
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture : Tail-recursive functions

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

Part I:
• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

Part II: Continuation-based tail recursion

2 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

Part I:
• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

Part II: Continuation-based tail recursion

3 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

Part I:
• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

Part II: Continuation-based tail recursion

4 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

Part I:
• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

Part II: Continuation-based tail recursion

5 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Three factorial functions

// using "plain" recursion
let rec fact = function

| 0 -> 1
| n -> n * fact(n-1)

// using "tail" recursion: "fact n = factA(n,1)"
let rec factA(n,m) = match n with

| 0 -> m
| _ -> factA(n-1,n*m)

// using imperative features (while, assignment)
let factW n = let ni = ref n

let r = ref 1
while ni.Value>0 do

r.Value <- r.Value * ni.Value ;
ni.Value <- ni.Value-1

r.Value

6 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Three factorial functions: Benchmarks

• 13th Gen Intel(R) Core(TM) i7-1365U 1.80 GHz
x64-based processor, Windows

• Native code is generated using CLI:
dotnet publish -r win-x64 -c Release

Extract from benchmark report:

1.000000 computations of fact 16 are repeated 100 times.
Mean = 15,13 ms. ...

1.000000 computations of factA(16,1) are repeated 100 times.
Mean = 6,89 ms. ...

1.000000 computations of factW 16 are repeated 100 times.
Mean = 26,63 ms. ...

Program is uploaded to Learn

7 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Three factorial functions: Benchmarks

• 13th Gen Intel(R) Core(TM) i7-1365U 1.80 GHz
x64-based processor, Windows

• Native code is generated using CLI:
dotnet publish -r win-x64 -c Release

Extract from benchmark report:

1.000000 computations of fact 16 are repeated 100 times.
Mean = 15,13 ms. ...

1.000000 computations of factA(16,1) are repeated 100 times.
Mean = 6,89 ms. ...

1.000000 computations of factW 16 are repeated 100 times.
Mean = 26,63 ms. ...

Program is uploaded to Learn

8 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Two reversal functions with benchmarks

let rec naiveRev = function
| [] -> []
| x::xs -> naiveRev xs @ [x]

// "tail-recursive" function: revA(xs,[]) = naiveRev xs
let rec revA = function

| ([], ys) -> ys
| (x::xs, ys) -> revA(xs, x::ys)

Extract from benchmark report:

naive reverse of a list of size 5.000
are repeated 100 times.

Mean = 88,72 ms. ...

tail-recursive reverse of a list of size 500.000
are repeated 100 times.

Mean = 24,29 ms. ...

9 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (I)

Consider the following declaration:

let rec fact =
function
| 0 -> 1
| n -> n * fact(n-1);;

val fact : int -> int

• What resources are needed to compute fact(N)?

Considerations:
• Computation time: number of individual computation steps.

• Space: the maximal memory needed during the computation to
represent expressions and bindings.

10 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (I)

Consider the following declaration:

let rec fact =
function
| 0 -> 1
| n -> n * fact(n-1);;

val fact : int -> int

• What resources are needed to compute fact(N)?

Considerations:
• Computation time: number of individual computation steps.

• Space: the maximal memory needed during the computation to
represent expressions and bindings.

11 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (I)

Consider the following declaration:

let rec fact =
function
| 0 -> 1
| n -> n * fact(n-1);;

val fact : int -> int

• What resources are needed to compute fact(N)?

Considerations:
• Computation time: number of individual computation steps.
• Space: the maximal memory needed during the computation to

represent expressions and bindings.

12 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (II)

Evaluation:

fact(N)
⇝ (n * fact(n-1) , [n 7→ N])
⇝ N ∗ fact(N − 1)
⇝ N ∗ (n * fact(n-1) , [n 7→ N − 1])
⇝ N ∗ ((N − 1) ∗ fact(N − 2))
...
⇝ N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ (2 ∗ 1))) · · ·)))
⇝ N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ 2)) · · ·)))
...
⇝ N!

Time and space demands: proportional to N Is this satisfactory?

13 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

An example: Factorial function (II)

Evaluation:

fact(N)
⇝ (n * fact(n-1) , [n 7→ N])
⇝ N ∗ fact(N − 1)
⇝ N ∗ (n * fact(n-1) , [n 7→ N − 1])
⇝ N ∗ ((N − 1) ∗ fact(N − 2))
...
⇝ N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ (2 ∗ 1))) · · ·)))
⇝ N ∗ ((N − 1) ∗ ((N − 2) ∗ (· · · (4 ∗ (3 ∗ 2)) · · ·)))
...
⇝ N!

Time and space demands: proportional to N Is this satisfactory?

