Application-Aware Optimization of Redundant Resources for the Reconfigurable
Self-Healing eDNA Hardware Architecture

Michael Reibel Boesen, Jan Madsen, Paul Pop
Technical University of Denmark, DTU Informatics
{mrb,jan, pop@imm.dtu.dk}

Abstract

In this paper we are interested in the mapping of
embedded applications on a dynamically reconfigurable
self-healing hardware architecture known as the eDNA
(electronic DNA) architecture. The architecture consists
of an array of cells interconnected through a 2D-mesh
topology. Each cell consists of a processor and an
Arithmetic Logic Unit (ALU). Applications are modeled
as task graphs. We propose a Tabu Search-based
approach for the mapping of an application to the
reconfigurable architecture, such that the performance is
maximized. When faults occur, the self-healing moves the
affected functionality to spare-cells. We optimize the
number and placement of spare-cells such that the
performance overhead is minimized in the fault-free
scenario and the application degrades gracefully in case
of faults. This has been done using three different spare-
cell placement strategies. We use Monte Carlo simulation
to determine the average performance overhead increase
due to fault occurrences. The approach has been
evaluated using a large number of benchmarks and have
shown that the performance loss is reduced with 16% for
the best spare-cell placement strategy.

1. Introduction

There has been a lot of research on mapping applications
onto MultiProcessor System-on-Chips (MPSoCs) [4,7].
However, due to the high complexity, smaller transistor
sizes, higher operational frequency, and lower voltage
levels, the number of transient and permanent faults has
increased considerably [8]. Researchers have used costly
hardware redundancy to tolerate failures in processing
elements [10]. To reduce hardware costs, two fault-
tolerance approaches have been proposed: time-
redundancy, where the functionality is re-executed to
tolerate a transient fault [9], and spatial-redundancy, such
as active replication [13]. Few researchers have studied
the performance impact of redundancy on the application
[16]. In [16] the authors use checkpointing and active
replication to synthesize fault-tolerant hard real-time
systems.

978-1-4577-0599-1/11/$26.00 ©2011 IEEE 66

In this paper we are concerned with multiple, potentially
simultaneous, permanent faults. Many of the current
approaches to tolerating permanent faults have the
drawback that they use massive amounts of redundancy to
allow recovery without explicit error detection (i.e., fault
““masking"). One solution is to use error detection
followed by task migration, where the tasks are moved to
a healthy processing element. However, task migration
incurs a large overhead in MPSoCs [3], due to the high
amount of data that needs to be transferred between the
individual processing nodes.

To solve the problem of fault-tolerance in hardware,
several researchers have considered bio-inspired
reconfigurable architectures such as [11,14]. In this paper
we consider a bio-inspired dynamically reconfigurable
hardware architecture (named eDNA (for electronic
DNA) [1,17-19] capable of self-organization and self-
healing (patent pending, however, the work in this paper
is not only applicable to this architecture).

We are interested to optimize the number and placement
of redundant spare-RUs (reconfigurable units) such that
the permanent faults are tolerated and the performance
overhead of the application is minimized, even in case of
multiple permanent faults. We have proposed an approach
for the mapping of an application to the architecture and
the distribution of spare-RUs, such that the performance
is maximized. The approach is based on a Tabu Search
[5]. We use Monte Carlo simulation to determine, for a
given number of spare-RUs and their placement, the
average performance overhead increase due to fault
occurrences and consequently, self-healing.

The paper is organized as follows. Section 2 introduces
our eDNA architecture. Section 3 describes the model of
the eDNA architecture and in particular the architecture,
application and fault model used. Section 4 introduces the
problem as well as discusses the redundancy optimization
approach, section 5 explains details about the
optimization strategy used, section 6 presents and
discusses the experimental results and finally, the
conclusion is presented in section 7.

