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• Finite trees

• Functional, Structural and Property tests
by example using xUnit
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Finite trees

• recursive declarations of algebraic types
• meaning of type declarations: rules generating values
• typical recursions following the structure of trees
• trees with a fixed branching structure
• trees with a variable number of sub-trees
• illustrative examples

Mutually recursive type and function declarations
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Finite trees

A finite tree is a value containing sub-components of the same type

Example: A binary tree
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A tree is a connected, acyclic, undirected graph, where
• the top node (carrying value 9) is called the root
• a branch node has two children constructor Br
• a node without children is called a leaf constructor Lf
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Example: Binary Trees

A recursive datatype is used to represent values that are trees.

type Tree = | Lf
| Br of Tree*int*Tree;;

The declaration provides rules for generating trees:

1 Lf is a tree

2 if t1, t2 are trees and n is an integer, then Br(t1, n, t2) is a tree.

3 the type Tree contains no other values than those generated by
repeated use of Rules 1. and 2.

The tags Lf and Br are called constructors:

Lf : Tree
Br : Tree ∗ int ∗ Tree → Tree
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Example: Binary Trees
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Corresponding F#-value:

Br(Br(Br(Lf,2,Lf),7,Lf),
9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))
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Traversals of binary trees

• Pre-order traversal: First visit the root node, then traverse the
left sub-tree in pre-order and finally traverse the right sub-tree in
pre-order.

• In-order traversal: First traverse the left sub-tree in in-order, then
visit the root node and finally traverse the right sub-tree in
in-order.

• Post-order traversal: First traverse the left sub-tree in post-order,
then traverse the right sub-tree in post-order and finally visit the
root node.

In-order traversal

let rec inOrder =
function
| Lf -> []
| Br(t1,j,t2) -> inOrder t1 @ [j] @ inOrder t2;;

val toList : Tree -> int list

inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]
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Binary search tree

Condition: for every node containing the value x : every value in the
left subtree is smaller then x , and every value in the right subtree is
greater than x .

Example: A binary search tree
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Binary search trees: Insertion

• Recursion following the structure of trees
• Constructors Lf and Br are used in patterns to decompose a

tree into its parts
• Constructors Lf and Br are used in expressions to construct a

tree from its parts
• The search tree condition is an invariant for insert

let rec insert i =
function
| Lf -> Br(Lf,i,Lf)
| Br(t1,j,t2) as tr -> // Layered pattern

match compare i j with
| 0 -> tr
| n when n<0 -> Br(insert i t1 , j, t2)
| _ -> Br(t1,j, insert i t2);;

val insert : int -> Tree -> Tree

Example:

let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))
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Binary search trees: contains

let rec contains i =
function
| Lf -> false
| Br(_,j,_) when i=j -> true
| Br(t1,j,_) when i<j -> contains i t1
| Br(_,j,t2) -> contains i t2;;

val contains : int -> Tree -> bool

let t = Br(Br(Br(Lf,2,Lf),7,Lf),
9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)));;

contains 21 t;;
val it : bool = true

contains 4 t;;
val it : bool = false
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Parameterize type declarations

The programs on search trees require only an ordering on elements
– they no not need to be integers.

A polymorphic tree type is declared as follows:

type Tree<’a> = | Lf | Br of Tree<’a> * ’a * Tree<’a>;;

Program text is unchanged (though polymorphic now), for example

let rec insert i = function
....

| Br(t1,j,t2) as tr -> match compare i j with
.... ;;

val insert: ’a -> Tree<’a> -> Tree<’a> when ’a: comparison

let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>

= Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))
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So far

• Declaration of a recursive algebraic data type, that is, a type for
a finite tree

• Meaning of the type declaration:
• rules for generating values

• Archetypical functions on trees:
• gathering information from a tree Example: inOrder
• inspecting a tree Example: contains
• construction of a new tree Example: insert
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Manipulation of arithmetical expressions

Consider f (x):
3 · (x − 1)− 2 · x

We may be interested in
• computation of values, e.g. f (2)
• differentiation, e.g. f ′(x) = (3 · 1 + 0 · (x − 1))− (2 · 1 + 0 · x)
• simplification of the expressions, e.g. f ′(x) = 1
• .....

