
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Disjoint Unions and Higher-order list functions

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• About F#

• Disjoint union (or Tagged Values)
• Groups different kinds of values into a single set.

• Higher-order functions on lists
• many list functions follow “standard” schemes

• avoid (almost) identical code fragments by parameterizing
functions with functions

• higher-order list functions based on natural concepts

• succinct declarations achievable using higher-order functions

• On types for functions briefly

2 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Precedence and associativity rules for expressions

Operator Association Precedence
** Associates to the right highest

* / % Associates to the left
+ - Associates to the left

= <> > >= < <= No association
&& Associates to the left
|| Associates to the left lowest

• a monadic operator has higher precedence than any dyadic
• higher (larger) precedence means earlier evaluation
• function application associates to the left
• abstraction fun x -> e extends as far to the right as possible

For example:
• - 2 - 5 * 7 > 3 - 1 means ((-2)-(5*7)) > (3-1)

• fact 2 - 4 means (fact 2) - 4

• e1 e2 e3 e4 means ((e1 e2) e3) e4

• fun x -> x 2 means ????

3 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Precedence and associativity rules for types

• infix type operators: * and ->

• suffix type operator: list

Association rules:
• * has NO association
• -> associates to the right

Precedence rules:
• The suffix operator list has highest precedence
• * has higher precedence than ->

For example:
• int*int*int list means (int*int*(int list))

• int->int->int->int means int->(int->(int->int))

• ’a*’b->’a*’b list means (’a*’b)->(’a*(’b list))

4 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview: Syntactical constructs in “our part of” F#

• Constants: 0, 1.1, true, ...

• Patterns: x (p1, . . . , pn) p1 ::p2 [p1; . . . ; pn]
p1|p2 p when e p as x p : t . . .

• Expressions: x (e1, . . . , en) e1 ::e2 [p1; . . . ; pn]

e1e2 e1⊕e2 (⊕) let p1 = e1 in e2

e : t if e then e1 then e2 match e with clauses

fun p1 · · · pn->e function clauses . . .

• Declarations let f p1 . . . pn = e let rec f p1 . . . pn = e, n ≥ 0

• Types
int float bool string ′a T<t1, . . . , tn> . . .
t1∗t2∗· · ·∗tn t list t1->t2 . . .

• Type abbreviations type T<′a1, . . . ,
′ an> = t

• Type declarations type T<′a1, . . . ,
′ an> = C1 | · · · | Ci of ti | · · ·

where the construct clauses has the form:

| p1 -> e1 | . . . | pn -> en

5 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Disjoint Sets – Tagged Values

6 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part I: Disjoint Sets – An Example

A shape is either a circle, a square, or a triangle
• the union of three disjoint sets

type Shape =
| Circle of float (* 1 *)
| Square of float (* 2 *)
| Triangle of float*float*float;; (* 3 *)

This declaration provides three rules for generating shapes:
• if r : float, then Circle r : Shape (* 1 *)

• if s : float, then Square s : Shape (* 2 *)

• if (a, b, c) : float*float*float,
then Triangle(a, b, c) : Shape (* 3 *)

A type like Shape is also called an algebraic data type

7 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part I: Disjoint Sets – An Example (II)

The tags Circle, Square and Triangle are called constructors:

Circle : float → Shape
Square : float → Shape
Triangle : float ∗ float ∗ float → Shape

- Circle 2.0;;
> val it : Shape = Circle 2.0

- Triangle(1.0, 2.0, 3.0);;
> val it : Shape = Triangle(1.0, 2.0, 3.0)

- Square 4.0;;
> val it : Shape = Square 4.0

Circle, Square and Triangle are used
to construct values of type Shape,

8 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Constructors in Patterns

A shape-area function is declared

let area =
function
| Circle r -> System.Math.PI * r * r
| Square a -> a * a
| Triangle(a,b,c) ->

let s = (a + b + c)/2.0
sqrt(s*(s-a)*(s-b)*(s-c));;

> val area : Shape -> float

following the structure of shapes. using Heron’s formula

• a constructor only matches itself

area (Circle 1.2)
⇝ (System.Math.PI * r * r, [r 7→ 1.2])
⇝ . . .