2. The eDNA Concept

Figure 1 shows an overview of the eDNA architecture
which consists of a distributed array of multiple
homogenous processing units known as electronic cells
(cells). The application to be executed on the architecture,
called the eDNA program, is programmed using the
eDNA programming language [1,17,18]. The compiled
binary version of the eDNA program, is fed to all cells of
the architecture. Each cell stores a copy of the binary
version in a local RAM block. The compiled version of
the eDNA program divides the program into tasks, which
are considered as genes of the DNA. When a cell has to
be configured, it finds its corresponding gene from the
stored eDNA program and configures the cell into the
function (or task) given by the corresponding gene — this
process is known as self-organization. In terms of logical
granularity, one gene is equivalent to one arithmetic
operation of the eDNA program.

Each cell contains a configuring unit and a computing
unit. The task of the configuring unit is to identify the
gene of the cell and to configure the computing unit to
carry out this function. In our prototype implementation
the computing unit is a 32-bit ALU and the configuring
unit is a Xilinx PicoBlaze [6], which is an 8-bit VHDL
synthesizable soft-core provided by Xilinx. The
PicoBlaze is only responsible for executing the ribosomal
DNA program (referring to the intracellular organelle in
biological cells, responsible for synthesizing proteins and
consequently functionality of the cells). This program
performs the self~organizing and self-healing algorithms
of the eDNA architecture. All cells contain a copy of this
program. At runtime when no faults occur a 32-bit ALU
is used for data processing, where it performs an
operation on the two 32-bit operands A and B. A detailed
block diagram of a cell can be seen in figure 2.

Observe that no centralized processing unit is present.
The cells complete the self-organizing and self-healing
completely autonomous.

The cells communicate with each other through a 2D-
mesh-8 architecture, where each cell communicates with
at most 8 adjacent neighbors depending on position. We
assume that the packet transfer in the network is
implemented with a fault-tolerant handshaking protocol,
which is capable of routing around faulty links, such as
[20].

2.1 Self-organization: Gene
Placement

Self-organization is about interpreting the eDNA program
and herby creating a physical mapping between cells and
the tasks of the program. When all cells have received the

Mapping and

67

complete eDNA program the self-organization begins.
During self-organization each cell locates its gene and
configures the 32-bit ALU accordingly, by moving the
particular genes to a block RAM shown in figure 2 as the
Gene RAM. Each cell locates its gene by using its cell ID,
which identifies its position in the array. The cell ID is an
integer from 0 to N-1 (where N is the number of cells)
The cell ID is distributed together with the eDNA and is
consequently, responsible for mapping the functionality
of the eDNA program onto the different cells. The self-
organization algorithm works by counting the number of
genes and comparing it to the cell ID of this eCell. When
the number of genes equals the cell ID the gene of this
eCell is found and self-organization is complete.

Ribo-somal

eDNA DNA

7

ey

Figure 1 Overview of the eDNA architecture.

To other eCells

4
32 :ALUop

I
IF/WHILE EXPR
e<s o

* Shift
etc.

Figure 2 cell Block Diagram.

2.2 Self-healing

A crucial part of the self-healing process is the fault-
detection. However, it is not important for this paper and
has been left out due to space limitations. Details about it
can be found in [18]. It is however, important to realize
that the cells cooperatively test each other — therefore
fault-detection and self-healing of a faulty cell is done by
another cell than the one, which is deemed faulty.

When a fault is detected the application is paused and the
self-healing algorithm is activated, which consists of the
following steps:

1. Restore the gene of the faulty cell at a spare cell.
2. Restore the gene state at the spare cell

When both steps are completed the application resumes.
Step 1 is the restoration of the functionality of the faulty
cell at a spare cell. It is completed by remapping the cell
ID of the faulty cell to a spare cell and then broadcast a
message to all cells requesting them to run the self-
organizing algorithm again. This will cause the non-faulty
cells to speak with the spare cell instead of the faulty cell
and will cause the spare cell to realize that it is now an
active cell and participating in running the application.

Step 2: The gene state is basically the two registers (A
and B of figure 2) holding the operands of the cells ALU.
Recovering the gene state is quite complex and is not the
scope of the paper, but information about it can be found
in [18]. An example of the self-healing can be found in
section 3.5, where we formally describe how the self-
healing is performed.

More information about the eDNA architecture can be
found in [1,17-19]

3. eDNA System Model

This section will describe the model of the eDNA
architecture, used in the optimization approach. Figure 3
shows the system model of the eDNA architecture.

