S
=
=

"

02157 Functional Programming
Disjoint Unions and Higher-order list functions

Michael R. Hansen
V1/
A + Qf Oe'"=

serag=3 E%t) E 0o ——(2.7182818284

: >
<) X r bE
°
DTU Compute
Department of Applied Mathematics and Computer Science

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Overview

m

About F#

® Disjoint union (or Tagged Values)
® Groups different kinds of values into a single set.

Higher-order functions on lists
® many list functions follow “standard” schemes

® avoid (almost) identical code fragments by parameterizing
functions with functions

® higher-order list functions based on natural concepts
® succinct declarations achievable using higher-order functions
On types for functions briefly

2 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

3

Precedence and associativity rules for expressions

Operator Association Precedence
* ok Associates to the right highest
* /% Associates to the left
+ - Associates to the left
= <> > >= < <= No association
& & Associates to the left
| Associates to the left lowest

® a monadic operator has higher precedence than any dyadic

® higher (larger) precedence means earlier evaluation

¢ function application associates to the left

® abstraction fun x —> e extends as far to the right as possible
For example:
-2 -5%7>3-1means

® fact 2 - 4 means

(fact 2) - 4

® ¢ e 6364 means ((e1 e2) €3) €4
® fun x -> x 2 means ?777?7?

DTU Compute, Technical University of Denmark

Disjoint Unions and Higher-order list functions

((=2)=(5%7)) > (3-1)

m

MRH 26/09/2024

Precedence and associativity rules for types

"

¢ infix type operators: = and —>
¢ suffix type operator: 1ist

Association rules:
* « has NO association
® —> associates to the right

Precedence rules:
® The suffix operator 1ist has highest precedence
® i has higher precedence than —>

For example:
® intxint+xint list mMeans (int*int#* (int list))
® int-—>int->int->int means int-> (int->(int->int))

® 'ax'b->"ax'b list means (‘ax'b)->("a*x('b list))

4 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

5

Overview: Syntactical constructs in “our part of” F#

Constants: 0, 1.1, true, ...

Patterns: x _ (p1,...,pPn) P1::p2 [P1;-..;Pn]
pilp2 pwhene pasx p:t...

Expressions: x (e1,...,€n) e1:€ [pi1;...;Pn]

e1e; edex (@) letpr=eiines

e:t if ethen e then e match e with clauses

fun pi - pPrn—>€ function clauses

Declarations 1let fpy...pp=€ letrecfpi...pn=6,n>0

Types
int float bool string ‘a T<t,...,t>
txbox---xt, tlist H->b

Type abbreviations type T<'ai,..., a,> =t
Type declarations type T<'ay,..., "ap>=Ci| - |Ciofti| -

where the construct clauses has the form:

DTU Compute, Technical University of Denmark

| p1 => e1 | ... | pn —> en

Disjoint Unions and Higher-order list functions

"

MRH 26/09/2024

=
=
=

M

Disjoint Sets — Tagged Values

6 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Part I: Disjoint Sets — An Example

"

A shape is either a circle, a square, or a triangle
¢ the union of three disjoint sets

type Shape =
| Circle of float (x» 1 *)
| Square of float (x 2 %)
| Triangle of floatxfloatxfloat;; (x 3 *)

This declaration provides three rules for generating shapes:
e ifr: float,thenCircle r: Shape (+ 1 %)

e ifs: float, then Square s: Shape (x 2 %)

e if (a,b,c): float*floatxfloat,
then Triangle(a, b, C) : Shape (+ 3 %)

A type like Shape is also called an algebraic data type

7 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Part I: Disjoint Sets — An Example (ll)

"

The tags Circle, Square and Triangle are called constructors:

Circle : float — Shape
Square . float — Shape
Triangle : float* float x float — Shape

- Circle 2.0;;
> val it : Shape = Circle 2.0

- Triangle (1.0, 2.0, 3.0);;
> val it : Shape = Triangle(1.0, 2.0, 3.0)

- Square 4.0;;

> val it : Shape = Square 4.0

Circle, Square and Triangle are used
to construct values of type Shape,

8 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Constructors in Patterns

"

A shape-area function is declared

let area =
function
| Circle r -> System.Math.PI x r * r
| Square a -> a % a
| Triangle(a,b,c) —->
let s = (a + b + ¢c)/2.0

sgrt (sx (s—a) * (s-b) *x (s-c));;
> val area : Shape —-> float

following the structure of shapes. using Heron’s formula

® a constructor only matches itself

area (Circle 1.2)
~» (System.Math.PI * r x r, [+ 1.2])

