
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture 3: Programming as a model-based activity

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

• Syntax, semantics and pragmatics (briefly)
• Overview of F#
• Semantics of a function declaration

• Programming as a modelling activity
• Type declarations (type abbreviations)
• Cash register
• Map colouring

• Program properties and property-based testing

2 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Syntax, semantics and pragmatics

3 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Programming languages: Syntax, Semantics and Pragmatics

• The syntax is concerned with the (notationally correct)
grammatical structure of programs.

• The semantics is concerned with the meaning of syntactically
correct programs.

• The pragmatics is concerned with practical (adequate)
application of language constructs in order to achieve certain
objectives.

A specification of F# is found at
https://fsharp.org/specs/language-spec/

4 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

https://fsharp.org/specs/language-spec/

02157
Functional
Program-

ming

Michael R. Hansen

Further characteristics for the functional fragment of F#

F# is a statically typed, compiled language language:

• At compile time: A type for every expression in a program is
inferred.
If this is not possible, then an type error is issued at compile time

• Code is only generated by the compiler for well-typed programs.

• At runtime: The generated code contains no type information
well-typed programs do not go wrong

5 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Syntax Static semantics Semantics
Type inference e : τ

Types τ Value v
Patterns pat Binding id 7→ v
Expressions e Types every piece of an expression Environment
Declarations d Types every piece of a declaration e1 ⇝ e2

indentation
sensitive

Pragmatics: ?
• type and function names are descriptive
• types start with a capital letter
• variables names are short and consistently used
• function types are stated in comments
• a program is composed by small, well-understood pieces
• adequate use of language constructs
• ...
• common computer-science sense

6 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview: Syntactical constructs in “our part of” F#

• Constants: 0, 1.1, true, ...

• Patterns: x (p1, . . . , pn) p1 ::p2 [p1; . . . ; pn]
p1|p2 p when e p as x p : t . . .

• Expressions: x (e1, . . . , en) e1 ::e2 [p1; . . . ; pn]

e1e2 e1⊕e2 (⊕) let p1 = e1 in e2

e : t if e then e1 then e2 match e with clauses

fun p1 · · · pn->e function clauses . . .

• Declarations let f p1 . . . pn = e let rec f p1 . . . pn = e, n ≥ 0

• Types
int float bool string ′a T<t1, . . . , tn> . . .
t1∗t2∗· · ·∗tn t list t1->t2 . . .

• Type abbreviations type T = t type T<′a1, . . . ,
′ an> = t

• Type declarations type T = C1 | · · · | Ci of ti | · · ·

where the construct clauses has the form:

| p1 -> e1 | . . . | pn -> en

7 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

What is the value of a?

Consider

let pi = 3.14;;

let ca r = pi * r * r;;

let a = let pi = 1.0;;
ca 1.0;;

a?

8 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Semantics of a function: A closure

Consider a declaration of f in an environment
env = [a 7→ 4, b 7→ true]:

let f x = x+a

The resulting environment is:

[a 7→ 4, b 7→ true, f 7→ clf]

where the value of f is a closure clf =

([x], x + a, [a 7→ 4])

consisting of
• the argument list: [x]
• the body of f: x+a
• the environment with bindings for the free variables: [a 7→ 4]

The bindings in a closure’s environment are determined at the place
where the function is declared static binding

9 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Function application

Let env be an environment, where the closure for f is

clf = ([x], e, envf)

The application f (a) is evaluated as follows in env :

(f (a), env)
⇝ (e, [x 7→ v] + envf)

where
• v is the value of a in env
• [x 7→ v] + envf is the environment obtained by adding the

binding from x 7→ v to envf .

10 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Static binding: an example

Consider

let pi = 3.14;;

env1 = ?

let ca r = pi * r * r;;

env2 = ?

let a = let pi = 1.0
env3 = ?

ca 1.0;;

env4 = ?
a?

11 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Programming as a modelling activity

12 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Goal and approach

Goal: the main concepts of the problem formulation are traceable in
the program.

Approach: to name the important concepts of the problem and
associate types with the names.

• This model should facilitate discussions about whether it fits the
problem formulation.

Aim: A succinct, elegant program reflecting the model.

13 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

The problem

An electronic cash register contains a data register associat-
ing the name of the article and its price to each valid article
code. A purchase comprises a sequence of items, where
each item describes the purchase of one or several pieces
of a specific article.

The task is to construct a program which makes a bill of a
purchase. For each item the bill must contain the name of
the article, the number of pieces, and the total price, and the
bill must also contain the grand total of the entire purchase.

14 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

A Functional Model

• Name key concepts and give them a type

A signature for the cash register:

type ArticleCode = string
type ArticleName = string
type Price = int
type Register = (ArticleCode * (ArticleName*Price)) list
type NoPieces = int
type Item = NoPieces * ArticleCode
type Purchase = Item list
type Info = NoPieces * ArticleName * Price
type Infoseq = Info list
type Bill = Infoseq * Price

makeBill: Register -> Purchase -> Bill

Is the model adequate?

