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Overview

m

® On critical looks at programs

® simplification for readability reasons
® simplifications for computational reasons

® The Module System

® F#is integrated on .Net briefly

* free, open source
® cross platform for Linux, MacOS, Windows, ...
® A three project solution for polynomials containing

® An F# library (class library)
® An F# console application
® A C# console application

on Learn

® A brief look at type inference
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On critical looks at programs
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On critical looks at programs

® Aim at succinct programs
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On critical looks at programs

® Aim at succinct programs
have a critical look at your own programs
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On critical looks at programs

® Aim at succinct programs
have a critical look at your own programs

¢ Correctness has top priority
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On critical looks at programs

® Aim at succinct programs
have a critical look at your own programs

¢ Correctness has top priority
but have an eye to sensible use of resources
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Can we simplify?

"

Have a look at:

let f(x) match (x) with
| (a,z) —> if (not(a) = true) then true
else if (fst(z)

true) then snd(z)
else false;;

DTU Compute, Technical University of Denmark
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Can we simplify?

"

Have a look at:

let f(x) = match (x) with
| (a,z) —> if (not(a) = true) then true
else 1f (fst(z) = true) then snd(z)
else false;;

* What is the type of ?
* What is f computing?
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Can we simplify?

"

Have a look at:

let f(x) = match (x) with
| (a,z) —> if (not(a) = true) then true
else 1f (fst(z) = true) then snd(z)
else false;;

* What is the type of ?
* What is f computing?

Can we improve readability?
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Is a use of library functions adequate? ==
>

Have a look at
let h a xs = let xsl = List.filter (fun (a’,t) -> a=a’) xs

let xs2 = List.map (fun (a,t:int) -> t) =xsl
List.sum xs2
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Is a use of library functions adequate? =
Have a look at
let h a xs = let xsl = List.filter (fun (a’,t) -> a=a’) xs
let xs2 = List.map (fun (a,t:int) -> t) =xsl

List.sum xs2

¢ Can this problem easily be solved in a less resource demanding
manner?
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Resource sensible versions

"

Have a look at:

let rec hl a =

function

I [] -> 0

| (a’",t)::rest when a=a’ -> t + hl a rest
| _::rest -> hl a rest;;

let rec h2 a xs =
List.fold (fun s (a’,t) -> if a=a’ then s+t else s) 0 xs;
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Resource sensible versions

"

Have a look at:

let rec hl a =

function

I [] -> 0

| (a’",t)::rest when a=a’ -> t + hl a rest
| _::rest -> hl a rest;;

let rec h2 a xs =
List.fold (fun s (a’,t) -> if a=a’ then s+t else s) 0 xs;

Solutions are based on a simple algorithmic idea
¢ traverse the list xs one time and
® build up the result during the traversal
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Resource sensible versions

"

Have a look at:

let rec hl a =

function

I [] -> 0

| (a’",t)::rest when a=a’ -> t + hl a rest
| _::rest -> hl a rest;;

let rec h2 a xs =
List.fold (fun s (a’,t) -> if a=a’ then s+t else s) 0 xs;

Solutions are based on a simple algorithmic idea
¢ traverse the list xs one time and
® build up the result during the traversal

Correctness has top priority
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Resource sensible versions

"

Have a look at:

let rec hl a =

function

I [] -> 0

| (a’",t)::rest when a=a’ -> t + hl a rest
| _::rest -> hl a rest;;

let rec h2 a xs =
List.fold (fun s (a’,t) -> if a=a’ then s+t else s) 0 xs;

Solutions are based on a simple algorithmic idea
¢ traverse the list xs one time and
® build up the result during the traversal

Correctness has top priority
— but have an eye to sensible use of resources
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Resource sensible versions

"

Have a look at:

let rec hl a =

function

I [] -> 0

| (a’",t)::rest when a=a’ -> t + hl a rest
| _::rest -> hl a rest;;

let rec h2 a xs =
List.fold (fun s (a’,t) -> if a=a’ then s+t else s) 0 xs;

Solutions are based on a simple algorithmic idea
¢ traverse the list xs one time and
® build up the result during the traversal

Correctness has top priority
— but have an eye to sensible use of resources

More when the topic: Tail recursion, is covered
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The module system

18 DTU Compute, Technical University of Denmark Lecture 7: Module System — briefly MRH 25/10/2024



Overview

"

® Supports modular program design including

® encapsulation
® abstraction and
® reuse of software components.
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Overview

"

® Supports modular program design including

® encapsulation
® abstraction and
® reuse of software components.