A

9 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Enumeration types — the months

"

Months are naturally defined using tagged values::

type Month = | January | February | March | April
| May | June | July | August | September
| October | November | December;;

The days-in-a-month function is declared by

let daysOfMonth =

function
| February -> 28
| April | June | September | November -> 30

I _ -> 31;;
val daysOfMonth : Month —-> int

Observe: Constructors need not have arguments

10 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

1"

The option type

type ’a option

Distinguishes the cases’

= None | Some of "a

'nothing” and "something”.

predefined

The constructor Some and None are polymorphic:

Some false;;

val it bool option = Some false

Some (1, "a");;

val it (int % string) option = Some (1, "a")

None; ;

val it ’a option = None

Observe: type variables are allowed in declarations of algebraic types

DTU Compute, Technical University of Denmark

Disjoint Unions and Higher-order list functions

"

MRH 26/09/2024

=
=
=

Example: Find first position of element in a list

"

let rec findPosA p x =

function

| y::_ when x=y —-> Some p

| _::ys -> findPosA (p+l) x ys
| —> Nonej; ;

val findPosA : int -> 7a -> ’a list -> int option when

let findPos x ys = findPosA 0 x ys;;

val findPos : “a —-> ’a list —-> int option when
Examples

findPos 4 [2 .. 6];;

val it : int option = Some 2

findPos 7 [2 .. 6];;

val it : int option = None

Option.get (findPos 4 [2 .. 61);;

val it : int = 2

12 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Declaration of Algebraic data types yield new types

type T = A of int;;

let v = A 1;;
val v: T = A 1

type T

let v/ = A 1;;
val v/: T = A 1

v=v'j;

error FS0001: This expression was expected to have
type 'FSI_0011.T’ but here has type ’FSI_0013.T’

The second declaration do indeed yield a genuine new type.

13 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions

=
=
=

"

A of int;; // declaration of a new type

MRH 26/09/2024

Exercise

"

A (teaching) room at DTU is either an auditorium or a databar:

® an auditorium is characterized by a location and a number of
seats.

® a databar is characterized by a location, a number of computers
and a number of seats.

Declare a type Room.

Declare a function:

seatCapacity : Room — int

Declare a function

computerCapacity : Room — int option

14 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Declaration of monomorphic and polymorphic types

"

A declaration of a monomorphic type has the form:

type T =t
where t does not contain type variables.
A declaration of a polymorphic type has the form:
type T <" &, a,..., an>=1t

where t may contain type variables 'ap,’ a1, ..., an.

A declaration of a polymorphic type

® type Map<’c> = (‘c = 'c) list

Declarations of monomorphic types:
® type Country =A | B | C | D | E | F
® type SmallMap = Map<Country>

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

=
=
=

M

Higher-order list functions

16 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

=
=
=

Part 2:Motivation

"

Higher-order functions are
® everywhere

Paf(0), G AX € AIP(X)}, ...
® powerful

Parameterized modules, succinct code . ..

HIGHER-ORDER FUNCTIONS ARE USEFUL

17 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

=
—

"

now down to earth
® Many recursive declarations follows the same schema.
For example:

let rec f = function

[T[] ->
| X::xs —> ... f(xs)

Succinct declarations achievable using higher-order functions

Contents
¢ Higher-order list functions (in the library)
* map
® contains, exists, forall, filter, tryFind
® foldBack, fold

Avoid (almost) identical code fragments by
parameterizing functions with functions

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

19

A simple declaration of a list function

A typical declaration following the structure of lists:

let rec posList = function

[[] > [1

| x::xs -> (x > 0)::poslList xs;;
val posList : int list -> bool 1list

posList [4; -5; 6];;

val it : bool 1list [true; false; true]

Applies the function fun x -> x > 0 to each elementin a list

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions

"

MRH 26/09/2024

=
=
=

Another declaration with the same structure

"

let rec addElems = function

I [] > []

| (x,y)::2zs —> (xty)::addElems zs;;
val addElems : (int int) 1list —-> int 1ist

addElems [(1,2) ;(3,4)]1;;
val it : int 1list = [3; 7]

Applies the addition function + to each pair of integers in a list

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

The function: map

Applies a function to each element in a list

map f [vi; Vo;...; V] = [f(v1); f(v2);...; f(vn)]

