Application-Specific Fault-Tolerant Architecture Synthesis for Digital Microfluidic Biochips

Mirela Alistar, Paul Pop, Jan Madsen Technical University of Denmark, Lyngby

Droplet-based Biochips

Biochip from Duke University

Digital Microfluidic Biochips (DMB)

Electrowetting on Dielectric

Fluidic Operations

Video source: Advanced Liquid Logic http://www.liquid-logic.com/

DMB Architecture

- General-Purpose Architecture
 - Reconfigurable
 - Versatile
 - Fault-tolerant

- Application-Specific Architecture
 - Designed for one application
 - Reduced costs
 - Production costs
 - Reagent costs

Application-Specific Biochips

Biochip for Newborn Screening

http://www.liquid-logic.com/

Biochip for Sample Preparation http://www.nugeninc.com/

7

$$Cost_{\mathcal{A}} = \sum N_{M_i} \times Cost_{M_i}$$

where

- **A** is the architecture
- **N**_{Mi} is the number of components of type M
- **Cost_{Mi}** is the cost of the physical component Mi

Name	Unit cost	Dimensions (mm)	Time (s)
Electrode	1	1.5×1.5	N/A
Input Reservoir	3	1.5×4.5	2
Waste Reservoir	3	1.5×4.5	N/A
Capacitive Sensor	1	1.5×4.5	0
Optical Detector	9	4.5×4.5	8

Component Library

Compilation: difficulties

gap

- **Problem:** permanent faults •
- **Importance**:
 - Increase the yield of DMBs
 - Improve the batch control

Degradation of the electrode

Control electrode (interdigitated design)

Insulator degradation

Problem: Architecture Synthesis

Given

- Biochemical application
- Deadline requirements
- Library of components (physical and virtual)
- The number k of permanent faults

Determine

- An application-specific architecture ${\boldsymbol{\mathcal{A}}}$, so that
 - the cost is minimized and
 - the application completes within deadline for any occurrence of the *k* permanent faults

Optimization: SA moves

- Non-reconfigurable components (reservoirs, detectors)
 - Add/Remove
 - Change placement
- Reconfigurable elements (electrodes)
 - Add/Remove a single electrode
 - Add/Remove a row of electrodes on the side

 $Objective(\mathcal{A}) = Cost_{\mathcal{A}} + W \times max(0, \delta_{\mathcal{G}}^{k} - D_{\mathcal{G}})$

Add single electrode (green) Remove single electrode (white)

Add row of electrodes (green) Change placement of reservoir (red)

Biochemical Application Model

Compilation Flow

Compilation: Main steps

Fault-Tolerant Overhead

Evaluation of fault-tolerant overhead (faults are marked with X)

- Fault-tolerant overhead
 - Considers the impact of faults on the operation execution time
 - Routing-based operation execution, *Maftei 2012*

Compilation: difficulties

• Problem: fast compilation

• Importance:

- It is part of an optimization loop

• Solution:

- List-Scheduling based compilation
- Routability test
 - Tests if, no matter where k faults are located, there is at least one route between any two electrodes

Routable architecture for 1 fault

Non-Routable architecture for 2 faults

- Routability test
 - Tests if, no matter where k faults are located, there is at least one route between any two electrodes
 - Algorithm that tests k-vertex connectivity in a graph, S. Even (1973)

- Biochemical applications:
 - The mixing stage of polymerase chain reaction (PCR)
 - In-vitro diagnosis on human physiological fluids (IVD)
 - The colorimetric protein assay (CPA)
- Deadlines:
 - PCR 10 s; IVD 15 s; CPA 100 s
- Implementation:
 - Java
- Evaluation:
 - Cost-effectiveness of the architectures resulted from our synthesis
 - Pessimism of List-Scheduling based compilation
 - Overhead in execution time due to permanent faults (k=0,1,2)

Experiments: Architecture synthesis

	k = 0			k = 1			k = 2					
App.	Arch	Cost	C_{SA}	T_{SA}	Arch	Cost	C _{SA}	T_{SA}	Arch	Cost	C_{SA}	T_{SA}
PCR	7×10	79	60	14	7×10	79	65	38	9×11	108	98	50
	(1,1,1)				(1,1,1)				(1,1,1)			
IVD	7×10	88	62	16	7×10	88	70	58	10×8	98	85	45
	(2,2,2)				(2,2,2)				(2,2,2)			
CPA	7×8	71	59	10	7×8	71	66	20	11×12	147	127	30
	(2,1,2)				(2,1,2)				(2,1,2)			

- Applications are resulted from our synthesis (col. 4, 8, 12)
- Compared with best possible general-purpose architectures (col. 3, 7, 11)
- Our synthesis produces cheaper architectures

