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Biochips
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Slide source: Krish Chakrabarty, Duke University
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Droplet-based Biochips
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Electrowetting on Dielectric

EWOD image source: Duke University
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Fluidic Operations

Video source: Advanced Liquid Logic http://www.liquid-logic.com/
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DMB Architecture

• General-Purpose Architecture
– Reconfigurable 
– Versatile
– Fault-tolerant

• Application-Specific Architecture
– Designed for one application
– Reduced costs

• Production costs
• Reagent costs
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Application-Specific Biochips

Biochip for Sample Preparation
http://www.nugeninc.com/ 

Biochip for Newborn Screening
http://www.liquid-logic.com/

http://www.nugeninc.com/
http://www.liquid-logic.com/
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Cost Evaluation

 where 
– A is the architecture

– NMi is the number of components of type M

– CostMi is the cost of the physical component Mi

Component Library
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Compilation: difficulties

• Problem: permanent faults

• Importance: 
– Increase the yield of DMBs
– Improve the batch control 

Insulator degradation

Image source: Testing of Droplet-based Microelectrofluidic Systems, Fei Su 2003
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Problem: Architecture Synthesis

• Given
– Biochemical application 
– Deadline requirements
– Library of components (physical and virtual)
– The number k of permanent faults

• Determine 
– An application-specific architecture A , so that 

• the cost is minimized and 
• the application completes within deadline for any

occurrence of the k permanent faults
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Optimization: SA moves

• Non-reconfigurable components (reservoirs, detectors)

– Add/Remove

– Change placement

• Reconfigurable elements (electrodes)

– Add/Remove a single electrode 

– Add/Remove a row of electrodes on the side 

Initial architecture Add single electrode (green)
Remove single electrode (white)

Add row of electrodes (green)
Change placement of reservoir (red)
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Biochemical Application Model
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 Compilation Flow
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Compilation: Main steps
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Fault-Tolerant Overhead

– Fault-tolerant overhead 
• Considers the impact of faults on the operation execution time
• Routing-based operation execution, Maftei 2012

Evaluation of fault-tolerant overhead (faults are marked with X)
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Compilation: difficulties

• Problem: fast compilation

• Importance: 
– It is part of an optimization loop

• Solution: 
– List-Scheduling based compilation
– Routability test

• Tests if, no matter where k faults are located, there is at least
one route between any two electrodes
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Routability test

Faulty
Electrodes

Faulty
Electrodes

Routable architecture for 1 fault Non-Routable architecture for 2 faults

– Routability test
• Tests if, no matter where k faults are located, there is at least one route 

between any two electrodes
• Algorithm that tests k-vertex connectivity in a graph, S. Even (1973)
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Architecture Synthesis
Constraints for application G: 
i. Run within deadline D
ii. Tolerate k permanent faults
iii. Use libraries L, M

Generate initial 
rectangular architecture A

Perform SA moves on A

Calculate cost function

Update best-so-far
architecture solution

Run LSPR compilation tasks:
i. Binding 
ii. Placement
iii. Scheduling 
iv. Routing 

OUTPUT
Best architecture solution

Test for 
fault-tolerant

routability

Evaluate stop
criterion

Continue

PassFail

S
to

p

● Simulated Annealing
● Test k-vertex connectivity
● List-scheduling 
● Fast-template placement
● Hadlock routing  
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Experiments: setup 

• Biochemical applications: 
– The mixing stage of polymerase chain reaction (PCR)
– In-vitro diagnosis on human physiological fluids (IVD)
– The colorimetric protein assay (CPA)

• Deadlines:
– PCR – 10 s; IVD – 15 s; CPA – 100 s

• Implementation:
– Java

• Evaluation:
– Cost-effectiveness of the architectures resulted from our

synthesis
– Pessimism of List-Scheduling based compilation
– Overhead in execution time due to permanent faults (k=0,1,2)

•
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Experiments: Architecture synthesis

• Applications are resulted from our synthesis (col. 4, 8, 12)
• Compared with best possible general-purpose architectures

(col. 3, 7, 11)
• Our synthesis produces cheaper architectures
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Experiments: FT Overhead

• k = 0 faults (column 2) 
• k = 1 faults (column 3)
• k = 2 faults (column 6)
• Applications are resulted from our synthesis
• Comparison with the case when there are no faults
• Average deviation is 11.8% 
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Experiments: LS Compilation

• Near-optimal value is obtained with Tabu-Search, Maftei 2010
• General-purpose architectures
• No faults
• Average deviation from near-optimal is 5.5%
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Conclusions

• SA-based architecture synthesis
– List-Scheduling based compilation (fast)

• Reduced cost architectures

• Fault-tolerant architectures

• Increase the yield of DMBs
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Backup slides
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Optimization: Simulated Annealing

A0 - initial architecture

T0 - initial temperature 

TL – temperature length

eps – cooling rate

temp = T0;

A = A0; 

repeat 

       while (temp < TL) do 

      Anew = moves(A); //generate new architecture

      delta = Objective(A) – Objective(Abest); 

      if (delta<0)