We would like a suitable representation of such arithmetical
expressions that supports the above manipulations

How would you visualize the expressions as a tree?
• root?
• leaves?
• branches?

13 DTU Compute, Technical University of Denmark Finite Trees (I) MRH 31/10/2024



02157
Functional
Program-

ming

Michael R. Hansen

Example: Expression Trees

type Fexpr =
| Const of float
| X
| Add of Fexpr * Fexpr
| Sub of Fexpr * Fexpr
| Mul of Fexpr * Fexpr
| Div of Fexpr * Fexpr;;

Defines 6 constructors:
• Const: float -> Fexpr
• X : Fexpr
• Add: Fexpr * Fexpr -> Fexpr
• Sub: Fexpr * Fexpr -> Fexpr
• Mul: Fexpr * Fexpr -> Fexpr
• Div: Fexpr * Fexpr -> Fexpr

• Can you write 3 values of type Fexpr?
• Drawings of trees?
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Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

compute : float -> Fexpr -> float

let rec compute x =
function
| Const r -> r
| X -> x
| Add(fe1,fe2) -> compute x fe1 + compute x fe2
| Sub(fe1,fe2) -> compute x fe1 - compute x fe2
| Mul(fe1,fe2) -> compute x fe1 * compute x fe2
| Div(fe1,fe2) -> compute x fe1 / compute x fe2;;

Example:

compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0
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Blackboard exercise: Substitution

type Fexpr = | Const of float
| X
| Add of Fexpr * Fexpr
| Sub of Fexpr * Fexpr
| Mul of Fexpr * Fexpr
| Div of Fexpr * Fexpr;;

Declare a function

substX: Fexpr -> Fexpr -> Fexpr

so that substX e′ e is the expression obtained from e by substituting
every occurrence of X with e′

For example:

let ex = Add(Sub(X, Const 2.0), Mul(Const 4.0, X));;

substX (Div(X,X)) ex;;
val it : Fexpr =

Add(Sub(Div(X,X), Const 2.0), Mul(Const 4.0, Div(X,X)))
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Symbolic Differentiation D: Fexpr -> Fexpr

A classic example in functional programming:

let rec D = function
| Const _ -> Const 0.0
| X -> Const 1.0
| Add(fe1,fe2) -> Add(D fe1,D fe2)
| Sub(fe1,fe2) -> Sub(D fe1,D fe2)
| Mul(fe1,fe2) -> Add(Mul(D fe1,fe2),Mul(fe1,D fe2))
| Div(fe1,fe2) -> Div(

Sub(Mul(D fe1,fe2),Mul(fe1,D fe2)),
Mul(fe2,fe2));;

Notice the direct correspondence with the rules of differentiation.

Can be tried out directly, as tree are ”just” values, for example:

D(Add(Mul(Const 3.0, X), Mul(X, X)));;
val it : Fexpr =

Add
(Add (Mul (Const 0.0,X),Mul (Const 3.0,Const 1.0)),
Add (Mul (Const 1.0,X),Mul (X,Const 1.0)))
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Trees with a variable number of sub-trees

An archetypical declaration:

type ListTree<’a> = Node of ’a * (ListTree<’a> list)

• Node(x,[]) represents a leaf tree containing the value x
• Node(x,[t0;. . .;tn−1]) represents a tree with value x in the

root and with n sub-trees represented by the values t0, . . . , tn−1
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It is represented by the value t1 where

let t7 = Node(7,[]);; let t6 = Node(6,[]);;
let t5 = Node(5,[]);; let t3 = Node(3,[]);;
let t2 = Node(2,[t5]);; let t4 = Node(4,[t6; t7]);;
let t1 = Node(1,[t2; t3; t4]);;
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Depth-first traversal of a ListTree