15 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example

The following declaration names a register:

let reg = [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5))];;

The following declaration names a purchase:

let pur = [(3,"a2"); (1,"a1")];;

A bill is computed as follows:

makeBill reg pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

16 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (1)

Type: findArticle: ArticleCode → Register → ArticleName * Price

let rec findArticle ac = function
| (ac’,adesc)::_ when ac=ac’ -> adesc
| _::reg -> findArticle ac reg
| _ ->

failwith(ac + " is an unknown article code");;
val findArticle : string -> (string * ’a) list -> ’a

Note that the specified type is an instance of the inferred type.

An article description is found as follows:

findArticle "a2" reg;;
val it : string * int = ("herring", 4)

findArticle "a5" reg;;
System.Exception: a5 is an unknown article code

at FSI_0016.findArticle[a] ...

Note: failwith is a built-in function that raises an exception

17 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (2)

Type: makeBill: Register → Purchase → Bill

let rec makeBill reg = function
| [] -> ([],0)
| (np,ac)::pur ->

let (aname,aprice) = findArticle ac reg
let tprice = np*aprice
let (billtl,sumtl) = makeBill reg pur
((np,aname,tprice)::billtl, tprice+sumtl);;

The specified type is an instance of the inferred type:

val makeBill :
(string * (’a * int)) list -> (int * string) list

-> (int * ’a * int) list * int

makeBill reg pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

18 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Summary

• A succinct model is achieved using type declarations.
• Easy to check whether it fits the problem.
• Conscious choice of variables (on the basis of the model)

increases readability of the program.
• Standard recursions over lists solve the problem.

19 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Map Coloring.

Color a map so that neighbouring countries get different colors

"b"
"a"

"d"

"c"

The types for country and map:
• We shall consider different types for countries, so we use a type

variable , say ’c

Symbols: c, c1, c2, c’; Examples: ”a”, ”b”, . . .

• The type for Map is polymorphic:
type Map<’c> = (’c * ’c) list

Symbols: m; Example: exMap = [(”a”,”b”); (”c”,”d”); (”d”,”a”)]

How many ways could above map be colored?

20 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Abstract models for color and coloring

• type Color<’c> = ’c list

Symbols: col; Example: [”c”; ”a”]

• type Coloring<’c> = Color<’c> list

Symbols: cols; Example: [[”c”; ”a”]; [”b”; ”d”]]

Be conscious about symbols and examples

colMap: Map<’c> -> Coloring<’c>

Meta symbol: Type Definition Sample value
c country ’c "a"
m: Map<’c> (’c * ’c) list[("a","b"),("c","d"),("d","a")]
col: Color<’c> ’c list ["a","c"]
cols: Coloring<’c>Color<’c> list[["a","c"],["b","d"]]

Figure: A Data model for map coloring problem

21 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Algorithmic idea

"b"
"a"

"d"

"c"

Insert repeatedly countries in a coloring.

country old coloring new coloring
1. "a" [] [["a"]]
2. "b" [["a"]] [["a"] ; ["b"]]
3. "c" [["a"] ; ["b"]] [["a";"c"] ; ["b"]]
4. "d" [["a";"c"] ; ["b"]] [["a";"c"] ; ["b";"d"]]

Figure: Algorithmic idea

22 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (I)

To make things easy
Are two countries neighbours?

areNb: Map<’c> -> ’c -> ’c -> bool

let areNb m c1 c2 = List.contains (c1,c2) m
|| List.contains (c2,c1) m;;

Can a color be extended?

canBeExtBy: Map<’c> -> Color<’c> -> ’c -> bool

let rec canBeExtBy m col c =
match col with
| [] -> true
| c’::col’ -> not (areNb m c’ c) && canBeExtBy m col’ c;;

canBeExtBy exMap ["c"] "a";;
val it : bool = true

canBeExtBy exMap ["a"; "c"] "b";;
val it : bool = false23 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Functional composition (I)

Combining functions make things easy
Extend a coloring by a country:

extColoring: Map<’c> -> Coloring<’c> -> ’c -> Coloring<’c>

Examples:
extColoring exMap [] "a" = [["a"]]
extColoring exMap [["b"]] "a" = [["b"] ; ["a"]]
extColoring exMap [["c"]] "a" = [["a"; "c"]]

let rec extColoring m cols c =
match cols with
| [] -> [[c]]
| col::cols’ -> if canBeExtBy m col c

then (c::col)::cols’
else col::extColoring m cols’ c;;

Function types, consistent use of symbols, and examples
make program easy to comprehend

24 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Functional decomposition (II)

To color a neighbour relation:
• Get a list of countries from the neighbour relation.
• Color these countries

Get a list of countries without duplicates:

let addElem x ys = if List.contains x ys then ys else x::ys;;

let rec countries = function
| [] -> []
| (c1,c2)::m -> addElem c1 (addElem c2 (countries m));;

Color a country list:

let rec colCntrs m = function
| [] -> []
| c::cs -> extColoring m (colCntrs m cs) c;;

25 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Functional composition (III)

The problem can now be solved by
combining well-understood pieces

Create a coloring from a neighbour relation:

colMap: Map<’c> -> Coloring<’c>

let colMap m = colCntrs m (countries m);;

colMap exMap;;
val it : string list list = [["c"; "a"]; ["b"; "d"]]

26 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

On modelling and problem solving

• Types are useful in the specification of concepts and operations.
• Conscious and consistent use of symbols enhances readability.
• Examples may help understanding the problem and its solution.
• Functional paradigm is powerful.

