
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Collections: Finite Sets and Maps

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Conventions and tradition
– example with higher-order list functions

• Sets and Maps as abstract data types
• Useful when modelling and when programming
• Many similarities with the list library

2 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen
Conventions and tradition

• type names are descriptive and start with capital letters
• function names are descriptive and start with small letters
• variable names are short and consistently used
• function types are stated in comments
• types are avoided in function declarations – unless needed
• self-check that wanted type is an instance of inferred type
•

exemplified using the Flights and Luggage problem
from Week 4

– an old exam question

3 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Flights and Luggage (1)

• Type names are descriptive and
• start with capital letters

type Lid = string
type Flight = string
type Airport = string

type Route = (Flight * Airport) list

type LuggageCatalogue = (Lid * Route) list

let lc1 =
[("DL 016-914",

[("DL 189","ALT");("DL 124","BRU");("SN 733","CPH")]);
("SK 222-142",

[("SK 208","ALT");("DL 124","BRU");("SK 122","JFK")])]

4 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Flights and Luggage (2)

• function names are descriptive and start with small letters
• variable names are short and consistently used
• function types are stated in comments
• types are avoided in function declarations – unless needed
• self-check that wanted type is an instance of inferred type

// Lid * LuggageCatalogue -> Route
let rec findRoute(lid, lc) =

match lc with
| (lid1,r1)::_ when lid1=lid -> r1
| _::lcrest -> findRoute(lid,lcrest)
| _ -> failwith (lid + " is not found")

Notice that further comments are not needed and that
• lid, lid’, lid1 denote luggage identifiers
• f, f’, f1, ... denote flights
• lc, lc’, lc1, lcrest denote luggage catalogues
• r, r’, r1, .. denote routes

5 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Flights and Luggage (3)

// inRoute: Flight -> Route -> bool
let rec inRoute f =

function
| (f1,_)::r -> f=f1 || inRoute f r
| [] -> false

List.exists is the natural choice
– the existence of an element with a certain property is questioned

let inRoute f r = List.exists (fun (f1,_) -> f=f1) r

6 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Flights and Luggage (4)

• the function inRoute is handy to use

// withFlight: Flight -> LuggageCatalogue -> Lid list
let rec withFlight f =

function
| [] -> []
| (lid,r)::lc when inRoute f r -> lid::withFlight f lc
| _::lc -> withFlight f lc

• It is natural to use a fold function due to the ”non-trivial”
processing of elements in luggage catalogues.

• Since there is no restriction on the sequence of the luggage
identifiers, fold and foldBack are both natural choices.

let withFlight f lc =
List.fold
(fun lids (lid,r) -> if inRoute f r

then lid::lids else lids)
[]
lc

7 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Flights and Luggage (5)

type ArrivalCatalogue = (Airport * Lid list) list

The task:

extend : Lid ∗ Route ∗ ArrivalCatalogue → ArrivalCatalogue

Invent a function to make things easy

// insert: Lid -> Airport
-> ArrivalCatalogue->ArrivalCatalogue

let rec insert lid airp =
function
| [] -> [(airp, [lid])]
| (airp1,ls)::rest when airp1=airp

-> (airp1,lid::ls)::rest
| pair::rest -> pair::insert lid airp rest

let rec extend(lid, r, ac) =
match r with
| [] -> ac
| (f,airp)::r1 -> extend (lid, r1, insert lid airp ac)

8 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Flights and Luggage (6)

type LuggageCatalogue = (Lid * Route) list
type ArrivalCatalogue = (Airport * Lid list) list

The task:

toArrivalCatalogue : LuggageCatalogue → ArrivalCatalogue

should be solved using a fold function and

extend : Lid ∗ Route ∗ ArrivalCatalogue → ArrivalCatalogue

let toArrivalCatalogue lc =
List.foldBack (fun (lid,r) ac -> extend(lid,r,ac)) lc []

Naming conventions and tradition support readability

– and so does functional decomposition

9 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

FSharp’s immutable collections

Sets and Maps

10 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

FSharp’s immutable collections

• List: a finite sequence of elements of the same type
• the sequence in which elements are enumerated is important
• repetitions among elements of a list matters

• Set: a finite collection of elements of the same type
• the sequence in which elements are enumerated is of no concern
• repetitions among members of a set is of no concern

Today

• Map: a finite function from a domain of keys to values
• the uniqueness of keys is an important property

Today

• Sequence: a possibly infinite sequence of elements of the same
type

• the elements of a sequence are computed by demand

Covered later in the semester

11 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Types, data types and abstract data types

• A type is generated from basic types
int, float, bool, string, ... and type variables
’a, ’b, ’c, ... using type operators *, ->, list, ...