14 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Another example: Naive reversal (I)

let rec naiveRev =
function
| [] -> []
| x::xs -> naiveRev xs @ [x];;

val naiveRev : ’a list -> ’a list

Evaluation of naiveRev[x1, x2, . . . , xn]:

naiveRev[x1, x2, . . . , xn]
⇝ naiveRev[x2, . . . , xn]@[x1]
⇝ (naiveRev[x3, . . . , xn]@[x2])@[x1]
...
⇝ ((· · · (([]@[xn])@[xn−1])@ · · ·@[x2])@[x1])

Space demands: proportional to n satisfactory

Time demands: proportional to n2 not satisfactory

15 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Another example: Naive reversal (I)

let rec naiveRev =
function
| [] -> []
| x::xs -> naiveRev xs @ [x];;

val naiveRev : ’a list -> ’a list

Evaluation of naiveRev[x1, x2, . . . , xn]:

naiveRev[x1, x2, . . . , xn]
⇝ naiveRev[x2, . . . , xn]@[x1]
⇝ (naiveRev[x3, . . . , xn]@[x2])@[x1]
...
⇝ ((· · · (([]@[xn])@[xn−1])@ · · ·@[x2])@[x1])

Space demands: proportional to n satisfactory

Time demands: proportional to n2 not satisfactory

16 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Another example: Naive reversal (I)

let rec naiveRev =
function
| [] -> []
| x::xs -> naiveRev xs @ [x];;

val naiveRev : ’a list -> ’a list

Evaluation of naiveRev[x1, x2, . . . , xn]:

naiveRev[x1, x2, . . . , xn]
⇝ naiveRev[x2, . . . , xn]@[x1]
⇝ (naiveRev[x3, . . . , xn]@[x2])@[x1]
...
⇝ ((· · · (([]@[xn])@[xn−1])@ · · ·@[x2])@[x1])

Space demands: proportional to n satisfactory

Time demands: proportional to n2 not satisfactory

17 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Examples: Accumulating parameters

Efficient solutions are obtained by using more general functions:

factA(n,m) = n! · m, for n ≥ 0
revA([x1, . . . , xn], ys) = [xn, . . . , x1]@ys

We have:

n! = factA(n, 1)
rev[x1, . . . , xn] = revA([x1, . . . , xn],[])

m and ys are called accumulating parameters. They are used to hold
the temporary result during the evaluation.

18 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Examples: Accumulating parameters

Efficient solutions are obtained by using more general functions:

factA(n,m) = n! · m, for n ≥ 0
revA([x1, . . . , xn], ys) = [xn, . . . , x1]@ys

We have:

n! = factA(n, 1)
rev[x1, . . . , xn] = revA([x1, . . . , xn],[])

m and ys are called accumulating parameters. They are used to hold
the temporary result during the evaluation.

19 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declaration of factA

Property: factA(n,m) = n! · m, for n ≥ 0

let rec factA =
function
| (0,m) -> m
| (n,m) -> factA(n-1,n*m);;

An evaluation:

factA(5,1)
⇝ (factA(n-1,n*m), [n 7→ 5,m 7→ 1])
⇝ factA(4,5)
⇝ (factA(n-1,n*m), [n 7→ 4,m 7→ 5])
⇝ factA(3,20)
⇝ . . .
⇝ factA(0,120)⇝ (m, [m 7→ 120])⇝ 120

Space demand: constant.

Time demands: proportional to n

20 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declaration of revA

Property: revA([x1, . . . , xn], ys) = [xn, . . . , x1]@ys

let rec revA =
function
| ([], ys) -> ys
| (x::xs, ys) -> revA(xs, x::ys);;

An evaluation:
revA([1,2,3],[])

⇝ revA([2,3],1::[])
⇝ revA([3],2::[1])
⇝ revA([3],[2,1])
⇝ revA([],3::[2,1])
⇝ revA([],[3,2,1])
⇝ [3,2,1]

Space and time demands:
proportional to n (the length of the first list)

21 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (I)

The declarations of factA and revA are tail-recursive functions

• the recursive call is the last function application to be evaluated
in the body of the declaration e.g. facA(3, 20) and
revA([3], [2, 1])

• only one set of bindings for argument identifiers is needed
during the evaluation

22 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (I)

The declarations of factA and revA are tail-recursive functions
• the recursive call is the last function application to be evaluated

in the body of the declaration e.g. facA(3, 20) and
revA([3], [2, 1])

• only one set of bindings for argument identifiers is needed
during the evaluation

23 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (I)

The declarations of factA and revA are tail-recursive functions
• the recursive call is the last function application to be evaluated

in the body of the declaration e.g. facA(3, 20) and
revA([3], [2, 1])

• only one set of bindings for argument identifiers is needed
during the evaluation

24 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example

let rec factA =
function
| (0,m) -> m
| (n,m) -> factA(n-1,n*m)

(* recursive "tail-call" *)

• only one set of bindings for argument identifiers is needed
during the evaluation

factA(5,1)
⇝ (factA(n,m), [n 7→ 5,m 7→ 1])
⇝ (factA(n-1,n*m), [n 7→ 5,m 7→ 1])
⇝ factA(4,5)
⇝ (factA(n,m), [n 7→ 4,m 7→ 5])
⇝ (factA(n-1,n*m), [n 7→ 4,m 7→ 5])
⇝ . . .
⇝ factA(0,120)⇝ (m, [m 7→ 120])⇝ 120

25 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: factorial functions

let xs16 = List.init 1000000 (fun i -> 16);;
val xs16 : int list = [16; 16; 16; 16; 16; ...]