9 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Enumeration types – the months

Months are naturally defined using tagged values::

type Month = | January | February | March | April
| May | June | July | August | September
| October | November | December;;

The days-in-a-month function is declared by

let daysOfMonth =
function
| February -> 28
| April | June | September | November -> 30
| _ -> 31;;

val daysOfMonth : Month -> int

Observe: Constructors need not have arguments

10 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

The option type

type ’a option = None | Some of ’a

Distinguishes the cases ”nothing” and ”something”.
predefined

The constructor Some and None are polymorphic:

Some false;;
val it : bool option = Some false

Some (1, "a");;
val it : (int * string) option = Some (1, "a")

None;;
val it : ’a option = None

Observe: type variables are allowed in declarations of algebraic types

11 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Find first position of element in a list

let rec findPosA p x =
function
| y::_ when x=y -> Some p
| _::ys -> findPosA (p+1) x ys
| [] -> None;;

val findPosA : int -> ’a -> ’a list -> int option when ...

let findPos x ys = findPosA 0 x ys;;
val findPos : ’a -> ’a list -> int option when ...

Examples

findPos 4 [2 .. 6];;
val it : int option = Some 2

findPos 7 [2 .. 6];;
val it : int option = None

Option.get(findPos 4 [2 .. 6]);;
val it : int = 2

12 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declaration of Algebraic data types yield new types

type T = A of int;;

let v = A 1;;
val v: T = A 1

type T = A of int;; // declaration of a new type

let v’ = A 1;;
val v’: T = A 1

v=v’;;
error FS0001: This expression was expected to have
type ’FSI_0011.T’ but here has type ’FSI_0013.T’

The second declaration do indeed yield a genuine new type.

13 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Exercise

A (teaching) room at DTU is either an auditorium or a databar:
• an auditorium is characterized by a location and a number of

seats.
• a databar is characterized by a location, a number of computers

and a number of seats.

Declare a type Room.

Declare a function:

seatCapacity : Room → int

Declare a function

computerCapacity : Room → int option

14 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declaration of monomorphic and polymorphic types

A declaration of a monomorphic type has the form:

type T = t

where t does not contain type variables.

A declaration of a polymorphic type has the form:

type T <′ a0,
′ a1, . . . ,

′ an >= t

where t may contain type variables ′a0,
′ a1, . . . ,

′ an.

A declaration of a polymorphic type
• type Map<’c> = (’c * ’c) list

Declarations of monomorphic types:
• type Country = A | B | C | D | E | F

• type SmallMap = Map<Country>

15 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions

16 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part 2:Motivation

Higher-order functions are
• everywhere

Σb
i=af (i), df

dx , {x ∈ A | P(x)}, . . .
• powerful

Parameterized modules, succinct code . . .

HIGHER-ORDER FUNCTIONS ARE USEFUL

17 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

now down to earth
• Many recursive declarations follows the same schema.

For example:

let rec f = function
| [] -> ...
| x::xs -> ... f(xs) ...

Succinct declarations achievable using higher-order functions

Contents
• Higher-order list functions (in the library)

• map
• contains, exists, forall, filter, tryFind
• foldBack, fold

Avoid (almost) identical code fragments by
parameterizing functions with functions

18 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

A simple declaration of a list function

A typical declaration following the structure of lists:

let rec posList = function
| [] -> []
| x::xs -> (x > 0)::posList xs;;

val posList : int list -> bool list

posList [4; -5; 6];;
val it : bool list = [true; false; true]

Applies the function fun x -> x > 0 to each element in a list

19 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Another declaration with the same structure

let rec addElems = function
| [] -> []
| (x,y)::zs -> (x+y)::addElems zs;;

val addElems : (int * int) list -> int list

addElems [(1,2) ;(3,4)];;
val it : int list = [3; 7]

Applies the addition function + to each pair of integers in a list

20 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

The function: map

Applies a function to each element in a list

map f [v1; v2; . . . ; vn] = [f (v1); f (v2); . . . ; f (vn)]

