S
=
=

"

02157 Functional Programming
Lecture 1: Introduction and Getting Started

Michael R. Hansen
V1/
A + Qf Oe'"=

serag=3 E%t) E 0o ——(2.7182818284

) X ’>>’,

DTU Compute

Department of Applied Mathematics and Computer Science

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

WELCOME to
02157 Functional Programming

Teacher: Michael R. Hansen, DTU Compute mire@dtu.dk

Teaching assistants:
Jonas Dahl Larsen
Mathias Spezia
Mikael Hjermitslev Hoffmann
Oliwia Pindel
Shuokai Ma

Homepage: www.compute.dtu.dk/courses/02157

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

—_

i

MRH 26/08/2024

About functions

"

Advanced Engineering Mathematics 1
® eNotes: https://01006.compute.dtu.dk/enoter

3 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

https://01006.compute.dtu.dk/enoter

About functions

"

Advanced Engineering Mathematics 1
® eNotes: https://01006.compute.dtu.dk/enoter

For a function, like
f(x) = x*
we often mention its domain an range:

f:R—>R

4 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

https://01006.compute.dtu.dk/enoter

5

About functions

Advanced Engineering Mathematics 1
® eNotes: https://01006.compute.dtu.dk/enoter

For a function, like
f(x) = x*
we often mention its domain an range:

f:R—>R

For a typed functional language like F#, a function like:
let £ x = x ** 2.0;;

has an associated type:
f:float -> float

where float is the type of both the domain and the range.

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

https://01006.compute.dtu.dk/enoter

A Simple Functional Programming Setting

"

A program f is a function
f : Argument — Result
that takes one argument and produces one result.

6 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A Simple Functional Programming Setting

"

A program f is a function
f : Argument — Result
that takes one argument and produces one result.

Consider
let £ x = 2%xx + 3;;

7 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A Simple Functional Programming Setting

"

A program f is a function
f : Argument — Result
that takes one argument and produces one result.

Consider
let £ x = 2xx + 3;;

Every function has a type specifying types of argument and result:
f: int -> int

® argument and result of £ have type int (for integers).

8 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

9

DTU Compute, Technical University of Denmark

A Simple Functional Programming Setting

A program f is a function
f : Argument — Result
that takes one argument and produces one result.

Consider
let £ x = 2xx + 3;;

Every function has a type specifying types of argument and result:

f: int -> int

® argument and result of £ have type int (for integers).

Computation is governed by function application

£(1+ 2)
= £(3) evaluate argument
= 2x%x34 3 substitute 3in for x in f's body
= 9

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

10

DTU Compute, Technical University of Denmark

A Simple Functional Programming Setting

A program f is a function

f : Argument — Result
that takes one argument and produces one result.
Consider

let £ x = 2*x + 3;;

Every function has a type specifying types of argument and result:
f: int -> int

® argument and result of £ have type int (for integers).

Computation is governed by function application

£(1+ 2)
= £(3) evaluate argument
= 2x%x34 3 substitute 3in for x in f's body
= 9

F# has eager evaluation: Compute argument before making the call

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Context of 02157

m

Prerequisites
* You have used an editor to create programs
* You have installed a program on your laptop

® You have had (or have in the same semester) a course on
Discrete Mathematics

11 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Context of 02157

m

Prerequisites
* You have used an editor to create programs
* You have installed a program on your laptop

® You have had (or have in the same semester) a course on
Discrete Mathematics

The course is a part of educations leading to the MSc programme in
Computer Science and Engineering.

e candidates contributing to the development of high-quality,
advanced software products

12 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Context of 02157

m

Prerequisites
* You have used an editor to create programs
* You have installed a program on your laptop

® You have had (or have in the same semester) a course on
Discrete Mathematics

The course is a part of educations leading to the MSc programme in
Computer Science and Engineering.

e candidates contributing to the development of high-quality,
advanced software products

It is an aim to contribute to the fundament for educations leading to
the MSc education in CS&E

13 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Context of 02157

"

Prerequisites
* You have used an editor to create programs
* You have installed a program on your laptop

® You have had (or have in the same semester) a course on
Discrete Mathematics

The course is a part of educations leading to the MSc programme in
Computer Science and Engineering.

e candidates contributing to the development of high-quality,
advanced software products

It is an aim to contribute to the fundament for educations leading to
the MSc education in CS&E

May sound good; but what does it mean?

14 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

There is no magic

"

It is possible to understand everything:

15 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

There is no magic

"

It is possible to understand everything:
® The syntax (notation) of the programming language

16 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

There is no magic

m

It is possible to understand everything:
® The syntax (notation) of the programming language
® The semantics (meaning) of programs

17 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

There is no magic

m

It is possible to understand everything:
® The syntax (notation) of the programming language
® The semantics (meaning) of programs
® The evaluation of programs

18 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

There is no magic

m

It is possible to understand everything:
® The syntax (notation) of the programming language
® The semantics (meaning) of programs
® The evaluation of programs
® The properties of programs

19 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

There is no magic

m

It is possible to understand everything:
® The syntax (notation) of the programming language
® The semantics (meaning) of programs
® The evaluation of programs
® The properties of programs

Functional programming is a simple setting supporting

® declaration of clear, concise programs at a high level of
abstraction

¢ understanding and analysis of programs
due to the basis on mathematical functions (no side-effects)

20 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

=
—

An archetypical examplen! =1-2-...-n,n>0 D
>
Mathematical definition: recursion formula
o = 1 ()
nt = n-(n=1), forn>0 (i)
® n!is defined recursively in terms of (n — 1)! when n > 0
Lecture 1: Introduction and Getting Started MRH 26/08/2024

21 DTU Compute, Technical University of Denmark

=
=
=

An archetypical examplen! =1-2-...-n,n>0

>
=
Mathematical definition: recursion formula
o = 1 ()
nt = n-(n=1), forn>0 (i)

® n!is defined recursively in terms of (n — 1)! when n > 0

Computation:

3l
= 3.(3-1) (ii)
= 3.2.2-1 (i)
= 3.2.1-(1=-1) (i)

3.2.1-1 (i)
= 6

22 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Declaring recursive functions: let recfx = e

"

¢ the function f occurs in the body e of a recursive declaration

23 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

24

Declaring recursive functions: let recfx = e

¢ the function f occurs in the body e of a recursive declaration

A recursive function declaration:

let rec fact n =
if n=0 then 1

else n » fact(n-1);;
val fact : int —-> int

DTU Compute, Technical University of Denmark

(« 11 #)

Lecture 1: Introduction and Getting Started

=
—

"

MRH 26/08/2024

=
—

Declaring recursive functions: let recfx = e

"