#time;; // a toggle in the interactive environment

for i in xs16 do let _ = fact i in ();;
Real: 00:00:00.051, CPU: 00:00:00.046, ...

for i in xs16 do let _ = factA(i,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031, ...

The performance gain of factA is much better than the indicated
factor 2 because the for construct alone uses about 12 ms:

for i in xs16 do let _ = () in ();;
Real: 00:00:00.012, CPU: 00:00:00.015, ...

Real: time elapsed by the execution. CPU: time spent by all cores.

Timing measured on an old system

26 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: factorial functions

let xs16 = List.init 1000000 (fun i -> 16);;
val xs16 : int list = [16; 16; 16; 16; 16; ...]

#time;; // a toggle in the interactive environment

for i in xs16 do let _ = fact i in ();;
Real: 00:00:00.051, CPU: 00:00:00.046, ...

for i in xs16 do let _ = factA(i,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031, ...

The performance gain of factA is much better than the indicated
factor 2 because the for construct alone uses about 12 ms:

for i in xs16 do let _ = () in ();;
Real: 00:00:00.012, CPU: 00:00:00.015, ...

Real: time elapsed by the execution. CPU: time spent by all cores.

Timing measured on an old system

27 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: reverse functions

let xs20000 = [1 .. 20000];;

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

• The naive version takes 7.624 seconds - the iterative just 1 ms.
• The use of append (@) has been reduced to a use of cons (::).

This has a dramatic effect of the garbage collection:
• No object is reclaimed when revA is used
• 825+253 obsolete objects were reclaimed using the naive version

Measured on the computer used in 2012

Let’s look at memory management

28 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: reverse functions

let xs20000 = [1 .. 20000];;

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

• The naive version takes 7.624 seconds - the iterative just 1 ms.

• The use of append (@) has been reduced to a use of cons (::).
This has a dramatic effect of the garbage collection:

• No object is reclaimed when revA is used
• 825+253 obsolete objects were reclaimed using the naive version

Measured on the computer used in 2012

Let’s look at memory management

29 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: reverse functions

let xs20000 = [1 .. 20000];;

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

• The naive version takes 7.624 seconds - the iterative just 1 ms.
• The use of append (@) has been reduced to a use of cons (::).

This has a dramatic effect of the garbage collection:
• No object is reclaimed when revA is used
• 825+253 obsolete objects were reclaimed using the naive version

Measured on the computer used in 2012

Let’s look at memory management

30 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Concrete resource measurements: reverse functions

let xs20000 = [1 .. 20000];;

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

revA(xs20000,[]);;
Real: 00:00:00.001, CPU: 00:00:00.000,
GC gen0: 0, gen1: 0, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

• The naive version takes 7.624 seconds - the iterative just 1 ms.
• The use of append (@) has been reduced to a use of cons (::).

This has a dramatic effect of the garbage collection:
• No object is reclaimed when revA is used
• 825+253 obsolete objects were reclaimed using the naive version

Measured on the computer used in 2012

Let’s look at memory management

31 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Memory management: stack and heap

• Primitive values are allocated on the stack
• Composite values are allocated on the heap

let xs = [5;6;7];;
let ys = 3::4::xs;;
let zs = xs @ ys;;
let n = 27;;

5 6 7 ×

3 4

5 6 7

stack heap

stack frame

27n

zs

ys

xs

32 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Memory management: stack and heap

• Primitive values are allocated on the stack
• Composite values are allocated on the heap

let xs = [5;6;7];;
let ys = 3::4::xs;;
let zs = xs @ ys;;
let n = 27;;

5 6 7 ×

3 4

5 6 7

stack heap

stack frame

27n

zs

ys

xs

33 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Observations

No unnecessary copying is done:

1 The linked lists for ys is not copied when building a linked list for
y :: ys.

2 Fresh cons cells are made for the elements of xs only when
building a linked list for xs @ ys.

since a list is a functional (immutable) data structure

The running time of @ is linear in the length of its first argument.

34 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Observations

No unnecessary copying is done:

1 The linked lists for ys is not copied when building a linked list for
y :: ys.

2 Fresh cons cells are made for the elements of xs only when
building a linked list for xs @ ys.

since a list is a functional (immutable) data structure

The running time of @ is linear in the length of its first argument.

35 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Operations on stack and heap

Example:

let zs = let xs = [1;2]
let ys = [3;4]
xs@ys;;

Initial stack and heap prior to the evaluation of the local declarations:
stack heap

sf0 zs ?

36 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Operations on stack: Push

Example:

let zs = let xs = [1;2]
let ys = [3;4]
xs@ys;;

Evaluation of the local declarations initiated by pushing a new stack
frame onto the stack:

stack heap

sf0

sf1

xs

ys

result
zs ?