3.1 Architecture model

The eDNA architecture H consists of a distributed array
of N homogenous cells, which are interconnected through
a 2D mesh topology. The homogenous cells can be
assigned one of three different roles (as seen in figure 3):
(1) func-cell (depicted in dark-gray) implement a part of
the application; (2) spare-cell (depicted in black) are at
the time of configuration idle, but in case of a fault in
another cell, it can be configured to take the function of
the faulty cell; (3) I/O-cell (depicted in light-gray) are
located along the left and right edges of the chip and they
do not perform any part of the application and can be
viewed as I/O pins. Furthermore, observe in figure 3 that
each cell C;EN is uniquely identified by an integer i,
called the cell-ID.

3.2 Application model

The applications can be modeled as a directed acyclic
task-graph G=(V,E). Each node 1;EV represents a task,
which implements part of the functionality of the
application. An edge e;; between t; and 7; means that 1;

68

receives an input from 7, The tasks can start when all
their inputs have arrived and issue all the outputs when
they terminate. An example of a task-graph representation
of an application is depicted in figure 3. The task graph G
is polar i.e., there is a source node 7y, and a sink node
Time (Which can be added as dummy nodes (node D on
figure 3) if they do not exist). The end-to-end delay g of
the graph G is determined by the finishing time of 7.
Note, that 8 is given by the length of the critical path.

Func-eCell

eDNA platform H
1/0-eCell— [E] @
are-eCel

Sp: Cell
o0
i oF0,

A)n

T?(a) i T°| (4)
1
l@

Figure 3 System model example and self-organization.

cccccc

T

sink

Application

eCell-ID

G

omm.

3.3 Self-organization

The functionality of each task 7,EV is mapped to a func-
cell denoted by M(z). This mapping is stored in a
mapping table in all cells. All cells will have access to the
functionality of all tasks. The memory (used to store the
tasks information) is protected by data integrity tests, such
as parity codes, and can be considered fault-tolerant.
Hence, if a func-cell implementing t; fails, the other func-
cells will have a copy of the task, which will be
implemented in a spare-cell after self-healing (see section
3.5).

Each task 7; also contains information about which tasks
are connected to 7, i.e., it contains all outgoing edges of
the type e;;. This information can be used to search the
network for the cell implementing 7; and consequently, a
communication path can be set up. Given (1) an edge
e;;EE, (2) the mapping of 7; and 7;, (3) the amount of data
communicated between 1; and z; and (4) a given routing
algorithm, we can determine the communication cost c;;.

Note the difference between self-organization and
mapping. The mapping is performed offline and describes
which func-cell each task is mapped to. The self-
organization is the process where each task interprets the
mapping and implements the task.

3.4 Fault model
We are interested in tolerating up to £ permanent faults in
func and spare-cells — I/O cells are ignored in this study.

(c)

Figure 4 Placement strategies (a) (UD) the task-graph,
(b) (UD) initial mapping, (c) (UD) self-healing, (d)

The value of & depends on the particular architecture and
application and is given by the developer. The fault model
is in this case focused on permanent faults, but it could be
extended to transient faults as well by adding a periodic
checking of failed func-cells to see if the fault detected
was a transient one. Observe that we in the model only
consider permanent faults in the func-cells.

J'o

(c)
Figure 5 Self-healing example: (a) the task-graph, (b)
initial mapping, (c) self-healing.

3.5 Self-healing

If a fault is detected, the procedure known as self-healing
is activated. The first step is to find the nearest spare-cell,
which should take over the functionality of the failed cell.
Local memory of the cell contains a list of spare-cells;
their cell-ID and placement as mentioned in 3.3. Each cell
implementation contains the functionality to compute the
Manbhattan distances between two cells. Based on this
metric, the nearest spare-cell Cgp,. can be selected. In
figure 5 we have the task graph from figure 5(a) mapped
to the architecture in figure 5(b). C, suffers a permanent
fault, which triggers the self-healing process. The nearest
spare-cell is calculated to be C;. In the next step, Cypare (in
the example, C;) is labeled with the cell-ID of the faulty
func-cell (in the example, C,), and the self-organization
process (described section 3.3) is invoked. Cqr Will now
implement the failed functionality (to which it has access,
in the form of the task-graph and which in figure 5 is z,)
and all cells are notified of this new mapping and
consequently update the mapping tables. This means that
once the self-healing is done, we will have a new physical
mapping of the application, i.e., a task has been moved,
but the mapping between task and cell-ID is still the
same. Note, that the new mapping may result in a
different c;, depending on, which spare-cell is used for
self-healing. This might lead to an increase of 6 due to
the self-healing, captured by 4, which is termed the