1

�
�

@
@

2 3 4

�
�

A
A

5 6 7

Corresponds to the following order of the elements: 1, 2, 5, 3, 4, 6, 7

Invent a more general function traversing a list of List trees:

let rec depthFirstList =
function
| [] -> []
| Node(n,ts)::trest -> n::depthFirstList(ts @ trest)

depthFirstList : ListTree<’a> list -> ’a list

let depthFirst t = depthFirstList [t]
depthFirst1 : t:ListTree<’a> -> ’a list

depthFirst t1;;
val it : int list = [1; 2; 5; 3; 4; 6; 7]
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Mutual recursion. Example: File system

d1

a1 d2 a4 d3

a5a2 d3

a3

• A file system is a list of elements
• an element is a file or a directory, which is a named file system

We focus on structure now – not on file content
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Mutually recursive type declarations

• are combined using and

type FileSys = Element list
and Element =

| File of string
| Dir of string * FileSys

let d1 =
Dir("d1",[File "a1";

Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])

])

The type of d1 is ?
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Mutually recursive function declarations

• are combined using and

Example: extract the names occurring in file systems and elements.

let rec namesFileSys =
function
| [] -> []
| e::es -> (namesElement e) @ (namesFileSys es)

and namesElement =
function
| File s -> [s]
| Dir(s,fs) -> s :: (namesFileSys fs) ;;

val namesFileSys : Element list -> string list
val namesElement : Element -> string list

namesElement d1 ;;
val it : string list = ["d1"; "a1"; "d2"; "a2";

"d3"; "a3"; "a4"; "d3"; "a5"]
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Mini-project 2: A tiny coherent story

Semantics of expressions

type Exp = Add of Exp*Exp | X | ...
sem: Exp -> int -> int

A stack machine

type Instruction = ...
exec: Instruction list -> int

Compilation

compile: Exp -> int -> Instruction list

Compiler is correct if sem e x = exec(compile e x).

Optimization: Reduction of expressions

red: Exp -> Exp

preserving semantics: sem e x = sem(red e) x .

A appetizer illustrating fundamental CS concepts
• exercising concepts on finite trees
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Summary

Finite Trees
• recursive declarations of algebraic types
• meaning of type declarations: rules generating values
• typical recursions following the structure of trees
• trees with a fixed branching structure
• trees with a variable number of sub-trees

including two techniques Tree list → . . .
• use of mutually recursive function declarations
• use of a more general helper function

to handle the arbitrary branching
• illustrative examples

Mutually recursive type and function declarations
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On Software Test

• functional and structural tests
• an eye to property based tests

• A four-project solution using xUnit
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Software test

Systematic approaches aiming a finding bugs in programs

Different kinds of errors in programs:
• Syntax errors like 3 * (2 - x missing )

• Type errors, like 3 * ("2"- x)

• Semantic error. A syntactically well-formed and type correct
program computes a wrong answer

not discovered by the compiler

E.W. Dijkstra, EDW249, 1970:
Program testing can be used to show the presence of bugs,
but never to show their absence!

In ”our” context:
• test for finding semantic errors in functions Unit testing
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Two important (among an abundance of) techniques

• Structural test (or white-box test or internal test)

The tester inspects the program and constructs a test suite that
shows that all branches can be executed

• Functional test (or black-box test or external test)

The tester focuses on the requirement (not the program) and
constructs a test suite aiming at justifying that the program
solves the task it is supposed to solve.

The two techniques complement each other, for example
• a structural test cannot detect that a sub-task is not implemented
• a functional test cannot detect the presence of dead code

A test suite must at least include
• input
• expected output

– It is used to assess the quality of the tests
27 DTU Compute, Technical University of Denmark Finite Trees (I) MRH 31/10/2024
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Functional test: an example

type Lid = string
type Flight = string
type Airport = string

type Route = (Flight * Airport) list
type LuggageCatalogue = (Lid * Route) list

withFlight: Flight -> LuggageCatalogue -> Lid list

Requirement: withFlight f lc gives the list of identifiers of luggage
that are on flight f according to lc

Destructive thinking when designing the test suite:
• Which mistakes may occur in envisioned implementations?