1 2 ×

3 4 ×

1 2

The auxiliary entry result refers to the value of the let-expression.

37 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Operations on stack: Pop

Example:

let zs = let xs = [1;2]
let ys = [3;4]
xs@ys;;

The top stack frame is popped from the stack when the evaluation of
the let-expression is completed:

stack heap

sf0 zs

† †
1 2 ×

3 4 ×

1 2

The resulting heap contains two obsolete cells marked with ’†’

38 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Operations on the heap: Garbage collection

The memory management system uses a garbage collector to
reclaim obsolete cells in the heap behind the scene.

The garbage collector manages the heap as partitioned into three
groups or generations: gen0, gen1 and gen2, according to their
age. The objects in gen0 are the youngest while the objects in gen2
are the oldest.

The typical situation is that objects die young and the garbage
collector is designed for that situation.

Example:

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

39 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Operations on the heap: Garbage collection

The memory management system uses a garbage collector to
reclaim obsolete cells in the heap behind the scene.

The garbage collector manages the heap as partitioned into three
groups or generations: gen0, gen1 and gen2, according to their
age. The objects in gen0 are the youngest while the objects in gen2
are the oldest.

The typical situation is that objects die young and the garbage
collector is designed for that situation.

Example:

naiveRev xs20000;;
Real: 00:00:07.624, CPU: 00:00:07.597,
GC gen0: 825, gen1: 253, gen2: 0
val it : int list = [20000; 19999; 19998; ...]

40 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

The limits of the stack and the heap

The stack is big:

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1;...]
bigList 130000;;
Process is terminated due to StackOverflowException.

More than 1.2 · 105 stack frames are pushed in recursive calls.

The heap is much bigger:

let rec bigListA n xs = if n=0 then xs
else bigListA (n-1) (1::xs);;

let xsVeryBig = bigListA 12000000 [];;
val xsVeryBig : int list = [1; 1; 1; 1; 1; 1;...]
let xsTooBig = bigListA 13000000 [];;
System.OutOfMemoryException: ...

A list with more than 1.2 · 107 elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?

41 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

The limits of the stack and the heap

The stack is big:

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1;...]
bigList 130000;;
Process is terminated due to StackOverflowException.

More than 1.2 · 105 stack frames are pushed in recursive calls.

The heap is much bigger:

let rec bigListA n xs = if n=0 then xs
else bigListA (n-1) (1::xs);;

let xsVeryBig = bigListA 12000000 [];;
val xsVeryBig : int list = [1; 1; 1; 1; 1; 1;...]
let xsTooBig = bigListA 13000000 [];;
System.OutOfMemoryException: ...

A list with more than 1.2 · 107 elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?

42 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

The limits of the stack and the heap

The stack is big:

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;
bigList 120000;;
val it : int list = [1; 1; 1; 1; 1; 1; 1; 1;...]
bigList 130000;;
Process is terminated due to StackOverflowException.

More than 1.2 · 105 stack frames are pushed in recursive calls.

The heap is much bigger:

let rec bigListA n xs = if n=0 then xs
else bigListA (n-1) (1::xs);;

let xsVeryBig = bigListA 12000000 [];;
val xsVeryBig : int list = [1; 1; 1; 1; 1; 1;...]
let xsTooBig = bigListA 13000000 [];;
System.OutOfMemoryException: ...

A list with more than 1.2 · 107 elements can be created.

The iterative bigListA function does not exhaust the stack. WHY?
43 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.
• The function f (n,m) = (n − 1, n ∗ m) is iterated during

evaluations for factA.

• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during
evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

44 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.
• The function f (n,m) = (n − 1, n ∗ m) is iterated during

evaluations for factA.
• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during

evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

45 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.
• The function f (n,m) = (n − 1, n ∗ m) is iterated during

evaluations for factA.
• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during

evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

46 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iterative (tail-recursive) functions (II)

Tail-recursive functions are also called iterative functions.
• The function f (n,m) = (n − 1, n ∗ m) is iterated during

evaluations for factA.
• The function g(x :: xs, ys) = (xs, x :: ys) is iterated during

evaluations for revA.

The correspondence between tail-recursive functions and while loops
is established in the textbook.

