
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture 7: Module System – briefly

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• On critical looks at programs
• simplification for readability reasons
• simplifications for computational reasons

• The Module System

• F# is integrated on .Net briefly
• free, open source
• cross platform for Linux, MacOS, Windows, ...
• A three project solution for polynomials containing

• An F# library (class library)
• An F# console application
• A C# console application

on Learn

• A brief look at type inference

2 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

On critical looks at programs

• Aim at succinct programs
have a critical look at your own programs

• Correctness has top priority
but have an eye to sensible use of resources

3 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Can we simplify?

Have a look at:

let f(x) = match (x) with
|(a,z) -> if (not(a) = true) then true

else if (fst(z) = true) then snd(z)
else false;;

• What is the type of f?
• What is f computing?

Can we improve readability?

4 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Is a use of library functions adequate?

Have a look at

let h a xs = let xs1 = List.filter (fun (a’,t) -> a=a’) xs
let xs2 = List.map (fun (a,t:int) -> t) xs1
List.sum xs2

• Can this problem easily be solved in a less resource demanding
manner?

5 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Resource sensible versions

Have a look at:

let rec h1 a =
function
| [] -> 0
| (a’,t)::rest when a=a’ -> t + h1 a rest
| _::rest -> h1 a rest;;

let rec h2 a xs =
List.fold (fun s (a’,t) -> if a=a’ then s+t else s) 0 xs;;

Solutions are based on a simple algorithmic idea
• traverse the list xs one time and
• build up the result during the traversal

Correctness has top priority
– but have an eye to sensible use of resources

More when the topic: Tail recursion, is covered

6 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

The module system

7 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Supports modular program design including
• encapsulation
• abstraction and
• reuse of software components.

• A module is characterized by:
• a signature – an interface specifications and
• a matching implementation – containing declarations of the

interface specifications.

• Example-based presentation to give the flavor
incomplete – no object interface types, for example

Sources:
• Chapter 7: Modules. (A fast reading suffices.)

8 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

On hiding: Polynomial program

An violation of a representation invariant without hiding

// A misuse: [0] is not legal polynomial
let p1 = mulX [0];;
// val p1 : int list = [0; 0]

// Pretty print
toString p1;;
// val it : string = "0"

let p2 = mulX [];; // [] is legal
// val p2 : int list = []

// Pretty print
toString p2;;
// val it : string = "0"

// But
p1 = p2;;
// val it : bool = false

• may cause unpredictable results
9 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Protection of a representation invariant

#r @"Polynomial.dll"

open Polynomial

let p1 = mulX (ofList [0]);;
// val p1 : Poly = 0 pretty print

let p2 = mulX (ofList []);;
// val p2 : Poly = 0 pretty print

p1 = p2;;
// val it : bool = true

• internal representation is hidden
• ofList gives legal representations
• functions preserve the invariant: isLegal

Unpredictable results are prevented

10 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Module

A module is a combination of a
• signature, which is a specification of an interface to the module

(the user’s view), and an
• implementation, which provides declarations for the

specifications in the signature.

11 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors: Signature

The signature specifies one type and eight values:

// Vector signature
module Vector
type vector
val (˜-.) : vector -> vector // Vector sign change
val (+.) : vector -> vector -> vector // Vector sum
val (-.) : vector -> vector -> vector // Vector difference
val (*.) : float -> vector -> vector // Product with number
val (&.) : vector -> vector -> float // Dot product
val norm : vector -> float // Length of vector
val make : float * float -> vector // Make vector
val coord : vector -> float * float // Get coordinates

The specification ’vector’ does not reveal the implementation

• Why is make and coord introduced?

12 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors (2): Simple implementation

An implementation must declare each specification of the signature:

// Vector implementation
module Vector
type vector = V of float * float
let (˜-.) (V(x,y)) = V(-x,-y)
let (+.) (V(x1,y1)) (V(x2,y2)) = V(x1+x2,y1+y2)
let (-.) v1 v2 = v1 +. -. v2
let (*.) a (V(x1,y1)) = V(a*x1,a*y1)
let (&.) (V(x1,y1)) (V(x2,y2)) = x1*x2 + y1*y2
let norm (V(x1,y1)) = sqrt(x1*x1+y1*y1)
let make (x,y) = V(x,y)
let coord (V(x,y)) = (x,y)

• Since the representation of ’vector’ is hidden in the signature,
the type must be implemented by either a tagged value or a
record.

13 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors (3): Compilation

Suppose
• the signature is in a file ’Vector.fsi’
• the implementation is in a file ’Vector.fs’

A library file ’Vector.dll’ is constructed by the following command:

D:\MRH data\ ... \Libraries\fsc -a Vector.fsi Vector.fs

The library ’Vector’ can now be used just like other libraries, such as
’Set’ or ’Map’.