69

8¢ = 38, A = 46%

8¢ = 28, A = -6.66%
(e)

Naive fault specific mapping 0 faults, (e) Naive fault
specific mapping 4 faults.

overhead increase. Self-healing is similar, but not
identical to, task migration. The self-healing is a simpler
form of task migration where, for instance, it is not
necessary to physically move the task, since all cells have
access to all tasks.

4. Problem Formulation

The problem we are addressing in this paper can be
formulated as follows: Given (1) an eDNA architecture
with func- and I/0-cells, N)UNj0 (2) an application G
and (3) the number £ of permanent faults to be tolerated,
we are interested to determine (i) the number |Npgre2k|
spare-cells, (ii) the placement P(Cj)=(x,y), where (x,y)
represents the 2D location of each spare-cell C; and (iii)
the mapping M(z;) of each task 7,EV in the application
such that the end-to-end delay Jd; of the application is
minimized in the fault-free scenario, and (iv) the average
A4g, due to self-healing is minimized in case of faults, i.e.,
the application degrades gracefully.

We will in the following show that there are several
strategies with which to solve all of the four sub goals.

4.1 Spare-cell placement strategies

Consider k=4 to be tolerated, figure 4(b) shows a
mapping of the application G from figure 4(a) on an
architecture with 4 spare-cells. Note that the numbers in
the boxes in the figure refer to the task-numbers seen on
figure 4(a). (For the sake of simplicity, we have removed
the I/O-cells.) In the eDNA architecture communication
between neighboring cells takes 3-6 times longer than the
execution of a task. Therefore in our model we also
assume this relationship and consequently, ignore the
execution time of the individual tasks. The end-to-end
delay dg for figure 4(b) is 26. The mapping has been done
such that d; is minimized. In the example (figure 4 (b)) 4
spare-cells have been placed uniformly on the
architecture. This is the simplest form of placement
denoted with uniform distribution (UD). Considering this
mapping and XY-routing, the communication cost that
results is depicted between each communicating cell.
However, such a placement will lead to a large reduction

in performance in case of faults. Let us consider figure
4(c), where we have 4 permanent faults, depicted with an
**X". The self-healing will react to these faults by moving
the affected functionality to the new mapping
configuration as depicted in figure 4(c). This new
mapping will result in a performance degradation to dg =
38 (and consequently a Ag = 46%), due to the increased
communication cost needed between the spare-cells.
Introducing more spare-cells, beyond what is required for
tolerating 4 faults, such that the average distance to a
spare-cell is minimized, can reduce these communication
costs. This, however, will increase the cost of the
architecture (i.e. more cells equals more power and area).
Another solution, depicted in figure 4(d) is to place the
spare-cells such that the communication cost in case of
faults are minimized (figure 4 (e)). However, (i) in this
case the d; of the application assuming no faults will
increase to 30 and (ii) it may not be a good placement for
a different fault scenario. The challenge is to find a
placement of spare-cells, which obtains a low delay in
case of no faults and which produces the smallest increase
for any fault scenario of k-faults.

(a) (b)
Figure 6 (a) initial mapping OFA, (b) initial mapping
MD d=1

If we allow the moving of spare-cells from the uniform
configuration, the best solution for the fault-free scenario
is where the spare-cells are moved away from the
communication paths of the application as depicted in
figure 6(a) and named O-faults-anticipated (OFA). The
figure clearly shows that OFA utilizes the freedom of
spare-cell placement to the fullest by moving all spare-
cell out along the edges. Furthermore, the critical path is
also very compact, which will reduce the end-to-end
delay Jg. The compactness also explains the bad
performance when faults are introduced, because many of
the func-cells on the critical path share the same nearest
spare-cell. Which means that once multiple faults in the
critical path occur they will increase the delay
dramatically.