¢ the function f occurs in the body e of a recursive declaration

A recursive function declaration:

let rec fact n =

if n=0 then 1 (» 1 x)
else n * fact (n-1);; (x 1i =)
val fact : int —-> int
Evaluation:
fact(3)
~» 3xfact(3—1) (i) [n~— 3]
~> 3%2x%fact(2—1) (i)
~ 3%2x1xfact(l—1) (i)
~ o 3%k2%x1x1 (7
~ 6

e ~ € reads: e; evaluates to e

25 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Declaring recursive functions: let recfx = e

"

¢ the function f occurs in the body e of a recursive declaration

A recursive function declaration:

let rec fact n =

if n=0 then 1 (» 1 x)
else n * fact (n-1);; (x 1i =)
val fact : int —-> int
Evaluation:
fact(3)
~» 3xfact(3—1) (i) [n~— 3]
~> 3%2x%fact(2—1) (i) [n—2]
~ 3%2x1xfact(l—1) (i)
~ o 3%k2%x1x1 (7
~ 6

e ~ € reads: e; evaluates to e

® An environment is used to bind the formal parameter n to actual
parameters 3,2, 1,0 during evaluation

26 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Declaring recursive functions: let recfx = e

"

¢ the function f occurs in the body e of a recursive declaration

A recursive function declaration:

let rec fact n =

if n=0 then 1 (» 1 x)
else n * fact (n-1);; (x 1i =)
val fact : int -> int
Evaluation:
fact(3)

~» 3xfact(3—1) (i) [n~— 3]
~> 3%2x%fact(2—1) (i) [n—2]
~ 3%2x1lxfact(l—1) (i) [nw—1]
~ o 3%k2%x1x1 (7
~ 6

e ~ € reads: e; evaluates to e

® An environment is used to bind the formal parameter n to actual
parameters 3,2, 1,0 during evaluation

27 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

28

Declaring recursive functions: let recfx = e

¢ the function f occurs in the body e of a recursive declaration

A recursive function declaration:

let rec fact n =
if n=0 then 1
else n » fact(n-1);;

val fact : int -> int
Evaluation:
fact(3)
~» 3xfact(3—1) (i)
~> 3%2x%fact(2—1) (i)
~ 3%2x1xfact(l—1) (i)
~ o 3%k2%x1x1 (7
~ 6

(« 11 #)

[n+— 3]
[n—2]
[n—1]
[n—0]

e ~ € reads: e; evaluates to e

® An environment is used to bind the formal
parameters 3,2, 1,0 during evaluation

DTU Compute, Technical University of Denmark

parameter n to actual

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Some functional programming background

m

® The A-calculus was introduced around 1930 by Church and
Kleene when investigating function definition, function
application, recursion and computable functions. For example,
f(x) = x + 2 is represented by Ax.x + 2.

29 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Some functional programming background

m

® The A-calculus was introduced around 1930 by Church and
Kleene when investigating function definition, function
application, recursion and computable functions. For example,
f(x) = x + 2 is represented by Ax.x + 2.

® The untyped functional-like programming language LISP was
developed by McCarthy in the late 1950s.

30 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Some functional programming background

m

® The A-calculus was introduced around 1930 by Church and
Kleene when investigating function definition, function
application, recursion and computable functions. For example,
f(x) = x + 2 is represented by Ax.x + 2.

® The untyped functional-like programming language LISP was
developed by McCarthy in the late 1950s.

® Functional languages with a strong type system like ML (by
Milner) and Miranda (by Turner) were introduced in the 1970s.

31 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Some functional programming background

m

® The A-calculus was introduced around 1930 by Church and
Kleene when investigating function definition, function
application, recursion and computable functions. For example,
f(x) = x + 2 is represented by Ax.x + 2.

® The untyped functional-like programming language LISP was
developed by McCarthy in the late 1950s.

® Functional languages with a strong type system like ML (by
Milner) and Miranda (by Turner) were introduced in the 1970s.

® Functional languages (SML, Haskell, OCAML, F#, ...) have now
applications far away from their origin: Compilers, Artificial
Intelligence, Web-applications, Financial sector, . ..

32 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

33

Some functional programming background

The \-calculus was introduced around 1930 by Church and
Kleene when investigating function definition, function
application, recursion and computable functions. For example,
f(x) = x + 2 is represented by Ax.x + 2.

The untyped functional-like programming language LISP was
developed by McCarthy in the late 1950s.

Functional languages with a strong type system like ML (by
Milner) and Miranda (by Turner) were introduced in the 1970s.

Functional languages (SML, Haskell, OCAML, F#, . ..) have now
applications far away from their origin: Compilers, Artificial
Intelligence, Web-applications, Financial sector, . ..

Declarative aspects are now sneaking into "main stream
languages”

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

m

MRH 26/08/2024

34

Some functional programming background

The \-calculus was introduced around 1930 by Church and
Kleene when investigating function definition, function
application, recursion and computable functions. For example,
f(x) = x + 2 is represented by Ax.x + 2.

The untyped functional-like programming language LISP was
developed by McCarthy in the late 1950s.

Functional languages with a strong type system like ML (by
Milner) and Miranda (by Turner) were introduced in the 1970s.

Functional languages (SML, Haskell, OCAML, F#, . ..) have now
applications far away from their origin: Compilers, Artificial
Intelligence, Web-applications, Financial sector, . ..

Declarative aspects are now sneaking into "main stream
languages”

Functional programming should be a mandatory element of
every BSc. education in Computer Science according to ACM'’s
and |IEEE’s curricula recommendations, 2013.

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

m

MRH 26/08/2024

Lambda Calculus

"

The untyped Lambda Calculus has just three kinds of expressions e:
® variables x
® abstractions Ax.e
® applications e ez

35 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Lambda Calculus

"

The untyped Lambda Calculus has just three kinds of expressions e:
® variables x
® abstractions Ax.e
® applications e ez
where
®)\x.e reads: “the function of x given by &”

36 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Lambda Calculus

"

The untyped Lambda Calculus has just three kinds of expressions e:
® variables x
® abstractions Ax.e
® applications e ez
where
®)\x.e reads: “the function of x given by &”

An application like (Ax.e) e> may be evaluated as follows:

(A\x.e)ex ~ €

where €} is obtained from e» by
® substituting every free occurrence of x in e by e»
like we did in the previous examples

37 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Lambda Calculus

"

The untyped Lambda Calculus has just three kinds of expressions e:
® variables x
® abstractions Ax.e
® applications e ez
where
®)\x.e reads: “the function of x given by &”

An application like (Ax.e) e> may be evaluated as follows:
(A\x.e)ex ~ €

where €} is obtained from e» by
® substituting every free occurrence of x in e by e»
like we did in the previous examples

No magic: A full explanation can be given in terms of few concepts

38 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Lambda Calculus

"

The untyped Lambda Calculus has just three kinds of expressions e:
® variables x
® abstractions Ax.e
® applications e ez
where
®)\x.e reads: “the function of x given by &”

An application like (Ax.e) e> may be evaluated as follows:

(A\x.e)ex ~ €

where €} is obtained from e» by
® substituting every free occurrence of x in e by e»
like we did in the previous examples

No magic: A full explanation can be given in terms of few concepts

The part of F# we will use is based on typed lambda calculus

39 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Overview: Syntactical constructs in “our part of” F#

"

e Constants: 0, 1.1, true, ...