Experiments: FT Overhead

App.	Cost	$\delta^0_{\mathcal{G}}$ (s)	$\delta^1_{\mathcal{G}}$ (s)	Deviation (%)	$\delta_{\mathcal{G}}^2$ (s)	Deviation (%)
PCR	98	8.42	8.81	4.6	9.43	11.9
IVD	85	12.62	13.11	3.8	14.81	17.3
CPA	129	153.9	169.3	10	190.11	23.5

- k = 0 faults (column 2)
- k = 1 faults (column 3)
- k = 2 faults (column 6)
- Applications are resulted from our synthesis
- Comparison with the case when there are no faults
- Average deviation is 11.8%

Experiments: LS Compilation

App. (ops.)	Arch.	$\delta^0_{\mathcal{G}}(s)$	Exec. time	$\delta_{\mathcal{G}}^{opt}(s)$	Exec. time	Deviation (%)
PCR (7)	9×9	11	25 ms	10	60 min	9
IVD (28)	9×10	77	91 ms	73	60 min	5.4
CPA (103)	11×12	219	498 ms	214	60 min	2.3

- Near-optimal value is obtained with Tabu-Search, *Maftei 2010*
- General-purpose architectures
- No faults
- Average deviation from near-optimal is 5.5%

- SA-based architecture synthesis
 - List-Scheduling based compilation (fast)
- Reduced cost architectures
- Fault-tolerant architectures
- Increase the yield of DMBs

Backup slides

24

Optimization: Simulated Annealing

```
\mathcal{A}^{0} - initial architecture
                                          Objective(\mathcal{A}) = Cost_{\mathcal{A}} + W \times max(0, \delta_{G}^{k} - D_{G})
T^0 - initial temperature
T^{L-} temperature length
eps - cooling rate
temp = T^0;
\mathcal{A} = \mathcal{A}^{0};
repeat
   while (temp < T^{L}) do
        \mathcal{A}^{new} = moves(\mathcal{A}); //generate new architecture
        delta = Objective(A) - Objective(A^{best});
        if (delta<0)
            \mathcal{A}^{best} = \mathcal{A}^{new}:
        elseif (Math.random < e^{-delta/temp}) //accept bad solutions with low probability
             A^{best} = A^{new}:
        endif
  endwhile
  temp = temp * eps;
until stop criterion is true
```


ListScheduling(Graph, C, B, P)

- 1 CriticalPath(Graph)
- 2 repeat
- 3 List = GetReadyOperations(Graph)
- 4 $O_i = \text{RemoveOperation}(List)$
- 5 $t_i^{start} = \text{Schedule}(O_i, \mathcal{B}(O_i), C, \mathcal{P})$
- t = earliest time when a scheduled operation terminates
- 7 UpdateReadyList(Graph, t, List)
- 8 **until** $List = \emptyset$
- 9 return S

Routing-based Operation Execution

$$\begin{array}{ll} p^{90} = 0.1\% \\ p^0 = 0.29\% & p^{00} = 0.58\% \\ p^{180} = -0.5\% \end{array}$$

Compilation Flow

Compilation: Main steps

Droplet vs. Module Compilation

Module based

- module library
- black boxes
- protection borders

Operation	Area (cells)	Time (s)
Mix	2 x 4	3
Mix	2 x 2	4
Dilution	2 x 4	4

Droplet based

- routing base operation execution
- the position of the droplet is tracked
- better use of space

Component Library

Name	Unit cost	Dimensions (mm)	Time (s)
Electrode	1	1.5×1.5	N/A
Input Reservoir	3	1.5×4.5	2
Waste Reservoir	3	1.5×4.5	N/A
Capacitive Sensor	1	1.5×4.5	0
Optical Detector	9	4.5×4.5	8

Virtual Devices Library

Op.	Shape	Time (s)	Time (s)	Time (s)
		no faults	k = 1	k = 2
Mix	3×6	2.52	2.71	3.77
Mix	5×8	2.05	2.09	2.3
Mix	4×7	2.14	2.39	2.51
Mix	5×5	2.19	2.28	2.71
Mix	$5 \times 5 \times 1$	2.19	2.73	3.92
Mix	$5 \times 5 \times 2$	3.98	5.82	7.56
Dilution	3×6	4.4	4.67	4.11
Dilution	5×8	3.75	4.76	6.3
Dilution	4×7	3.88	4.22	4.46
Dilution	5×5	3.98	4.12	4.67
Split	1×1	0	0	0
Storage	1×1	N/A	N/A	N/A

Test for k-vertex connectivity

Algorithm 1:

- (1) For every i and j such that $1 \le i < j \le k$ check whether there are k vertex-disjoint paths between them. If for some i and j the test fails, then G's connectivity is less than k.
- (2) For every j , k+l ≤ j ≤ n , form G and check whether there are k vertex-disjoint paths between a and j .
 If for some j the test fails, then G's connectivity is less than k .
- (3) The connectivity of G is at least k.

