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On functional decomposition
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Functional decomposition

A simple technique when solving a complex problem is
• to partition it into smaller well-defined parts and, thereafter,
• to compose these parts to solve the original problem.

The main goal is that a program is constructed by
• combining simple well-understood pieces

Invent useful helper functions
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Functional decomposition: Example 1

Sorting a list:
sort: ’a list -> ’a list when ’a : comparison.

Insertion in an ordered list is easy:

(* insert:’a -> ’a list -> ’a list when ’a : comparison *)
let rec insert x ys =

match ys with
| [] -> [x]
| y::_ when x <= y -> x::ys
| y::ytail -> y::insert x ytail

Insertion sort can now easily be implemented:

let rec sort xs =
match xs with
| [] -> []
| x::xtail -> insert x (sort xtail)

• small comprehensible programs
Notice: there are better sorting algorithms than insertion sort
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Functional decomposition: Example 2

Consider multiplication of polynomials:

0 · Q(x) = 0
(a0 + a1 · x + ...+ an · xn) · Q(x)

= a0 · Q(x) + x ·
(
(a1 + a2 · x + ...+ an · xn−1) · Q(x)

)
Invent suitable auxiliary functions

• a0·Q(x) mulC: int -> Poly -> Poly

• x ·(. . .) mulX: Poly -> Poly

• a0 · Q(x)+x · (. . .) add: Poly -> Poly -> Poly

That makes the task of declaring multiplication easier
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Invent helper function(s): Blackboard exercise

Declare a function sumProd: int list -> int*int:

sumProd [x0;x1; . . .;xn−1]
= ( x0 + x1 + . . . + xn−1 , x0 * x1 * . . . * xn−1 )

sumProd [] = (0,1)
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On functions as first-class citizens
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Functions as ”first-class citizens”

• functions can be passed as arguments to functions
• functions can be returned as values of functions

like any other kind of value.

There is nothing special about functions in functional languages

A function that takes a function as argument or produces a function
as result is also called a higher-order function.

Higher-order functions are useful
• succinct code
• highly parameterized programs
• Program libraries typically contain many such functions
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An example

Suppose that we have a cube with side length s, containing a liquid
with density ρ. The weight of the liquid is then given by ρ · s3:

let weight ro s = ro * s ** 3.0;;
val weight : float -> float -> float

We can make partial evaluations to define functions for computing
the weight of a cube of either water or methanol:

let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)

waterWeight 2.0;;
val it : float = 8000.0

let methanolWeight = weight 786.5 ;;
val methanolWeight : (float -> float)

methanolWeight 2.0;;
val it : float = 6292.0

The formula ρ · s3 is represented just once in the program

10 DTU Compute, Technical University of Denmark Lecture 2: Functions, Types and Lists MRH 10/09/2024



02157
Functional
Program-

ming

Michael R. Hansen

Currying and Uncurrying

The process of turning a function on pairs (tuples) into a higher-order
function is called currying. The opposite process is called uncurrying.

Consider declarations:

let wC ro s = ro * s ** 3.0;;
val wC : float -> float -> float

let wUC(ro, s) = ro * s ** 3.0;;
val wUC : ro:float * s:float -> float

• wC is the curried version of wUC
• wUC is the uncurried version of wC

Have a look at exercise HR 2.13:
• declare functions for curring and uncurring.

curry: (’a * ’b -> ’c) -> ’a -> ’b -> ’c
uncurry: (’a -> ’b -> ’c) -> ’a * ’b -> ’c
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A well-known example: function composition

Function composition: (f ◦ g)(x) = f (g(x))

For example, if f (y) = y + 3 and g(x) = x2, then (f ◦ g)(z) = z2 + 3.