® A module is characterized by:

® a signature — an interface specifications and
® a matching implementation — containing declarations of the
interface specifications.
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Overview

"

® Supports modular program design including
® encapsulation
® abstraction and
® reuse of software components.
® A module is characterized by:
® a signature — an interface specifications and
® a matching implementation — containing declarations of the
interface specifications.
® Example-based presentation to give the flavor
incomplete — no object interface types, for example
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Overview

® Supports modular program design including
® encapsulation
® abstraction and
® reuse of software components.

* A module is characterized by:

® a signature — an interface specifications and
® a matching implementation — containing declarations of the
interface specifications.

® Example-based presentation to give the flavor
incomplete — no object interface types, for example

Sources:
® Chapter 7: Modules. (A fast reading suffices.)
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On hiding: Polynomial program

M

An violation of a representation invariant without hiding
// A misuse: [0] is not legal polynomial
let pl = mulX [0];;
// val pl : int list = [0; 0]

// Pretty print

toString pl;;
// val it : string = "0O"
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On hiding: Polynomial program

>
>
>
An violation of a representation invariant without hiding
// A misuse: [0] is not legal polynomial
let pl = mulX [0];;
// val pl : int list = [0; 0]

// Pretty print
toString pl;;
// val it : string = "0O"

let p2 = mulxX [];; // []1 is legal
// val p2 : int list = []

// Pretty print

toString p2;;
// val it : string = "O"
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On hiding: Polynomial program

An violation of a representation invariant

without hiding

// A misuse: [0] is not legal polynomial

let pl = mulX [0];;
// val pl int list = [0; 0]

// Pretty print
toString pl;;
// val it string = "0O"

let p2 = mulX [1;;
// val p2 int list = []

// Pretty print
toString p2;;

// val it string = "O"
// But

pl = p2;;

// val it bool = false

e may cause unpredictable results

25 DTU Compute, Technical University of Denmark

// [1 is legal
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Protection of a representation invariant

#r @"Polynomial.dll"

open Polynomial

let pl = mulX (ofList [0]);;

// val pl Poly = 0 pretty print
let p2 = mulX (ofList []);;

// val p2 Poly = 0 pretty print
pl = p2;;

// val it bool = true

DTU Compute, Technical University of Denmark
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Protection of a representation invariant

#r @"Polynomial.dll"

open Polynomial

let pl = mulX (ofList [0]);;

// val pl Poly = 0 pretty print
let p2 = mulX (ofList []);;

// val p2 Poly = 0 pretty print
pl = p2;;

// val it bool = true

¢ internal representation is hidden

DTU Compute, Technical University of Denmark
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Protection of a representation invariant

#r @"Polynomial.dll"

open Polynomial

let pl = mulX (ofList [0]);;

// val pl : Poly

0

let p2 = mulX (ofList []);;

// val p2 : Poly

pl = p2;;
// val it : bool

0

true

¢ internal representation is hidden

e oflList gives legal representations

DTU Compute, Technical University of Denmark

pretty print

pretty print
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Protection of a representation invariant

#r @"Polynomial.dll"

open Polynomial

let pl = mulX (ofList [0]);;

// val pl : Poly

0

let p2 = mulX (ofList []);;

// val p2 : Poly

pl = p2;;
// val it : bool

0

true

¢ internal representation is hidden

e oflList gives legal representations

pretty print

pretty print

¢ functions preserve the invariant: isLegal

DTU Compute, Technical University of Denmark

Lecture 7: Module System — briefly

=
=
=

"

MRH 25/10/2024



S
=
=

Protection of a representation invariant

"

#r @"Polynomial.dll"
open Polynomial

let pl = mulX (ofList [0]);;
// val pl : Poly = 0 pretty print

let p2 = mulX (ofList []);;
// val p2 : Poly = 0 pretty print

pl = p2;;
// val it : bool = true

¢ internal representation is hidden
e oflList gives legal representations
¢ functions preserve the invariant: isLegal

Unpredictable results are prevented
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Module

"

A module is a combination of a

® signature, which is a specification of an interface to the module
(the user’s view), and an
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Module

"

A module is a combination of a

® signature, which is a specification of an interface to the module
(the user’s view), and an

* implementation, which provides declarations for the
specifications in the signature.
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Geometric vectors: Signature

The signature specifies one type and eight values:

// Vector signature

module Vector
type vector

val
val
val
val
val
val
val
val

+. )
-. )
)
)

* .