Declaration Library function
let rec map £ = function
I [-> []
| x::xs —> £ x :: map f xs;;
val map : (‘a -> ’b) -> ’a list -> ’b 1list

Succinct declarations can be achieved using map, e.g.

let posList = map (fun x -> x > 0);;
val posList : int list —-> bool 1ist

let addElems = map (fun (x,y) —-> x+y);;
val addElems : (int * int) list —> int 1ist

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions

=
=
=

M

MRH 26/09/2024

Exercise

"

Declare a function

g[x1,...,x,,]:[x12+1,...,x,3+1]

Remember
map f[vi;Vo;...;va] = [f(va); f(v2);...;f(va)]
where

map: (a -> 'b) -> ’"a list -> 'b list

22 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

23

Higher-order list functions: exists

Predicate: For some x in xs : p(x).

. true
exists p XS =

if p(x) = true for some x in xs
false otherwise

Declaration Library function
let rec exists p = function
| [—> false
| x::xs => p x || exists p xs;;
val exists : (‘a —> bool) —-> ’'a 1list —-> bool

Example

exists (fun x -> x>=2) [1;
val it : bool = true

DTU Compute, Technical University of Denmark

37 1; 41

Disjoint Unions and Higher-order list functions

=
=
=

"

MRH 26/09/2024

=
—

Exercise =
>
Declare contains function using exists.
let contains x ys = exists 27?2?77 ;;
val contains : ’a -> ’a list —-> bool when ’"a equality
Remember
) true if p(x) = true for some x in xs
exists p XS = .
false otherwise
where
exists: ('a —> bool) —-> ’'a list —> bool
contains is a Library function
Disjoint Unions and Higher-order list functions MRH 26/09/2024

24 DTU Compute, Technical University of Denmark

=
=
=

Higher-order list functions: forall ==
>
Predicate: For every x in xs : p(x).
tru if p(x) = true, for all elements x in x.
forall pxs = e p(). e, for all elements)
false otherwise
Declaration Library function
let rec forall p = function
|1 -> true
| x::xs —> p x && forall p xs;;
val forall : (’a —> bool) —-> ’a 1list —-> bool
Example
forall (fun x —-> x>=2) [1; 3; 1; 41;;
val it : bool = false
Disjoint Unions and Higher-order list functions MRH 26/09/2024

25 DTU Compute, Technical University of Denmark

Exercises

"

Declare a function
disjoint XS ys

which is true when there are no common elements in the lists xs and
ys, and false otherwise.
Remember

true if p(x) = true, for all elements x in xs

forall pxs= { false otherwise

where

forall : ("a -> bool) -> ’"a list -> bool

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Validating properties of map-coloring programs (l)

"

Remember: Script available on Learn
type Map<’c> = ('c x 'c) list
type Color<’c> = 'c list
type Coloring<’c> = Color<’c> list

An auxiliary function in the script:
countries: Map<’c> -> ’'c list

should give a list containing all elements in a map.

The function should satisfy the property prop:(m):
every country in map m must be in countries m.

How to declare a function that can check this property?

27 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Validating properties of map-coloring programs (ll) s
We restrict our attention to a small number of countries when using
FsCheck to validate propy. Why?
#r "nuget: FsCheck";;
open FsCheck;;
type Country =A | B | C | D | E | F
type SmallMap = Map<Country>
let propl (m:SmallMap) =
let cs = countries m
List.forall (fun (cl,c2) —-> List.contains cl cs &&
List.contains c2 cs) m;;
let _ = Check.Verbose propl;;

9:
[, B); (D, B); (D, A)]
Ok, passed 100 tests.
Properties should be monomorphic

28 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

=
=
=

Higher-order list functions: filter

"

Set comprehension: {x € xs: p(x)}
filter p xsis the list of those elements x of xs where p(x) = true.

Declaration Library function

let rec filter p =
function
I [=> []
| x::xs —=> if p x then x :: filter p xs
else filter p xs;;
val filter : (’a —> bool) —-> ’a 1list -> ’“a 1list

Example

filter System.Char.IsLetter ['1'; 'p’; 'F'; "="1;;
val it : char list = ["p’; ’'F’]

where System.Char.IsLetter cis true iff
ce{'n,....)'z'yu{a,...,' 2"}

29 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Exercise

"

Declare a function
inter xs ys

which contains the common elements of the lists xs and ys —i.e.
their intersection.