The infix operator << in F# denotes function composition:

let f y = y+3;;

let g x = x*x;;

let h = f << g;; // h = (f o g)
val h : int -> int

h 4;; // h(4) = (f o g)(4)
val it : int = 19

• An infix operator appears between the arguments
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Infix functions

The prefix version (⊕) of an infix operator ⊕ is a curried function, that
is, higher-order function where argument are supplied one by one

For example:

(<<);;
val it : ((’a -> ’b) -> (’c -> ’a) -> ’c -> ’b)

• The argument is a function ’a -> ’b

• The value is a function (’c -> ’a) -> ’c -> ’b

Declaration << is a built-in function

let (<<) f g x = f(g x);;

Infix operators are written as strings of special characters including

! % & * + - / < = > ? @ ˆ \ ˜

Consult F# specification for complete rules.
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The built-in infix function @

List.append is a higher-order function from the List library:
• List.append [x0; . . . ; xn−1] [y0; . . . ; xm−1] =

[x0; . . . ; xn−1; y0; . . . ; xm−1]

There is a convenient infix notation for List.append xs ys in F#:

xs @ ys

The declaration of (@) xs ys follows the structure of xs:

let rec (@) xs ys =
match xs with
| [] -> ys
| x::xtail -> x::(xtail @ ys);;

val ( @ ) : ’a list -> ’a list -> ’a list

[["a"]; ["ab";"abc"; ""]; []] @ [["x"]; ["xy"; "xyz"]];;
val it : string list list =

[["a"]; ["ab"; "abc"; ""]; []; ["x"]; ["xy"; "xyz"]]
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On anonymous functions

15 DTU Compute, Technical University of Denmark Lecture 2: Functions, Types and Lists MRH 10/09/2024



02157
Functional
Program-

ming

Michael R. Hansen

Function expressions

There are two kinds of expression for anonymous functions

• One originates from abstraction λx .e in the lambda calculus:

fun x → e

reads: “the function of x given by e”.

• The other support pattern matching:

function
| pat1 → e1

...
| patn → en

You can write functions without naming them
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Anonymous functions: Example 1

An expressions denoting the circle-area function

fun r -> System.Math.PI * r * r ;;
val it : float -> float = <fun:clo@10-1>

it 2.0 ;;
val it : float = 12.56637061
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Anonymous functions: Example 2

An anonymous function computing the number of days in a month:

function
| 2 -> 28 // February
| 4 -> 30 // April
| 6 -> 30 // June
| 9 -> 30 // September
| 11 -> 30 // November
| _ -> 31;; // All other months
val it : int -> int = <fun:clo@17-2>

it 2;;
val it : int = 28
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Anonymous functions: Example 3

Function expressions with general patterns, e.g.

function
| 2 -> 28 // February
|4|6|9|11 -> 30 // April, June, September, November
| _ -> 31 // All other months
;;

Exploits an or pattern in the second clause
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Simple functions expressions with currying

The expression
fun x y · · · z → e

has the same meaning as

fun x → (fun y → (· · · (fun z → e) · · · ))

It denotes a function with type

tx → (ty → (· · · (tz → te) · · · )) where x : tx , y : ty , z : tz and e : te

For example: The function below takes an integer as argument and
returns a function of type int -> int as value:

fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>

let f = it 2;;
val f : ( int -> int)

f 3;;
val it : int = 8
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On types, type inference and overloading
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Types and type checking

Purposes:
• Modelling, readability: types are used to indicate the intention

behind a program

• Safety, efficiency: ”Well-typed programs do not go wrong”
Robin Milner

• Catch errors at compile time

• Checks of types are not needed at runtime

A type checker is an algorithm used at an early phase in the compiler
to reject programs containing type errors.

Type inference is an algorithm to automatically calculate types of
expressions without use of explicit type annotations.

22 DTU Compute, Technical University of Denmark Lecture 2: Functions, Types and Lists MRH 10/09/2024



02157
Functional
Program-

ming

Michael R. Hansen

Fundamental type-checking problem
All non-trivial semantic properties of programs are undecidable

Rice’s theorem

Example: p terminates on all its input

Cannot be checked for programs belonging to Turing-powerful
languages

Consequence: A type-checking algorithm provides an approximation:

ill-typed, bad programs

ill-typed, good programs

well-typed, good programs
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Type inference

The type system of F# allows for polymorphic types, that is, types
with many forms. Polymorphic types are expressed using type
variables ’a, ’b, ’c, ....