The third approach is a combination of UD and OFA,
where we allow the movement of spare-cells from their
initial uniform configuration out of the communication
paths of the application, but add a constraint which
ensures that all cells as a minimum have one spare-cell

70

within a radius of d cells. Figure 6(b) shows an example
of this, where d=/. This approach is called minimum
spare-cell distance (MD). MD will not spread the spare-
cells out too much (compared to OFA). However, MD still
has enough freedom to place the critical path tasks close
to each other. This should reduce d; for the fault free
scenario and once faults are introduced all func-cells are
quite close to a spare-cell and consequently the Ag
overhead increase will not be as large as with OFA on
average.

5. Optimization strategy
Our optimization strategy consists of three steps:

(1) In the first step we decide the initial number |Ng| of
spare-cells and place them uniformly on the architecture.
The initial number of spares is such that |Nya|>k and the
distance between spare-cells is not too large.

(2) In the second step we decide the mapping of the
application G on N, such that the end-to-end delay d or
the application completion time is minimized for the
Sfault-free scenario. We find the mapping using a Tabu
Search (TS) optimization metaheuristic, which minimizes
d¢ of the application G (see section 5.1). TS considers the
placement approaches: OFA (figure 6 (a)), UD (figure 4
(b)) and MD (figure 6 (b)) with different radiuses d. This
means that all tasks might be relocated. Note that this may
also include relocating spare-cells.

(3) In the third step we evaluate the robustness of the
system (architecture and mapping of application) to
permanent faults, given a mapping M and a placement P
of the |Npar| spare-cells produced in step (2). This is time
consuming, since it has to consider a large number of
possible fault scenarios, consequently it cannot be
performed inside the TS. Therefore the evaluation will be
performed using Monte Carlo Simulation (MCS) [15].
The MCS will introduce faults in random cells, which
then will cause the architecture to self-heal and
consequently change the mapping resulting in an
increased d;. The MCS will perform 10,000 iterations as
follows: (1) Select between 0 to k random cells and
introduce a permanent fault in each of them; (2) invoke
self-healing to move the failed functionality resulting in a
new mapping and (3) for each simulation find and record
the J; increase. This increase will be averaged over all
simulations, denoted with A4;. The result is the average
increases in g after self-healing due to permanent faults,
captured by 4. The designer will iterate several times
through these steps using different values for |N.| until
the desired implementation is obtained, which has a good
performance in the fault-free scenario (Js) and degrades
gracefully in case of permanent faults (4g).

5.1 Cost function

Inside the TS we use the critical path CP; of graph G as a
cost function. This will give us the end-to-end delay J; of
the application. For each task z; we know the execution
time E; of a cell (because they are homogenous).
Considering a mapping M and the XY-routing employed,
we can determine the communication costs c¢;;. The
simplest way of doing it would be to just calculate the
distance in number of hops from 7; to 7. However, this is
imprecise because it will not take the queuing time
(packets waiting to be routed due to congestion) into
account. Instead, we will calculate the communication
cost ¢;; for an edge e;; by adding: (1) the distance in
number of hops from 1, to 7; and (2) the queuing time
associated with data travelling from z; to 7. The queuing
time is the time data waits in a buffer at each router
because of traffic. This means that in order to calculate
the queuing time it is necessary to schedule the traffic in
the mesh network. For the purpose of calculating (2) we
have decided to use List Scheduling (LS) [12] to get a
reasonable estimate of the queuing times. (2) works in the
following way. The tasks are mapped to a network model
of the 2D-mesh NoC. Then the task graph is simulated on
the network model in order to study the data flow and
consequently compute the queuing times. We call this
approach for calculating the critical path LSXY. Observe,
that this cost function can be used regardless of
interconnect-architecture used. Only the way the critical
path is found is different.

5.2 Tabu Search-based mapping

We use Tabu Search (TS) [5] metaheuristic to decide the
mapping M for the tasks and the placement P of the spare-
cells. TS uses design transformations (moves) to search
the solution space. The neighbors of the current solution,
which can be obtained through performing the moves, are
called the candidate set.