Order and repetition of elements are of no concern

Remember:
filter p xsis the list of those elements x of xs where
p(x) = true. where

filter: ("a —> bool) —> 'a list -> "a list

30 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Higher-order list functions: tryFind ==
>
) Some X for an element x of xs with p(x) = true
tryFind p xs = . .
None if no such element exists
let rec tryFind p =
function
| x::xs when p x —> Some x
| _::xs -> tryFind p xs
| -> Nonej; ;
val tryFind : (‘a —-> bool) -> ’a list —-> ’a option
tryFind (fun x -> x>3) [1;5;-2;81;;
val it : int option = Some 5
Disjoint Unions and Higher-order list functions MRH 26/09/2024

31 DTU Compute, Technical University of Denmark

Folding a function over a list (I)

Example: sum of absolute values:

let rec absSum = function
I [-> 0
| x::xs —> abs x + absSum xsj;

val absSum : int 1list -> int
absSum [-2; 2; -1; 1; 0];;
val it : int = 6

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions

"

MRH 26/09/2024

Folding a function over a list (Il)

"

let rec absSum = function
I [-> 0
| x::xs —> abs x + absSum xsj;;

Let f x a abbreviate abs x + ain the evaluation:

absSum [Xo; X1; . .. Xn—1]
~> abs Xp + (absSum [X1;...; Xa—1])
= f X (absSum [X1;...; Xa—1])
~ X (f x1 (absSum[Xe; . ..; Xp—1]))

~ on(fX1(~“(an_10)"'))
This repeated application of f is also called a folding of 7.

Many functions follow such recursion and evaluation schemes

33 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

34

Higher-order list functions: foldBack (1)

Suppose that ® is an infix function. Then
foldBack (®) [&o; at; ... ; a@m—2; an—11 €p

= a®@e(..(a—2®(a—1®6ep))...))

List.foldBack (+) [1; 2; 31 0 = 1+(2+(3+
List.foldBack (-) [1; 2; 3] O 1-(2-3-

DTU Compute, Technical University of Denmark

0))
0))

Disjoint Unions and Higher-order list functions

»

"

MRH 26/09/2024

=
=
=

Declaration of foldBack

"

let rec foldBack f xlst e =
match x1lst with
| x::xs —> f x (foldBack f xs e)
[T[] -> ej;
val foldBack : ("a —> b —> ’b) —> ’a 1list -> b —> ’b
let absSum xs = foldBack (fun x a -> abs x + a) xs 0;;

let length xs = foldBack (fun _ n -> n+l) xs 0;;

let map f xs = foldBack (fun x rs -> f x :: rs) xs [];;

35 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

36

Exercise

Let an insertion function be declared by

let insert x ys = if List.contains x ys then ys
else x::ys5;;

Declare a function distinct xs, that returns a list having same
elements as xs but without duplicated element.

Remember:
foldBack (®)[X1:Xe;...;Xn] b ~» X1 D (B B (Xn® b))

where

foldBack: ("a —> ’"state —-> ’state)
-> "a list -> ’'state -> ’state

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions

"

MRH 26/09/2024

Higher-order list functions: fold (1)

Suppose that @ is an infix function.

Then the fo1ld function is defined by:

fold (®) ea [bo; bi; .

i.e. it applies @ from left to right.

Examples:

List.fold
List.foldBack

DTU Compute, Technical University of Denmark

e bn72i bn71]
((.--((ea® bo) ® b1)...) D bn2) D bp1

= ((0-1)-2)-3
- 1-(2-(3-0))

Disjoint Unions and Higher-order list functions

—6
2

MRH 26/09/2024

"

38

Higher-order list functions: fold (2)

let rec fold f e

function
| X::xs => fold £ (f e x)
[T[] > e;;

val fold : (a -> "b -> 7a)

XS

-> ’a —=> ’b list -> ’a

Using cons in connection with fold gives the reverse function:

let rev xs

This function has a linear execution time:

rev [1;2;3]

fold
fold
fold
fold
fold
fold
fold
[3;2:1]

I A A A

DTU Compute, Technical University of Denmark

(fun

fold

(l

(1:0)

(1]
(2::01])
[2;1]
(3::[2;1])
[3;2;1]

—_— W w NN

(fun rs x -> x::rs) [] xs;;

~e o~
w W N
o~

o~

Disjoint Unions and Higher-order list functions

"

MRH 26/09/2024

39

Summary

Part I: Disjoint union (Algebraic data types)
— types containing different kinds of values

We will later extend the notion with recursive definitions
— provides a mean to declare types for finite trees

Part II: Higher-order list functions
* Many recursive declarations follows the same schema.