The most general type or principal type is inferred by the system.

Examples:

let id x = x
val id : ’a -> ’a

let pair x y = (x,y)
val pair : ’a -> ’b -> ’a * ’b

The inferred types are most general in the sense that all other types
for id and pair are instances of the inferred types.

By the type of a function, we (usually) mean the most general type

Remark: identity function id is a built-in function
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Polymorphic type inference – informally

Given a declaration, for example,

let rec (@) xs ys =
match xs with
| [] -> ys (* C 1 *)
| x::xtail -> x::(xtail @ ys);; (* C 2 *)

• Guess types for the arguments of (@): xs : ′u and ys : ′v
• Add type constraints based on the body of the declaration:

1 []: ’a list and ’u = ’a list, where ’a is a fresh type variable C 1

2 x: ’a, xtail: ’a list, (xtail @ ys): ’a list, x::(xtail @ ys): ’a list C 2
exploiting the type of ::

3 ys : ’a list, ’v = ’a list C 1,2
ys must have the same type as x::(xtail @ ys)

Every sub-expression is now consistently typed.

The most general type or principle type of (@) is:

’a list -> ’a list -> ’a list

• First inference algorithm for ML DamasMilner82
• A nice introduction and F# implementation: Sestoft12
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Parametric and ad-hoc polymorphism - Strachey 1967

• Parametric polymorphism:
– a function can be written so that it handles values identically
independent on their types

preserving type safety
For example, the same code for append can be used for integer lists,
list of pairs, list of ...

• Ad-hoc polymorphism/overloading:
– a function has different implementations depending on the
type of arguments

For example, + can be used on integers, floating-points values,
strings, ...
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Overloaded Operators and Type inference

A squaring function on integers:

Declaration Type
let square x = x * x int -> int Default

A squaring function on floats: square: float -> float

Declaration
let square(x:float) = x * x Type the argument
let square x:float = x * x Type the result
let square x = x * x: float Type expression for the result
let square x = x:float * x Type a variable

You can mix these possibilities
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On tuples and equality and comparison constraints
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Basic types: equality and comparison

Equality and comparison are defined for the basic types of F#,
including integers, floats, booleans, characters and strings.

Examples:

true < false;;
val it : bool = false

’a’ < ’A’;;
val it : bool = false

"a" < "ab";;
val it : bool = true
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Composite Types: equality and comparison

Equality and comparison carry over to composite types
as long as function types are not involved:

Equality is defined structurally on values with the same type:

[[1;2]; [3;4;5]] = [[1..2]; [3..5]];;
val it : bool = true

Comparison is typically defined using lexicographical ordering:

[1; 2; 3] < [1; 4];;
val it : bool = true

(2, [1; 2; 3]) > (2, [1;4]);;
val it : bool = false
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Tuples

An ordered collection of n values (v1, v2, . . . , vn) is called an n-tuple

Examples
(3, false);
val it = (3, false) : int * bool

2-tuples (pairs)

(1, 2, ("ab",true));
val it = (1, 2, ("ab", true)) : ? 3-tuples (triples)

Equality defined componentwise, ordering lexicographically

(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;
val it = true : bool

provided = is defined on components
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Tuple patterns

Extract components of tuples

let ((x,_),(_,y,_)) = ((1,true),("a","b",false));;
val x : int = 1
val y : string = "b"

Pattern matching yields bindings

Restriction

let (x,x) = (1,1);;
...
... ERROR ... ’x’ is bound twice in this pattern

Restriction can be circumvented using when clauses, for example:

let f = function
| (x,y) when x=y -> x
| (x,y) -> x+y
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Polymorphic types: equality and comparison constraints (I)