Input should be covered by a finite number of test cases
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Functional test: an example test suite (1)

Requirement: withFlight f lc gives the list of identifiers of luggage
that are on flight f according to lc

TestId Input Property
A Empty catalogue
B1 one element cat., flight first in route
B2 one element cat., flight later in route
B3 one element cat., flight not in route
C1 one+ element cat, flight not in any route
C2 one+ element cat, flight in one route
C3 one+ element cat, flight in several routes

Are there superfluous test cases?

Destructive thinking: Are these cases sufficient?

What about, for example
• C2a: one+ element cat, flight appears first in a route ?
• C2b: one+ element cat, flight appears inside a route ?
• C2c: one+ element cat, flight appears at the end of a route ?
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Functional test: an example test suite (2)

TestId Input (f/cat) expected output contains
A ”f” [] nothing
... ... ...
C2c ”f” catC2c ”lid2”
C3 ...

where

let catC2c = [("lid1", [("f1","a1")]);
("lid2", [("f2","a2"); ("f","a")]) ]

Functional test:
• Based on educated guesswork: What can possibly go wrong?

You cannot be sure that all errors will be spotted.
• It is useful to design the functional test during program

development.

Sharpens the understanding of the problem and its solution.

Is an empty route in a catalogue meaningful?
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Structural test: an example test suite (1)

type LuggageCatalogue = (Lid * Route) list

// routeOf: Lid -> LuggageCatalogue -> Route option
let rec routeOf lid =

function
| [] -> None // c1
| (lid’,r)::_ when lid=lid’ -> Some r // c2
| _::rest -> routeOf lid rest // c3

A structural test should exercise
• every branch of the program and 0, 1 and more recursive calls.

Choice TestId Input Property Recursive calls
c1 A empty cat. 0
c2 B non-empty cat 0
c3 C one element cat, lid not found 1
c3 D more than one element cat, lid found > 1

Test C makes Test A superfluous
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Structural test: an example test suite (2)

let rec routeOf lid =
function
| [] -> None // c1
| (lid’,r)::_ when lid=lid’ -> Some r // c2
| _::rest -> routeOf lid rest // c3

TestId Input (lid/cat) expected output
B ”l0” [(”l0”, r0)] Some r0

C ”l4” [(”l0”, r0)] None
D ”l2” [(”l0”,r0);(”l1”,r1);(”l2”,r2)] Some r2

where
• ri = [(”f0”,”a0”); . . . ; (”fi”, ”ai”)], for i = 0, 1, 2.

Each test case is kept ”small” focusing only on the concerned Input
Property

Designing a Structural test is typically easier than designing a
Functional test
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Property-based test: A fundamental property (III)

type Route = (Flight * Airport) list
type LuggageCatalogue = (Lid * Route) list

withFlight: Flight -> LuggageCatalogue -> Lid list
routeOf: Lid -> LuggageCatalogue -> Route option

Functional and Structural tests:
• test just a small number of (hopefully well-justified) single cases

for each function

Property-based test (PBT): tests having arguments
• Fundamental properties every input must satisfy
• Properties may express relationships between functions
• Validation using random samples

Property(lc: LuggageCatalogue): for every lc
for every lid occurring in lc::

for every f occurring in routeOf lid lc:
lid is in withFlight f lc
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Automating the tests

A four-project solution is uploaded to the Material folder on Learn
• A class library project containing inRoute, routeOf and withFlight
• A test project containing structural tests for routeOf
• A test project containing functional tests for withFlight
• A test project containing a PBT for routeOf and withFlight

xUnit is used as testing tool

It happens that withFlight is implemented by a programmer
having weird ideas.

Run the tests in the folder XTests using the command:

...\src\XTests > dotnet test

where X is ’Functional’, ’Structural’, ’Property’.

Spot errors, correct the declaration of withFlight and rerun tests
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Summary

• Functional and Structural test are complementary techniques

• Test can show the presence of bugs not the absence

• Test suite descriptions: the basis for assessing test quality
— well-designed descriptions increase confidence in programs

• Design a functional test suite during program development
— sharpens the understanding of the problem

• PBT is a further supplement

• Automate test.
Rerun test whenever the program is revised

The note:
• Systematic software test, by Peter Sestoft, 1998

is uploaded to the Material folder on Learn.
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