “mSC3”, “mCA1”, “mSC2”, “mCA3”

and “mSC1”. Considering this system configuration, the Gantt chart includes four

timelines for the two dataflow links, one timeline for each direction, and two timelines

for the PEs. We give now a few examples of how the results should be interpreted.

The bottom timeline in the Gantt chart indicates that job 1 of task “S” of application

“App3” starts to execute on the processing element “PE1” at moment 0 and finishes its

execution after 1ms. A situation of preemption is shown on the same timeline at time t

= 10ms when the instance 1 of task “C” of application “App1” is preempted for 2ms by

the second instance of task “S” of application “App3”. The transmission of the first

instance of frame “mSC3” from “PE1” to “NS1” starts at t=1ms and it ends at

t=1.25ms. The simulation summary for application “App3” shows that the

performance criterion for this application evaluates to infinity, meaning that the plant

controlled by application “App3” is unstable in the current setup. We can see that in

about 66% of the cases the controller misses to deliver the control signal before

deadline, this being the reason for the instability.

Even though the SIMULATOR handles also generic applications that share the

computational resources with the control applications, only the data collected from the

control applications is displayed in the output window. This was a design decision

meant to avoid cluttering the view.

4. Design Optimizations

In this chapter we analyse the impact that different design decisions concerning the

hardware configuration, scheduling policies, task mapping, frame routing or frame

scheduling, have on the performance of the control applications.

4.1 Case Study: Three Inverted Pendulums

We chose to analyze the performance of three control applications running on a

multicore system. The control applications are responsible for simultaneously

stabilizing three inverted pendulums. This case study is inspired from [6].

Figure 4.1 Three inverted pendulums that are to be simultaneously stabilized using a
single multicore system. From [6].

The three inverted pendulums have different lengths () of 0.22m, 0.1m and 0.025m,

and natural frequencies () of approximately 6.7rad/s, 10rad/s and 20rad/s

respectively (√ ⁄). Each of the three pendulums can be described by the linear

transfer function

38 4 Design Optimizations

The pendulums are considered to be disturbed by continuous-time input noise with the

variance and discrete-time measurement noise with the variance .

The control applications implement discrete-time LQG controllers which are designed

to minimize the continuous-time cost function

∫ ()

We use this cost function as the control performance evaluation criterion. The cost

matrix in this case is (

).

The nominal sampling periods () of the controllers are chosen such that

 [3]. Table 4-1 presents the configuration of the control applications, including their

decomposition in tasks. The tasks are imposed the following precedence constraint: the

controller tasks depend on the sampler tasks and the actuator tasks depend on the

controller tasks.

Table 4-1 Configuration of the control applications

Application Sampling
period
[ms]

Task Task type BCET
[clock cycles]

WCET
[clock cycles]

A1

30

τS Sampler 1 1

τC Controller 2 3

τA Actuator 1 2

A2

20

τS Sampler 1 1

τC Controller 2 4

τA Actuator 1 2

A3

10

τS Sampler 1 1

τC Controller 2 3

τA Actuator 1 1

In the ideal case where the control applications execute at their nominal sampling

periods and they encounter no sampling jitter, no input-output latency or no input-

output jitter, the cost function evaluates to 3.206, 3.229 and 3.271, for A1, A2 and A3

respectively. In more realistic scenarios the latencies cannot be avoided, therefore the

costs are expected to increase. We analyse next a few of such scenarios.

In the cases where RM scheduling policy is employed we use the priorities defined in

in Table 4-2.

4.1 Case Study: Three Inverted Pendulums 39

Table 4-2 RM priority assignment

Application A1 A2 A3

Task τS τC τA τS τC τA τS τC τA
Priority 1 1 1 2 2 2 3 3 3

4.1.1 Single Processing Element Configuration

The simplest hardware configuration includes only one processing element, with all

tasks mapped to it.

Figure 4.2 Single PE configuration

The processing element is set to run with a clock period of 1ms. Considering the

WCET for the tasks given in Table 4-1, it can be determined that the processor is

overloaded, i.e. the processor utilization is 105%, and therefore we expect that not all

tasks finish execution before their deadlines (the processor utilization represents the

fraction of processor time spent in the execution of the task set). This configuration is

interesting for analyzing how the control applications handle the deadline miss

situations.