• Compiler on Linux and Mac systems: fsharpc

An alternative is to use the Command Line Interface (CLI) tool
mentioned later in this lecture

14 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Geometric vectors (4): Use of library

A library must be referenced before it can be used.

#r @"d:\MRH data\ ... \Libraries\Vector.dll";;
--> Referenced ’d:\MRH data\ ... \Libraries\Vector.dll’
open Vector ;;

let a = make(1.0,-2.0);;
val a : vector
let b = make(3.0,4.0);;
val b : vector
let c = 2.0 *. a -. b;;
val c : vector

coord c ;;
val it : float * float = (-1.0, -8.0)

let d = c &. a;;
val d : float = 15.0

let e = norm b;;
val e : float = 5.0

Notice: the implementation of vector is not visible and it cannot be
exploited.

15 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation

A type augmentation
• adds declarations to the definition of a tagged type or a record

type
• allows declaration of (overloaded) operators.

In the ’Vector’ module we would like to
• overload +, - and * to also denote vector operations.
• overload * to denote two different operations on vectors.

16 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – signature

module Vector

[<Sealed>]
type vector =
static member (˜-) : vector -> vector
static member (+) : vector * vector -> vector
static member (-) : vector * vector -> vector
static member (*) : float * vector -> vector
static member (*) : vector * vector -> float

val make : float * float -> vector
val coord: vector -> float * float
val norm : vector -> float

• The attribute [<Sealed>] is mandatory when a type
augmentation is used.

• The “member” specification and declaration of an infix operator
(e.g. +) correspond to a type of form type1 * type2 -> type3

• The operators can still be used on numbers.

17 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Type augmentation – implementation and use

module Vector

type vector =
| V of float * float
static member (˜-) (V(x,y)) = V(-x,-y)
static member (+) (V(x1,y1),V(x2,y2)) = V(x1+x2,y1+y2)
static member (-) (V(x1,y1),V(x2,y2)) = V(x1-x2,y1-y2)
static member (*) (a, V(x,y)) = V(a*x,a*y)
static member (*) (V(x1,y1),V(x2,y2)) = x1*x2 + y1*y2

let make (x,y) = V(x,y)
let coord (V(x,y)) = (x,y)
let norm (V(x,y)) = sqrt(x*x + y*y)

The operators +, -, * are available on vectors even without opening:

let a = Vector.make(1.0,-2.0);;
val a : Vector.vector

let b = Vector.make(3.0,4.0);;
val b : Vector.vector

let c = 2.0 * a - b;;
val c : Vector.vector

Vector.coord c ;;
val it : float * float = (-1.0, -8.0)

18 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Customizing the string function

module Vector
type vector =

| V of float * float
override v.ToString() =

match v with | V(x,y) -> string(x,y)

let make (x,y) = V(x,y)
...

type vector with
static member (˜-) (V(x,y)) = V(-x,-y)
...

• The default ToString function that does not reveal a meaningful
value is overridden to give a string for the pair of coordinates.

• A type extension is used.

Example:

let a = Vector.make(1.0,2.0);;
val a : Vector.vector = (1, 2)

string(a+a);;
val it : string = "(2, 4)"

19 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Summary

Modular program development
• program libraries using signatures and structures
• type augmentation, overloaded operators, customizing string

(and other) functions
• Encapsulation, abstraction, reuse of components, division of

concerns, ...
• ...

20 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

A three project solution for polynomials containing
on Learn

21 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Nano-solution to Polynomial exercise on Learn

A three-project solution to a minimal part of the polynomial exercise:
• PolyLib: an F# library for polynomials a class library
• CSharpApp a C# console application using the library
• FSharpApp an F# console application using the library

The solution is formed using the Command Line Interface (CLI) tool
• https://docs.microsoft.com/en-us/dotnet/fsharp/
get-started/get-started-command-line

• https:
//docs.microsoft.com/en-us/dotnet/core/tools

works for Linux, MacOS, Windows operating systems

Consult DTU Learn concerning:
• How the solution is formed using the CLI tools
• How to run the applications and the script
• How executables and libraries (assemblies / binaries) are build

22 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/get-started-command-line
https://docs.microsoft.com/en-us/dotnet/fsharp/get-started/get-started-command-line
https://docs.microsoft.com/en-us/dotnet/core/tools
https://docs.microsoft.com/en-us/dotnet/core/tools

02157
Functional
Program-

ming

Michael R. Hansen

Overview of Solution

Solution with three projects
• PolyLib F# class library

• PolyLib.fsproj includes compilation information
• Polynomial.fsi signature (interface) file
• Polynomial.fs implementation file
• script.fsx reference to PolyLib.dll

• FSharpApp F# console application
• FSharpApp.fsproj includes reference to PolyLib
• Program.fs a free-standing F# program

• CSharpApp C# console application
• CSharpApp.csproj includes reference to PolyLib
• Program.cs a free-standing C# program

Using the F# type ’a list

Let us have a look at the solution

23 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

On Type Inference

24 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Type inference

Automated generation of the (most general) type for a program that
do not contain type annotations.

