
02157
Functional
Program-

ming

Michael R. Hansen02157 Functional Programming
Lecture 1: Introduction and Getting Started

Michael R. Hansen

1 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. HansenWELCOME to
02157 Functional Programming

Teacher: Michael R. Hansen, DTU Compute mire@dtu.dk

Teaching assistants:
Jonas Dahl Larsen
Mathias Spezia
Mikael Hjermitslev Hoffmann
Oliwia Pindel
Shuokai Ma

Homepage: www.compute.dtu.dk/courses/02157

2 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

About functions

Advanced Engineering Mathematics 1
• eNotes: https://01006.compute.dtu.dk/enoter

For a function, like
f (x) = x2

we often mention its domain an range:

f : R → R

For a typed functional language like F#, a function like:

let f x = x ** 2.0;;

has an associated type:

f:float -> float

where float is the type of both the domain and the range.

3 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

https://01006.compute.dtu.dk/enoter

02157
Functional
Program-

ming

Michael R. Hansen

A Simple Functional Programming Setting

A program f is a function

f : Argument → Result

that takes one argument and produces one result.

Consider

let f x = 2*x + 3;;

Every function has a type specifying types of argument and result:

f: int -> int

• argument and result of f have type int (for integers).

Computation is governed by function application

f(1+ 2)
= f(3) evaluate argument
= 2 ∗ 3+ 3 substitute 3 in for x in f ’s body
= 9

F# has eager evaluation: Compute argument before making the call
4 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Context of 02157

Prerequisites
• You have used an editor to create programs
• You have installed a program on your laptop
• You have had (or have in the same semester) a course on

Discrete Mathematics

The course is a part of educations leading to the MSc programme in
Computer Science and Engineering.

• candidates contributing to the development of high-quality,
advanced software products

It is an aim to contribute to the fundament for educations leading to
the MSc education in CS&E

May sound good; but what does it mean?

5 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

There is no magic

It is possible to understand everything:
• The syntax (notation) of the programming language
• The semantics (meaning) of programs
• The evaluation of programs
• The properties of programs

Functional programming is a simple setting supporting
• declaration of clear, concise programs at a high level of

abstraction
• understanding and analysis of programs

due to the basis on mathematical functions (no side-effects)

6 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

An archetypical example n! = 1 · 2 · . . . · n, n ≥ 0

Mathematical definition: recursion formula

0! = 1 (i)
n! = n · (n − 1)!, for n > 0 (ii)

• n! is defined recursively in terms of (n − 1)! when n > 0

Computation:
3!

= 3 · (3 − 1)! (ii)
= 3 · 2 · (2 − 1)! (ii)
= 3 · 2 · 1 · (1 − 1)! (ii)
= 3 · 2 · 1 · 1 (i)
= 6

7 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Declaring recursive functions: let rec f x = e
• the function f occurs in the body e of a recursive declaration

A recursive function declaration:

let rec fact n =
if n=0 then 1 (* i *)
else n * fact(n-1);; (* ii *)

val fact : int -> int

Evaluation:

fact(3)
⇝ 3 ∗ fact(3− 1) (ii) [n 7→ 3]
⇝ 3 ∗ 2 ∗ fact(2− 1) (ii) [n 7→ 2]
⇝ 3 ∗ 2 ∗ 1 ∗ fact(1− 1) (ii) [n 7→ 1]
⇝ 3 ∗ 2 ∗ 1 ∗ 1 (i) [n 7→ 0]
⇝ 6

e1 ⇝ e2 reads: e1 evaluates to e2

• An environment is used to bind the formal parameter n to actual
parameters 3, 2, 1, 0 during evaluation

8 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Some functional programming background

• The λ-calculus was introduced around 1930 by Church and
Kleene when investigating function definition, function
application, recursion and computable functions. For example,
f (x) = x + 2 is represented by λx .x + 2.

• The untyped functional-like programming language LISP was
developed by McCarthy in the late 1950s.

• Functional languages with a strong type system like ML (by
Milner) and Miranda (by Turner) were introduced in the 1970s.

• Functional languages (SML, Haskell, OCAML, F#, . . .) have now
applications far away from their origin: Compilers, Artificial
Intelligence, Web-applications, Financial sector, . . .

• Declarative aspects are now sneaking into ”main stream
languages”

• Functional programming should be a mandatory element of
every BSc. education in Computer Science according to ACM’s
and IEEE’s curricula recommendations, 2013.