40 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Overview: Syntactical constructs in “our part of” F#

"

e Constants: 0, 1.1, true, ...

® Patterns:
X - (pty...,pn) PpP1:p2 pilpo pwhene pasx p:t...

41 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Overview: Syntactical constructs in “our part of” F#

"

e Constants: 0, 1.1, true, ...

® Patterns:
X - (pty...,pn) PpP1:p2 pilpo pwhene pasx p:t...

® Expressions:
X (€1,...,6n) €16 ee ePe, letpy=erine e:t

if ethen ey then & match e with clauses

fun py---pp—>e€ function clauses

where the construct clauses has the form:

| p1 —> e1 | ... | pn —> en

42 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Overview: Syntactical constructs in “our part of” F#

"

e Constants: 0, 1.1, true, ...

® Patterns:
X - (pty...,pn) PpP1:p2 pilpo pwhene pasx p:t...

® Expressions:
X (€1,...,6n) €16 ee ePe, letpy=erine e:t

if ethen ey then & match e with clauses

fun py---pp—>e€ function clauses

® Declarations let fpy...pp=€ letrecfpi...ph=6,n>0

where the construct clauses has the form:

| p1 —> e1 | ... | pn —> en

43 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

44

Overview: Syntactical constructs in “our part of” F#

e Constants: 0, 1.1, true, ...
e Patterns:

X - (pty...,pn) PpP1:p2 pilpo pwhene pasx p:t...

® Expressions:

X (€1,...,6n) €16 ee ePe letpr=e6€rine

if ethen ey then & match e with clauses

fun py---pp—>e€ function clauses

® Declarations let fpy...pp=€ letrecfpi...ph=6,n>0

* Types
int float bool string
txbox---xt, tlist H-—>b...
where the construct clauses has the form:

/

a...

| p1 —> e1 | ... | pn —> en

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

45

Overview: Syntactical constructs in “our part of” F#

e Constants: 0, 1.1, true, ...
e Patterns:

X - (pty...,pn) PpP1:p2 pilpo pwhene pasx p:t...

® Expressions:

X (€1,...,6n) €16 ee ePe letpr=e6€rine

if ethen ey then & match e with clauses

fun py---pp—>e€ function clauses

® Declarations let fpy...pp=€ letrecfpi...ph=6,n>0

* Types
int float bool string
txbox---xt, tlist H-—>b...
where the construct clauses has the form:

/

a...

| p1 —> e1 | ... | pn —> en

In addition to that
® type declarations, precedence and associativity rules,
parenthesis around p and e and type correctness

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

"

Have a look at
® http://homepages.inf.ed.ac.uk/wadler/realworld/
® https://fsharp.org/testimonials/

concerning use of functional programming in the "real world”.

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

http://homepages.inf.ed.ac.uk/wadler/realworld/
https://fsharp.org/testimonials/

Practical Matters

"

® General information:
http://courses.compute.dtu.dk/02157

47 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

http://courses.compute.dtu.dk/02157
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/plan.html

Practical Matters

"

® General information:
http://courses.compute.dtu.dk/02157

® Practical Information:
http://courses.compute.dtu.dk/02157/
PracticalInfo.html

Exam form: Written exam, 4 hour — no aid allowed

48 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

http://courses.compute.dtu.dk/02157
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/plan.html

Practical Matters

"

® General information:
http://courses.compute.dtu.dk/02157

® Practical Information:
http://courses.compute.dtu.dk/02157/
PracticalInfo.html

Exam form: Written exam, 4 hour — no aid allowed

¢ Course plan:
http://courses.compute.dtu.dk/02157/plan.html

49 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

http://courses.compute.dtu.dk/02157
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/plan.html

Practical Matters

"

® General information:
http://courses.compute.dtu.dk/02157

® Practical Information:
http://courses.compute.dtu.dk/02157/
PracticalInfo.html

Exam form: Written exam, 4 hour — no aid allowed

¢ Course plan:
http://courses.compute.dtu.dk/02157/plan.html

On DTU Learn you can find some material
® A brief course introduction
® A mini-project on polynomials
¢ Slides

50 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

http://courses.compute.dtu.dk/02157
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/plan.html

Course Infrastructure

"

¢ Syllabus (see introduction to the course)
® Weekly lectures
* Weekly exercise classes with fantastic TAs
a flipped classroom model

51 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Course Infrastructure

"

¢ Syllabus (see introduction to the course)
® Weekly lectures
* Weekly exercise classes with fantastic TAs
a flipped classroom model

Course design is based on an evenly distributed workload and
“steady progress” throughout the semester

52 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Course Infrastructure

m

¢ Syllabus (see introduction to the course)
® Weekly lectures
* Weekly exercise classes with fantastic TAs
a flipped classroom model

Course design is based on an evenly distributed workload and
“steady progress” throughout the semester

Mini-projects: Exercise FP concepts and techniques while
¢ telling a coherent story on a specific topic
® relating FP to neighbouring courses
¢ introducing fundamental CS concepts

53 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Course Infrastructure

m

¢ Syllabus (see introduction to the course)
® Weekly lectures
* Weekly exercise classes with fantastic TAs
a flipped classroom model

Course design is based on an evenly distributed workload and
“steady progress” throughout the semester

Mini-projects: Exercise FP concepts and techniques while
¢ telling a coherent story on a specific topic
® relating FP to neighbouring courses
¢ introducing fundamental CS concepts

Nothing is mandatory

54 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Course Infrastructure

"

¢ Syllabus (see introduction to the course)
® Weekly lectures
* Weekly exercise classes with fantastic TAs
a flipped classroom model

Course design is based on an evenly distributed workload and
“steady progress” throughout the semester

Mini-projects: Exercise FP concepts and techniques while
¢ telling a coherent story on a specific topic
® relating FP to neighbouring courses
¢ introducing fundamental CS concepts

Nothing is mandatory

It is your own responsibility to achieve a good use of Fridays’
teaching slot

® no online support
® no hotline support

55 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Course Infrastructure

"

¢ Syllabus (see introduction to the course)
® Weekly lectures
* Weekly exercise classes with fantastic TAs
a flipped classroom model

Course design is based on an evenly distributed workload and
“steady progress” throughout the semester

Mini-projects: Exercise FP concepts and techniques while
¢ telling a coherent story on a specific topic
® relating FP to neighbouring courses
¢ introducing fundamental CS concepts

Nothing is mandatory

It is your own responsibility to achieve a good use of Fridays’
teaching slot

® no online support
® no hotline support

You are always welcome to visit my office: Room 112, Building 322

56 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Overview

"

Part 1 Getting Started:
® The interactive environment
® Values, expressions, types, patterns
® Declarations of values and recursive functions
¢ Binding, environment and evaluation
* Type inference

Main ingredients of F#

57 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Overview

"

Part 1 Getting Started:
® The interactive environment
® Values, expressions, types, patterns
® Declarations of values and recursive functions
¢ Binding, environment and evaluation
* Type inference
Main ingredients of F#

Part 2 Lists:
® |ists: values and constructors
® Recursions following the structure of lists
® Polymorphism

A value-oriented approach

58 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

The Interactive Environment

"

2«3 + 4;
val it : int = 10

~.