• Avoid cluttering beautiful programs with type annotations while

• Preserving static type safety

25 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Type inference: Examples

For the two programs:

let f x y = 2 * x + y;;

let rec append xs ys = match xs with
| [] -> ys
| x::rest -> x::append rest ys;;

the F# compiler infers the types:

f: int -> int -> int
append: ’a list -> ’a list -> ’a list

The F# type inference includes
• Overloading

Functions with different types and implementations can share
name, e.g. +

• Parametric polymorphism
A single implementation of a function works for type-consistent
input data, , e.g. append

26 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Type inference: Background

• Hindley type-schema for Combinatory Logic 1969
• Milner ML-style type inference with algorithm W 1978
• Damas-Milner 1982: correctness of type inference algorithm W
• ... SML ... OCAML ... Haskell ... F# ...

Type inference in SML, ...F#, ... allows let-polymorphism; where, for
example,

let rec map f xs = match xs with
| [] -> []
| x::xs -> f x :: map f xs

is typable map : ∀α, β.(α → β) → α list → β list

The following program is NOT typable:

let f g = (g 1, g true) in f id

as it would require two different instantiations of argument g’s type
such extra power makes type inference problem undecidable

27 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

About type rules and inference algorithm

The type-inference problem is specified using a few rules like:

ρ[x 7→ tx , f 7→ tx → tr] ⊢ er : tr ρ[f 7→ ∀α1, . . . , αn.tx → tr] ⊢ eb : t
ρ ⊢ let f x = er in eb end : t

rule 8 out of 9
(Sestoft2012)

where α1, . . . , αn are not free in ρ. don’t worry

The identity function: let id x = x has infinity many types

’a->’a int list->int list int list list->int list list

including a most general (or principal) type ’a -> ’a
having all other types of id as instances

The step from a rule-based formulation to an algorithm is huge.
• rules and algorithm by Milner in 1978
• correctness proof of algorithm by Damas-Milner in 1982
• ML typability is complete for DEXPTIME by Mairson and

KfouryTiurynUrzyczyn in 1990
Nice presentations in

• Sestoft: Programming language concepts, Springer 2012 (Ch 6)
• Schwartzbach: Polymorphic type inference, BRICS LS 95-3

28 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

A program with a complex type: Sestoft 2012

let pair x y p = p x y;;

let p1 p = pair id id p;;
let p2 p = pair p1 p1 p;;
let p3 p = pair p2 p2 p;;
let p4 p = pair p3 p3 p;;
let p5 p = pair p4 p4 p;;

• p1’s type contains 3 type variables
• p2’s type contains 7 type variables
• p3’s type contains 15 type variables
• ...

Observe
• a doubling of the number of type variables from pi to pi+1

• the number of type variable is exponential in the program size
• programmers rarely make programs having such complex types
• type checking appears to be efficient in practice

29 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

An informal approach to type inference

Given a declaration

let rec f x y ... = e

and knowing typing and rules for “bits and pieces”.

• Choose two fresh type variables for the unknown types of the
arguments x , y , . . .

• Analyse e adding new fresh type variables and constrains as
needed when typing the parts of e

Two possibilities:
• An inconsistency is detected and the program cannot be typed.
• A most general type can be establish as constraints on the

introduced type variables arise from the program only.

30 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

An example of an informal type inference

let rec map f xs = match xs with
| [] -> [] (1)
| x::tail -> f x :: map f tail (2)

• Let ’a and ’b be fresh type variables so that f:’a and xs:’b.
• Since xs is matched with pattern [] in (1), xs must have type
’c list (’c fresh) and ’b = ’c list

• The value of the function must have type ’d list (’d fresh)
due to the expression [] in (1)

• Since xs:’c list is matched with pattern x::tail in (2), we
have x:’c and tail:’c list due to the type of cons ::.

• Since the value of the function has type ’d list, we have that
f x::map f tail:’d list and hence f x:’d,
map f tail:’d list and f:’c->’d because x:’c.
Therefore, ’a = ’c->’d.

There are no further constraints and the most general type of map is

(’c -> ’d) -> ’c list -> ’d list

Due to implicit universal quantification, the type can be renamed to

(’a -> ’b) -> ’a list -> ’b list
31 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

An even more informal approach

Explain in your own words

Explanation must
• justify that every sub-expression is well-typed and
• that the establish type is the most general one.

An explanation concerning the type of map should address:
• the arguments f and xs,
• the patterns [] and x::tail,
• the expressions [] and f x :: map f tail,
• the sub-expressions f x and map f tail, and
• the type of cons ::.

32 DTU Compute, Technical University of Denmark Lecture 7: Module System – briefly MRH 25/10/2024