We consider a single type of move, which swaps the
functionality (i.e. tasks) of two cells. We consider two
types of cells for the swap: (i) cells that implement the
tasks of the current application, from the set C; | M(t)=C,
V 1; EV and (ii) spare-cells, from the set |Nyya|. Thus, a
move would either swap the mapping of the tasks or
change the placement of a spare-cell by swapping its
position with a func-cell.

The candidate set can become prohibitively large and
evaluating every move using the LSXY cost function
would thus take too much time. We reduce the candidate
set to speed up the search without degrading the quality of
the final solution. Figure 7 shows how the candidate set is
reduced. Instead of evaluating every move we only
evaluate the moves that might improve the solution. At
each iteration of the TS, TS searches the task graph G for
the critical path (as described in section 5.1) also using

71

the placement of the different cells in the hardware
architecture A. Then it starts from the root of the critical
path and examines where the neighbors to this is located.
In the case of figure 7(b) the cell implementing , is

selected.
1Y

Radius =

OOO®

(a) (b)
Figure 7 Example of candidate set reduction.

Figure 7 (a) shows the simple task graph as seen from this
cell C,. TS now considers only the swapping C, with the
mapping M(t;) for which an edge e,; or ¢;, exists and
where the Manhattan distance to it is bigger than 1. As
seen in figure 7(b) this would be the cell implementing z;
and the cell implementing z;. Consequently, for this
particular selection only these two cells are considered for
swapping. Furthermore, TS only tries to swap with cells,
which are within the radius. Consequently, we consider
for a swap move only the cell implementing tasks on the
critical path or tasks which are direct successors or
predecessors of tasks on the critical path and which are
distant enough to be interesting. Adopting this candidate
set reduction leads to a big speedup of the TS algorithm
compared to a straightforward approach, which simply
swapped every cell with every other cell. Finally the
algorithm perform the radius based test (if the MD
strategy is used) and change of the current candidate
solution Xy,

Once the best move from the candidate set is found, this
solution X, is placed in the tabu list (to maintain a
selective history of the exploration) and the exploration
continues from X,.,. TS uses the concept of “'selective
history" of the recently visited solutions (a "‘tabu" list) to
avoid visiting the previous explored solutions. However,
tabu moves are also accepted if they are better than the
best so far solution. If no improvement on the best so far
is seen for a large number of iterations, TS employs
diversification, where several random moves are
performed to guide the search to unexplored areas. In our
TS implementation, we also perform from time to time
intensification phases. The idea is to explore more
thoroughly those areas of the search space that look
promising. This is achieved by fixing those tasks from the
best-so-far solution that have not been involved in swaps
for the recent history and concentrating only on moves
that change the mapping and placement for the rest of the
tasks and spare-cells, respectively.

Approach 6x4 8x6 10x8
4 spares 9 spares 16 spares

O0FA 2.57% 2.71% 1.42%

UD 4.11% 5.08% 1.43%

MD(d=3) 0.00% 0.00% 3.95%

MD(d=4) 4.11% 2.22% 0.00%

Figure 8 APD values for the fault free scenario

6. Experimental Results

In the first set of experiments we are interested to
compare the three Tabu Search-based (TS) mapping
approaches: O-faults-anticipated (0FA); Uniform
distribution (UD) and Minimum spare-cell distance (MD).
The approaches are compared on two parameters: (1) Cost
of the fault free scenario J; and (2) 4; the average
increase in d; when up to k faults are introduced.
Furthermore, we will experiment with three different
sized architectures: 6x4, 8x6 and 10x8. For each of the
architecture we consider 10 randomly generated task-
graphs with 12 to 56 tasks. All results presented here are
calculated as the average percentage deviation (APD)
from the best cost function obtained. The APD is
calculated by (1).