Complexity $O(kn^3)$

5 K

IN914本

Figure 5.7: Ring-oscillator circuit for capacitance measurements of droplets [Pollack*]

1N5231 2 5.1 V

Biochip Parameters

Parameter	Range or conditions
Gap height, h	0.19 – 1.04 mm, with $L = 1.5$ mm and $D/L \approx 1.3$
Droplet diameter, D	$1.31 - 2.18$ mm, with $L = 1.5$ mm and $L/h \approx 5$
Electrode pitch, L	0.15 – 1.50 mm, with $L/h \approx 5$ and $D/L \approx 1.3$
Electrode shape	interdigitated, square, circular, wedge
Medium type	air, silicone oil
Droplet viscosity	1.0 – 58.4 cP
Oil viscosity	0.8 – 9.4 cP
Droplet volume, V_D	$3 nl - 3 \mu l$
Velocity, v	0 - 10 cm/s

Table 4.1: Parameter space for droplet dynamic investigations [Pollack*]

Glucose detection

Srinivasan 2003, Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform

Control-Path Design

- Add checkpoints to monitor outcomes of fluidic operations
 - Checkpoint: storage of the intermediate product droplet
- Assign each checkpoint a re-execution subroutine
 - Subroutine: fluidic operations between checkpoints

Control-Path Design

- Extra copy droplets needed
- Checkpoints: where ?
- Costs:
 - Time
 - Area

Figures taken from Krish Chakrabarty, Duke University

And the droplet moves!

- Electrowetting on dielectric principle (EWOD)
 - Electrical modulation of the solid-liquid interfacial tension

Young equation

$$\gamma_{LV} \cos(\theta) = \gamma_{SV} - \gamma_{SL}$$

Figures taken from Krish Chakrabarty, Duke University

Electrowetting: Physical Principles (I)

- Motion of droplets is based on the differences between contact angles in the advancing and receding lines of a droplet.
- When a droplet rests on a non-wetting solid surface, the forces acting at the solid-liquid-vapor interface equilibrate and result in a contact angle θ between the droplet and solid, as described by Young's equation,

$$\gamma_{LV} \cos(\theta) = \gamma_{SV} - \gamma_{SL}$$

 γ_{LV} , γ_{SV} and γ_{SL} are the liquid-vapor, solid-vapor and solid-liquid surface energies

5

Slide taken from Krish Chakrabarty, Duke University

Electrowetting: Physical Principles (II)

- When an imbalance in these surface energies occurs (as in the case of a droplet resting on a surface with a gradient surface energy), a net force is induced
 - Initiate droplet motion
- Imbalance can be induced by chemical, thermal, or electrostatic means
 - In the case of thermally-induced droplet motion, a surface tension gradient can be induced by differentially heating the ends of a droplet, since the surface tension of a liquid decreases with temperature.

6

Electrowetting: Physical Principles (III)

- Electrowetting-based actuation of droplets: electrical fields used to induce surface tension gradients.
 - Electrowetting effect ⇒the surface energy can be directly modified by the application of an electric field
- Consider a droplet resting on a electrode separated by a hydrophobic insulator
 - A potential is applied between the droplet and the electrode, resulting in a capacitive energy *E* stored in the insulator. The resulting energy is:

$$E = \frac{\varepsilon_0 \varepsilon_r A}{2d} V^2$$
$$\Rightarrow \gamma_{SL}(V) = \gamma_{SL}(0) - \frac{\varepsilon_0 \varepsilon_r A}{2d} V^2$$

Contact angle

7

 $\operatorname{change}_{\operatorname{cos}\theta} = \cos\theta (0) - \frac{\varepsilon_0 \varepsilon_r A}{2 d\gamma_{LV}} V^2$

Reference: P. Y. Paik, V. K. Pamula and K. Chakrabarty,

"Adaptive Cooling of Integrated Circuits using Digital Microfluidics", Artech House, Norwood, MA, 2007.

Benchmarks: PCR

- Mixing stage for Polymerase Chain Reaction
- Electrode pitch: 1.5 mm, Gap height: 600 µm

Operation	Hardware*	Module	Mixing time
mixing	2x2 electrode array	4x4 cells	10s
	4-electrode linear array	3x6 cells	5s
	2x3 electrode array	4x5 cells	6s
	2x4 electrode array	4x6 cells	3s

"Benchmarks" for Digital Microfluidic Biochip Design and Synthesis, Su and Chakrabarty, Duke University, 2006

Benchmarks: IVD

- Multiplexed in-vitro diagnosis
- Electrode pitch: 1.5 mm, Gap height: 600 µm

Benchmarks: CPA

- Colorimetric Protein Assay
- Electrode pitch: 1.5 mm, Gap height: 600 µm

Figure 3-2. Sequencing graph for a protein assay.

"Benchmarks" for Digital Microfluidic Biochip Design and Synthesis, Su and Chakrabarty, Duke University, 2006