Case 1-1: RM Scheduling with Fixed Task Execution Times

In this case we employ a rate-monotonic scheduling policy and we consider the

computation time of each task to be equal to its WCET. The simulation is set to run

for 60ms, which corresponds to the hyper-period of the schedule.

According to the results of the simulation, depicted below, the cost function for

control application A1 evaluates to infinity. This indicates that application A1 fails to

stabilize its inverted pendulum. The reason for the instability is that in half of the

cases, application A1 does not finish before deadline. This results in an actual sampling

period of 60ms (i.e. twice as big as the nominal sampling period), which the controller

is not designed to handle. RM scheduling implies that the tasks of application A1 have

40 4 Design Optimizations

the lowest priority, causing them to be preempted by the higher priority tasks of A2

and A3.

Table 4-3 Simulation results for Case 1-1

We have to note that, given the fact that application A3 has the highest priority, it is

not affected by any scheduling delays, and therefore it achieves a good control

performance. Application A2, on the other hand, encounters a high input-output

latency of 12ms, compared to its total computation time of 7ms, which degrades the

QoC. The constant sampling latency does not have any influence on the control

performance of application A2 and it could be removed completely by configuring the

phase of the application to 5ms.

4.1 Case Study: Three Inverted Pendulums 41

Case 1-2: RM Scheduling with Random Task Execution Times

In this case we employ a rate-monotonic scheduling policy and the tasks are configured

to have random execution times. The simulation time was increased to 1s.

Using random execution times, between BCET and WCET, for all tasks, leads to

decreased processor utilization. This means that it is likely to encounter less deadline

misses for application A1. The simulation results confirm this expectation. Application

A1 encounters less deadline misses than before and it manages to stabilize the

pendulum, even though the control performance is poor (i.e. the cost, 4.851, is

relatively high). The costs for applications A2 and A3 are better than in the previous

case. This is because of their reduced input-output latency determined by the reduced

computation times.

Table 4-4 Simulation results for Case 1-2

42 4 Design Optimizations

Case 1-3: EDF Scheduling with Fixed Task Execution Times

In this case we analyse the behaviour of the three control applications under EDF

scheduling. The tasks are considered to have constant computation times equal to

their WCETs. The simulation was run for a period of 60ms.

Compared to Case 1-1, where we used RM scheduling, the results obtained in this case

are consistently better, in the sense that all three controllers manage to stabilize the

plants they are associated with. In this case application A3 misses its deadline in one

sixth of the cases and this causes a significant degradation of its QoC. By analysing

the task execution timing diagram in Table 4-5, we observe that the 6th instance of

application A3 does not finish in time. This is caused by the fact that at time t=50ms

when the jobs of application A3 are released they are assigned the same priority as of

all the other jobs already in the queue, all having the same absolute deadline d=60ms,

and therefore the jobs of application A3 have to wait for the other jobs to finish.

Table 4-5 Simulation results for Case 1-3

4.1 Case Study: Three Inverted Pendulums 43

Case 1-4: EDF Scheduling with Fixed Task Execution Times and 2x Clock Rate

In this case we employ EDF scheduling with fixed task execution times and we double

the clock rate of the processing element, i.e. the clock period is 500ns. This results in

halved WCETs for all the tasks. The simulation was run for a period of 60ms and the

results are displayed below.

All control applications finish in time and their control performance is improved.

Table 4-6 Simulation results for Case 1-4

44 4 Design Optimizations

4.1.2 Two Processing Elements Configuration

Using a faster processor to reach a desired control performance, i.e. to minimize the

total cost, is not always an option. The alternative is to use a multicore system

instead.

In this section we consider a hardware configuration that includes two processing

elements connected through a single dataflow link. Each processing element runs with

a clock period of 1ms. The TTNoC is configured to operate with a transmission clock

period of 250ns.

In our analysis we consider two possible ways of mapping the tasks to the processing

elements. The first task-to-PE mapping is depicted in Figure 4.3. It involves mapping

the sampler tasks to one processing element, while the remaining tasks are mapped to

the second processing element. Such a mapping may be appropriate in those cases

where a specialized processing element is used to process the measurement data.

