
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture: Verification briefly

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

You can prove properties of pure functional programs

using “just”

your prerequisites in discrete mathematics

2 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

• Unit testing
– test examples – a few sanity checks

• ...

• Property-based testing
– Validation of properties of programs
– Program correctness supported by statistical information

• ...

• Verification
– properties of program proved to be correct
– Program correctness guaranteed by mathematical proofs

3 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Pure functional programs

A simple setting for verification of
• terminating functional programs

excludes, for example, let rec f(x) = 1+f(x)

• having no side-effects

Reasoning is guided by
• equations based on program declarations
• mathematical properties like e + e = 2e
• induction based on natural numbers and data types

The simple reasoning breaks down in the presence of side effects,
where, for example, e + e = 2e does not necessary hold.

4 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A very, very simple example: factorial function

We prove ∀n ∈ N.fact n = n!, where

let rec fact =
function
| 0 -> 1 (* Case 1 *)
| n -> n * fact(n-1) (* Case 2 *)

using the following well-known induction rule for natural numbers

1. P(0) base case
2. ∀n.(P(n) ⇒ P(n + 1)) inductive step

∀n.P(n) What is P(n)?

Base case. We must prove fact 0 = 0! = 1. Trivial.

Inductive step. Consider arbitrary n ∈ N. We must establish

fact n = n!︸ ︷︷ ︸
induction hypothesis︸ ︷︷ ︸

P(n)

⇒ fact(n + 1) = (n + 1)!︸ ︷︷ ︸
P(n+1)

5 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Very, very simple example cont’d

Assume the induction hypothesis:

fact n = n! (Ind .hyp.)

The inductive step is established by:

fact(n + 1)
= (n + 1) · fact n Case 2, as n + 1 ̸= 0
= (n + 1) · n! Ind .hyp.
= (n + 1)!

Hence ∀n ∈ N.fact n = n! by the induction rule.

Simple induction and equational reasoning

The simple reasoning breaks down in the presence of side effects

6 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Structural induction over lists

The declaration

type ’a list =
| Nil // Nil is written []
| Cons of ’a * ’a list // Cons(x,xs) is written x::xs

denotes an inductive definition of lists (of type ’a)
• [] is a list
• if x is an element and xs is a list, then x :: xs is a list
• lists can be generated by above rules only

The following structural induction rule is therefore sound:
1. P([]) base case
2. ∀xs.∀x .(P(xs) ⇒ P(x :: xs)) inductive step

∀xs.P(xs)

7 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example

let rec (@) xs ys = match xs with
| [] -> ys (* A1 *)
| x::xs -> x::(xs @ ys);; (* A2 *)

let rec len xs = match xs with
| [] -> 0 (* L1 *)
| _::xs -> 1+len xs;; (* L2 *)

Property:

∀xs.len(xs@ys) = len(xs) + len(ys)

8 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Proof of property by induction (I)

We prove: ∀xs.len(xs@ys) = len(xs) + len(ys) (1)

Let P(xs) be len(xs@ys) = len(xs) + len(ys)

Base case: We must establish: P([]):

len([]@ys)
= len(ys) A1
= 0 + len(ys) Arith.
= len([]) + len(ys) L1

9 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Proof of property by induction (II)

Remember: P(xs) is len(xs@ys) = len(xs) + len(ys) ind. hyp.

Inductive step: Consider arbitrary xs and x .

Assume P(xs) the induction hypothesis.

We must establish P(x :: xs):

len((x :: xs)@ys)) = len(x :: xs) + len(ys)

Simple equational reasoning suffices:

len((x :: xs)@ys)
= len(x :: (xs@ys)) A2
= 1 + len(xs@ys) L2
= 1 + (len(xs) + len(ys)) ind .hyp.
= (1 + len(xs)) + len(ys) Arith.
= len(x :: xs) + len(ys) L2

Using the structural induction rule we have established

∀xs.len(xs@ys) = len(xs) + len(ys)

10 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Just an appetizer

Reasoning about functional programs is ”easy”
• no side effects
• inductively defined types (lists, trees, ...)

Topics from Program analysis, Model checking and Verification are
studied in a variety of courses, e.g. 02141, 02143, 02156, 02242,
02244, 02245, 02246 introducing different theories and using highly
advanced tools

11 DTU Compute, Technical University of Denmark Lecture: Verification briefly MRH 25/11/2024

