
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Finite trees (II)
– Interpreters for two simple languages

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

Finite trees: Two examples
• An interpreter for a simple expression language

• An interpreter for a simple while-language

2 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Finite trees (II)

3 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Interpreters for two simple languages — Purpose

To show the power of a functional programming language, we
present a prototype for interpreters for a simple expression language
with local declarations and a simple WHILE language.

• Concrete syntax: defined by a contextfree grammar
• Abstract syntax (parse trees): defined by algebraic datatypes
• Semantics, i.e. meaning of programs: inductively defined

following the structure of the abstract syntax
succinct programs, fast prototyping

The interpreter for the simple expression language is a higher-order
function:

eval : Program → Environment → Value

The interpreter for a simple imperative programming language is a
higher-order function:

I : Program → State → State

4 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Expressions with local declarations

Concrete syntax:

a * (-3 + (let x = 5 in x + a))

The abstract syntax is defined by an algebraic datatype:

type ExprTree = | Const of int
| Ident of string
| Minus of ExprTree
| Sum of ExprTree * ExprTree
| Diff of ExprTree * ExprTree
| Prod of ExprTree * ExprTree
| Let of string * ExprTree * ExprTree;;

Example:

let et =
Prod(Ident "a",

Sum(Minus (Const 3),
Let("x", Const 5, Sum(Ident "x", Ident "a"))));;

5 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Evaluation in Environments

An environment contains bindings of identifiers to values.

A tree Let(s,t1,t2) is evaluated in an environment env:
1 Evaluate t1 to value v1 in environment env.
2 Evaluate t2 in env extended with the binding of s to v1.

An evaluation function

eval: ExprTree -> Map<string,int> -> int

is defined as follows:

let rec eval t env =
match t with
| Const n -> n
| Ident s -> Map.find s env
| Minus t -> - (eval t env)
| Sum(t1,t2) -> eval t1 env + eval t2 env
| Diff(t1,t2) -> eval t1 env - eval t2 env
| Prod(t1,t2) -> eval t1 env * eval t2 env
| Let(s,t1,t2) -> let v1 = eval t1 env

let env1 = Map.add s v1 env
eval t2 env1;;

6 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example

Concrete syntax:

a * (-3 + (let x = 5 in x + a))

let et =
Prod(Ident "a",

Sum(Minus (Const 3),
Let("x", Const 5, Sum(Ident "x", Ident "a"))));;

let env = Map.add "a" -7 Map.empty;;
eval et env;;
val it : int = 35

7 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Imperative Factorial program

An example of concrete syntax for a factorial program:

y:=1 ;
while !(x=0)
do (y:= y*x;x:=x-1)

Typical ingredients
• Arithmetical expressions
• Boolean expressions
• Statements (assignments, sequential composition, loops, . . .

8 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Arithmetic Expressions

• A type the abstract syntax for Arithmetical Expressions

type AExp = (* Arithmetical expressions *)
| N of int (* numbers *)
| V of string (* variables *)
| Add of AExp * AExp (* addition *)
| Mul of AExp * AExp (* multiplication *)
| Sub of AExp * AExp;; (* subtraction *)

You do not need parenthesis, precedence rules, etc.
in the abstract syntax

you work directly on trees.

9 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Semantics of Arithmetic Expressions

• A state maps variables to integers

type State = Map<string,int>;;

• The meaning of an expression is a function:

A: AExp -> State -> int

defined inductively on the structure of arithmetic expressions

let rec A a s =
match a with
| N n -> n
| V x -> Map.find x s
| Add(a1, a2) -> A a1 s + A a2 s
| Mul(a1, a2) -> A a1 s * A a2 s
| Sub(a1, a2) -> A a1 s - A a2 s;;

10 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Boolean Expressions

• Abstract syntax

type BExp = (* Boolean expressions *)
| TT (* true *)
| FF (* false *)
| Eq of (* equality *)
| Lt of (* less than *)
| Neg of (* negation *)
| Con of ;; (* conjunction *)

• Semantics B : BExp → State → bool

let rec B b s =
match b with
| TT -> true
|

11 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Statements: Abstract Syntax

type Stm = (* statements *)
| Ass of string * AExp (* assignment *)
| Seq of Stm list (* sequential composition *)
| ITE of BExp * Stm * Stm (* if-then-else *)
| While of BExp * Stm;; (* while *)

Example of concrete syntax:

y:=1 ; while not(x=0) do (y:= y*x ; x:=x-1)

Abstract syntax ?

12 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Update of states

An imperative program performs a sequence of state updates.
• The expression

update y v s

is the state that is as s except that y is mapped to v .

• Update is a synonym for Map.add:

let update x v s = Map.add x v s;;

13 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Interpreter for Statements

• The meaning of statements is a function

I : Stm → State → State

that is defined by induction on the structure of statements:

let rec I stm s =
match stm with
| Ass(x,a) -> update x (...) s
| Seq stms -> ...
| ITE(b,stm1,stm2) -> ...
| While(b, stm) -> ... ;;

14 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Factorial function

(*
y:=1 ; while !(x=0) do (y:= y*x;x:=x-1)

*)

let fac = Seq [Ass("y", N 1);
While(Neg(Eq(V "x", N 0)),

Seq [Ass("y", Mul(V "x", V "y")) ,
Ass("x", Sub(V "x", N 1))])];;

(* Define an initial state *)
let s0 = Map.ofList [("x",4)];;
val s0 : Map<string,int> = map [("x", 4)]

(* Interpret the program *)
let s1 = I fac s0;;
val s1 : Map<string,int> = map [("x", 1); ("y", 24)]

15 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Interpreter will be available on Learn.

• You may add the statements skip, if-then and repeat-until.

• Suppose that an expression of the form inc(x) is added. It adds
one to the value of x in the current state, and the value of the
expression is this new value of x .

How would you refine the interpreter to cope with this construct?

• Analyse the problem and state the types for the refined
interpretation functions

16 DTU Compute, Technical University of Denmark Finite trees (II), – Interpreters for two simple languages MRH 7/11/2024