&.
norm
make
coord

)

vector —->
vector —->
vector ->
float -—>
vector —>
vector ->

float * float

vector
vector
vector
vector
vector
float

—>
—>
—>
—>

vector
vector
vector
float

—-> vector

vector -> float » float

33 DTU Compute, Technical University of Denmark
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Vector sign change
Vector sum

Vector difference
Product with number
Dot product

Length of vector
Make vector

Get coordinates
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Geometric vectors: Signature

The signature specifies one type and eight values:

// Vector signature

module Vector
type vector

val ( ~—
val ( +.
val ( -

val ( *.
val ( &.
val norm
val make

val coord

)

vector —->
vector —->
vector ->
float -—>
vector —>
vector ->

vector
vector
vector
vector
vector
float

vector
vector
vector
float

float = float —> vector
vector -> float » float

//
/7
//

/7
//

/7

=]
=
=

"

Vector sign change
Vector sum

Vector difference
Product with number
Dot product

Length of vector
Make vector

Get coordinates

The specification 'vector’ does not reveal the implementation

DTU Compute, Technical University of Denmark
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Geometric vectors: Signature

The signature specifies one type and eight values:

// Vector signature

module Vector
type vector

val ( ~—
val ( +.
val ( -

val ( *.
val ( &.
val norm
val make

val coord

)

vector —->
vector —->
vector ->
float -—>
vector —>
vector ->

vector
vector
vector
vector
vector
float

vector
vector
vector
float

float = float —> vector
vector -> float » float

=
=
=

"

Vector sign change
Vector sum

Vector difference
Product with number
Dot product

Length of vector
Make vector

Get coordinates

The specification 'vector’ does not reveal the implementation

* Why is make and coord introduced?
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Geometric vectors (2): Simple implementation

"

An implementation must declare each specification of the signature:

// Vector implementation
module Vector
type vector = V of float x float

let ("-.) (V(x,7)) = V(-x,-y)
let (+.) (V(x1l,yl)) (V(x2,y2)) = V(x1+x2,yl+y2)
let (—-.) v1 v2 = vl +. —-. v2

let ( *.) a (V(x1,y1l)) = V(axxl,axyl)

let (&.) (V(x1l,yl)) (V(x2,y2)) = x1*xx2 + ylxy2

let norm (V(x1,v1)) = sgrt (xlxxl+ylxyl)
let make (x,V) = V(x,V)

let coord (V(x,Vv)) = (x,VY)
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Geometric vectors (2): Simple implementation

=
—

"

An implementation must declare each specification of the signature:

// Vector implementation
module Vector

type vector = V of float x float

let
let
let
let
let
let
let
let

-~
+.)
,_)
*.)

&.)
norm
make
coord

(
(
(
(
(

(V(x,v))
(V(x1,vy1))
v1
a
(V(x1,y1))
(V(x1,vy1))
(x,Y)
(V(x,v))

(V(x2,y2))
v2

(V(x1,y1))

(V(x2,y2))

Vi(-x%, —Y)

= V(x1+x2,y1l+y2)

vl +. —-. v2
V(axxl,axyl)
x1xx2 + ylxy2
sgrt (x1xx1+ylxyl)
V(x,Y)

(x, )

¢ Since the representation of 'vector’ is hidden in the signature,
the type must be implemented by either a tagged value or a
record.

37 DTU Compute, Technical University of Denmark
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Geometric vectors (3): Compilation

"

Suppose
¢ the signature is in a file "Vector.fsi’
¢ the implementation is in a file "Vector.fs’

A library file 'Vector.dll’ is constructed by the following command:

D:\MRH data\ ... \Libraries\fsc -a Vector.fsi Vector.fs

The library "Vector’ can now be used just like other libraries, such as
"Set’ or 'Map’.
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Geometric vectors (3): Compilation

"

Suppose
¢ the signature is in a file "Vector.fsi’
¢ the implementation is in a file "Vector.fs’

A library file 'Vector.dll’ is constructed by the following command:

D:\MRH data\ ... \Libraries\fsc -a Vector.fsi Vector.fs

The library "Vector’ can now be used just like other libraries, such as
"Set’ or 'Map’.