Polymorphic types may be accompanied with equality and
comparison constraints like:

• when ’a : comparison
• when ’b : equality

For example, there is a built-in function:

compare x y =


> 0 if x > y

0 if x = y
< 0 if x < y

with the type:

’a -> ’a -> int when ’a : comparison

For example:

compare (2, [1; 2; 3]) (2, [1;4]);;
val it : int = -1
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Polymorphic types: equality and comparison constraints (II)

The built-in function List.contains can be declared as follows:

let rec contains x =
function
| [] -> false
| y::ys -> x=y || contains x ys

contains: ’a -> ’a list -> bool when ’a : equality

contains [3;4] [[1..2]; [3..5]];;
val it : bool = false

Notice:
• The equality constraint in the type
• Lazy (short-circuit) evaluation of e1||e2 causes termination as

soon as an element y equal to x is found
• Yet a recursion following the structure of lists
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On let-expressions and lists
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Let-expressions

A let-expression el has the (verbose) form

let x = e1 in e2

or the following short form exploiting indentation:

let x = e1
e2

The expression provides a local definition for x in e2.

A let-expression el is evaluated in an environment env as follows:

If

1 v1 is the value obtained by evaluating e1 in env ,

2 env ′ is obtained by adding binding x 7→ v1 to env and

3 v2 is the value obtained by evaluating e2 in env ′

then
(let x = e1 in e2, env)⇝ (v2, env)
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Let-expression – an example

let g y = let a = 6
let b = y + a
y + b;;

val g : int -> int

g 1;;
val it : int = 8

Note: a and b are not visible outside of g

Evaluation ?
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Pattern matching on results of recursive calls

sumProd [x0;x1; . . .;xn−1]
= ( x0 + x1 + . . . + xn−1 , x0 * x1 * . . . * xn−1 )

sumProd [] = (0,1)

The declaration is based on the recursion formula:

sumProd [x0;x1; . . .;xn−1] = (x0 + rSum,x0 * rProd)

where (rSum,rProd) = sumProd [x1; . . .;xn−1]

This gives the declaration:

let rec sumProd =
function
| [] -> (0,1)
| x::rest -> let (rSum,rProd) = sumProd rest

(x+rSum,x*rProd);;
val sumProd : int list -> int * int

sumProd [2;5];;
val it : int * int = (7, 10)
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A blackboard exercise

A function from the List library:
• List.unzip([(x0, y0);(x1, y1); . . .;(xn−1, yn−1)]

= ([x0;x1; . . .;xn−1],[y0;y1; . . .;yn−1])
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Function expressions and match expressions

Consider

Let em be


match e with
| pat1 → e1

...
| patn → en

and

Let ef be


function
| pat1 → e1

...
| patn → en

• Can you express ef using em and ... ?
• Can you express em using ef and ... ?
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Overview: Syntactical constructs in “our part of” F#

• Constants: 0, 1.1, true, ...
• Patterns: x (p1, . . . , pn) p1 ::p2 [p1; . . . ; pn]

p1|p2 p when e p as x p : t . . .
• Expressions: x (e1, . . . , en) e1 ::e2 [p1; . . . ; pn]

e1e2 e1⊕e2 (⊕) let p1 = e1 in e2

e : t if e then e1 then e2 match e with clauses

fun p1 · · · pn->e function clauses . . .

• Declarations let f p1 . . . pn = e let rec f p1 . . . pn = e, n ≥ 0
• Types
int float bool string ′a . . .
t1∗t2∗· · ·∗tn t list t1->t2 . . .

where the construct clauses has the form:

| p1 -> e1 | . . . | pn -> en

In addition to that
• type declarations, precedence and associativity rules,

parenthesis around p and e and type correctness
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Summary

• Functional decomposition
• Functions as ”first-class citizens”
• Anonymous functions
• Types, type inference and overloading
• Tuples and equality and comparison constraints
• Let expressions and lists
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