4.1 Case Study: Three Inverted Pendulums 45

Figure 4.3 Task mapping 1: map the sampler tasks to PE1 and the rest of the tasks to
PE2

The definitions of the frames that are used to transfer data between the tasks are

given in Table 4-7.

Table 4-7 Frames corresponding to task mapping 1

Frame Associated
application

Source task Destination
task

Transmission
time [ms]

Priority Route

mSC1 A1 τS τC 0.5 1 N1-N2

mSC2 A2 τS τC 0.25 2 N1-N2

mSC3 A3 τS τC 0.25 3 N1-N2

Case 2-1: Task Mapping 1 - RM Scheduling and ET Frames

In this case we simulate the system configuration given in Figure 4.3. Both processing

elements employ rate-monotonic scheduling policies. All the frames in the network are

event-triggered. The simulation is set to run for 60ms.

The results of the simulation show that all applications finish in time and they

perform reasonably well. Application A3, which is the most sensitive to delays, does

not encounter any scheduling induced latencies. The only source for its increased

input-output latency is the transmission time of frame mSC3. Applications A1 and A2

experience increased input-output latencies because of preemption.

Table 4-8 Simulation results for Case 2-1

46 4 Design Optimizations

Case 2-2: Task Mapping 1 - EDF Scheduling and ET Frames

Under this specific system configuration, changing the scheduling policies from RM to

EDF does not bring any improvement in the control performance. The results that we

obtain are the same as in the previous case.

Table 4-9 Simulation results for Case 2-2

4.1 Case Study: Three Inverted Pendulums 47

Case 2-3: Task Mapping 1 - Static-cyclic Scheduling and ET Frames

Designed to demonstrate the capabilities of the simulator, this case evaluates the

performance of the control applications under static cyclic scheduling. The scheduling

tables are given in Appendix B. The schedule was not optimized for performance.

Instead it introduces more input-output jitter for all the three applications. This leads

to increased costs, i.e. degraded control performance.

Table 4-10 Simulation results for Case 2-3

48 4 Design Optimizations

We consider now a different mapping of the tasks to the processing elements. This

mapping is depicted in Figure 4.4.

Figure 4.4 Task mapping 2

4.1 Case Study: Three Inverted Pendulums 49

In order to ensure the data flow between the tasks we have to define new frames. They

are described in Table 4-11.

Table 4-11 Frames corresponding to task mapping 2

Frame Associated
application

Source task Destination
task

Transmission
time [ms]

Priority Route

mSC1 A1 τS τC 0.5 1 N2-N1

mCA1 A1 τC τA 0.25 1 N1-N2

mSC2 A2 τS τC 0.25 2 N2-N1

mSC3 A3 τS τC 0.25 3 N1-N2

mCA3 A3 τC τA 0.5 3 N2-N1

Case 2-4: Task Mapping 2 - RM Scheduling and ET Frames

The new system configuration was simulated employing RM scheduling policies on

both processing elements. The frames were configured as event-triggered frames.

The results of the simulation show an improvement in the performance of applications

A1 and A2. This is because their input-output latencies were decreased. Application A3

performs worse because of the additional frame transmission times that contribute to

an increased input-output latency.

Table 4-12 Simulation results for Case 2-4

50 4 Design Optimizations

Case 2-5: Task Mapping 2 - RM Scheduling and ET Frames on a Heterogeneous

System

In this simulation we cover the case of heterogeneous systems that contain processing

elements that are clocked at different rates. We configure the clock period of PE1 to

500ns, while PE2 runs with a clock period of 1ms. The results show an improvement in

the control performance of the applications because of the reduced input-output

latencies.

Table 4-13 Simulation results for Case 2-5

4.1 Case Study: Three Inverted Pendulums 51

4.1.3 Three Processing Elements Configuration

In this section we consider a hardware configuration that includes three processing

elements, each of them having the clock period of 1ms. The TT network that connects

them comprises three network switches. They are connected as depicted in Figure 4.5.

The network is configured to run with a clock period of 250ns.