(cost,

candidate

Coszbest

—cost,.) 100%

best

APD = M

Observe, that an APD value of 0% indicates that it is the
best and consequently an approach having for instance an
APD of 4% means that that approach is 4% worse than
the best. Figure 8 shows the APD for the three different
architectures for the fault free scenario (with 4, 9 and 16
spare-cells, respectively). For the 6x4 and 8x6
architecture it is seen that MD with d=3 is better
compared to OFA and UD by roughly 2-5% and for the
10x8 it is seen that MD with d=4 is better by 1-4%. We
would expect that OFA would be the best in the fault free
scenario because it gives the Tabu Search algorithm the
highest amount of freedom. OFA should be followed by
MD and then UD. However, it turns out that MD and OFA
are almost equally good (1-2% difference). This means
that the amount of freedom provided by MD is enough to
obtain an initial mapping with a good performance. Also
in order to give the TS enough freedom d=3 and 4 were
chosen. However, for the smaller architectures this is
quite a lot compared to the width of the architecture. This
is why we see that there are very little difference between
OFA and MD.

6.1 Spare-cell placement approach evaluation

In the second set of experiments we were interested to
compare the three spare-cell placement approaches in
terms of overhead increase of performance (4;) due to
fault-occurrences. Figure 9 shows the APD of 4 for the
cases when up to 16 faults are introduced. We can see that

72

the MD with d=4 is the best approach when multiple
faults are introduced, i.e., a performance increase of 4-
17% is seen depending on the number of faults. The
difference between MD (d=3 and d=4) and UD is almost
constant no matter how many faults occur. However, for
the OFA we see that the performance degrades very
rapidly as the number of faults increased to 6. After this,
it is almost constant until 11 faults, where the difference
decreases. The reason for this is the non-optimal mapping
performed by the self-healing process, which selects the
nearest spare-cell for tolerating the fault, considering
Manhattan distance (as presented in section 3.5).

16 faults on 10x8

&
& 1000% . —CFA

uo
------ MD(d=3)

=4 MD (d=4)

Figure 9 Comparison of 0FA, UD and MD for k=1 to
16

The message is that for mapping it is better to give TS the
freedom to move the spare-cells and not constrain it by
fixing the spare-cells as in the UD-approach. However, a
constraint such as the radius in the MD, keeping TS from
pushing the spare-cells out along the edges of the
architecture is beneficial.

spare-cells dg Ag
4 26 7.6%
9 23 3.5%
16 27 1.5%

Figure 10 8¢ and A values for the different
architectures implementing the CORDIC algorithm.

6.2 Real example

In the final experiment we tested our approach on a real
life example. Suppose we want to implement the
COordinate Rotation Dlgital Computer (CORDIC)
algorithm on an 10x8 architecture and we want to figure
out the number of spare-cells to use assuming k=4. Figure
10 shows the g and the 4 values for the algorithm with
4,9 and 16 spare-cells. The best initial mapping with a g
= 23 is obtained in the case when 9 spare-cells are used.
The performance degrades the least (for the 4 permanent
faults simulated using 10.000 MCS simulations), when 16
spare-cells are used, Ag = 1.5%. In this case, the best
decision would be to use 9 spare-cells, which result in
only a 3.5% overhead increase on average. The mapping
and placement is obtained by our proposed TS

implementation with the minimum spare-cell distance
(MD) strategy with a radius of 4.

7. Conclusions

This paper presented an approach to optimize the
redundancy introduced by the spare-cells of a bio-inspired
reconfigurable self-organizing and self-healing
architecture known as the eDNA architecture. We
proposed a tabu-search based metaheuristic to maximize
the performance of the architecture in the fault-free
scenario by optimizing the mapping of functionality to the
func-cells. When faults are introduced the performance
will degrade due to increased communication delays
introduced by the self-healing mechanism. We
investigated three spare-cell placement strategies; UD,
OFA and MD. By using Monte Carlo Simulation we
discovered that the best spare-cell placement strategy is
MD, because the tabu search algorithm is allowed to
move the spare-cells out of the way of the critical path,
but provides a minimum distance to spares to be used in
case of faults. Extensive experiments and a real-life
example have shown the effectiveness of the proposed
approach. Using the proposed setup, a designer can
evaluate the right amount of redundancy to be introduced
and can determine a mapping and placement such that the
performance of the application is maximized, even in the
case of permanent faults.

8. References

[1]M. R. Boesen, J. Madsen, “eDNA: A bio-inspired
reconfigurable hardware cell architecture supporting
self-organisation and self-healing”, Proceedings of the
2009 NASA/ESA Conference on Adaptive Hardware
Systems”, pp. 147-154, 2009.

