

02157 Functional Programming

Lecture: Verification briefly

Michael R. Hansen

DTU Compute

Department of Applied Mathematics and Computer Science

You can prove properties of pure functional programs using "just"

your prerequisites in discrete mathematics

- Unit testing
 - test examples a few sanity checks
- ...
- Property-based testing
 - Validation of properties of programs
 - Program correctness supported by statistical information
- ..
- Verification
 - properties of program proved to be correct
 - Program correctness guaranteed by mathematical proofs

Pure functional programs

A simple setting for verification of

- terminating functional programs
 excludes, for example, let rec f(x) = 1+f(x)
- having no side-effects

Reasoning is guided by

- equations based on program declarations
- mathematical properties like e + e = 2e
- induction based on natural numbers and data types

The simple reasoning breaks down in the presence of side effects, where, for example, e + e = 2e does not necessary hold.

A very, very simple example: factorial function

We prove $\forall n \in \mathbb{N}$. *fact* n = n!, where

using the following well-known induction rule for natural numbers

```
1. P(0) base case

2. \forall n.(P(n) \Rightarrow P(n+1)) inductive step \forall n.P(n) What is P(n)?
```

Base case. We must prove fact 0 = 0! = 1. Trivial.

Inductive step. Consider arbitrary $n \in \mathbb{N}$. We must establish

$$\underbrace{\frac{fact \ n = n!}{fact \ (n+1) = (n+1)!}}_{P(n)} \Rightarrow \underbrace{\frac{fact(n+1) = (n+1)!}{fact(n+1)}}_{P(n+1)}$$

Very, very simple example cont'd

Assume the induction hypothesis:

$$fact n = n!$$
 (Ind.hyp.)

The inductive step is established by:

Hence $\forall n \in \mathbb{N}$. *fact* n = n! by the induction rule.

Simple induction and equational reasoning

The simple reasoning breaks down in the presence of side effects

Structural induction over lists

The declaration

denotes an inductive definition of lists (of type 'a)

- [] is a list
- if x is an element and xs is a list, then x :: xs is a list
- lists can be generated by above rules only

The following structural induction rule is therefore sound:

- 1. P([]) base case
- 2. $\forall xs. \forall x. (P(xs) \Rightarrow P(x :: xs))$ inductive step $\forall xs. P(xs)$

Example

Property:

$$\forall xs.len(xs@ys) = len(xs) + len(ys)$$

Proof of property by induction (I)


```
We prove: \forall xs.len(xs@ys) = len(xs) + len(ys) (1)
Let P(xs) be len(xs@ys) = len(xs) + len(ys)
```

Base case: We must establish: P([]):

```
\begin{array}{ll} & len([]@ys) \\ = & len(ys) & A1 \\ = & 0 + len(ys) & Arith. \\ = & len([]) + len(ys) & L1 \end{array}
```

Proof of property by induction (II)

Remember: P(xs) is len(xs@ys) = len(xs) + len(ys) ind. hyp.

Inductive step: Consider arbitrary xs and x.

Assume P(xs) the induction hypothesis.

We must establish P(x :: xs):

$$len((x :: xs)@ys)) = len(x :: xs) + len(ys)$$

Simple equational reasoning suffices:

$$\begin{array}{ll} & len((x::xs)@ys) \\ = & len(x::(xs@ys)) & A2 \\ = & 1 + len(xs@ys) & L2 \\ = & 1 + (len(xs) + len(ys)) & ind.hyp. \\ = & (1 + len(xs)) + len(ys) & Arith. \\ = & len(x::xs) + len(ys) & L2 \end{array}$$

Using the structural induction rule we have established

$$\forall xs.len(xs@ys) = len(xs) + len(ys)$$

Just an appetizer

Reasoning about functional programs is "easy"

- no side effects
- inductively defined types (lists, trees, ...)

Topics from Program analysis, Model checking and Verification are studied in a variety of courses, e.g. 02141, 02143, 02156, 02242, 02244, 02245, 02246 introducing different theories and using highly advanced tools

Lecture: Verification briefly