Figure 4.5 Multicore system comprising three processing elements

52 4 Design Optimizations

Case 3-1: Single Application per PE

We consider first the case in which the applications are mapped to different processing

elements. As expected, the simulation results indicate an improved control

performance. There are no scheduling- and no communication-induced latencies. This

is the ideal mapping for this task set.

In a more realistic scenario, there would be more applications than the available

processing elements, or the applications would contain tasks that could be executed

simultaneously with other tasks, and therefore a different mapping would produce

better results.

Table 4-14 Simulation results for Case 3-1

4.1 Case Study: Three Inverted Pendulums 53

In the following cases we use the task-to-PE mapping depicted in Figure 4.6. We set

the phase of application A3 to 1ms. In order to determine how the frame routing

influences the QoC, we plan to use two different routings for the frame mSC3.

A first frame routing is depicted in Figure 4.6. The dashed lines in the picture indicate

the dataflow paths followed by the frames that carry data between the connected

tasks.

Figure 4.6 Frame Routing 1

Table 4-15 contains the configurations of the frames handled by the TT network. We

have highlighted the table entry corresponding to frame mSC3 as our further analysis

focuses on the performance penalties that delays in the transmission of this frame

bring.

Table 4-15 Frames configuration

Frame Associated
application

Source
task

Destination
task

Sending
time (ms)

Priority Route

mCA1 A1 τC τA 0.75 1 N1-NS1-N2

mSC3 A3 τS τC 0.25 2 N1-NS1-NS3-N3

mSC2 A2 τS τC 1 1 N2-NS1-NS3-N3

mCA2 A2 τC τA 0.25 1 N3-NS3-NS1-N2

Case 3-2: Frame Routing 1 - RM scheduling and ET frames

In this case we employ rate-monotonic scheduling on the three PEs and we use event-

triggered frames. The results for a 60ms simulation are given below.

54 4 Design Optimizations

We can notice the input-output jitter in the execution of application A3, which

appears to be caused by high transmission delays encountered by the first, the third

and the fifth instances of frame mSC3. By inspecting the frame transmission timing

diagram in Table 4-16, we can see that frame mSC3 is delayed by frame mSC2. This

happens because the two frames share a dataflow segment, consisting of dataflow links

[NS1-NS3] and [NS3-PE3], which is entered by frame mSC2 a little before frame mSC3.

As preemption is not supported in data transmission, frame mSC3 has to wait for the

other frame to be transmitted, even though it has a higher priority.

Table 4-16 Simulation results for Case 3-3

4.1 Case Study: Three Inverted Pendulums 55

Case 3-3: Frame Routing 1 - Static-cyclic scheduling with TT and ET frames

As described in chapter 2, the TTNoC implements the timely block policy to deal with

conflicts between TT and ET transmissions. Therefore one way reduce the

transmission latency of frame mSC3 is to configure mSC3 as a TT frame while keeping

mSC2 as ET. This ensures that mSC2 does not delay the transmission of mSC3.

Besides mSC3, we also configure mCA1 and mCA2 as TT frames and we employ a

static task scheduler designed to reduce the input-output latencies for applications A1

and A2. Both the task and the communication scheduling tables are given in Appendix

B.

The results of the simulation, presented below, confirm an improvement in the control

performance of application A3, as its input-output latency is reduced and the jitter is

removed completely. There is also an improvement in the QoC of applications A1 and

A2.

Table 4-17 Simulation results for Case 3-5

56 4 Design Optimizations

4.1 Case Study: Three Inverted Pendulums 57

Case 3-4: Frame Routing 2 - RM scheduling and ET frames

Another possible way of reducing the transmission latency of frame mSC3, in a context

where all the frames are event-triggered, is to change its dataflow path as depicted in

Figure 4.7. The rerouting reduces the length of the network segment shared with

frame mSC2 to only one dataflow link, i.e. [NS3-N3].

Figure 4.7 Frame Routing 2: frame mSC3 routed via NS2

The new configuration of the frames is given in Table 4-18.