• A data type is characterized by
• a type ′alist
• a set of values [], [v], [v1; ...vn]
• a set of operations ::, @ , List.rev,List.fold, ...

• A abstract data type is a data type
• where the representation of values is hidden LiskovZilles 1974

Examples:
• List is a data type but not an abstract one

— the representation of list values is visible ([] and ::)

• Set and Map are abstract data types

12 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

The set concept (1)

A set (in mathematics) is a collection of element like

{Bob,Bill,Ben}, {1, 3, 5, 7, 9},N, and R

• the sequence in which elements are enumerated is of no
concern, and

• repetitions among members of a set is of no concern either

It is possible to decide whether a given value is in the set.

Alice ̸∈ {Bob,Bill,Ben} and 7 ∈ {1, 3, 5, 7, 9}

The empty set containing no element is written {} or ∅.

13 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

The sets concept (2)

A set A is a subset of a set B, written A ⊆ B, if all the elements of A
are also elements of B, for example

{Ben,Bob} ⊆ {Bob,Bill,Ben} and {1, 3, 5, 7, 9} ⊆ N

Two sets A and B are equal, if they are both subsets of each other:

A = B if and only if A ⊆ B and B ⊆ A

i.e. two sets are equal if they contain exactly the same elements.

The subset of a set A which consists of those elements satisfying a
predicate p can be expressed using a set-comprehension:

{x ∈ A | p(x)}

For example:

{1, 3, 5, 7, 9} = {x ∈ N | odd(x) and x < 11}

14 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

The set concept (3)

Some standard operations on sets:

A ∪ B = {x | x ∈ A or x ∈ B} union
A ∩ B = {x | x ∈ A and x ∈ B} intersection
A \ B = {x ∈ A | x ̸∈ B} difference

A B A B A B

(a) A ∪ B (b) A ∩ B (c) A \ B

Figure: Venn diagrams for (a) union, (b) intersection and (c) difference

For example

{Bob,Bill,Ben} ∪ {Alice,Bill,Ann} = {Alice,Ann,Bob,Bill,Ben}
{Bob,Bill,Ben} ∩ {Alice,Bill,Ann} = {Bill}
{Bob,Bill,Ben} \ {Alice,Bill,Ann} = {Bob,Ben}

15 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Abstract Data Types

An Abstract Data Type: A type together with a collection of
operations, where

• the representation of values is hidden.

An abstract data type for sets must have:
• Operations to generate sets from the elements. Why?
• Operations to extract the elements of a set. Why?
• Standard operations on sets.

16 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Immutable Sets in F#

17 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

An Abstract Data Type: Set<’a>

An abstract type for sets should at least support the following:

empty: Set<’a>
add: ’a -> Set<’a> -> Set<’a>
union: Set<’a> -> Set<’a> -> Set<’a>
intersect: Set<’a> -> Set<’a> -> Set<’a>
difference: Set<’a> -> Set<’a> -> Set<’a>
contains: ’a -> Set<’a> -> bool
toList: Set<’a> -> ’a list

where
• any finite set can be generated by repeatedly adding elements

to the empty set;
• union, intersection and difference are fundamental set

operations;
• contains and toList are used to inspect the set

Note:
• the above operations are supported by the library Set.
• the representation of sets used by Set is hidden from the user.

18 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Finite sets in F#

The Set library of F# supports finite sets. An efficient
implementation is based on balanced binary trees.

Examples:

set ["Bob"; "Bill"; "Ben"];;
val it : Set<string> = set ["Ben"; "Bill"; "Bob"]

set [3; 1; 9; 5; 7; 9; 1];;
val it : Set<int> = set [1; 3; 5; 7; 9]

Equality of two sets is tested in the usual manner:

set["Bob";"Bill";"Ben"] = set["Bill";"Ben";"Bill";"Bob"];;
val it : bool = true

Sets are ordered on the basis of a lexicographical ordering:

compare (set ["Ann";"Jane"]) (set ["Bill";"Ben";"Bob"]);;
val it : int = -1

19 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Immutability of Set<’a>

let s = Set.ofList [3; 2; 0];;
val s : Set<int> = set [0; 2; 3]

Set.add 1 s;;
val it : Set<int> = set [0; 1; 2; 3]

s;;
val it : Set<int> = set [0; 2; 3]

Evaluation of Set.add 1 s does not change the value of s.

