
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Sequences and Sequence Expressions

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

• Sequences and Sequence expressions

• Property-based testing
• Rehearsal of trees
• Examples with sequences
• Properties, generators and Shrinkers
• A look at computation expressions for generators

resembles sequence expressions

2 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Sequence: a possibly infinite, ordered collection of elements, where
the elements are computed by demand only

• the sequence concept
• standard sequence functions – the Seq library
• sequence expressions – computation expressions used

generate sequences in a step by step manner

Computation expressions: provide a mean to express specific kinds
of computations where low-level details are hidden. See Chapter 12.

3 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Sequences (or Lazy Lists)

• lazy evaluation or delayed evaluation is the technique of delaying
a computation until the result of the computation is needed.

Default in lazy languages like Haskell

It is occasionally efficient to be lazy.

A special form of this is a sequence, where the elements are not
evaluated until their values are required by the rest of the program.

• a sequence may be infinite
just a finite part is used in computations

Example:
• Consider the sequence of all prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .
• the first 5 are 2, 3, 5, 7, 11

Sieve of Eratosthenes

4 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Delayed computations in eager languages

The computation of the value of e can be delayed by ”packing” it into
a function (a closure):

fun () -> e

Example:

fun () -> 3+4;;
val it : unit -> int = <fun:clo@10-2>

it();;
val it : int = 7

The addition is deferred until the closure is applied.

How can we convince ourselves that the addition is deferred?

5 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Example continued

A use of side effects may reveal when computations are performed:

let idWithPrint i = let _ = printfn "%d" i
i;;

val idWithPrint : int -> int

idWithPrint 3;;
3
val it : int = 3

The value is printed before it is returned.

fun () -> (idWithPrint 3) + (idWithPrint 4);;
val it : unit -> int = <fun:clo@14-3>

Nothing is printed yet.

it();;
3
4
val it : int = 7

6 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Sequences in F#

A lazy list or sequence in F# is a possibly infinite, ordered collection
of elements, where the elements are computed by demand only.

The natural number sequence 0, 1, 2, . . . is created as follows:

let nat = Seq.initInfinite id;;
val nat : seq<int>

where id:’a->’a is the built-in identity function, i.e. id(x) = x

No element in the sequence is generated yet!

The type seq<’a> is an abstract datatype.

Programs on sequences are constructed from Seq-library functions

7 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Explicit sequences and conversions for finite sequences

Two conversion functions

Seq.toList: seq<’a> -> ’a list

Seq.ofList: ’a list -> seq<’a>

with examples

let sq = Seq.ofList [’a’ .. ’f’];;
val sq : seq<char> = [’a’; ’b’; ’c’; ’d’; ’e’; ’f’]

let cs = Seq.toList sq;;
val cs : char list = [’a’; ’b’; ’c’; ’d’; ’e’; ’f’]

Alternatively, a finite sequence can written as follows:

let sq = seq [’a’ .. ’f’];;
val sq : seq<char> = [’a’; ’b’; ’c’; ’d’; ’e’; ’f’]

Notice
• Seq.toList – does not terminate for infinite sequences
• seq [x1; . . . ; xn] is a finite sequence with n ≥ 0 elements

8 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Selected functions from the library: Seq

• initInfinite: (int ->’a) -> seq<’a>.
initInfinite f generates the sequence f (0), f (1), f (2), . . .

• delay: (unit->seq<’a>) -> seq<’a>.
delay g generates the elements of g() lazily

• collect: (’a->seq<’b>) -> seq<’a> -> seq<’b>.
collect f sq generates the sequence obtained by
appending the sequences: f (sq0), f (sq1), f (sq2), . . .

The Seq library contains functions, e.g. collect, that are sequence
variants of functions from the List library. Other examples are:

• item: int -> seq<’a> -> ’a

• head: seq<’a> -> ’a

• tail: seq<’a> -> seq<’a>

• append: seq<’a> -> seq<’a> -> seq<’a>

• take: int -> seq<’a> -> seq<’a>

• filter: (’a->bool) -> seq<’a> -> seq<’b>.