59 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

The Interactive Environment

"

2«3 + 4;; < Input to the F# system
val it : int = 10 < Answer from the F# system

60 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

61

The Interactive Environment

243 + 4;; <« Input to the F# system
val it : int = 10 < Answer from the F# system

® The keyword val indicates a value is computed

The integer 10 is the computed value
® int is the type of the computed value

The identifier it names the (last) computed value

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

62

The Interactive Environment

243 + 4;; <« Input to the F# system
val it : int = 10 < Answer from the F# system

® The keyword val indicates a value is computed

The integer 10 is the computed value
® int is the type of the computed value

The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it — 10 reads: “it is bound to 10”

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Value Declarations

>
>
>
A value declaration has the form: 1et identifier = expression
let price = 25 * 5;; < A declaration as input
val price : int = 125 < Answer from the F# system

The effect of a declaration is a binding: price +— 125

63 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Value Declarations =
>
A value declaration has the form: 1et identifier = expression
let price = 25 * 5;; < A declaration as input
val price : int = 125 < Answer from the F# system

The effect of a declaration is a binding: price +— 125
Bound identifiers can be used in expressions and declarations, e.g.

let newPrice = 2xprice;;
val newPrice : int = 250

newPrice > 500;;
val it : bool = false

64 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

65

"

Value Declarations
A value declaration has the form: 1et identifier = expression
let price = 25 x 5;; < A declaration as input
The effect of a declaration is a binding: price +— 125
Bound identifiers can be used in expressions and declarations, e.g.
let newPrice = 2+price;; A collection of bindings
val newPrice : int = 250 .
price — 125
) newPrice +~— 250
newPrice > 500;;
it — false

val it : bool = false
is called an environment

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Function Declarations 1: 1et fx = e
® x is called the formal parameter
¢ the defining expression e is called the body of the declaration

"

66 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Function Declarations 1: 1et fx = e
® x is called the formal parameter
¢ the defining expression e is called the body of the declaration

"

Declaration of the circle area function:

let circleArea r = System.Math.PI % r % r;;

® System.Math is a program library
® pI s an identifier (with type £loat) for 7 in System.Math

The type is automatically inferred in the answer:

val circleArea : float —-> float

67 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

=
=
=

Function Declarations 1: 1et fx = e
® x is called the formal parameter
¢ the defining expression e is called the body of the declaration

"

Declaration of the circle area function:

let circleArea r = System.Math.PI % r % r;;
® System.Math is a program library
® pI s an identifier (with type £loat) for 7 in System.Math

The type is automatically inferred in the answer:

val circleArea : float —-> float

Applications of the function:

circleArea 1.0;; (* this is a comment =*)
val it : float = 3.141592654

circleArea(3.2);; // A comment: optional brackets
val it : float = 32.16990877

68 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

=
=
=

Function Declarations 1: 1et fx = e
® x is called the formal parameter
¢ the defining expression e is called the body of the declaration

"

Declaration of the circle area function:
let circleArea r = System.Math.PI % r % r;;
® System.Math is a program library
® pI s an identifier (with type £loat) for 7 in System.Math

The type is automatically inferred in the answer:

val circleArea : float —-> float

Applications of the function:
circleArea 1.0;; (* this is a comment =*)

val it : float = 3.141592654

circleArea(3.2);; // A comment: optional brackets
val it : float = 32.16990877

1.0 and 3.2 are also called actual parameters

69 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Patterns

"

A pattern is composed from identifiers, constants and the wildcard
pattern: _using constructors (considered soon)

Examples of patterns are: 3.1, true,n, x, 5, _

70 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Patterns

"

A pattern is composed from identifiers, constants and the wildcard
pattern: _using constructors (considered soon)

Examples of patterns are: 3.1, true,n, x, 5, _

® A pattern may match a value, and if so it results in an
environment with bindings for every identifier in the pattern.

® The wildcard pattern _ matches any value (resulting in no
binding)

71 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Patterns

"

A pattern is composed from identifiers, constants and the wildcard
pattern: _using constructors (considered soon)

Examples of patterns are: 3.1, true,n, x, 5, _

® A pattern may match a value, and if so it results in an
environment with bindings for every identifier in the pattern.

® The wildcard pattern _ matches any value (resulting in no
binding)

Examples:
® Value 3.1 matches pattern x resulting in environment: [x — 3.1]

72 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Patterns

"

A pattern is composed from identifiers, constants and the wildcard
pattern: _using constructors (considered soon)

Examples of patterns are: 3.1, true,n, x, 5, _

® A pattern may match a value, and if so it results in an
environment with bindings for every identifier in the pattern.

® The wildcard pattern _ matches any value (resulting in no
binding)
Examples:
® Value 3.1 matches pattern x resulting in environment: [x — 3.1]
® Value true matches pattern t rue resulting in environment []

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Patterns

"

A pattern is composed from identifiers, constants and the wildcard
pattern: _using constructors (considered soon)

Examples of patterns are: 3.1, true,n, x, 5, _

® A pattern may match a value, and if so it results in an
environment with bindings for every identifier in the pattern.

® The wildcard pattern _ matches any value (resulting in no
binding)
Examples:
® Value 3.1 matches pattern x resulting in environment: [x — 3.1]
® Value true matches pattern t rue resulting in environment []

® The pair (1, t rue) matches pattern (x, y) resulting in
environment [x — 1,y — frue]

74 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Match expressions

"

match ewith
| pat; — ey
A match expression en, has the following form:

| pat, — en

75 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Match expressions

"

match ewith

| pat; — ey
A match expression en, has the following form:

| pat, — en

A match expression e, is evaluated as follows:

1 evaluate e to a value, say v
2 search for the first pattern pat; matching v

3 evaluate g; in an environment enriched with the bindings from
the pattern matching

76 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Match expressions

"

match ewith
| pat; — ey
A match expression en, has the following form:

| pat, — en

A match expression e, is evaluated as follows:

1 evaluate e to a value, say v
2 search for the first pattern pat; matching v

3 evaluate g; in an environment enriched with the bindings from
the pattern matching

If no pattern matches v, then the evaluation terminates abnormally.