20 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Selected further operations (1)

• ofList: ’a list -> Set<’a>,
where ofList [a0; . . . ; an−1] = {a0; . . . ; an−1}

• remove: ’a -> Set<’a> -> Set<’a>,
where remove a A = A \ {a}

• minElement: Set<’a> -> ’a
where minElement {a0, a1, . . . , an−2, an−1} = a0 when n > 0
(assuming that the enumeration respect the ordering)

Notice that minElement on a non-empty set is well-defined due to the
ordering:

Set.minElement (Set.ofList ["Bob"; "Bill"; "Ben"]);;
val it : string = "Ben"

21 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Selected further operations (2)

• filter: (’a -> bool) -> Set<’a> -> Set<’a>, where
filter p A = {x ∈ A |p(x)}

• exists: (’a -> bool) -> Set<’a> -> bool,
where exists p A = ∃x ∈ A.p(x)

• forall: (’a -> bool) -> Set<’a> -> bool,
where forall p A = ∀x ∈ A.p(x)

• fold: (’a -> ’b -> ’a) -> ’a -> Set<’b> -> ’a,
where

fold f a {b0, b1, . . . , bn−2, bn−1}
= f (f (f (· · · (f (f a b0) b1) · · ·) bn−2) bn−1)

These work similar to their List siblings, e.g.

Set.fold (-) 0 (set [1; 2; 3]) = ((0 − 1)− 2)− 3 = −6

where the ordering is exploited.

22 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (1)

Maps and colors are modelled in a natural way using sets:

type Country = string;;
type Map = Set<Country*Country>;;
type Color = Set<Country>;;
type Coloring = Set<Color>;;

WHY?

• repetition of elements is of no concern
• order of elements is of no concern

Function declarations will reveal the adequacy of the model.

23 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (2)

type Country = string;;
type Map = Set<Country*Country>;;

The function:

areNb: Country -> Country -> Map -> bool

Two countries c1, c2 are neighbors in a map m,
if either (c1, c2) ∈ m or (c2, c1) ∈ m:

let areNb c1 c2 m = ?

Remember:

contains: ’a -> Set<’a> -> bool
exists : (’a -> bool) -> Set<’a> -> bool

24 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (3)

type Country = string;;
type Map = Set<Country*Country>;;
type Color = Set<Country>;;

The function

canBeExtBy: Map -> Color -> Country -> bool

Color col and be extended by a country c given map m,
if for every country c′ in col : c and c′ are not neighbours in m

let canBeExtBy m col c = ?

Remember

forall: (’a -> bool) -> Set<’a> -> bool

25 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (4)

type Coloring = Set<Color>;;

The function

extColoring: Map -> Coloring -> Country -> Coloring

is declared as a recursive function over the coloring: WHY?

let rec extColoring m cols c =
if Set.isEmpty cols
then Set.singleton (Set.singleton c)
else let col = Set.minElement cols

let cols’ = Set.remove col cols
if canBeExtBy m col c
then Set.add (Set.add c col) cols’
else Set.add col (extColoring m cols’ c);;

Observations
• Ugly compared to list version where pattern matching is used
• List version is more efficient

26 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (5)

Maps and colors are modelled in a more natural way using sets:

type Country = string;;
type Map = Set<Country*Country>;;
type Color = Set<Country>;;
type Coloring = Set<Color>;; // Color list is better

A set of countries is obtained from a map by the function:

countries: Map -> Set<Country>

that is based on repeated insertion of the countries into a set:

let countries m = ?

Remember

fold: (’a -> ’b -> ’a) -> ’a -> Set<’b> -> ’a
foldBack: (’a -> ’b -> ’b) -> Set<’a> -> ’b -> ’b
Set.add: ’a -> Set<’a> -> Set<’a>

27 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (6)

Maps and colors are modelled in a more natural way using sets:

type Country = string;;
type Map = Set<Country*Country>;;
type Color = Set<Country>;;
type Coloring = Set<Color>;; // Color list is better

The function

colCntrs: Map -> Set<Country> -> Coloring

is based on repeated extension of colorings by countries using the
extColoring function:

let colCntrs m cs = ?