Succinct declarations achievable using higher-order functions

® Higher-order list functions (in the library)
® map
® contains, exists, forall, filter, tryFind
® foldBack, fold

Avoid (almost) identical code fragments by
parameterizing functions with functions

DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions

"

MRH 26/09/2024

(=]
—_
(=

M

On the design of types for functions — briefly

40 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Design of (Higher-order) functions

m

Some consideration
® |s partial function application envisioned?
e Conventions
* Make functions fit together
® “nice” declaration
® “safe parentheses”

41 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

Design of (Higher-order) functions

1

Suppose a function can take two arguments. Possible types:

Ty *To — T

TH —> T2 — T

To*x T4 — T

To —> T4 — T
The number of possibilities becomes huge when there are more
types and when types have a structure.

Types of some library functions folding from right:
*('a—-'b—)= 'alist - 'b — 'b) OCAML: fold_right
*('a—>'b—='p)— b > 'alist — 'b) Haskell: foldr
*(ax'p = b)—> b - ‘alist — 'b) SML: foldr
e ...

It does not may sense to discuss what is best

An observation about foldBack (F# and OCAML):

foldBack (®) [X1;...;Xa] €
- & (- (noe))

insert @ between “all arguments” and evaluate from right
42 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

43

Piecewise linear curve with Bounding Box

type Point
type Curve

type BoundingBox

extBB: *?

findBB: Curve

=
=
=

"

float » float
Point % Point list // (pO, [pl;..;pnl)
= Point * Point // ((x0,y0), (xm, ym))

// extend a bounding box by a point
BoundingBox

(xm,ym)

4.5

4

3.5

3

25

2

15

start

1 -
(x0,y0)

DTU Compute, Technical University of Denmark

Disjoint Unions and Higher-order list functions MRH 26/09/2024

Computing bounding box

"

Could be done by repeated extension of a bounding box by a point.
Example: Extending

® bounding box ((1,1.5), (3,2))
¢ with the point (4,4)
gives the bounding box ((1,1.5), (4,4))

Possible (natural) types:

extBBl: Point —-> BoundingBox —> BoundingBox
extBB2: Point * BoundingBox -> BoundingBox
extBB3: BoundingBox -> Point —-> BoundingBox
extBB4: BoundingBox x Point -> BoundingBox

Which one should be chosen?

e if findBB is declared using recursion,
it is hard to have a preference

44 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

=
=
=

Declare findBB using higher-order functions (1)

"

The type of List.fold
fold: ("bb -> 'p -> 'bb) -> 'bb -> ’p list -> ’bb)
Remember

extBBl: Point -> BoundingBox —-> BoundingBox
extBB2: Point * BoundingBox -—> BoundingBox
extBB3: BoundingBox -> Point -> BoundingBox
extBB4: BoundingBox * Point -> BoundingBox

Four versions using fold:

let f£indBB1 (p0,ps) =
fold (fun bb p —-> extBBl p bb) (p0,p0) ps

let £indBB2 (p0, ps)
fold (fun bb p -> extBB2(p,bb)) (p0,p0) ps

let findBB3 (p0,ps) = fold extBB3 (p0,p0) ps

let f£indBB4 (p0O,ps) =
fold (fun bb p -> extBB4 (bb,p)) (p0,p0) ps

45 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

46

Declare findBB using higher-order functions (ll)

The type of List.foldBack

=
—

"

foldBack: ('p -> 'bb -> 'bb) -> ’'p list -> 'bb -> ’'bb

Remember

extBB1l:
extBB2:
extBB3:
extBB4:

Point -> BoundingBox —-> BoundingBox
Point % BoundingBox —> BoundingBox
BoundingBox —> Point -> BoundingBox
BoundingBox * Point —> BoundingBox

Just one version fits foldBack:

let findBB’ (p0,ps) = foldBack extBBl ps (p0,p0)

DTU Compute, Technical University of Denmark

Disjoint Unions and Higher-order list functions

MRH 26/09/2024

"

Design functions so that they compose nicely
whatever this means

® extBB1 fits nicely with foldBack
® extBB3 fits nicely with fold

What about functions to move and join curves?
Let us have a look at some programs

Alternative type for Curve?

47 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 26/09/2024