77 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Example: Match on a pair

match (3+5,

Let es be given by:

DTU Compute, Technical University of Denmark

(0, _)
(n, false)
(n,_)

<
>
>
3<5) with
-> 0
-> —-n
—> 2*xn
Lecture 1: Introduction and Getting Started MRH 26/08/2024

Example: Match on a pair

"

match (3+5, 3<5) with

. . | (0, _) -> 0
Let es be given by: | (0 false) -> -n
[(n,_) -> 2%n
Evaluation:
&
~ (2#%n,[n+— 8])
~ (2%8,[n—8])
~ 16

79 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Example: Match expression in a declaration

"

Function declaration:
let rec fact n =
match n with
| 0 —> 1 (» 1 =)
| n => n * fact (n-1) (» 1i =)
val fact : int -> int

80 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

81

Example: Match expression in a declaration

Function declaration:

let rec fact n =
match n with

| 0 —> 1 (» i *)
| n -=> n * fact(n-1) (x 1i *)
val fact : int -> int
Evaluation:
fact(3)
~ 3xfact(3—1) (if)
~ 3% 2% fact(2 —1) (i)
~ 3%x2x1lxfact(l1—1) (i)
~ o 3 2% 1kl (7
~ 6

DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

82

Example: Match expression in a declaration

Function declaration:

let rec fact n =
match n with

| 0 —> 1 (+ i %)
| n -=> n * fact(n-1) (x 1i *)
val fact int -=> int
Evaluation:
fact(3)

~ 3xfact(3—1) (i) [n+ 3]
~ 3% 2% fact(2 —1) (i)
~ 3%x2x1lxfact(l1—1) (i)
~ o 3 2% 1kl (7
~ 6

DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Example: Match expression in a declaration

"

Function declaration:

let rec fact n =
match n with

| 0 —> 1 (x» i %)
| n -=> n * fact(n-1) (x 1i *)
val fact : int -> int
Evaluation:
fact(3)

~ 3xfact(3—1) (i) [n+ 3]
~ 3% 2% fact(2—1) (ify [n—2]
~ 3%x2x1lxfact(l1—1) (i)
~ o 3 2% 1kl (7
~ 6

83 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Example: Match expression in a declaration

"

Function declaration:

let rec fact n =
match n with

| 0 —> 1 (x» i %)
| n -=> n * fact(n-1) (» 1i =)
val fact : int -> int
Evaluation:
fact(3)

~ 3xfact(3—1) (i) [n+ 3]
~ 3% 2% fact(2—1) (ify [n—2]
~ 3%x2x1lxfact(l—1) (i) [n—1]
~ o 3 2% 1kl (7
~ 6

84 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Example: Match expression in a declaration

"

Function declaration:

let rec fact n =
match n with

| 0 —> 1 (x» i %)

n -> n x fact(n-1) (» 1i =)
val fact : int -> int
Evaluation:
fact(3)

~ 3xfact(3—1) (i) [n+ 3]
~ 3% 2% fact(2—1) (ify [n—2]
~ 3%x2x1lxfact(l—1) (i) [n—1]
~ o 3 2% 1kl (i) [n—0]
~ 6

85 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

=
=
=

Example: Match expression in a declaration

"

Function declaration:

let rec fact n =
match n with

| 0 —> 1 (x» i %)
| n —> n x fact (n-1) (» 1i =)
val fact : int -> int
Evaluation:
fact(3)

~ 3xfact(3—1) (i) [n+ 3]
~ 3% 2% fact(2—1) (ify [n—2]
~ 3%2x1lxfact(l—1) (i) [nw—1]
~ o 3 2% 1kl (i) [n—0]
~ 6

A match with a when clause and an exception:

let rec fact n =
match n with
| 0 -> 1
| n when n>0 -> n % fact(n-1)
| -> failwith "Negative argument"

86 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

=
=
=

Recursion. Example x” = x - ... - x, n occurrences of x

>
=
Mathematical definition: recursion formula
X =1 (1)
x" = x-x"' forn>0 (2

87 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

: n DTU
Recursion. Example x” = x - ... - x, n occurrences of x ==
>
Mathematical definition: recursion formula
X = 1 (1)
x" = x-x"' forn>0 (2

Function declaration:

let rec power (x,n)
match (x,n) with
| (-,0) —> 1.0 (x 1 %)
| (x,n) -> x * power (x,n-1) (x 2 *)

88 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

89

Recursion. Example x” = x - ... - x, n occurrences of x
Mathematical definition: recursion formula
X = 1 (1)
x" = x-x"' forn>0 (2

Function declaration:

let rec power (x,n)
match (x,n) with
| (-,0) —> 1.0 (x 1 %)
| (x,n) -> x * power (x,n-1) (x 2 *)

Patterns:
(-, 0) matches any pair of the form (u, 0).
(x,n) matches any pair (u, i) yielding the bindings

x> Une

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

=
=
=

"

MRH 26/08/2024

920

Recursion. Example x” = x - ... - x, n occurrences of x
Mathematical definition: recursion formula
X = 1 (1)
x" = x-x"' forn>0 (2

Function declaration:

let rec power (x,n)
match (x,n) with
| (-,0) —> 1.0 (x 1 %)
| (x,n) -> x * power (x,n-1) (x 2 *)

Patterns:
(-, 0) matches any pair of the form (u, 0).
(x,n) matches any pair (u, i) yielding the bindings

x> Une

Can you simplify the program?

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

=
=
=

"

MRH 26/08/2024

91

Evaluation. Example: power (4.0, 2)

Function declaration:

let rec power (x,n)
match (x,n) with

| (-,0) -> 1.0 (x 1 %)
| (x,n) -> x * power (x,n-1) (x 2 %)
Evaluation:
power(4.0,2)

~» 4.0 x power(4.0,2 — 1) Clause 2, [x + 4.0,n — 2]
~> 4.0 * power(4.0,1)
~ 4.0% (4.0 xpower(4.0,1 — 1)) Clause?2, [x+> 4.0,n— 1]
~> 4.0 % (4.0 x power(4.0,0))
~ 4.0%(4.0% 1) Clause 1
~ 16.0

DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Types — every expression has atype e : 7

m

Basic types:

| type name | example of values
Integers int ~27,0, 15, 21000

Floats float ~27.3, 0.0, 48.21
Booleans | bool true, false

DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started MRH 26/08/2024

Types — every expression has atype e : 7

"

Basic types:

| type name | example of values
Integers int ~27,0, 15, 21000

Floats float ~27.3, 0.0, 48.21
Booleans | bool true, false

Pairs:
If e1 T and €2 T2

then (e1, €2) : T*72 pair (tuple) type constructor

93 DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started MRH 26/08/2024

Types — every expression has atype e : 7

"