Remember

fold: (’a -> ’b -> ’a) -> ’a -> Set<’b> -> ’a
foldBack: (’a -> ’b -> ’b) -> Set<’a> -> ’b -> ’b

extColoring: Map -> Coloring -> Country -> Coloring

28 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring (7)

The function that creates a coloring from a map is declared using
functional composition:

let colMap m = colCntrs m (countries m);;

let exMap = Set.ofList [("a","b"); ("c","d"); ("d","a")];;

colMap exMap;;
val it : Set<Set<string>>

= set [set ["a"; "c"]; set ["b"; "d"]]

29 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Immutable Maps in F#

30 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

The map concept

A map from a set A to a set B is a finite subset A′ of A together with a
function m defined on A′: m : A′ → B.
The set A′ is called the domain of m: dom m = A′.

A map m can be described in a tabular form:

a0 b0

a1 b1

...

an−1 bn−1

• An element ai in the set A′ is called a key
• A pair (ai , bi) is called an entry, and
• bi is called the value for the key ai .

We denote the sets of entries of a map as follows:

entriesOf(m) = {(a0, b0), . . . , (an−1, bn−1)}

Keys are unique
31 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Selected map operations in F#

• ofList: (’a*’b) list -> Map<’a,’b>
ofList [(a0, b0); . . . ; (an−1, bn−1)] = m

• add: ’a -> ’b -> Map<’a,’b> -> Map<’a,’b>
add a b m = m′, where m′ is obtained m by overriding m with
the entry (a, b)

• find: ’a -> Map<’a,’b> -> ’b
find a m = m(a), if a ∈ dom m;
otherwise an exception is raised

• tryFind: ’a -> Map<’a,’b> -> ’b option
tryFind a m = Some (m(a)), if a ∈ dom m; None otherwise

•
foldBack:(’a->’b->’c->’c) -> Map<’a,’b> -> ’c -> ’c
foldBack f m c = f a0 b0 (f a1 b1 (f . . . (f an−1 bn−1 c) · · ·))

32 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Cash register (1)

type ArticleCode = string;;
type ArticleName = string;;
type NoPieces = int;;
type Price = int;;

type Info = NoPieces * ArticleName * Price;;
type Infoseq = Info list;;
type Bill = Infoseq * Price;;

The natural model of a register is using a map:

type Register = Map<ArticleCode, ArticleName*Price>;;

since an article code is a unique identification of an article.

First version:

type Item = NoPieces * ArticleCode;;
type Purchase = Item list;;

33 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

An example

let reg1 = Map.ofList [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5))];;

val reg1 : Map<string,(string * int)> =
map [("a1", ("cheese", 25)); ("a2", ("herring", 4));

("a3", ("soft drink", 5))]

An entry can be added to a map using add and the value for a key in
a map is retrieved using either find or tryFind:

let reg2 = Map.add "a4" ("bread", 6) reg1;;
val reg2 : Map<string,(string * int)> =

map [("a1", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5)); ("a4", ("bread", 6))]

Map.find "a2" reg1;;
val it : string * int = ("herring", 4)

Map.tryFind "a2" reg1;;
val it : (string * int) option = Some ("herring", 4)

34 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Cash register (1) - a recursive program

exception FindArticle;;

(* makebill: Register -> Purchase -> Bill *)
let rec makeBill reg = function

| [] -> ([],0)
| (np,ac)::pur ->

match Map.tryFind ac reg with
| None -> raise FindArticle
| Some(aname,aprice) ->

let tprice = np*aprice
let (infos,sumbill) = makeBill reg pur
((np,aname,tprice)::infos, tprice+sumbill);;

let pur = [(3,"a2"); (1,"a1")];;
makeBill reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

• the lookup in the register is managed by a Map.tryFind

35 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Cash register (2) - using List.foldBack

let makeBill’ reg pur =
let f (np,ac) (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

List.foldBack f pur ([],0);;

makeBill’ reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

• the recursion is handled by List.foldBack
• the exception is handled by Map.find

36 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

02157
Functional
Program-

ming

Michael R. Hansen

Summary

• The concepts of sets and maps.
• Fundamental operations on sets and maps.
• Applications of sets and maps.

37 DTU Compute, Technical University of Denmark Collections: Finite Sets and Maps MRH 11/10/2024