An example:

let factW n =
let ni = ref n
let r = ref 1
while !ni>0 do

r := !r * !ni ; ni := !ni-1
!r;;

47 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iteration vs While loops

Iterative functions are executed efficiently:

#time;;

for i in 1 .. 1000000 do let _ = factA(16,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031,
GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()

for i in 1 .. 1000000 do let _ = factW 16 in ();;
Real: 00:00:00.048, CPU: 00:00:00.046,
GC gen0: 9, gen1: 0, gen2: 0
val it : unit = ()

• the tail-recursive function actually is faster than the imperative
while-loop based version

48 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Iteration vs While loops

Iterative functions are executed efficiently:

#time;;

for i in 1 .. 1000000 do let _ = factA(16,1) in ();;
Real: 00:00:00.024, CPU: 00:00:00.031,
GC gen0: 0, gen1: 0, gen2: 0
val it : unit = ()

for i in 1 .. 1000000 do let _ = factW 16 in ();;
Real: 00:00:00.048, CPU: 00:00:00.046,
GC gen0: 9, gen1: 0, gen2: 0
val it : unit = ()

• the tail-recursive function actually is faster than the imperative
while-loop based version

49 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Characterizing tail-recursive functions syntactically

50 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Tail position - briefly

Consider expressions of the form:

if ea then e1 else e2

e1 ea

fun x → e1

let x = ea in e1

match ea with | pat1 → e1 ... | patn → en

ea + eb

primitive

• e1, . . . , en and primitive are in tail position, where primitive is a
variable or a constant.

• ea and eb are not in tail position
• patterns are “binders” like fun x → . . . and not in tail position.

Complete definition includes sub-expressions

51 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Tail position - briefly

Consider expressions of the form:

if ea then e1 else e2

e1 ea

fun x → e1

let x = ea in e1

match ea with | pat1 → e1 ... | patn → en

ea + eb

primitive

• e1, . . . , en and primitive are in tail position, where primitive is a
variable or a constant.

• ea and eb are not in tail position
• patterns are “binders” like fun x → . . . and not in tail position.

Complete definition includes sub-expressions

52 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Tail position - briefly

Consider expressions of the form:

if ea then e1 else e2

e1 ea

fun x → e1

let x = ea in e1

match ea with | pat1 → e1 ... | patn → en

ea + eb

primitive

• e1, . . . , en and primitive are in tail position, where primitive is a
variable or a constant.

• ea and eb are not in tail position
• patterns are “binders” like fun x → . . . and not in tail position.

Complete definition includes sub-expressions
53 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Tail calls and tail recursion

• A function call in tail position is said to be a tail call

Calls to f are tail calls (calls to g,h are not) in:

f (3+4)

if x>0 then f(g(9)) else g 1 + h 6

fun x -> f (x+1)

match g(a+b) with
| [] -> f a
| x::xs -> g(x)::h xs

let x = g y in f(if x=0 the g z else g 2)

• Tail calls can be implemented without adding a new stack frame

• A tail recursive function is a recursive function where every
recursive call is a tail call

54 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Tail calls and tail recursion

• A function call in tail position is said to be a tail call

Calls to f are tail calls (calls to g,h are not) in:

f (3+4)

if x>0 then f(g(9)) else g 1 + h 6

fun x -> f (x+1)

match g(a+b) with
| [] -> f a
| x::xs -> g(x)::h xs

let x = g y in f(if x=0 the g z else g 2)

• Tail calls can be implemented without adding a new stack frame

• A tail recursive function is a recursive function where every
recursive call is a tail call

55 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Tail calls and tail recursion

• A function call in tail position is said to be a tail call

Calls to f are tail calls (calls to g,h are not) in:

f (3+4)

if x>0 then f(g(9)) else g 1 + h 6

fun x -> f (x+1)

match g(a+b) with
| [] -> f a
| x::xs -> g(x)::h xs

let x = g y in f(if x=0 the g z else g 2)

• Tail calls can be implemented without adding a new stack frame

• A tail recursive function is a recursive function where every
recursive call is a tail call

56 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A simple example

The function fact is not tail recursive:

let rec fact =
function
| 0 -> 1
| n -> n * fact(n-1)

• The recursive call is not a tail call in n * fact(n-1)

But factA is tail recursive:

let rec factA =
function
| (0,m) -> m
| (n,m) -> factA(n-1,n*m)

• The recursive call is a tail call in
(n,m) -> factA(n-1,n*m)

57 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A simple example

The function fact is not tail recursive:

let rec fact =
function
| 0 -> 1
| n -> n * fact(n-1)

• The recursive call is not a tail call in n * fact(n-1)

But factA is tail recursive:

let rec factA =
function
| (0,m) -> m
| (n,m) -> factA(n-1,n*m)

• The recursive call is a tail call in
(n,m) -> factA(n-1,n*m)

58 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part 1: Summary

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

A simple and useful technique to consider when bottlenecks are
spotted

59 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part 1: Summary

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

A simple and useful technique to consider when bottlenecks are
spotted

60 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part 1: Summary

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

A simple and useful technique to consider when bottlenecks are
spotted

61 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part 1: Summary

• Memory management: the stack and the heap

• Iterative (tail-recursive) functions is a simple technique to deal
with efficiency in certain situations, for example, in order

• to avoid evaluations with a huge amount of pending operations, e.g.

7+(6+(5 · · ·+f 2 · · ·))

• to avoid inadequate use of @ in recursive declarations.

• Iterative functions with accumulating parameters correspond to
while-loops

A simple and useful technique to consider when bottlenecks are
spotted

62 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part II
Continuation-based tail recursion

63 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Limitation of accumulating parameters

Tail-recursive versions of recursive functions CANNOT be obtained
using accumulating parameters in all cases.