9 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Lambda Calculus

The untyped Lambda Calculus has just three kinds of expressions e:
• variables x
• abstractions λx .e
• applications e1 e2

where
• λx .e reads: “the function of x given by e”

An application like (λx .e) e2 may be evaluated as follows:

(λx .e) e2 ⇝ e′
2

where e′
2 is obtained from e2 by

• substituting every free occurrence of x in e by e2

like we did in the previous examples

No magic: A full explanation can be given in terms of few concepts

The part of F# we will use is based on typed lambda calculus

10 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview: Syntactical constructs in “our part of” F#

• Constants: 0, 1.1, true, ...

• Patterns:
x (p1, . . . , pn) p1 ::p2 p1|p2 p when e p as x p : t . . .

• Expressions:
x (e1, . . . , en) e1 ::e2 e1e2 e1⊕e2 let p1 = e1 in e2 e : t

if e then e1 then e2 match e with clauses

fun p1 · · · pn->e function clauses . . .

• Declarations let f p1 . . . pn = e let rec f p1 . . . pn = e, n ≥ 0

• Types
int float bool string ′a . . .
t1∗t2∗· · ·∗tn t list t1->t2 . . .

where the construct clauses has the form:

| p1 -> e1 | . . . | pn -> en

In addition to that
• type declarations, precedence and associativity rules,

parenthesis around p and e and type correctness
11 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Have a look at
• http://homepages.inf.ed.ac.uk/wadler/realworld/

• https://fsharp.org/testimonials/

concerning use of functional programming in the ”real world”.

12 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

http://homepages.inf.ed.ac.uk/wadler/realworld/
https://fsharp.org/testimonials/

02157
Functional
Program-

ming

Michael R. Hansen

Practical Matters

• General information:
http://courses.compute.dtu.dk/02157

• Practical Information:
http://courses.compute.dtu.dk/02157/
PracticalInfo.html

Exam form: Written exam, 4 hour – no aid allowed

• Course plan:
http://courses.compute.dtu.dk/02157/plan.html

On DTU Learn you can find some material
• A brief course introduction
• A mini-project on polynomials
• Slides
•

13 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

http://courses.compute.dtu.dk/02157
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/PracticalInfo.html
http://courses.compute.dtu.dk/02157/plan.html

02157
Functional
Program-

ming

Michael R. Hansen

Course Infrastructure

• Syllabus (see introduction to the course)
• Weekly lectures
• Weekly exercise classes with fantastic TAs

a flipped classroom model

Course design is based on an evenly distributed workload and
“steady progress” throughout the semester

Mini-projects: Exercise FP concepts and techniques while
• telling a coherent story on a specific topic
• relating FP to neighbouring courses
• introducing fundamental CS concepts

Nothing is mandatory

It is your own responsibility to achieve a good use of Fridays’
teaching slot

• no online support
• no hotline support

You are always welcome to visit my office: Room 112, Building 322
14 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Overview

Part 1 Getting Started:
• The interactive environment
• Values, expressions, types, patterns
• Declarations of values and recursive functions
• Binding, environment and evaluation
• Type inference

Main ingredients of F#

Part 2 Lists:
• Lists: values and constructors
• Recursions following the structure of lists
• Polymorphism

A value-oriented approach

15 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

The Interactive Environment

2*3 + 4;;
val it : int = 10

⇐ Input to the F# system

⇐ Answer from the F# system

• The keyword val indicates a value is computed
• The integer 10 is the computed value
• int is the type of the computed value
• The identifier it names the (last) computed value

The notion binding explains which entities are named by identifiers.

it 7→ 10 reads: “it is bound to 10”

16 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Value Declarations

A value declaration has the form: let identifier = expression

let price = 25 * 5;;

val price : int = 125

⇐ A declaration as input

⇐ Answer from the F# system

The effect of a declaration is a binding: price 7→ 125

Bound identifiers can be used in expressions and declarations, e.g.

let newPrice = 2*price;;
val newPrice : int = 250

newPrice > 500;;
val it : bool = false

A collection of bindings price 7→ 125
newPrice 7→ 250
it 7→ false


is called an environment

17 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Function Declarations 1: let f x = e
• x is called the formal parameter
• the defining expression e is called the body of the declaration

Declaration of the circle area function:

let circleArea r = System.Math.PI * r * r;;

• System.Math is a program library
• PI is an identifier (with type float) for π in System.Math

The type is automatically inferred in the answer:

val circleArea : float -> float

Applications of the function:

circleArea 1.0;; (* this is a comment *)
val it : float = 3.141592654

circleArea(3.2);; // A comment: optional brackets
val it : float = 32.16990877

1.0 and 3.2 are also called actual parameters
18 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Patterns

A pattern is composed from identifiers, constants and the wildcard
pattern: using constructors (considered soon)

Examples of patterns are: 3.1,true,n,x,5,

• A pattern may match a value, and if so it results in an
environment with bindings for every identifier in the pattern.