9 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Example continued

A nat element is computed by demand only:

let nat = Seq.initInfinite idWithPrint;;
val nat : seq<int>

— using idWithPrint to inspect element generation.

Demanding an element of the sequence:

Seq.item 4 nat;;
4
val it : int = 4

Just the 5th element is generated

10 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Further examples

A sequence of even natural numbers is easily obtained:

let even = Seq.filter (fun n -> n%2=0) nat;;
val even : seq<int>

Seq.toList(Seq.take 4 even);;
0
1
2
3
4
5
6
val it : int list = [0; 2; 4; 6]

Demanding the first 4 even numbers requires a computation of the
first 7 natural numbers.

11 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes

Greek mathematician (194 – 176 BC)

Computation of prime numbers
• start with the sequence 2, 3, 4, 5, 6, ...

select head (2), and remove multiples of 2 from the sequence
2

• next sequence 3, 5, 7, 9, 11, ...
select head (3), and remove multiples of 3 from the sequence

2, 3
• next sequence 5, 7, 11, 13, 17, ...

select head (5), and remove multiples of 5 from the sequence
2, 3, 5

•
...

12 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes in F# (I)

Remove multiples of a from sequence sq:

let sift a sq = Seq.filter (fun n -> n % a <> 0) sq;;
val sift : int -> seq<int> -> seq<int>

Select head and remove multiples of head from the tail – recursively:

let rec sieve sq =
Seq.delay (fun () ->

let p = Seq.head sq
Seq.append

(seq [p])
(sieve(sift p (Seq.tail sq))));;

val sieve : seq<int> -> seq<int>

• A delay is needed to avoid infinite recursion Why?

Sequence expressions support a more natural formulation

13 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Examples

The sequence of prime numbers and the n’th prime number:

let primes = sieve(Seq.initInfinite (fun n -> n+2));;
val primes : seq<int>

let nthPrime n = Seq.item n primes;;
val nthPrime : int -> int

nthPrime 100;;
val it : int = 547

Re-computation can be avoided by using cached sequences:

let primesCached = Seq.cache primes;;

let nthPrime’ n = Seq.item n primesCached;;
val nthPrime’ : int -> int

Computing the 700’th prime number takes about 4.5s; a subsequent
computation of the 705’th is fast since that computation starts from
the 700 prime number

14 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Sieve of Eratosthenes using Sequence Expressions

Sequence expressions can be used for defining sequences in a
step-by-step generation manner.

The sieve of Erastothenes:

let rec sieve sq =
seq { let p = Seq.head sq

yield p
yield! sieve(sift p (Seq.tail sq)) };;

val sieve : seq<int> -> seq<int>

• By construction lazy – no need to use Seq.delay

• yield x adds the element x to the generated sequence
• yield! sq adds the sequence sq to the generated sequence

• seqexp1
seqexp2

appends the sequences seqexp1 and seqexp2

15 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Defining sift using Sequence Expressions

The sift function can be defined using an iteration:

for pat in exp do seqexp

and a filter:

if exp then seqexp

as follows:

let sift a sq = seq { for n in sq do
if n % a <> 0 then

yield n };;
val sift : int -> seq<int> -> seq<int>

16 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Example: Catalogue search (I)

Extract (recursively) the sequence of all files in a directory:

open System.IO ;;

let rec allFiles dir =
seq {yield! Directory.GetFiles dir

yield! Seq.collect allFiles (Directory.GetDirectories dir)};;
val allFiles : string -> seq<string>

where
Seq.collect: (’a -> seq<’c>) -> seq<’a> -> seq<’c>
combines a ’map’ and ’concatenate’ functionality.

Directory.SetCurrentDirectory @"C:\mrh\Forskning\Cambridge\";;
let files = allFiles ".";;
val files : seq<string>

Seq.item 100 files;;
val it : string = ".\BOOK\Satisfiability.fs"

Nothing is computed beyond element 100.