Consider for example:

type BinTree<’a> = | Leaf
| Node of BinTree<’a>*’a*BinTree<’a>

let rec count = function
| Leaf -> 0
| Node(tl,n,tr) -> count tl + count tr + 1

A counting function:

countA: int -> BinTree<’a> -> int

using an accumulating parameter will not be tail-recursive due to the
expression containing recursive calls on the left and right sub-trees.
(Ex. 9.8)

64 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Limitation of accumulating parameters

Tail-recursive versions of recursive functions CANNOT be obtained
using accumulating parameters in all cases.

Consider for example:

type BinTree<’a> = | Leaf
| Node of BinTree<’a>*’a*BinTree<’a>

let rec count = function
| Leaf -> 0
| Node(tl,n,tr) -> count tl + count tr + 1

A counting function:

countA: int -> BinTree<’a> -> int

using an accumulating parameter will not be tail-recursive due to the
expression containing recursive calls on the left and right sub-trees.
(Ex. 9.8)

65 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A representation of the “rest” of the computation.

Every functional program can automatically be turned into a program
where every call is a tail call using continuations.

We take an example-based approach. Consider

let rec sum xs = match xs with
| [] -> 0
| x::tail -> let v = sum tail

x+v

The continuation-based version of sum has a continuation

k: int -> int

as an extra argument. Determines what happens with the result.

let rec sumC xs k =
match xs with
| [] -> k 0
| x::tail -> sumC tail (fun v -> k(x+v))

• all calls of sumC and k are tail calls
• can be implemented without adding a new stack frame

66 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A representation of the “rest” of the computation.

Every functional program can automatically be turned into a program
where every call is a tail call using continuations.

We take an example-based approach. Consider

let rec sum xs = match xs with
| [] -> 0
| x::tail -> let v = sum tail

x+v

The continuation-based version of sum has a continuation

k: int -> int

as an extra argument. Determines what happens with the result.

let rec sumC xs k =
match xs with
| [] -> k 0
| x::tail -> sumC tail (fun v -> k(x+v))

• all calls of sumC and k are tail calls
• can be implemented without adding a new stack frame

67 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A representation of the “rest” of the computation.

Every functional program can automatically be turned into a program
where every call is a tail call using continuations.

We take an example-based approach. Consider

let rec sum xs = match xs with
| [] -> 0
| x::tail -> let v = sum tail

x+v

The continuation-based version of sum has a continuation

k: int -> int

as an extra argument. Determines what happens with the result.

let rec sumC xs k =
match xs with
| [] -> k 0
| x::tail -> sumC tail (fun v -> k(x+v))

• all calls of sumC and k are tail calls
• can be implemented without adding a new stack frame

68 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A representation of the “rest” of the computation.

Every functional program can automatically be turned into a program
where every call is a tail call using continuations.

We take an example-based approach. Consider

let rec sum xs = match xs with
| [] -> 0
| x::tail -> let v = sum tail

x+v

The continuation-based version of sum has a continuation

k: int -> int

as an extra argument. Determines what happens with the result.

let rec sumC xs k =
match xs with
| [] -> k 0
| x::tail -> sumC tail (fun v -> k(x+v))

• all calls of sumC and k are tail calls
• can be implemented without adding a new stack frame

69 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A representation of the “rest” of the computation.

Every functional program can automatically be turned into a program
where every call is a tail call using continuations.

We take an example-based approach. Consider

let rec sum xs = match xs with
| [] -> 0
| x::tail -> let v = sum tail

x+v

The continuation-based version of sum has a continuation

k: int -> int

as an extra argument. Determines what happens with the result.

let rec sumC xs k =
match xs with
| [] -> k 0
| x::tail -> sumC tail (fun v -> k(x+v))

• all calls of sumC and k are tail calls
• can be implemented without adding a new stack frame

70 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations

Continuation: A representation of the “rest” of the computation.

Every functional program can automatically be turned into a program
where every call is a tail call using continuations.

We take an example-based approach. Consider

let rec sum xs = match xs with
| [] -> 0
| x::tail -> let v = sum tail

x+v

The continuation-based version of sum has a continuation

k: int -> int

as an extra argument. Determines what happens with the result.

let rec sumC xs k =
match xs with
| [] -> k 0
| x::tail -> sumC tail (fun v -> k(x+v))

• all calls of sumC and k are tail calls
• can be implemented without adding a new stack frame

71 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

An evaluation

sumC [1;2;3] id
⇝ sumC [2;3] (fun v -> id(1+v))
⇝ sumC [3] (fun w -> (fun v -> id(1+v))(2+w))
⇝ sumC [] (fun u -> (fun w -> (fun v -> id(1+v))(2+w))(3+u))
⇝ (fun u -> (fun w -> (fun v -> id(1+v))(2+w))(3+u)) 0
⇝ (fun w -> (fun v -> id(1+v))(2+w)) 3
⇝ (fun v -> id(1+v)) 5
⇝ id 6
⇝ 6

Notice:
• Closures are allocated in the heap.
• Just one stack frame is needed due to tail calls.
• Stack is traded for heap.