Table 4-18 Frame definitions

Frame Associated
application

Source
task

Destination
task

Transmission
time [ms]

Priority Route

mCA1 A1 τC τA 0.75 1 N1-NS1-N2

mSC3 A3 τS τC 0.25 1 N1-NS1-NS2-NS3-N3

mSC2 A2 τS τC 1 2 N2-NS1-NS3-N3

mCA2 A2 τC τA 0.25 1 N3-NS3-NS1-N2

By simulating the system for a period of 60ms, we get the results from below. Because

it has a shorter transmission time, frame mSC3 manages to reach NS3 before frame

mSC2 does, while taking a longer route.

58 4 Design Optimizations

Table 4-19 Simulation results for Case 3-2

5. Conclusion

In this thesis we have proposed a tool that simulates control applications running on

TTNoC based multicore systems. This tool provides an easy, quick and efficient way

to evaluate the QoC of the simulated control applications. It supports highly

customizable multicore system architectures.

We demonstrated de functionality of the SIMULATOR by simulating various system

configurations. Based on the results of the simulations we could identify causes for

degraded control performance and we suggested ways to address them. The

simulations also revealed the importance of the design decisions concerning the

hardware configuration, scheduling policies, task mapping, frame routing or frame

scheduling.

6. Bibliography

[1] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications, Boston: Kluwer Academic Publishers, 1997.

[2] F. Cottet, J. Delacroix and Z. Mammeri, Scheduling in Real-Time Systems, John

Wiley & Sons Ltd, 2002.

[3] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory and

design, Prentice Hall, 1997.

[4] D. Tămaș–Selicean, Design of Mixed-Criticality Applications on Distributed Real-

Time Systems, Kongens Lyngby, Denmak: Department of Applied Mathematics

and Computer Science, DTU, 2014.

[5] A. Cervin and B. Lincoln, Jitterbug 1.23 Reference Manual, Lund, Sweden:

Department of Automatic Control, Lund University, 2010.

[6] A. Cervin, Integrated Control and RealTime Scheduling, Lund, Sweden:

Department of Automatic Control, Lund Institute of Technology, 2003.

[7] S. Hong, X. Sharon Hu and M. D. Lemmon, “Reducing Delay Jitter of Real-Time

Control Tasks through Adaptive Deadline Adjustments,” Real-Time Systems

(ECRTS), 22nd Euromicro Conference, pp. 229-238, 2010.

[8] A. Cervin, D. Henriksson, B. Lincoln, J. Eker and K.-E. Årzén, How Does Control

Timing Affect Performance? Analysis and Simulation of Timing Using Jitterbug

and TrueTime, IEEE Control Systems Magazine, 2003, pp. 16-30.

[9] C. Paukovits and H. Kopetz, Concepts of Switching in the Time-Triggered

Network-on-Chip, The 14th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications, 2008, pp. 120 - 129.

[10] S. Samii, A. Cervin, P. Eles and Z. Peng, Integrated Scheduling and Synthesis of

0 61

Control Applications on Distributed Embedded Systems, Design, Automation &

Test in Europe Conference & Exhibition, 2009, pp. 57-62.

Appendix A

System Configuration File – XML schema

Listing 0-1 System configuration file – XML schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:complexType name="genericApplicationType">

 <xs:sequence>

 <xs:element name="Tasks">

 <xs:complexType>

 <xs:sequence maxOccurs="1">

 <xs:element maxOccurs="unbounded" name="Task" type="genericAppTaskType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="TaskDependencies">

 <xs:complexType>

 <xs:sequence maxOccurs="1" minOccurs="1">

 <xs:element maxOccurs="unbounded" minOccurs="0" name="TaskDependency"

 type="taskDependencyType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="UseFixedTaskExecutionTimes" type="xs:boolean" use="required"/>

 </xs:complexType>

 <xs:complexType name="genericAppTaskType">

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="BCET" type="xs:int" use="required"/>

 <xs:attribute name="WCET" type="xs:int" use="required"/>

 <xs:attribute name="Priority" type="xs:int" use="optional"/>

 <xs:attribute name="Period" type="xs:decimal"/>

 </xs:complexType>

 <xs:complexType name="controlApplicationType">

 <xs:sequence>

 <xs:element name="Tasks">

 <xs:complexType>

 <xs:sequence maxOccurs="1">

System Configuration File – XML schema 63

 <xs:element maxOccurs="unbounded" name="Task" type="controlAppTaskType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="TaskDependencies">