Declaration Library function

let rec map f = function
| [] -> []
| x::xs -> f x :: map f xs;;

val map : (’a -> ’b) -> ’a list -> ’b list

Succinct declarations can be achieved using map, e.g.

let posList = map (fun x -> x > 0);;
val posList : int list -> bool list

let addElems = map (fun (x,y) -> x+y);;
val addElems : (int * int) list -> int list

21 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Exercise

Declare a function

g [x1, . . . , xn] = [x2
1 + 1, . . . , x2

n + 1]

Remember

map f [v1; v2; . . . ; vn] = [f (v1); f (v2); . . . ; f (vn)]

where

map: (’a -> ’b) -> ’a list -> ’b list

22 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions: exists

Predicate: For some x in xs : p(x).

exists p xs =

{
true if p(x) = true for some x in xs
false otherwise

Declaration Library function

let rec exists p = function
| [] -> false
| x::xs -> p x || exists p xs;;

val exists : (’a -> bool) -> ’a list -> bool

Example

exists (fun x -> x>=2) [1; 3; 1; 4];;
val it : bool = true

23 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Exercise

Declare contains function using exists.

let contains x ys = exists ????? ;;
val contains : ’a -> ’a list -> bool when ’a : equality

Remember

exists p xs =

{
true if p(x) = true for some x in xs
false otherwise

where

exists: (’a -> bool) -> ’a list -> bool

contains is a Library function

24 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions: forall

Predicate: For every x in xs : p(x).

forall p xs =

{
true if p(x) = true, for all elements x in xs
false otherwise

Declaration Library function

let rec forall p = function
| [] -> true
| x::xs -> p x && forall p xs;;

val forall : (’a -> bool) -> ’a list -> bool

Example

forall (fun x -> x>=2) [1; 3; 1; 4];;
val it : bool = false

25 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Exercises

Declare a function
disjoint xs ys

which is true when there are no common elements in the lists xs and
ys, and false otherwise.

Remember

forall p xs =

{
true if p(x) = true, for all elements x in xs
false otherwise

where

forall : (’a -> bool) -> ’a list -> bool

26 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Validating properties of map-coloring programs (I)

Remember: Script available on Learn

type Map<’c> = (’c * ’c) list
type Color<’c> = ’c list
type Coloring<’c> = Color<’c> list

An auxiliary function in the script:

countries: Map<’c> -> ’c list

should give a list containing all elements in a map.

The function should satisfy the property prop1(m):
every country in map m must be in countries m.

How to declare a function that can check this property?

27 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Validating properties of map-coloring programs (II)

We restrict our attention to a small number of countries when using
FsCheck to validate prop1. Why?

#r "nuget: FsCheck";;
open FsCheck;;

type Country = A | B | C | D | E | F
type SmallMap = Map<Country>

let prop1(m:SmallMap) =
let cs = countries m
List.forall (fun (c1,c2) -> List.contains c1 cs &&

List.contains c2 cs) m;;
let _ = Check.Verbose prop1;;
...
9:
[(A, B); (D, B); (D, A)]
...
Ok, passed 100 tests.

Properties should be monomorphic
28 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions: filter

Set comprehension: {x ∈ xs : p(x)}

filter p xs is the list of those elements x of xs where p(x) = true.

Declaration Library function

let rec filter p =
function
| [] -> []
| x::xs -> if p x then x :: filter p xs

else filter p xs;;
val filter : (’a -> bool) -> ’a list -> ’a list

Example

filter System.Char.IsLetter [’1’; ’p’; ’F’; ’-’];;
val it : char list = [’p’; ’F’]

where System.Char.IsLetter c is true iff
c ∈ {′A′, . . . , ′Z′} ∪ {′a′, . . . , ′z′}

29 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Exercise

Declare a function
inter xs ys

which contains the common elements of the lists xs and ys — i.e.
their intersection.