72 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

An evaluation

sumC [1;2;3] id
⇝ sumC [2;3] (fun v -> id(1+v))
⇝ sumC [3] (fun w -> (fun v -> id(1+v))(2+w))
⇝ sumC [] (fun u -> (fun w -> (fun v -> id(1+v))(2+w))(3+u))
⇝ (fun u -> (fun w -> (fun v -> id(1+v))(2+w))(3+u)) 0
⇝ (fun w -> (fun v -> id(1+v))(2+w)) 3
⇝ (fun v -> id(1+v)) 5
⇝ id 6
⇝ 6

Notice:
• Closures are allocated in the heap.
• Just one stack frame is needed due to tail calls.
• Stack is traded for heap.

73 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A more efficient way

Consider the following version using an accumulating parameter:

let rec sumA xs n = match xs with
| [] -> n
| x::tail -> sumA tail (x+n)

• uses constant space and is much more efficient than

let rec sumC xs k = match xs with
| [] -> k 0
| x::tail-> sumC tail (fun v -> k(x+v))

Some relationships between sum, sumA and sumC:

1. sum xs = sumC xs id
2. sumA xs 0 = sumC xs id

Proof: Structural induction over lists
Validation: Use property-based testing

74 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A more efficient way

Consider the following version using an accumulating parameter:

let rec sumA xs n = match xs with
| [] -> n
| x::tail -> sumA tail (x+n)

• uses constant space and is much more efficient than

let rec sumC xs k = match xs with
| [] -> k 0
| x::tail-> sumC tail (fun v -> k(x+v))

Some relationships between sum, sumA and sumC:

1. sum xs = sumC xs id
2. sumA xs 0 = sumC xs id

Proof: Structural induction over lists
Validation: Use property-based testing

75 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A more efficient way

Consider the following version using an accumulating parameter:

let rec sumA xs n = match xs with
| [] -> n
| x::tail -> sumA tail (x+n)

• uses constant space and is much more efficient than

let rec sumC xs k = match xs with
| [] -> k 0
| x::tail-> sumC tail (fun v -> k(x+v))

Some relationships between sum, sumA and sumC:

1. sum xs = sumC xs id
2. sumA xs 0 = sumC xs id

Proof: Structural induction over lists
Validation: Use property-based testing

76 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations: Another example

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;

The continuation-based version of bigList has a continuation

k: int list -> int list

as argument:

let rec bigListC n k =
if n=0 then k []
else bigListC (n-1) (fun res -> k(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result into the continuation k.

• Recursive case: The continuation after processing (n-1) is the
function of the result res that

• builds the list 1::res and
• feeds that list into the continuation k.

77 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations: Another example

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;

The continuation-based version of bigList has a continuation

k: int list -> int list

as argument:

let rec bigListC n k =
if n=0 then k []
else bigListC (n-1) (fun res -> k(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result into the continuation k.

• Recursive case: The continuation after processing (n-1) is the
function of the result res that

• builds the list 1::res and
• feeds that list into the continuation k.

78 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations: Another example

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;

The continuation-based version of bigList has a continuation

k: int list -> int list

as argument:

let rec bigListC n k =
if n=0 then k []
else bigListC (n-1) (fun res -> k(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result into the continuation k.

• Recursive case: The continuation after processing (n-1) is the
function of the result res that

• builds the list 1::res and
• feeds that list into the continuation k.

79 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Continuations: Another example

let rec bigList n = if n=0 then [] else 1::bigList(n-1);;

The continuation-based version of bigList has a continuation

k: int list -> int list

as argument:

let rec bigListC n k =
if n=0 then k []
else bigListC (n-1) (fun res -> k(1::res));;

val bigListC : int -> (int list -> ’a) -> ’a

• Base case: “feed” the result into the continuation k.

• Recursive case: The continuation after processing (n-1) is the
function of the result res that

• builds the list 1::res and
• feeds that list into the continuation k.

80 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Observations

• bigListC is a tail-recursive function, and

• the calls of k are tail calls in the base case of bigListC and in
the continuation: fun res -> k(1::res).

The stack will hence neither grow due to the evaluation of recursive
calls of bigListC nor due to calls of the continuations that have
been built in the heap:

bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1; 1; 1; 1; 1;...]

• Slower than bigList

• Can generate longer lists than bigList

81 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Observations

• bigListC is a tail-recursive function, and
• the calls of k are tail calls in the base case of bigListC and in

the continuation: fun res -> k(1::res).

The stack will hence neither grow due to the evaluation of recursive
calls of bigListC nor due to calls of the continuations that have
been built in the heap:

bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1; 1; 1; 1; 1;...]

• Slower than bigList

• Can generate longer lists than bigList

82 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Observations

• bigListC is a tail-recursive function, and
• the calls of k are tail calls in the base case of bigListC and in

the continuation: fun res -> k(1::res).