® Compiler on Linux and Mac systems: fsharpc
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Geometric vectors (3): Compilation

"

Suppose
¢ the signature is in a file "Vector.fsi’
¢ the implementation is in a file "Vector.fs’

A library file 'Vector.dll’ is constructed by the following command:

D:\MRH data\ ... \Libraries\fsc -a Vector.fsi Vector.fs

The library "Vector’ can now be used just like other libraries, such as
"Set’ or 'Map’.
® Compiler on Linux and Mac systems: fsharpc

An alternative is to use the Command Line Interface (CLI) tool
mentioned later in this lecture
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Geometric vectors (4): Use of library

A library must be referenced before it can be used.

#r @"d:\MRH data\ ... \Libraries\Vector.dll";;
--> Referenced ’d:\MRH data\ ... \Libraries\Vector.dll’
open Vector ;;

let
val
let
val
let
val

coord c

val

let
val

let
val

nQooe e

it

d

d :

e
e

make (1.0,-2.0);;

: vector
make (3.0,4.0);;
: vector
2.0 x. a —. b;;
vector

rr

float + float = (-1.0, -8.0)

c &. aj;
float = 15.0

norm b;;
float = 5.0

Notice: the implementation of vector is not visible and it cannot be

exploited.
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Type augmentation

"

A type augmentation
® adds declarations to the definition of a tagged type or a record
type
¢ allows declaration of (overloaded) operators.
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Type augmentation

m

A type augmentation
® adds declarations to the definition of a tagged type or a record
type
¢ allows declaration of (overloaded) operators.

In the "Vector’ module we would like to
® overload +, - and =« to also denote vector operations.
® overload » to denote two different operations on vectors.
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Type augmentation — signature

module Vector

[<Sealed>]
type vector =

static
static
static
static
static
val make

val coord:
val norm

member ( - )
member ( + )
member ( — )
member ( )
member ( ) :
float » float

* X

vector —-> vector

vector =
vector *
float
vector *
—-> vector

vector -> float * float

vector -> float

44 DTU Compute, Technical University of Denmark

vector
vector
vector
vector

—>
->
—>
->

vector
vector
vector
float
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Type augmentation — signature

module Vector

[<Sealed>]
type vector =

static
static
static
static
static
val make

val coord:

val norm

member ( “- )
member ( + )
member ( — )
member ( )
member ( ) :
float » float

* X

vector —-> vector
vector x vector —->
vector * vector ->
float * vector —>
vector * vector ->
—-> vector

vector -> float * float

vector -> float

® The attribute [<Sealed>] is mandatory when a type
augmentation is used.

45 DTU Compute, Technical University of Denmark

vector
vector
vector
float
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Type augmentation — signature

module Vector

[<Sealed>]
type vector =

static
static
static
static
static
val make

val coord:

val norm

member
member
member
member
member

float * float
vector -> float * float

(
(
(
(
(

*

)
)
)

)

)

vector —-> vector
vector *x vector ->
vector * vector ->
float * vector —>
vector * vector ->
—-> vector

vector -> float

® The attribute [<Sealed>] is mandatory when a type
augmentation is used.

vector
vector
vector
float

* The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form types = type. —> types

DTU Compute, Technical University of Denmark
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Type augmentation — signature

module Vector

[<Sealed>]
type vector =

static
static
static
static
static
val make

val coord:

val norm

member
member
member
member
member

float » float
vector -> float * float

(
(
(
(
(

*

)
)
)

)

)

vector —-> vector
vector *x vector ->
vector * vector ->
float * vector —>
vector * vector ->
—-> vector

vector -> float

® The attribute [<Sealed>] is mandatory when a type
augmentation is used.

vector
vector
vector
float

* The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form types = type. —> types

® The operators can still be used on numbers.