Order and repetition of elements are of no concern

Remember:
filter p xs is the list of those elements x of xs where
p(x) = true. where

filter: (’a -> bool) -> ’a list -> ’a list

30 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions: tryFind

tryFind p xs =

{
Some x for an element x of xs with p(x) = true
None if no such element exists

let rec tryFind p =
function
| x::xs when p x -> Some x
| _::xs -> tryFind p xs
| _ -> None;;

val tryFind : (’a -> bool) -> ’a list -> ’a option

tryFind (fun x -> x>3) [1;5;-2;8];;
val it : int option = Some 5

31 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Folding a function over a list (I)

Example: sum of absolute values:

let rec absSum = function
| [] -> 0
| x::xs -> abs x + absSum xs;;

val absSum : int list -> int

absSum [-2; 2; -1; 1; 0];;
val it : int = 6

32 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Folding a function over a list (II)

let rec absSum = function
| [] -> 0
| x::xs -> abs x + absSum xs;;

Let f x a abbreviate abs x + a in the evaluation:

absSum [x0; x1; . . . ; xn−1]
⇝ abs x0 + (absSum [x1; . . . ; xn−1])
= f x0 (absSum [x1; . . . ; xn−1])
⇝ f x0 (f x1 (absSum[x2; . . . ; xn−1]))
...
⇝ f x0 (f x1 (· · · (f xn−1 0) · · ·))

This repeated application of f is also called a folding of f .

Many functions follow such recursion and evaluation schemes

33 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions: foldBack (1)

Suppose that ⊗ is an infix function. Then

foldBack (⊗) [a0; a1; . . . ; an−2; an−1] eb

= a0 ⊗ (a1 ⊗ (. . . (an−2 ⊗ (an−1 ⊗ eb)) . . .))

List.foldBack (+) [1; 2; 3] 0 = 1 + (2 + (3 + 0)) = 6
List.foldBack (-) [1; 2; 3] 0 = 1 − (2 − (3 − 0)) = 2

34 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declaration of foldBack

let rec foldBack f xlst e =
match xlst with
| x::xs -> f x (foldBack f xs e)
| [] -> e;;

val foldBack : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

let absSum xs = foldBack (fun x a -> abs x + a) xs 0;;

let length xs = foldBack (fun _ n -> n+1) xs 0;;

let map f xs = foldBack (fun x rs -> f x :: rs) xs [];;

35 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Exercise

Let an insertion function be declared by

let insert x ys = if List.contains x ys then ys
else x::ys;;

Declare a function distinct xs, that returns a list having same
elements as xs but without duplicated element.

Remember:

foldBack (⊕) [x1;x2; . . . ;xn] b ⇝ x1 ⊕ (x2 ⊕ · · · ⊕ (xn ⊕ b) · · ·)

where

foldBack: (’a -> ’state -> ’state)
-> ’a list -> ’state -> ’state

36 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions: fold (1)

Suppose that ⊕ is an infix function.

Then the fold function is defined by:

fold (⊕) ea [b0; b1; . . . ; bn−2; bn−1]
= ((. . . ((ea ⊕ b0)⊕ b1) . . .)⊕ bn−2)⊕ bn−1

i.e. it applies ⊕ from left to right.

Examples:

List.fold (-) 0 [1; 2; 3] = ((0 − 1)− 2)− 3 = −6
List.foldBack (-) [1; 2; 3] 0 = 1 − (2 − (3 − 0)) = 2

37 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Higher-order list functions: fold (2)

let rec fold f e =
function
| x::xs -> fold f (f e x) xs
| [] -> e;;

val fold : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

Using cons in connection with fold gives the reverse function:

let rev xs = fold (fun rs x -> x::rs) [] xs;;

This function has a linear execution time:

rev [1;2;3]
⇝ fold (fun ...) [] [1;2;3]
⇝ fold (fun ...) (1::[]) [2;3]
⇝ fold (fun ...) [1] [2;3]
⇝ fold (fun ...) (2::[1]) [3]
⇝ fold (fun ...) [2 ; 1] [3]
⇝ fold (fun ...) (3::[2 ; 1]) []
⇝ fold (fun ...) [3 ; 2 ; 1] []
⇝ [3;2;1]

38 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Summary

Part I: Disjoint union (Algebraic data types)
– types containing different kinds of values

We will later extend the notion with recursive definitions
– provides a mean to declare types for finite trees

Part II: Higher-order list functions
• Many recursive declarations follows the same schema.