 <xs:complexType>

 <xs:sequence maxOccurs="1" minOccurs="1">

 <xs:element maxOccurs="unbounded" minOccurs="0" name="TaskDependency"

 type="taskDependencyType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="UseFixedTaskExecutionTimes" type="xs:boolean" use="required"/>

 <xs:attribute name="Period" type="xs:decimal" use="required"/>

 <xs:attribute name="Phase" type="xs:decimal"/>

 <xs:attribute name="G" type="xs:string" use="required"/>

 <xs:attribute name="H_S" type="xs:string"/>

 <xs:attribute name="H_C" type="xs:string"/>

 <xs:attribute name="H_A" type="xs:string"/>

 <xs:attribute name="CostMatrix" type="xs:string" use="required"/>

 <xs:attribute name="InputNoiseCovarianceMatrix" type="xs:string" use="required"/>

 <xs:attribute name="MeasurementNoiseCovarianceMatrix" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="controlAppTaskType">

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="BCET" type="xs:int" use="required"/>

 <xs:attribute name="WCET" type="xs:int" use="required"/>

 <xs:attribute name="Priority" type="xs:int" use="optional"/>

 <xs:attribute name="Type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Sampler"/>

 <xs:enumeration value="Controller"/>

 <xs:enumeration value="Actuator"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="taskDependencyType">

 <xs:attribute name="ProducerTaskId" type="xs:int" use="required"/>

 <xs:attribute name="ConsumerTaskId" type="xs:int" use="required"/>

 </xs:complexType>

 <xs:complexType name="processingElementType">

 <xs:sequence>

 <xs:element maxOccurs="1" minOccurs="1" name="HostedTasks">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="HostedTask">

 <xs:complexType>

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="ApplicationId" type="xs:int" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="0" name="SchedulingTable">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="Entry">

 <xs:complexType>

 <xs:attribute name="Time" type="xs:decimal" use="required"/>

 <xs:attribute name="Duration" type="xs:decimal" use="required"/>

64 Appendix A

 <xs:attribute name="TaskId" type="xs:int" use="required"/>

 <xs:attribute name="ApplicationId" type="xs:int" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Period" type="xs:decimal" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="ClockPeriod" type="xs:decimal" use="required"/>

 <xs:attribute name="SchedulingPolicy" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="FP"/>

 <xs:enumeration value="SC"/>

 <xs:enumeration value="EDF"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="networkComponentType">

 <xs:sequence>

 <xs:element name="SchedulingTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="Entry">

 <xs:complexType>

 <xs:attribute name="Time" type="xs:decimal" use="required"/>

 <xs:attribute name="Duration" type="xs:decimal" use="required"/>

 <xs:attribute name="FrameId" type="xs:int" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Period" type="xs:decimal" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="Name" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="frameType">

 <xs:sequence>

 <xs:element name="DataFlowPath">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="NetwComp" minOccurs="2">

 <xs:complexType>

 <xs:attribute name="Id" type="xs:int" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Id" type="xs:int" use="required"/>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="AssociatedAppId" type="xs:int" use="required"/>

 <xs:attribute name="SourceTaskId" type="xs:int" use="required"/>

 <xs:attribute name="DestinationTaskId" type="xs:int" use="required"/>

 <xs:attribute name="Size" type="xs:int" use="required"/>

 <xs:attribute name="Priority" type="xs:int"/>

 <xs:attribute name="Type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ET"/>

System Configuration File – XML schema 65

 <xs:enumeration value="TT"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="SystemConfiguration">

 <xs:complexType>

 <xs:all>

 <xs:element name="Applications">

 <xs:complexType>

 <xs:sequence>

 <xs:choice maxOccurs="unbounded">

 <xs:element name="ControlApplication" type="controlApplicationType"/>

 <xs:element name="GenericApplication" type="genericApplicationType"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ProcessingElements">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="1" name="ProcessingElement"

 type="processingElementType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="TTNetwork">

 <xs:complexType>

 <xs:all>

 <xs:element name="NetworkComponents">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="NetworkComponent"

 type="networkComponentType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element minOccurs="1" name="DataFlowLinks">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="DataFlowLink">