DTU Compute, Technical University of Denmark
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Type augmentation — implementation and use

"

module Vector

type vector =
| V of float » float

static member (7-) (V(x,V)) = V(-x,-y)
static member (+) (V(xl,yl) V(x2,y2)) = V(x1+x2,yl+y2)
static member (=) (V(x1l,yl),V(x2,y2)) = V(xl-x2,yl-y2)
static member (*) (a, V(x,y)) = V(axx,axy)
static member (x) (V(x1,yl),V(x2,y2)) = x1*x2 + ylxy2

let make (x,y) = V(x,V)

let coord (V(x,y)) = (x,¥)

let norm (V(x,y)) = sgrt(xxx + y*y)
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Type augmentation — implementation and use

"

module Vector

type vector =
| V of float » float

static member (7-) (V(x,V)) = V(-x,-y)
static member (+) (V(xl,yl) V(x2,y2)) = V(x1+x2,yl+y2)
static member (=) (V(x1l,yl),V(x2,y2)) = V(xl-x2,yl-y2)
static member (*) (a, V(x,y)) = V(axx,axy)
static member (x) (V(x1,yl),V(x2,y2)) = x1*x2 + ylxy2

let make (x,y) = V(x,V)

let coord (V(x,y)) = (x,¥)

let norm (V(x,y)) = sgrt(xxx + y*y)

The operators +, —, = are available on vectors even without opening:

let a = Vector.make(1.0,-2.0);;
val a : Vector.vector

let b Vector.make (3.0,4.0);;
val b : Vector.vector

let ¢ 2.0 x a - b;;
val ¢ : Vector.vector
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Customizing the string function

module Vector

type vector =
| V of float » float
override v.ToString() =

match v with | V(x,y)
let make (x,y) = V(X,y)
type vector with
static member (7-) (V(x,y))

-> string(x,vy)

= V(-%x,-Yy)

® The default ToString function that does not reveal a meaningful
value is overridden to give a string for the pair of coordinates.

* A type extension is used.

DTU Compute, Technical University of Denmark
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Customizing the string function

module Vector
type vector =
| V of float » float
override v.ToString() =
match v with | V(x,y) -> string(x,vy)

let make (x,vy) = V(x,Y)

type vector with
static member (7-) (V(x,y)) = V(-x,-y)

® The default ToString function that does not reveal a meaningful
value is overridden to give a string for the pair of coordinates.
* A type extension is used.

Example:

let a = Vector.make(1.0,2.0);;
val a : Vector.vector = (1, 2)

string(a+a);;
val it : string = " (2, 4)"

DTU Compute, Technical University of Denmark Lecture 7: Module System — briefly
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Summary

m

Modular program development
® program libraries using signatures and structures

® type augmentation, overloaded operators, customizing string
(and other) functions

® Encapsulation, abstraction, reuse of components, division of
concerns, ...
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A three project solution for polynomials containing

on Learn
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Nano-solution to Polynomial exercise on Learn

"

A three-project solution to a minimal part of the polynomial exercise:
® PolyLib: an F# library for polynomials a class library
e CSharpApp a C# console application using the library
e FSharpApp an F# console application using the library

54 DTU Compute, Technical University of Denmark Lecture 7: Module System — briefly MRH 25/10/2024


https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/get-started-command-line
https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/get-started-command-line
https://docs.microsoft.com/en-us/dotnet/core/tools
https://docs.microsoft.com/en-us/dotnet/core/tools
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Nano-solution to Polynomial exercise on Learn

A three-project solution to a minimal part of the polynomial exercise:
® PolyLib: an F# library for polynomials a class library
e CSharpApp a C# console application using the library
e FSharpApp an F# console application using the library

The solution is formed using the Command Line Interface (CLI) tool

® https://docs.microsoft.com/en-us/dotnet/fsharp/
get—-started/get-started-command-line

® https:
//docs.microsoft.com/en-us/dotnet/core/tools

works for Linux, MacOS, Windows operating systems
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Nano-solution to Polynomial exercise on Learn

A three-project solution to a minimal part of the polynomial exercise:
® PolyLib: an F# library for polynomials a class library
e CSharpApp a C# console application using the library
e FSharpApp an F# console application using the library

The solution is formed using the Command Line Interface (CLI) tool

® https://docs.microsoft.com/en-us/dotnet/fsharp/
get—-started/get-started-command-line

® https:
//docs.microsoft.com/en-us/dotnet/core/tools

works for Linux, MacOS, Windows operating systems

Consult DTU Learn concerning:
* How the solution is formed using the CLI tools
® How to run the applications and the script
* How executables and libraries (assemblies / binaries) are build
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Overview of Solution