Basic types:

| type name | example of values
Integers int ~27,0, 15, 21000

Floats float ~27.3, 0.0, 48.21
Booleans | bool true, false

Pairs:
If e1: T and €2 T2
then (e1, €2) : T*72 pair (tuple) type constructor
Functions:
iff:n-—>manda: m

function type constructor
then f(a) : »

94 DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started MRH 26/08/2024

95

Types — every expression has atype e : 7

Basic types:
| type name | example of values
Integers int ~27,0, 15, 21000
Floats float ~27.3, 0.0, 48.21

Booleans | bool true, false
Pairs:
If e1: T and €2 T2
then (e1, €2) : T*72 pair (tuple) type constructor
Functions:
iff:mm->manda:n function type constructor
then f(a) : »

Examples:

(4.0, 2): float+int
power: floatxint -> float
power (4.0, 2): float

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

» has higher precedence that —>

MRH 26/08/2024

=
=
=

Type inference: power

M

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) -> x * power (x,n-1) (2 *)

96 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Type inference: power

"

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) —> x * power (x,n-1) (» 2 %)

® The type of the function must have the form: 7y » » —> 3,
because argument is a pair.

97 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Type inference: power

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) —> x * power (x,n-1) (» 2 %)

® The type of the function must have the form: 7y » » —> 3,
because argument is a pair.
® 73 =float because 1.0:float (Clause 1, function value.)

98 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Type inference: power

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) —> x * power (x,n-1) (» 2 %)

® The type of the function must have the form: 7y » » —> 3,
because argument is a pair.

® 73 =float because 1.0:float (Clause 1, function value.)
® 75 = int because 0:int.

99 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Type inference: power

100

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) —> x * power (x,n-1) (» 2 %)

The type of the function must have the form: 7y » » —> 73,
because argument is a pair.

73 = float because 1.0:float (Clause 1, function value.)
T2 = int because 0:int.
xxpower (x,n-1) : float, because 73 = float.

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Type inference: power

101

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) —> x * power (x,n-1) (» 2 %)

The type of the function must have the form: 7y » » —> 73,
because argument is a pair.

73 = float because 1.0:float (Clause 1, function value.)
T2 = int because 0:int.
xxpower (x,n-1) : float, because 73 = float.
multiplication can have
intxint -> int or floatxfloat -> float
as types, but no “mixture” of int and float

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Type inference: power

102

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) —> x * power (x,n-1) (» 2 %)

The type of the function must have the form: 7y » » —> 73,
because argument is a pair.

73 = float because 1.0:float (Clause 1, function value.)
T2 = int because 0:int.
xxpower (x,n-1) : float, because 73 = float.
multiplication can have
intxint -> int or floatxfloat -> float
as types, but no “mixture” of int and float
Therefore x: float and ry=float.

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Type inference: power

103

DTU Compute, Technical University of Denmark

let rec power (x,n)
match (x,n) with
| (-,0) => 1.0 (« 1 =)
| (x,n) —> x * power (x,n-1) (» 2 %)

The type of the function must have the form: 7y » » —> 73,
because argument is a pair.

73 = float because 1.0:float (Clause 1, function value.)
T2 = int because 0:int.
xxpower (x,n-1) : float, because 73 = float.
multiplication can have
intxint -> int or floatxfloat -> float
as types, but no “mixture” of int and float
Therefore x: float and ry=float.

The F# system determines the type floatxint -> float

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

A higher-order version of the power function

"

We shall now look at a version of power x n = x" with the type

power: float -> (int -> float)

104 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A higher-order version of the power function

"

We shall now look at a version of power x n = x" with the type
power: float -> (int -> float)

¢ the argument of power is the base x

105 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A higher-order version of the power function

"

We shall now look at a version of power x n = x" with the type
power: float -> (int -> float)

¢ the argument of power is the base x
¢ and power x is the function that maps exponent n to x”

106 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A higher-order version of the power function

We shall now look at a version of power x n = x" with the type
power: float -> (int -> float)

¢ the argument of power is the base x
¢ and power x is the function that maps exponent n to x”

The function may be evaluated in stages:
let pow2 = power 2.0;;

pow2 3;;

val it : float = 8.0
pow2 4;;

val it : float = 16.0

107 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

A higher-order version of the power function

"

We shall now look at a version of power x n = x" with the type
power: float -> (int -> float)

¢ the argument of power is the base x
¢ and power x is the function that maps exponent n to x”

The function may be evaluated in stages:
let pow2 = power 2.0;;

pow2 3;;
val it : float = 8.0
pow2 4;;
val it : float = 16.0

This higher-order version of power is declared by

let rec power x n = match n with
| 0 —> 1.0
| - —> x % power x (n—-1);;

108 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

109

A higher-order version of the power function

We shall now look at a version of power x n = x" with the type
power: float -> (int -> float)

¢ the argument of power is the base x
¢ and power x is the function that maps exponent n to x”

The function may be evaluated in stages:
let pow2 = power 2.0;;

pow2 3;;
val it : float = 8.0
pow2 4;;
val it : float = 16.0

This higher-order version of power is declared by

let rec power x n = match n with
| 0 —> 1.0
| - —> x % power x (n—-1);;

The value of the function is a function

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

A expression for anonymous functions

"

The function expression

function
| pat, — e

| pat, — en
allows you to “tabulate” argument-value pairs of a function.

function

| 2 -> 28 // February

| 4 -> 30 // April

| 6 —=> 30 // June

| 9 -> 30 // September

| 11 -> 30 // November

| -> 31;; // All other months

val it : int —-> int = <fun:clo@l17-2>

110 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A expression for anonymous functions

"

The function expression

function
| pat, — e

| pat, — en
allows you to “tabulate” argument-value pairs of a function.

function

| 2 -> 28 // February

| 4 -> 30 // April

| 6 —=> 30 // June

| 9 -> 30 // September

| 11 -> 30 // November

| -> 31;; // All other months

val it : int —-> int = <fun:clo@l17-2>

it 2;;
val it : int = 28

111 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Another higher-order version of the power function

"

We now have another look at power x n = x” with the type

power: float -> (int -> float)

112 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Another higher-order version of the power function

"

We now have another look at power x n = x” with the type

power: float -> (int -> float)

The following declaration explicitly reveals that power x is a function:

let rec power x =
function
| 0 —> 1.0
| n —> x x power x (n-1);;

113 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Booleans

"

Type name bool

Values false, true

Operator | Type \ not true = false
not | bool —> bool | negation not false = true

114 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

115

Booleans

Type name bool

Values false, true

Operator | Type \ not true = false
not | bool —> bool | negation not false = true
Expressions
e && e “conjunction ey A €27
e |l e “disjunction ey v 5"

DTU Compute, Technical University of Denmark

=
=
=

"

Lecture 1: Introduction and Getting Started

MRH 26/08/2024

=
=
=

Booleans

"