Succinct declarations achievable using higher-order functions

• Higher-order list functions (in the library)
• map
• contains, exists, forall, filter, tryFind
• foldBack, fold

Avoid (almost) identical code fragments by
parameterizing functions with functions

39 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

On the design of types for functions — briefly

40 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Design of (Higher-order) functions

Some consideration
• Is partial function application envisioned?
• Conventions
• Make functions fit together
• “nice” declaration
• “safe parentheses”
• ...

41 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Design of (Higher-order) functions

Suppose a function can take two arguments. Possible types:

τ1 ∗ τ2 → τ
τ1 → τ2 → τ
τ2 ∗ τ1 → τ
τ2 → τ1 → τ

The number of possibilities becomes huge when there are more
types and when types have a structure.

Types of some library functions folding from right:
• (′a → ′b → ′b) → ′a list → ′b → ′b) OCAML: fold right
• (′a → ′b → ′b) → ′b → ′a list → ′b) Haskell: foldr
• (′a ∗ ′b → ′b) → ′b → ′a list → ′b) SML: foldr
• · · ·

It does not may sense to discuss what is best

An observation about foldBack (F# and OCAML):

foldBack (⊕) [x1; . . . ; xn] e
⇝ x1 ⊕ (· · · (xn ⊕ e) · · ·)

insert ⊕ between “all arguments” and evaluate from right
42 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Piecewise linear curve with Bounding Box

type Point = float * float
type Curve = Point * Point list // (p0,[p1;..;pn])
type BoundingBox = Point * Point // ((x0,y0),(xm,ym))

extBB: ? // extend a bounding box by a point
findBB: Curve -> BoundingBox

43 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Computing bounding box

Could be done by repeated extension of a bounding box by a point.
Example: Extending

• bounding box ((1,1.5), (3,2))
• with the point (4,4)

gives the bounding box ((1,1.5), (4,4))

Possible (natural) types:

extBB1: Point -> BoundingBox -> BoundingBox
extBB2: Point * BoundingBox -> BoundingBox
extBB3: BoundingBox -> Point -> BoundingBox
extBB4: BoundingBox * Point -> BoundingBox

Which one should be chosen?

• if findBB is declared using recursion,
it is hard to have a preference

44 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declare findBB using higher-order functions (I)

The type of List.fold

fold: (’bb -> ’p -> ’bb) -> ’bb -> ’p list -> ’bb)

Remember

extBB1: Point -> BoundingBox -> BoundingBox
extBB2: Point * BoundingBox -> BoundingBox
extBB3: BoundingBox -> Point -> BoundingBox
extBB4: BoundingBox * Point -> BoundingBox

Four versions using fold:

let findBB1(p0,ps) =
fold (fun bb p -> extBB1 p bb) (p0,p0) ps

let findBB2(p0,ps) =
fold (fun bb p -> extBB2(p,bb)) (p0,p0) ps

let findBB3(p0,ps) = fold extBB3 (p0,p0) ps

let findBB4(p0,ps) =
fold (fun bb p -> extBB4(bb,p)) (p0,p0) ps

45 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declare findBB using higher-order functions (II)

The type of List.foldBack

foldBack: (’p -> ’bb -> ’bb) -> ’p list -> ’bb -> ’bb

Remember

extBB1: Point -> BoundingBox -> BoundingBox
extBB2: Point * BoundingBox -> BoundingBox
extBB3: BoundingBox -> Point -> BoundingBox
extBB4: BoundingBox * Point -> BoundingBox

Just one version fits foldBack:

let findBB’(p0,ps) = foldBack extBB1 ps (p0,p0)

46 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

02157
Functional
Program-

ming

Michael R. Hansen
Design functions so that they compose nicely

whatever this means

• extBB1 fits nicely with foldBack
• extBB3 fits nicely with fold

What about functions to move and join curves?

Let us have a look at some programs

Alternative type for Curve?

47 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