[2] J. Duato, S. Yalamanchili, N. Lionel, “Interconnection
networks: An engineering approach”, Morgan
Kaufmann Publishers Inc, 2002.

[3] S. Bertozzi, A. Azquaviva, D. Bertozzi, and A.
Poggiali, “Supporting task migration in multi-
processor systems on chip: A feasibility study”.
Proceedings of the Design, Automation and Test in
Europe Conference, DATE, 1, 2006.

[4] E. Carvalho, and F. Moraes, “Congestion-aware task
mapping in heterogenous MPSoCs”. Internationally
Symposium on System-on-Chip, pp. 1-4, 2008.

[5] F. Glover and M. Laguna, “Tabu Search”, Kluwer

Academic Publishers, 19997.

K. Chapman, “PicoBlaze 8-bit embedded
microcontroller for Spartan-3, Virtex-II and Virtex-II
Pro FPGAs”, Xilinx User Guide UGI29 (v.1.1.2),
2008.

[7] P. K. F., Holzenspies, G. J. M. Smit and J. Kuper,
“Mapping Streaming applications on a reconfigurable

(6]

73

MPSoC platform at run-time”. International
Symposium on System-on-Chip, pp. 1-4, 2007.
ITRS. “Executive summary 2007 edition”,
International Technology Roadmap for

Semiconductors (ITRS), 2007.

[9] N. Kandasamy, J. P. Hayes, and B. T. Murray,
“Transparent recovery from intermittent faults in time-
triggered distributed systems.” /EEE Transactions on
Computers, pp. 113-125, 2003.

[10] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W.
Schwabl, C. Senft, and R. Zainlinger, “Distributed
fault-tolerant real-time systems: the mars approach”,
IEEE Micro, pp. 25-40, 1989.

[11] D. Mange, M. Sipper, A. Stauffer and G. Tempesti.
“Toward robust integrated circuits: The embryonics
approach”, Proceedings of the IEEE, pp. 516-543,
2000.

[12] G. D. Micheli, “Synthesis and optimization of Digital
Circuits”, McGraw Hill Science, 1994.

[13] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-
Vincentelli, “Fault-tolerant deployment of embedded
software for cost-sensitive real-time feedback-control
applications”, Proceedings Design, Automation and
test in Europe, Conference and exhibition, pp. 1164-
1169,2004.

[14] T. Plaks, X. Zhang, G. Dragffy, A. Pipe, N. Gunton
and Q. Zhu. “A reconfigurable self-healing embryonic

(8]

cell architecture”, [International Conference on
Engineering of Reconfigurable Systems and

Algorithms — ERSA’03, pp. 134-140, 2003.

[15] S. Raychaudhuri. “Introduction to monte carlo
simulation”, Proceedings — Winter Simulation
Conference, pp. 91-100, 2008.

[16] P. Pop, V. Izosimov, P. Eles, P. Zebo, “Design
optimization of time- and cost-constrained fault-
tolerant embedded systems with checkpointing and
replication”, IEEE Transactions on Very Large Scale
Integation (VLSI) Systems”, pp. 389-402, 2009.

[177 M. R. Boesen, P. Schleuniger, J. Madsen,
“Feasibility study of a self-healing hardware
platform”, Proceedings of the 2010 Conference on
Applied Reconfigurable Computing, pp. 29-41, 2010.

[18]. M. R. Boesen, J. Madsen, D. Keymeulen,
“Autonomous distributed self-organizing and self-
healing hardware architecture — the eDNA concept”,
Proceedings of the 2011 IEEE Aerospace Conference,
Big Sky, MT, 2011.

[19] M. R. Boesen, D. Keymeulen, J. Madsen, T. Lu, T.
Chao, “Integration of the reconfigurable self-healing
eDNA architecture in an embedded system”,
Proceedings of the 2011 IEEE Aerospace Conference,
Big Sky, MT, 2011.

[20] A. Patooghy, S. G. Miremadi, “Complement routing:
A methodology to design reliable routing algorithm
for network on chips”, Microprocessor and
Microsystems, April 2010.