Type name bool

Values false, true

Operator | Type \ not true = false
not | bool —> bool | negation not false = true

Expressions

e && e “conjunction ey A €27
e |l e “disjunction ey v 5"
1<2 || 5/0 =1

— are lazily evaluated, e.g. e

Precedence: s& has higher than | |

116 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Summary

m

The interactive environment

Values, expressions, types, patterns

Declarations of values and recursive functions
¢ Binding, environment and evaluation
* Type inference

higher-order functions

17 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Part 2: Lists

m

Lists: values and constructors
® Recursions following the structure of lists

Polymorphism

The list concept is a natural, built-in ingredient of functional
languages

118 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Lists

"

A list is a finite sequence of elements having the same type:

[Vi;...; il ([1is called the empty list)

119 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Lists

"

A list is a finite sequence of elements having the same type:

[Vi;...; il ([1is called the empty list)

[2;3;6]1:;
val it : int list = [2; 3; 6]

120 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Lists

A list is a finite sequence of elements having the same type:

[Vi;...; val

[2;3;6];;

val it : int 1ist

[llall; llab"’. "abcll;
val it : string list =

121 DTU Compute, Technical University of Denmark

([1is called the empty list)

"ab ",. "abc",' " "]

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

"

Lists

A list is a finite sequence of elements having the same type:

[Vi;...; il ([1is called the empty list)

[2;3;6]1:;
val it : int list = [2; 3; 6]

[llall; llab"’. "abcll; "ll];;
val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cosl;;

>; <fun:...>]

(float->float) 1list = [<fun:...

val it ’

Lecture 1: Introduction and Getting Started MRH 26/08/2024

122 DTU Compute, Technical University of Denmark

Lists

123

A list is a finite sequence of elements having the same type:

[Vi;...; val

[2;3;6];;

val it int list = [2; 3; 6]

[llall; llab"’. "abcll; "ll]’.;

val it string 1list = ["a"; "ab"; "abc"; ""]
[sin; cosl;;

val it (float->float) 1list = [<fun:...>; <fun:..

[(1,true);
val it (int

DTU Compute, Technical University of Denmark

([1is called the empty list)

(3,true)];;
* bool) 1list =

[(1, true); (3,

Lecture 1: Introduction and Getting Started

true)]

"

.>]

MRH 26/08/2024

Lists

124

A list is a finite sequence of elements having the same type:

[Vi;...; val

[2;3;6];;

val it int list = [2; 3; 6]

[llall; llab"’. "abcll; "ll] ’.,.

val it string 1list = ["a"; "ab"; "abc"; ""]
[sin; cosl;;

val it (float->float) 1list = [<fun:...>; <fun:..
[(1,true); (3,true)l;;

val it (int % bool) 1list = [(1, true); (3,

[01; [11; [1;211:;

val it int 1list 1list = [[]; [1]; [1; 2]]

DTU Compute, Technical University of Denmark

([1is called the empty list)

Lecture 1: Introduction and Getting Started

true)]

"

.>]

MRH 26/08/2024

List constructors

"

A non-empty list [x1; X2; ... ; Xa], n > 1, consists of
® a head x; and
® atail[xe;...; Xn]

125 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

List constructors

"

A non-empty list [x1; X2; ... ; Xa], n > 1, consists of
® a head x; and
® atail[xe;...; Xn]

The list type has two constructors:

® The empty list []

® The cons constructor X : : [Xz;...; Xa] = [X1; X2; ... ; Xn]
—they are used to construct and to decompose lists

126 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Recursion on lists — a simple example

"

n n
suml [Xi;Xe; ... iXal =D X=X +Xe+ - +Xo=X+ Y X
=1 =2

127 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

=]
—
=

Recursion on lists — a simple example

"

n n
suml [X1; X2; ... ; Xn] IZX,‘:X1+X2+"'+Xn:X1+ZXi

i=1 i=2

Constructors are used in list patterns

let rec suml xs =
match xs with

[[] -> 0
| x::tail -> x + suml tail;;
val suml : int list —-> int

128 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

=
=
=

Recursion on lists — a simple example

"

n n
suml [Xi;Xei ... iXn] = D Xi=Xi+ X+ +Xn =X+ > X

i=1 i=2
Constructors are used in list patterns

let rec suml xs =
match xs with

I [-> 0
| x::tail -> x + suml tail;;
val suml : int list —-> int
suml [1;2]

~ 1+ suml [2] (x> 1and tail = [2])
~ 14+ (2 + suml []) (x+2andtail~ [])
~ 1+ (2 + 0) (the pattern [] matches the value [])
~ 1+ 2
~ 3

Recursion follows the structure of lists

129 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A polymorphic list function (1)

"

The function remove y xs gives the list obtained from xs by deleting
every occurrence of y, e.g. remove 2 [1;2;0;2;7] = [1;0;7].

Recursion is following the structure of the list:

let rec remove y Xs =
match xs with
| [] ->]
| x::tail when x=y -> remove y tail
| x::tail -> x::remove y tail;;

130 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

A polymorphic list function (1)

The function remove y xs gives the list obtained from xs by deleting
every occurrence of y, e.g. remove 2 [1;2;0;2;7] = [1;0;7].

Recursion is following the structure of the list:

let rec remove y Xs =
match xs with
| [] ->]
| x::tail when x=y -> remove y tail
| x::tail -> x::remove y tail;;

List elements can be of any type that supports equality

"

remove : ‘’'a -> ’"a list -> ’a list when’a : equality

131 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

MRH 26/08/2024

A polymorphic list function (1)

The function remove y xs gives the list obtained from xs by deleting
every occurrence of y, e.g. remove 2 [1;2;0;2;7] = [1;0;7].

Recursion is following the structure of the list:

let rec remove y Xs =
match xs with
| [] ->]
| x::tail when x=y -> remove y tail
| x::tail -> x::remove y tail;;

List elements can be of any type that supports equality

"

remove : ‘’'a -> ’"a list -> ’a list when’a : equality

® ' ais a type variable
® ’a: equality is a type constraint

132 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

MRH 26/08/2024

A polymorphic list function (1)

"

The function remove y xs gives the list obtained from xs by deleting
every occurrence of y, e.g. remove 2 [1;2;0;2;7] = [1;0;7].