17 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Summary

• Anonymous functions fun () -> e can be used to delay the
computation of e.

• Possibly infinite sequences provide natural and useful
abstractions

• Functions from the Seq-library
• Sequence expressions – step-wise sequence generation

The type seq<’a> is a synonym for the .NET type
IEnumerable<’a>.

Any .NET type that implements this interface can be used as a
sequence.

• Lists and arrays, for example.

18 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Property-based testing
• Rehearsal of trees
• Examples with sequences
• Properties, generators and Shrinkers
• A look at computation expressions for generators

resembles sequence expressions

Consult https://fscheck.github.io/FsCheck/ concerning
installation and resources

19 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024

https://fscheck.github.io/FsCheck/


02157
Functional
Program-

ming

Michael R. Hansen

An example

Consider the expressions: let x = y + z + 3
in x + y + 4

The following expressions have the same value when y = 1 and z = 2:

6 + y + 4 y + z + 3 + y + 4
substitute 6 for x substitute y + z + 3 for x
in x + y + 4 in x + y + 4

Suppose we have functions:
• eval: E->Env->int that evaluates e in environment m
• subst: string->E->E->E that performs substitutions

The property substitution preserves meaning

let substOK1(x, e1, e2, m) = // "let x = e1 in e2 , m"
let v1 = eval e1 m
let e2’ = subst x (C v1) e2
let e2’’ = subst x e1 e2
eval e2’’ m = eval e2’ m;;

should hold for all expressions and environments that fit together.
20 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Scenarios for substitution

Remember: subst x e1 e2 substitutes e1 for x in e2

Example 1:

let x = y+z "subst x (y+z) (x+let x=6 in x)"
in x+let x=6 in x

• Only free occurrences of x in e2 should be substituted

"subst x (y+z) (x+let x=6 in x)" = "y+z + let x=6 in x)"

Example 2:

let x=y "subst x y (let y=6 in x+y)"
in let y=6 in x+y

• Avoid that a free variable of e1 is captured by a let-binding in e2.
Rename bound variables.

"subst x y (let y=6 in x+y)" = "let y1=6 in y+y1"

where y1 is a ”new” variable
21 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Test and Verification

Tests:
• easy to write
• can reveal errors
• show correctness of a very limited number of concrete cases

low level of abstraction

Verification:
• complicated to complete
• provide guarantees
• focus of correctness properties

high level of abstraction

22 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Between Test and Verification

Tests: ...

Property-based testing
• focus on properties of programs enhances understanding
• construction of programs
• a randomly generated sample covers edge cases and typical

situations
• Short counter-examples are useful
• gives high confidence
• limited effort

high level of abstraction

Verification: ...

23 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Correctness properties are Boolean-valued functions

A property is a Boolean-valued function with type

τ1 → · · · → τn → bool

Append is associative:

let appendAssocProp xs ys zs =
xs @ (ys @ zs) = (xs @ ys) @ zs
’a list -> ’a list -> ’a list -> bool when ’a : equality

The associative law can be tested on some examples:

let test = appendAssocProp [1;2] [3;4;5] [6;7;8;9];;

• But it requires discipline to come out with a suitable test suite

How can we get confidence in tests that should validate that

appendAssocProp xs ys zs

holds for all lists xs, ys and zs?
24 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Property-based testing

Given
• property F with type τ1 → · · · → τn → bool

• with input variable x1, ..., xn

the library FsCheck supports
• generation of random values for x1, ..., xn

• test whether F holds for all sample values
• presentation of a short counter-example when F is falsified

where xi can have any monomorphic type.

open FsCheck

let appendAssocProp (xs: int list) ys zs =
xs @ (ys @ zs) = (xs @ ys) @ zs;;

Check.Quick appendAssocProp;;
Ok, passed 100 tests.
val it : unit = ()

25 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

PBT of substitution

#r "nuget: FsCheck";; open FsCheck;;
...
let substOK1(x, e1, e2, m) = // "let x = e1 in e2 , m"

let v1 = eval e1 m
let e2’ = subst x (C v1) e2
let e2’’ = subst x e1 e2
eval e2’’ m = eval e2’ m;;