"

Solution with three projects

® PolyLib F# class library
® PolyLib.fsproj includes compilation information
® Polynomial.fsi signature (interface) file
® Polynomial.fs implementation file
® script.fsx reference to PolyLib.dll
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Overview of Solution

"

Solution with three projects

® PolyLib F# class library
® PolyLib.fsproj includes compilation information
® Polynomial.fsi signature (interface) file
® Polynomial.fs implementation file
® script.fsx reference to PolyLib.dll

® FSharpApp F# console application
® FSharpApp.fsproj includes reference to PolyLib
® Program.fs a free-standing F# program
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Overview of Solution

Solution with three projects

® PolyLib F# class library
® PolyLib.fsproj includes compilation information
® Polynomial.fsi signature (interface) file
® Polynomial.fs implementation file
® script.fsx reference to PolyLib.dll

® FSharpApp F# console application
® FSharpApp.fsproj includes reference to PolyLib
® Program.fs a free-standing F# program

e CSharpApp C# console application
® CSharpApp.csproj includes reference to PolyLib
® Program.cs a free-standing C# program

Using the F#type "a list
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Overview of Solution

Solution with three projects

® PolyLib F# class library
® PolyLib.fsproj includes compilation information
® Polynomial.fsi signature (interface) file
® Polynomial.fs implementation file
® script.fsx reference to PolyLib.dll

® FSharpApp F# console application
® FSharpApp.fsproj includes reference to PolyLib
® Program.fs a free-standing F# program

e CSharpApp C# console application
® CSharpApp.csproj includes reference to PolyLib
® Program.cs a free-standing C# program

Using the F#type "a list

Let us have a look at the solution
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On Type Inference
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Type inference

"

Automated generation of the (most general) type for a program that
do not contain type annotations.
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Type inference

"

Automated generation of the (most general) type for a program that
do not contain type annotations.

® Avoid cluttering beautiful programs with type annotations while
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Type inference

m

Automated generation of the (most general) type for a program that
do not contain type annotations.

® Avoid cluttering beautiful programs with type annotations while

® Preserving static type safety
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Type inference: Examples

"

For the two programs:

let £ xyv =2 % x + vy;;

let rec append xs ys = match xs with
[ [ —> Vs
| x::rest —> x::append rest ys;;
the F# compiler infers the types:
f: int -> int -> int
append: ’'a list -> ’'a list -> ’'a list
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Type inference: Examples

"

For the two programs:

let £ xyv =2 % x + vy;;

let rec append xs ys = match xs with
[ [ —> Vs
| x::rest —> x::append rest ys;;
the F# compiler infers the types:
f: int -> int -> int
append: ’'a list -> ’'a list -> ’'a list

The F# type inference includes
¢ Overloading

Functions with different types and implementations can share
name, e.g. +
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Type inference: Examples

For the two programs:

let £ xyv =2 % x + vy;;

let rec append xs ys = match xs with
[ [ —> Vs

"

| x::rest —> x::append rest ys;;

the F# compiler infers the types:

f: int -> int -> int
append: ’'a list -> ’'a list -> ’'a list

The F# type inference includes
¢ Overloading

Functions with different types and implementations can share
name, e.g. +

® Parametric polymorphism

A single implementation of a function works for type-consistent
input data, , e.g. append

DTU Compute, Technical University of Denmark
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Type inference: Background

¢ Hindley type-schema for Combinatory Logic 1969

Milner ML-style type inference with algorithm W 1978

Damas-Milner 1982: correctness of type inference algorithm W
e ..SML ... OCAML ... Haskell ... F# ...
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Type inference: Background

¢ Hindley type-schema for Combinatory Logic 1969

Milner ML-style type inference with algorithm W 1978

Damas-Milner 1982: correctness of type inference algorithm W
e ..SML ... OCAML ... Haskell ... F# ...

Type inference in SML, ...F#, ... allows let-polymorphism; where, for
example,

let rec map f xs = match xs with
[ 1] -> []

| x::xs => £ x :: map f xs

is typable map : Vo, 8.(a — 8) — a 1ist — B list
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Type inference: Background

¢ Hindley type-schema for Combinatory Logic 1969

Milner ML-style type inference with algorithm W 1978
Damas-Milner 1982: correctness of type inference algorithm W
e ..SML ... OCAML ... Haskell ... F# ...