         Abest = Anew;

      elseif (Math.random < e-delta/temp) //accept bad solutions with low probability

           Abest = Anew; 

      endif  

  endwhile 

  temp = temp * eps; 

until stop criterion is true 
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List Scheduling
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Routing-based Operation Execution
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E. Maftei, P. Pop, J. Madsen, “Routing-based synthesis of digital microfluidic biochips”, 2012
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 Compilation Flow
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Compilation: Main steps
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Droplet vs. Module Compilation

Module based
- module library
- black boxes
- protection borders 

Droplet based
- routing base operation execution
- the position of the droplet is tracked
- better use of space
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Libraries

Component Library

Virtual Devices Library
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Test for k-vertex connectivity

Shimon Even,  “An algorithm for determining whether the connectivity of a graph is at leat k”, 1973

Complexity O(kn3)
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Capacitive Sensor

[Pollack*]

Pollack 2001, Electrowetting-based microactuation of droplets for digital microfluidics
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Biochip Parameters

[Pollack*]

Pollack 2001, Electrowetting-based microactuation of droplets for digital microfluidics
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Glucose detection

Fig. 2 Setup for glucose detection  

Srinivasan 2003, Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic 
platform
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Control-Path DesignControl-Path Design

 Add checkpoints to monitor outcomes of fluidic operations
Checkpoint: storage of the intermediate product droplet

 Assign each checkpoint a re-execution subroutine
Subroutine: fluidic operations between checkpoints 

Figures taken from Krish Chakrabarty, Duke University
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Control-Path DesignControl-Path Design

 Extra copy droplets needed
 Checkpoints: where ?
 Costs: 

Time
Area

Figures taken from Krish Chakrabarty, Duke University
3

O0  

O5  

copy droplets  
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And the droplet moves!

Electrowetting on dielectric principle (EWOD)
Electrical modulation of the solid-liquid interfacial tension

cos( )LV SV SLγ θ γ γ= −
Young equation

Figures taken from Krish Chakrabarty, Duke University
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Electrowetting: Physical Principles (I)Electrowetting: Physical Principles (I)

• Motion of droplets is based on the differences between 
contact angles in the advancing and receding lines of a 
droplet. 

• When a droplet rests on a non-wetting solid surface, the 
forces acting at the solid-liquid-vapor interface equilibrate 
and result in a contact angle θ between the droplet and 
solid, as described by Young’s equation,

cos( )LV SV SLγ θ γ γ= −
  ,            and        are the liquid-vapor, 
solid-vapor and solid-liquid surface
 energies 

LVγ SVγ SLγ

Slide taken from Krish Chakrabarty, Duke University
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Electrowetting: Physical Principles (II)Electrowetting: Physical Principles (II)

• When an imbalance in these surface energies occurs (as in 
the case of a droplet resting on a surface with a gradient 
surface energy), a net force is induced
– Initiate droplet motion

• Imbalance can be induced by chemical, thermal, or 
electrostatic means
– In the case of thermally-induced droplet motion, a surface 

tension gradient can be induced by differentially heating the 
ends of a droplet, since the surface tension of a liquid decreases 
with temperature. 

Slide taken from Krish Chakrabarty, Duke University
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Electrowetting: Physical Principles (III)Electrowetting: Physical Principles (III)

• Electrowetting-based actuation of droplets: electrical fields used 
to induce surface tension gradients. 
– Electrowetting effect ⇒the surface energy can be directly modified 

by the application of an electric field
• Consider a droplet resting on a electrode separated by a 

hydrophobic insulator 
– A potential is applied between the droplet and the electrode, 

resulting in a capacitive energy E stored in the insulator. The 
resulting energy is:

20

2
r AE V
d

ε ε=

20( ) (0)
2

r
SL SL

AV V
d

ε εγ γ= −⇒

Contact angle 
change: 20cos ( ) cos (0)

2
r

LV

AV V
d

ε εθ θ
γ

= − Reference: P. Y. Paik, V. K. Pamula and K. 
Chakrabarty, 
“Adaptive Cooling of Integrated Circuits using Digital 
 Microfluidics”, Artech House, Norwood, MA, 2007.

Slide taken from Krish Chakrabarty, Duke University
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Benchmarks: PCRBenchmarks: PCR

• Mixing stage for Polymerase Chain Reaction

• Electrode pitch: 1.5 mm, Gap height: 600 μm

“Benchmarks” for Digital Microfluidic Biochip Design and Synthesis , Su and Chakrabarty, Duke University, 2006
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Benchmarks: IVDBenchmarks: IVD

• Multiplexed in-vitro diagnosis

• Electrode pitch: 1.5 mm, Gap height: 600 μm

“Benchmarks” for Digital Microfluidic Biochip Design and Synthesis , Su and Chakrabarty, Duke University, 2006
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Benchmarks: CPABenchmarks: CPA

• Colorimetric Protein Assay

• Electrode pitch: 1.5 mm, Gap height: 600 μm

“Benchmarks” for Digital Microfluidic Biochip Design and Synthesis , Su and Chakrabarty, Duke University, 2006
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