Recursion is following the structure of the list:

let rec remove y Xs =
match xs with
| [] ->]
| x::tail when x=y -> remove y tail
| x::tail -> x::remove y tail;;

List elements can be of any type that supports equality

remove : ‘’'a -> ’"a list -> ’a list when’a : equality

® ' ais a type variable
® ’a: equality is a type constraint

The F# system infers the most general type for remove

133 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

134

A polymorphic list function (II)

® A type containing type variables is called a polymorphic type

® The remove function is called a polymorphic function.
remove "a —> ’'a list —-> ’"a list when ’a

equality
The function has many forms, one for each instantiation of ’a:

DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started MRH 26/08/2024

"

135

A polymorphic list function (II)

® A type containing type variables is called a polymorphic type

® The remove function is called a polymorphic function.
remove "a -> "a list -> 'a list when ’a
The function has many forms, one for each instantiation of ’a:

Instantiating ’ a with int:

remove 2 [1; 2;

0; 2; 71;7
val it

int list = [1; 0; 7]

DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started

equality

MRH 26/08/2024

"

136

A polymorphic list function (II)

® A type containing type variables is called a polymorphic type

® The remove function is called a polymorphic function.
remove "a —> ’'a list —-> ’"a list when ’a

The function has many forms, one for each instantiation of ’a:
Instantiating ’ a with int:

equality

remove 2 [1; 2; 0; 2; 71;;
val it

int list = [1; 0; 7]

Instantiating ’ a with int 1ist:

remove [2]

[[2;11; [2]1;
val it

int list 1list =

[0;11; [21; [5;6;7]11;;
[([2; 1]; [0; 1]; [5; 6; 7]]

DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started MRH 26/08/2024

"

=
—

A polymorphic list function (II)

"

® A type containing type variables is called a polymorphic type
® The remove function is called a polymorphic function.

remove : 'a -> ’"a list -> ’'a list when ’'a : equality
The function has many forms, one for each instantiation of ’a:
Instantiating ’ a with int:

remove 2 [1; 2; 0; 2; 71;;
val it : int 1list = [1; 0; 7]

Instantiating ’ a with int 1ist:

remove [2] [[2;1]; [2]; [0;1]; [2]; [5;6;711;;
val it : int 1list 1list = [[2; 1]; [0; 1]; [5; 6; 7]]

Notice that —> associates to the right:

"a —> 'a list -> 'a list means 'a -> ('a list -> ’'a list)

137 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Exploiting structured patterns: the isPrefix function

The function isPrefix xs ys tests whether the list xs is a prefix of
the list ys, for example:

true

isPrefix [1;2;
2 = false

3
isPrefix [1;2;3

—_—

138 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

"

Exploiting structured patterns: the isPrefix function

The function isPrefix xs ys tests whether the list xs is a prefix of
the list ys, for example:

isPrefix [1;2;3][1;2;3;8;9] = true
isPrefix [1;2;3][1;2;8;3;9] = false
The function is declared as follows:
let rec isPrefix xs ys =
match (xs,ys) with
([1,-) -> true
(_, [1) -> false

| (x::xtail,y::ytail) -> x=y && isPrefix xtail ytail;;

isPrefix [1;2;3] [1;21;;
val it : bool = false

139 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Exploiting structured patterns: the isPrefix function

The function isPrefix xs ys tests whether the list xs is a prefix of
the list ys, for example:

isPrefix [1;2;3][1;2;3;8;9] = true
isPrefix [1;2;3][1;2;8;3;9] = false
The function is declared as follows:
let rec isPrefix xs ys =
match (xs,ys) with
([1,-) -> true
(_, [1) -> false

| (x::xtail,y::ytail)

isPrefix [1;2;3] [1;21;;
val it : bool = false

A each clause expresses succinctly a natural property:

140 DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started

"

-> x=y && isPrefix xtail ytail;;

MRH 26/08/2024

"

Exploiting structured patterns: the isPrefix function

The function isPrefix xs ys tests whether the list xs is a prefix of
the list ys, for example:

isPrefix [1;2;3][1;2;3;8;9] = true
isPrefix [1;2;3][1;2;8;3;9] = false
The function is declared as follows:
let rec isPrefix xs ys =
match (xs,ys) with
([1,-) -> true
(_, [1) -> false

| (x::xtail,y::ytail) -> x=y && isPrefix xtail ytail;;

isPrefix [1;2;3] [1;21;;
val it : bool = false

A each clause expresses succinctly a natural property:
® The empty list is a prefix of any list

141 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

"

Exploiting structured patterns: the isPrefix function

The function isPrefix xs ys tests whether the list xs is a prefix of
the list ys, for example:

isPrefix [1;2;3][1;2;3;8;9] = true
isPrefix [1;2;3][1;2;8;3;9] = false
The function is declared as follows:
let rec isPrefix xs ys =
match (xs,ys) with
([1,-) -> true
(_, [1) -> false

| (x::xtail,y::ytail) -> x=y && isPrefix xtail ytail;;
isPrefix [1;2;3]1 [1;21;;
val it : bool = false

A each clause expresses succinctly a natural property:

® The empty list is a prefix of any list
* A non-empty list is not a prefix of the empty list

142 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Exploiting structured patterns: the isPrefix function

The function isPrefix xs ys tests whether the list xs is a prefix of
the list ys, for example:

isPrefix [1;2;3][1;2;3;8;9] = true
isPrefix [1;2;3][1;2;8;3;9] = false
The function is declared as follows:
let rec isPrefix xs ys =
match (xs,ys) with
([1,-) -> true
(_, [1) -> false

| (x::xtail,y::ytail)

isPrefix [1;2;3] [1;21;;
val it : bool = false

A each clause expresses succinctly a natural property:
® The empty list is a prefix of any list
* A non-empty list is not a prefix of the empty list
* A non-empty list (...) is a prefix of another non-empty list (...) if ...

143 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started

"

-> x=y && isPrefix xtail ytail;;

MRH 26/08/2024

Summary

"

® |ists

144 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Summary

"

® |Lists
® Polymorphism

145 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Summary

"

® Lists
® Polymorphism
e Constructors (:: and [] for lists)

146 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Summary

"

® |Lists
Polymorphism

Constructors (:: and [] for lists)
® Patterns

147 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Summary

® |Lists
Polymorphism

Constructors (:: and [] for lists)
® Patterns
® Recursion on the structure of lists

148 DTU Compute, Technical University of Denmark

Lecture 1: Introduction and Getting Started

"

MRH 26/08/2024

Summary

"

® Lists

Polymorphism

Constructors (:: and [] for lists)

® Patterns

® Recursion on the structure of lists

e Constructors used in patterns to decompose structured values

149 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

Summary

"

® |Lists
Polymorphism

Constructors (:: and [] for lists)

® Patterns

® Recursion on the structure of lists

e Constructors used in patterns to decompose structured values
¢ Constructors used in expressions to compose structured values

150 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

151

Summary

"

® |Lists
Polymorphism

Constructors (:: and [] for lists)

® Patterns

® Recursion on the structure of lists

e Constructors used in patterns to decompose structured values
¢ Constructors used in expressions to compose structured values

Blackboard exercises
® memberOf x ysis true iff x occurs in the list ys

® insert(x,ys) is the ordered list obtained from the ordered list
ys by insertion of x

® sort(xs) gives a ordered version of xs

DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