The stack will hence neither grow due to the evaluation of recursive
calls of bigListC nor due to calls of the continuations that have
been built in the heap:

bigListC 16000000 id;;
Real: 00:00:08.586, CPU: 00:00:08.314,
GC gen0: 80, gen1: 60, gen2: 3
val it : int list = [1; 1; 1; 1; 1;...]

• Slower than bigList

• Can generate longer lists than bigList

83 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Towards a tail-recursive count version

Remember:

let rec count t = match t with
| Leaf -> 0
| Node(tl,n,tr) -> let v1 = count tl

let v2 = count tr
1+v1+v2

For a continuation- based version countC t k :

• k is the top-level continuation

• k is the continuation used for the base case: k 0

• The continuation k2 for the second recursive call is
fun v2 -> k(1+v1+v2)

• The continuation k1 for the first recursive call is
fun v1 -> countC tr k2

Hence, the recursive case is:

countC tl (fun v1 -> countC tr (fun v2 -> k(1+v1+v2)))

84 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Towards a tail-recursive count version

Remember:

let rec count t = match t with
| Leaf -> 0
| Node(tl,n,tr) -> let v1 = count tl

let v2 = count tr
1+v1+v2

For a continuation- based version countC t k :

• k is the top-level continuation

• k is the continuation used for the base case: k 0

• The continuation k2 for the second recursive call is
fun v2 -> k(1+v1+v2)

• The continuation k1 for the first recursive call is
fun v1 -> countC tr k2

Hence, the recursive case is:

countC tl (fun v1 -> countC tr (fun v2 -> k(1+v1+v2)))

85 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Towards a tail-recursive count version

Remember:

let rec count t = match t with
| Leaf -> 0
| Node(tl,n,tr) -> let v1 = count tl

let v2 = count tr
1+v1+v2

For a continuation- based version countC t k :

• k is the top-level continuation

• k is the continuation used for the base case: k 0

• The continuation k2 for the second recursive call is
fun v2 -> k(1+v1+v2)

• The continuation k1 for the first recursive call is
fun v1 -> countC tr k2

Hence, the recursive case is:

countC tl (fun v1 -> countC tr (fun v2 -> k(1+v1+v2)))

86 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Towards a tail-recursive count version

Remember:

let rec count t = match t with
| Leaf -> 0
| Node(tl,n,tr) -> let v1 = count tl

let v2 = count tr
1+v1+v2

For a continuation- based version countC t k :

• k is the top-level continuation

• k is the continuation used for the base case: k 0

• The continuation k2 for the second recursive call is
fun v2 -> k(1+v1+v2)

• The continuation k1 for the first recursive call is
fun v1 -> countC tr k2

Hence, the recursive case is:

countC tl (fun v1 -> countC tr (fun v2 -> k(1+v1+v2)))

87 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Towards a tail-recursive count version

Remember:

let rec count t = match t with
| Leaf -> 0
| Node(tl,n,tr) -> let v1 = count tl

let v2 = count tr
1+v1+v2

For a continuation- based version countC t k :

• k is the top-level continuation

• k is the continuation used for the base case: k 0

• The continuation k2 for the second recursive call is
fun v2 -> k(1+v1+v2)

• The continuation k1 for the first recursive call is
fun v1 -> countC tr k2

Hence, the recursive case is:

countC tl (fun v1 -> countC tr (fun v2 -> k(1+v1+v2)))

88 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A tail-recursive count

Putting the pieces together:

let rec countC t k =
match t with
| Leaf -> k 0
| Node(tl,n,tr) ->

countC tl (fun vl -> countC tr (fun vr -> k(1+vl+vr)))

• Both calls of countC are tail calls
• The two calls of k are tail calls

Hence, the stack will not grow when evaluating countC t k ; but the
heap will.

• countC can handle bigger trees than count

• count is faster

89 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A tail-recursive count

Putting the pieces together:

let rec countC t k =
match t with
| Leaf -> k 0
| Node(tl,n,tr) ->

countC tl (fun vl -> countC tr (fun vr -> k(1+vl+vr)))

• Both calls of countC are tail calls
• The two calls of k are tail calls

Hence, the stack will not grow when evaluating countC t k ; but the
heap will.

• countC can handle bigger trees than count

• count is faster

90 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

A tail-recursive count

Putting the pieces together:

let rec countC t k =
match t with
| Leaf -> k 0
| Node(tl,n,tr) ->

countC tl (fun vl -> countC tr (fun vr -> k(1+vl+vr)))

• Both calls of countC are tail calls
• The two calls of k are tail calls

Hence, the stack will not grow when evaluating countC t k ; but the
heap will.

• countC can handle bigger trees than count

• count is faster

91 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part II: Summary

On continuations
• a technique to turn arbitrary recursive functions into

tail-recursive ones.
• trade stack for heap

92 DTU Compute, Technical University of Denmark Lecture : Tail-recursive functions MRH 13/11/2024

