1

=]
=
=

"

02157 Functional Programming
Finite trees (Il)
— Interpreters for two simple languages

Michael R. Hansen

LA 6+ QfSe“’:

flx+Ax)= Z—f ’(x) 800_{2 7182818284

) X

DTU Compute
Department of Applied Mathematics and Computer Science

DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

Overview

"

Finite trees: Two examples
* An interpreter for a simple expression language

* An interpreter for a simple while-language

2 DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

=
=
=

M

Finite trees (Il)

3 DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

Interpreters for two simple languages — Purpose

m

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

¢ Concrete syntax: defined by a contextfree grammar
® Abstract syntax (parse trees): defined by algebraic datatypes

® Semantics, i.e. meaning of programs: inductively defined
following the structure of the abstract syntax

succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:
eval : Program — Environment — Value

The interpreter for a simple imperative programming language is a
higher-order function:

| - Program — State — State

DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

5

Expressions with local declarations

Concrete syntax:

a x (=3 + (let x

=5 1in x + a))

The abstract syntax is defined by an algebraic datatype:

type ExprTree =

Example:

let et =
Prod (Ident "a"
Sum (Minus

Let ("x",

DTU Compute, Technical University of Denmark

Const of
Ident of
Minus of
Sum of
Diff of
Prod of

int

string

ExprTree

ExprTree x ExprTree
ExprTree * ExprTree
ExprTree * ExprTree

"

Let of string * ExprTree % ExprTree;;

(Const 3)

14

Const 5, Sum(Ident "x", Ident

Finite trees (Il), — Interpreters for two simple languages

"a"))))i;

MRH 7/11/2024

Evaluation in Environments

An environment contains bindings of identifiers to values.

Atree Let (s, ti, k) is evaluated in an environment env:
1 Evaluate t; to value vy in environment env.
2 Evaluate & in env extended with the binding of sto v4.

An evaluation function

eval:

ExprTree —> Map<string,int> -> int

is defined as follows:

let rec eval t env =
match t with

Const n ->
Ident s >
Minus t ->
Sum(tl, t2) ->
Diff(tl,t2) ->
Prod(tl,t2) —>
Let (s,tl,t2) ->

6 DTU Compute, Technical University of Denmark

n
Map.find s env
- (eval t env)
eval tl env + eval
eval tl env - eval
eval tl env x eval
let vl = eval tl
let envl = Map.add
eval t2 envl;;

t2 env
t2 env
t2 env
env

s vl env

Finite trees (Il), — Interpreters for two simple languages

=
=
=

"

MRH 7/11/2024

=
=
=

Example

"

Concrete syntax:

a x (=3 + (let x =5 in x + a))

let et =
Prod(Ident "a",
Sum (Minus (Const 3),
Let ("x", Const 5, Sum(Ident "x", Ident "a"))));;

let env = Map.add "a" -7 Map.empty;;
eval et env;;
val it : int = 35

7 DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

8

Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

y:=1;
while ! (x=0)
do (y:= y*x;x:=x-1)

Typical ingredients
® Arithmetical expressions
® Boolean expressions

e Statements (assignments, sequential composition, loops, . ..

DTU Compute, Technical University of Denmark

Finite trees (Il), — Interpreters for two simple languages

"

MRH 7/11/2024

Arithmetic Expressions

"

* A type the abstract syntax for Arithmetical Expressions

type AExp = (x Arithmetical expressions x)
N of int (* numbers *)

| V. of string (» variables *)

| Add of AExp * AEXp (+ addition *)

| Mul of AExp * AEXxp (* multiplication x)

| Sub of AExp * AEXp;; (x subtraction *)

You do not need parenthesis, precedence rules, etc.
in the abstract syntax

you work directly on trees.

9 DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

10

Semantics of Arithmetic Expressions

* A state maps variables to integers
type State = Map<string,int>;;

® The meaning of an expression is a function:
A: AExp —-> State —-> int

defined inductively on the structure of arithmetic expressions

let rec A a s =
match a with
| N n -> n
V x -> Map.find x s
Add(al, a2) -> A al s + A a2 s
Mul (al, a2) -> A al s A a2 s
Sub (al, a2) -> A al s - A a2 s;;

DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages

"

MRH 7/11/2024

Boolean Expressions

"

® Abstract syntax

type BExp = (x Boolean expressions =)
| TT (» true *)
| FF (» false *)
| Eq of .. (» equality *)
| Lt of (» less than *)
| Neg of (x» negation *)
| Con of HH (» conjunction «)

e Semantics B : BExp — State — bool

let rec B b s =
match b with
| TT —-> true
\

11 DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

Statements: Abstract Syntax

statements
assignment

type Stm =
| Ass of string * AExp
| Seqg of Stm list
| ITE of BExp * Stm * Stm
| While of BExp * Stm;;

if-then-else
while

* % ok X o

Example of concrete syntax:

y:=1 ; while not (x=0) do (y:= y*x ; x:=x-1)

Abstract syntax ?

12 DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages

sequential composition

"

X %

*

MRH 7/11/2024

Update of states

"

An imperative program performs a sequence of state updates.

® The expression
updateyVvs

is the state that is as s except that y is mapped to v.

¢ Update is a synonym for Map . add:
let update x v s = Map.add x v s;;

13 DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

14

Interpreter for Statemen

® The meaning of stat

ts

ements is a function

| : Stm — State — State

that is defined by induction on the structure of statements:

let rec I stm s

match stm with

| Ass(x,a)
| Seq stms
| ITE (b, stm
| While (b,

DTU Compute, Technical University of Denmark

-> update x (...) s
->
1,stm2) —->
stm) > HH
Finite trees (Il), — Interpreters for two simple languages

"

MRH 7/11/2024

15

Example: Factorial function

>
>
>
(*
y:=1 ; while ! (x=0) do (y:= y*x;x:=x-1)
*)
let fac = Seq [Ass("y", N 1);
While (Neg (Egq(V "x", N 0)),
Seq [ASS ("y", Mul (V "x" V "y"))
Ass ("x", Sub(v "x", N 1)) 1)1;;
(Define an initial state *)
let sO = Map.ofList [("x",4)]1;;
val s0 : Map<string, int> map [("x", 4)]
(x Interpret the program *)
let s1 = I fac s0;;
val sl : Map<string,int> map [("x", 1); ("y", 24)]

DTU Compute, Technical University of Denmark

Finite trees (Il), — Interpreters for two simple languages

MRH 7/11/2024

m

Interpreter will be available on Learn.
® You may add the statements skip, if-then and repeat-until.

® Suppose that an expression of the form inc(x) is added. It adds
one to the value of x in the current state, and the value of the
expression is this new value of x.

How would you refine the interpreter to cope with this construct?

® Analyse the problem and state the types for the refined
interpretation functions

DTU Compute, Technical University of Denmark Finite trees (Il), — Interpreters for two simple languages MRH 7/11/2024