Type inference in SML, ...F#, ... allows let-polymorphism; where, for
example,

let rec map f xs = match xs with
[ 1] -> []

| x::xs => £ x :: map f xs

is typable map : Vo, 8.(o — B) = o 1ist — B list

The following program is NOT typable:
let £ g= (g 1l, g true) in f id

as it would require two different instantiations of argument g’s type
such extra power makes type inference problem undecidable
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About type rules and inference algorithm

"

The type-inference problem is specified using a few rules like:

pIx =t f= = tlbe bt plf—=Var,...,antc > t]Fep:t rule8outof9
pHletfx = erineyend : t (Sestoft2012)

where a4, ..., an are not free in p. don’t worry
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About type rules and inference algorithm ==
>

The identity function: 1et id x = x has infinity many types
ra->"a int list->int list int list list->int list list

including a most general (or principal) type a -> "a
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About type rules and inference algorithm ==
>

The identity function: 1et id x = x has infinity many types
ra->"a int list->int list int list list->int list list

including a most general (or principal) type "a -> ’a
having all other types of id as instances
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About type rules and inference algorithm

>
>
>
The identity function: 1et id x = x has infinity many types
ra->"a int list->int list int list list->int list list

including a most general (or principal) type a -> "a
having all other types of id as instances

The step from a rule-based formulation to an algorithm is huge.
¢ rules and algorithm by Milner in 1978
® correctness proof of algorithm by Damas-Milner in 1982

* ML typability is complete for DEXPTIME by Mairson and
KfouryTiurynUrzyczyn in 1990
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About type rules and inference algorithm

>
>
>
The identity function: 1et id x = x has infinity many types
ra->"a int list->int list int list list->int list list

including a most general (or principal) type a -> "a
having all other types of id as instances

The step from a rule-based formulation to an algorithm is huge.
¢ rules and algorithm by Milner in 1978
® correctness proof of algorithm by Damas-Milner in 1982

* ML typability is complete for DEXPTIME by Mairson and
KfouryTiurynUrzyczyn in 1990

Nice presentations in
e Sestoft: Programming language concepts, Springer 2012 (Ch 6)
e Schwartzbach: Polymorphic type inference, BRICS LS 95-3
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A program with a complex type: Sestoft 2012

let pair x y p =p

let
let
let
let
let

pl
p2
r3
p4
PS5

' 's 'O 'O 'O

pair id
pair pl
pair p2
pair p3
pair p4

DTU Compute, Technical University of Denmark

X Yii

pl
p2
p3

IS
B
b
IS
b
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A program with a complex type: Sestoft 2012

let

let
let
let
let
let

pair

pl
p2
r3
p4
PS5

' 's 'O 'O 'O

Yy P

pair
pair
pair
pair
pair

P

id
pl
P2
r3
p4

X Yii

id
pl
p2
p3
p4

IS
Bri
IS
IS
IS

® pl’s type contains 3 type variables
® p2’s type contains 7 type variables

DTU Compute, Technical University of Denmark

p3’s type contains 15 type variables
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A program with a complex type: Sestoft 2012

let

let
let
let
let
let

pair

pl
p2
r3
p4
PS5

' 's 'O 'O 'O

Yy P

pair
pair
pair
pair
pair

P

id
pl
P2
r3
p4

X Yii

id
pl
p2
p3
p4

IS
Bri
IS
IS
IS

® pl’s type contains 3 type variables
® p2’s type contains 7 type variables

Observe

p3’s type contains 15 type variables

¢ a doubling of the number of type variables from p; to p;,

¢ the number of type variable is exponential in the program size

® programmers rarely make programs having such complex types
¢ type checking appears to be efficient in practice

DTU Compute, Technical University of Denmark
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An informal approach to type inference

m

Given a declaration
let rec £ xy ... = e

and knowing typing and rules for “bits and pieces”.
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An informal approach to type inference

m

Given a declaration
let rec £ xy ... = e

and knowing typing and rules for “bits and pieces”.

® Choose two fresh type variables for the unknown types of the
arguments x, y, ...