 <xs:complexType>

 <xs:attribute name="FromNetwCompId" type="xs:int" use="required"/>

 <xs:attribute name="ToNetwCompId" type="xs:int" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 <xs:attribute name="ClockPeriod" type="xs:decimal" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Frames">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="Frame" type="frameType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

</xs:schema>

Appendix B

Static Scheduling Tables for Case 2-3

Table 0-1 Static task scheduling table on PE1

Time

[ms]

Duration

[ms]

Application Task

0 1 A3 τS

1 1 A1 τS

2 1 A2 τS

10 1 A3 τS

20 1 A3 τS

21 1 A2 τS

30 1 A3 τS

31 1 A1 τS

40 1 A3 τS

41 1 A2 τS

50 1 A3 τS

Table 0-2 Static task scheduling table on PE2

Time

[ms]

Duration

[ms]

Application Task

2 3 A3 τC

5 1 A3 τA

6 3 A1 τC

Static Task and Communication Scheduling Tables for Case 3-3 67

9 4 A2 τC

13 3 A3 τC

16 1 A3 τA

17 2 A2 τA

19 2 A1 τA

22 3 A3 τC

25 1 A3 τA

26 4 A2 τC

30 2 A2 τA

32 3 A3 τC

35 3 A1 τC

38 1 A3 τA

39 2 A1 τA

42 3 A3 τC

45 1 A3 τA

46 4 A2 τC

50 2 A2 τA

52 3 A3 τC

55 1 A3 τA

Static Task and Communication Scheduling Tables for

Case 3-3

Table 0-3 Static task scheduling table on PE1

Time

[ms]

Duration

[ms]

Application Task

1 1 A3 τS

2 1 A1 τS

3 3 A1 τC

11 1 A3 τS

21 1 A3 τS

31 1 A3 τS

68 Appendix B

32 1 A1 τS

33 3 A1 τC

41 1 A3 τS

51 1 A3 τS

Table 0-4 Static task schedule table on PE2

Time

[ms]

Duration

[ms]

Application Task

0 1 A2 τS

8 2 A1 τA

12 2 A2 τA

20 1 A2 τS

32 2 A2 τA

38 2 A1 τA

40 1 A2 τS

52 2 A2 τA

Table 0-5 Static task schedule table on PE3

Time

[ms]

Duration

[ms]

Application Task

3 3 A3 τC

6 1 A3 τA

7 4 A2 τC

13 3 A3 τC

16 1 A3 τA

23 3 A3 τC

26 1 A3 τA

27 4 A2 τC

33 3 A3 τC

36 1 A3 τA

43 3 A3 τC

46 1 A3 τA

47 4 A2 τC

Static Task and Communication Scheduling Tables for Case 3-3 69

53 3 A3 τC

56 1 A3 τA

Table 0-6 Static frame schedule table on NI1

Time

[ms]

Duration

[ms]

Frame

2 0.25 mSC3

6 0.75 mCA1

12 0.25 mSC3

22 0.25 mSC3

32 0.25 mSC3

36 0.75 mCA1

42 0.25 mSC3

52 0.25 mSC3

Table 0-7 Static frame schedule table on NI3

Time

[ms]

Duration

[ms]

Frame

11 0.25 mCA2

31 0.25 mCA2

51 0.25 mCA2

Table 0-8 Static frame schedule table on NS1

Time

[ms]

Duration

[ms]

Frame

2.25 0.25 mSC3

6.75 0.75 mCA1

11.5 0.25 mCA2

12.25 0.25 mSC3

22.5 0.25 mSC3

31.5 0.25 mCA2

32.25 0.25 mSC3

70 Appendix B

36.75 0.75 mCA1

42.25 0.25 mSC3

51.5 0.25 mCA2

52.25 0.25 mSC3

Table 0-9 Static frame schedule table on NS3

Time

[ms]

Duration

[ms]

Frame

2.5 0.25 mSC3

11.25 0.25 mCA2

12.5 0.25 mSC3

22.75 0.25 mSC3

31.25 0.25 mCA2

32.5 0.25 mSC3

42.5 0.25 mSC3

51.25 0.25 mCA2

52.5 0.25 mSC3