Check.Quick substOK1;;
(* ...
Original:
(null, C 0, V "", map [])
with exception:
System.Collections.Generic.KeyNotFoundException: The given key was not present in the dictionary.
... *)

• Necessary: Values for x , e1, e2,m must fit together
• Convenient: “natural” variable names

Custom generators are needed
26 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

The types Arbitrary<’a> and Gen<’a>

An Arbitrary<’a> instance comprises a
• a generator g of type Gen<’a> and
• a shrinker f of type ’a -> seq<’a>

to be used when testing properties.

Good default implementation exists for most types.

A generator g : Gen<’a> can be considered
• a computation of a random value of type ’a

A shrinker f is a function that, for a given counter example, returns a
sequence of smaller/simpler values.

The module Gen can be considered a library for forming new
generators

New generators can also be formed using F#’s computation
expressions

Gen<’a> is a monad using Haskell terminology
27 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Selected pre-defined generators

Gen.constant: ’a -> Gen<’a>

Gen.oneof: seq<Gen<’a>> -> Gen<’a>

Gen.map2: (’a->’b->’c) -> Gen<’a> -> Gen<’b> -> Gen<’c>

Gen.sized: (int -> Gen<’a>) -> Gen<’a>

Some examples

> let g10 = seq {for i in 1 ..10 do
yield Gen.constant i};;

val g10: Gen<int> seq

> let g = Gen.oneof g10;;
val g: Gen<int> = Gen <fun:Bind@88>

> Gen.sample 1 5 g;;
val it: int list = [9; 3; 9; 3; 4]
> Gen.sample 1 5 g;;
val it: int list = [2; 7; 5; 4; 7]

> Gen.sample 1 5 g;;
val it: int list = [8; 2; 8; 2; 7]

28 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Generators for substitution property

Two mail generators

myEnvGen: string list -> Gen<Env>

myEGen: string list -> Gen<E>

where
• myEGen vs generates an expression where only variables in vs

can occur free.
• myEnvGen vs generates an environment for variables vs

Putting the pieces together:

type Subst = string * E * E * Env

mySubstGen: Gen<Subst>

where mySubstGen generates a tuple (x , e1, e2,m) satisfying

dom m = free e1 ∪ free e2

Property substOK1((x,e1,e2,m):Subst) can now be checked.

Let us have a look at the programs
29 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Further properties

where
• myEGen vs generates an expression where only variables in vs

can occur free.
• myEnvGen vs generates an environment for variables vs

Putting the pieces together:

type Subst = string * E * E * Env

mySubstGen: Gen<Subst>

where mySubstGen generates a tuple (x , e1, e2,m) satisfying

dom m = free e1 ∪ free e2

Property substOK1((x,e1,e2,m):Subst) can now be checked.

Let us have a look at the programs

30 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

Further properties

let rec elimLet e =
match e with
| Add(e1,e2) -> Add(elimLet e1, elimLet e2)
| Let(x,e1,e2) -> elimLet (subst x e1 e2)
| e -> e;;

let elimLetOK1((e,m): EwithEnv) =
eval e m = eval (elimLet e) m;;

Check.Quick elimLetOK1;;

// substEnv: Env -> E -> E
let substEnv m e =

Map.foldBack subst (Map.map (fun _ n -> C n) m) e;;

let substOK2((e,m): EwithEnv) =
eval e m = eval (substEnv m e) Map.empty;;

Check.Quick substOK2;;

31 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024



02157
Functional
Program-

ming

Michael R. Hansen

PBT is a useful technique for software validation

Fundamental properties of programs can be validated
— provided they can be implemented.

Libraries supporting PBT exist for many languages:
https://en.wikipedia.org/wiki/QuickCheck.

32 DTU Compute, Technical University of Denmark Sequences and Sequence Expressions MRH 21/11/2024

https://en.wikipedia.org/wiki/QuickCheck