* Analyse e adding new fresh type variables and constrains as
needed when typing the parts of e
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An informal approach to type inference

m

Given a declaration
let rec £ xy ... = e

and knowing typing and rules for “bits and pieces”.

® Choose two fresh type variables for the unknown types of the
arguments x, y, . ..

* Analyse e adding new fresh type variables and constrains as
needed when typing the parts of e

Two possibilities:
® An inconsistency is detected and the program cannot be typed.

* A most general type can be establish as constraints on the
introduced type variables arise from the program only.
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An example of an informal type inference

"

let rec map f xs = match xs with
I T[] > [] (1)
| x::tail -> £ x :: map f tail (2)

® Let’a and ' b be fresh type variables so that f: " a and xs: ' b.
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An example of an informal type inference =
let rec map f xs = match xs with
I [ -> [] (1)
| x::tail -> £ x :: map f tail (2)

® Let’a and ' b be fresh type variables so that f: " a and xs: ' b.
¢ Since xs is matched with pattern [] in (1), xs must have type
'c list (’cfresh)yand 'b = "¢ list
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An example of an informal type inference

let rec map f xs = match xs with
I T[] -> []
| x::tail -> £ x :: map f tail

® Let’a and ' b be fresh type variables so that f: " a and xs: ' b.

¢ Since xs is matched with pattern [] in (1), xs must have type
'c list (’cfresh)yand 'b = "¢ list

® The value of the function must have type ’d 1ist ( ’d fresh)
due to the expression [] in (1)
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An example of an informal type inference

"

let rec map f xs = match xs with
I T[] > [] (1)
| x::tail -> £ x :: map f tail (2)

Let ” a and ’ b be fresh type variables so that £: 7 a and xs: ' b.
Since xs is matched with pattern [] in (1), xs must have type
'c list (’cfresh)yand 'b = "¢ list

The value of the function must have type *d 1ist (' d fresh)
due to the expression [] in (1)

® Since xs:’c list is matched with pattern x: :tailin (2), we
have x:’cand tail:’c 1list due to the type of cons : :.
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An example of an informal type inference

let rec map f xs = match xs with
I T[] -> []
| x::tail -> £ x :: map f tail

® Let’a and ' b be fresh type variables so that f: " a and xs: ' b.

¢ Since xs is matched with pattern [] in (1), xs must have type
'c list (’cfresh)yand 'b = "¢ list

® The value of the function must have type ’d 1ist ( ’d fresh)
due to the expression [] in (1)

® Since xs:’c list is matched with pattern x: :tailin (2), we
have x:’cand tail:’c 1list due to the type of cons : :.

® Since the value of the function has type ’d 1ist, we have that
f x::map f tail:’d list andhence f x:’d,
map f tail:’d list and f:’c->’dbecause x:’c.
Therefore, 7a = "c—>'d.
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An example of an informal type inference

let rec map f xs = match xs with
I T[] -> []
| x::tail -> £ x :: map f tail

® Let’a and ' b be fresh type variables so that f: " a and xs: ' b.

¢ Since xs is matched with pattern [] in (1), xs must have type
'c list (’cfresh)yand 'b = "¢ list

® The value of the function must have type ’d 1ist ( ’d fresh)
due to the expression [] in (1)

® Since xs:’c list is matched with pattern x: :tailin (2), we
have x:’cand tail:’c 1list due to the type of cons : :.

® Since the value of the function has type ’d 1ist, we have that
f x::map f tail:’d list andhence f x:’d,
map f tail:’d list and f:’c->’dbecause x:’c.
Therefore, 7a = "c—>'d.

There are no further constraints and the most general type of map is

(Yc => ’'d) —> 'c list -> 'd 1list
Due to implicit universal quantification, the type can be renamed to
(Ya —> 'b) —> "a list -> ’'b 1list
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An even more informal approach

"

Explain in your own words .....
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An even more informal approach

m

Explain in your own words .....

Explanation must
® justify that every sub-expression is well-typed and
¢ that the establish type is the most general one.
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An even more informal approach

m

Explain in your own words .....

Explanation must
® justify that every sub-expression is well-typed and
¢ that the establish type is the most general one.

An explanation concerning the type of map should address:
¢ the arguments £ and xs,
e the patterns [] and x: :tail,
e the expressions [] and £ x :: map f tail,
® the sub-expressions £ x and map f tail, and
¢ the type of cons : :.
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