Problem solving by combination of well-understood pieces

These points are not programming language specific

27 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Program properties
and

property-based testing

28 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Invariant preservation by example

An integer list [x0; x1; . . . ; xn−1] is ordered if

x0 ≤ x1 ≤ · · · ≤ xn−1 where n ≥ 0

The function:

let rec insert y xs =
match xs with
| [] -> [y] (* C1 *)
| x::_ when y<=x -> y::xs (* C2 *)
| x::rest -> x::insert y rest (* C3 *)

inserting y in an ordered list xs should satisfy the property:

If xs is ordered,
then insert y xs is ordered as well.

We say that insert y respects (or preserves) the invariant:
• if the argument xs is ordered

then the value insert y xs is ordered as well

Function f preserves invariant p:
• if argument a satisfies property p, i.e. p(a) holds,

then the result f (a) satisfies p as well, i.e. p(f (a)) holds
29 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Property-based testing

QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs, Claessen and Hughes, 2000

• Random generation of values of arbitrary types
• Properties are expressed as Boolean-valued functions

let rec sort xs =
let rec ordered xs = ...

// Test that: for all lists xs: ordered(sort xs)
let sortProp (xs: int list) = ordered(sort xs)

let _ = Check.Quick sortProp
Ok, passed 100 tests.

The tool has been ported to many languages. We look at FsCheck
for the .Net platform. Consult

• https://fscheck.github.io/FsCheck/ and
• TipsTricksPrograms DTU Learn

30 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

https://fscheck.github.io/FsCheck/

02157
Functional
Program-

ming

Michael R. Hansen

Testing for correctness wrt. a reference model (I)

#r "nuget: FsCheck"
open FsCheck

let rec sumA xs acc =
match xs with
| [] -> 0
| x::xs -> sumA xs (x+acc);;

Correctness property wrt. the built-in function: List.sum:

for all xs: List.sum xs = sumA xs 0

let sumRefProp xs = List.sum xs = sumA xs 0;;
let _ = Check.Quick sumRefProp;;
Falsifiable, after 2 tests (2 shrinks) (StdGen :
Original:
[-2; -1]
Shrunk:
[1]

• uses built-in generators for lists
• tool provides a short counterexample

31 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Testing for correctness wrt. a reference model (II)

let rec sumA xs acc =
match xs with
| [] -> acc
| x::xs -> sumA xs (x+acc);;

Correctness property wrt. the built-in function: List.sum:

for all xs: List.sum xs = sumA xs 0

let sumRefProp xs = List.sum xs = sumA xs 0;;
let _ = Check.Quick sumRefProp;;
Ok, passed 100 tests.

• default is 100 random tests
• can be configured

32 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Testing for correctness wrt. a reference model (III)

Test cases are exposed using Check.Verbose as follows:

let sumRefProp xs = List.sum xs = sumA xs 0;;
let _ = Check.Verbose sumRefProp;;

0:
[-2]
.....
99:
[-1; 0; -1; -1; 2; 1; -1; 0; 0; 5; -1; 1; -1; 0; 0; -1; 2; -1; -2; 0; 1; 0; -1;
1; -1; 1; -1; 0; -1; -1; -1; -1; 1; -1; 1; 1; 1; 0; -2; 1; 2; -2; 1; 0; 0; -2;
1; 0; -1; 0; -1; -1; -2; 2; 0; 1; -1; -1; 1; 1; 0; 0; -1; 0; 1; 0; 0; 1; 1; 1;
0]
Ok, passed 100 tests.

33 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Summary

Property-based testing supports testing at a high level of abstraction
• Focus is on fundamental properties – not on concrete test cases
• You write programs for properties – not concrete test cases
• Properties are tested automatically
• Short counterexamples are found — when properties are

falsified

The examples given here are just appetizers.

34 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

02157
Functional
Program-

ming

Michael R. Hansen

Polynomial project: On checking properties

The list [a0; . . . ; an−1], n ≥ 0 is a legal representation of polynomial
a0 + a1x + a2x2 + · · ·+ an−1xn−1 if n = 0 or an−1 ̸= 0.

• The last element of a representation cannot be 0
• Each polynomial has a unique representation

You should check invariant properties like:
• For every legal representation p: isLegal(mulX p).

The script: PolyGenerator.fsx contains a generator:
• produces only legal representations of polynomials (type Poly)
• having small coefficients and degrees

You do not need to understand the generator. Just use it, like in:

let mulXwrong p = 0::p
let mulXinvWrong (p:Poly) = isLegal(mulXwrong p);;

let testMulXInvWrong = Check.Quick mulXinvWrong;;
>Falsifiable, after 6 tests (0 shrinks) (StdGen (261...
Original:[]

35 DTU Compute, Technical University of Denmark Lecture 3: Programming as a model-based activity MRH 19/09/2024