• The wildcard pattern matches any value (resulting in no
binding)

Examples:
• Value 3.1 matches pattern x resulting in environment: [x 7→ 3.1]
• Value true matches pattern true resulting in environment []
• The pair (1,true) matches pattern (x,y) resulting in

environment [x 7→ 1, y 7→ true]

19 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Match expressions

A match expression em has the following form:

match e with
| pat1 → e1

...
| patn → en

A match expression em is evaluated as follows:

1 evaluate e to a value, say v

2 search for the first pattern pati matching v

3 evaluate ei in an environment enriched with the bindings from
the pattern matching

If no pattern matches v , then the evaluation terminates abnormally.

20 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Match on a pair

Let e1 be given by:

match (3+5, 3<5) with
| (0, _) -> 0
| (n,false) -> -n
| (n,_) -> 2*n

Evaluation:
e1

⇝ (2 ∗ n, [n 7→ 8])
⇝ (2 ∗ 8, [n 7→ 8])
⇝ 16

21 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Example: Match expression in a declaration

Function declaration:

let rec fact n =
match n with
| 0 -> 1 (* i *)
| n -> n * fact(n-1) (* ii *)

val fact : int -> int

Evaluation:
fact(3)

⇝ 3 ∗ fact(3− 1) (ii) [n 7→ 3]
⇝ 3 ∗ 2 ∗ fact(2− 1) (ii) [n 7→ 2]
⇝ 3 ∗ 2 ∗ 1 ∗ fact(1− 1) (ii) [n 7→ 1]
⇝ 3 ∗ 2 ∗ 1 ∗ 1 (i) [n 7→ 0]
⇝ 6

A match with a when clause and an exception:

let rec fact n =
match n with
| 0 -> 1
| n when n>0 -> n * fact(n-1)
| _ -> failwith "Negative argument"

22 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Recursion. Example xn = x · . . . · x , n occurrences of x

Mathematical definition: recursion formula

x0 = 1 (1)
xn = x · xn−1, for n > 0 (2)

Function declaration:

let rec power(x,n) =
match (x,n) with
| (,0) -> 1.0 (* 1 *)
| (x,n) -> x * power(x,n-1) (* 2 *)

Patterns:
(,0) matches any pair of the form (u, 0).
(x,n) matches any pair (u, i) yielding the bindings

x 7→ u,n 7→ i

Can you simplify the program?

23 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Evaluation. Example: power(4.0, 2)

Function declaration:

let rec power(x,n) =
match (x,n) with
| (,0) -> 1.0 (* 1 *)
| (x,n) -> x * power(x,n-1) (* 2 *)

Evaluation:

power(4.0,2)
⇝ 4.0 ∗ power(4.0,2− 1) Clause 2, [x 7→ 4.0,n 7→ 2]
⇝ 4.0 ∗ power(4.0,1)
⇝ 4.0 ∗ (4.0 ∗ power(4.0,1− 1)) Clause 2, [x 7→ 4.0,n 7→ 1]
⇝ 4.0 ∗ (4.0 ∗ power(4.0,0))
⇝ 4.0 ∗ (4.0 ∗ 1) Clause 1
⇝ 16.0

24 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Types — every expression has a type e : τ

Basic types:
type name example of values

Integers int ˜27, 0, 15, 21000
Floats float ˜27.3, 0.0, 48.21
Booleans bool true, false

Pairs:
If e1 : τ1 and e2 : τ2

then (e1, e2) : τ1∗τ2 pair (tuple) type constructor

Functions:
if f : τ1 -> τ2 and a : τ1 function type constructor
then f (a) : τ2

Examples:

(4.0, 2): float*int
power: float*int -> float
power(4.0, 2): float

* has higher precedence that ->

25 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Type inference: power

let rec power (x,n) =
match (x,n) with
| (,0) -> 1.0 (* 1 *)
| (x,n) -> x * power(x,n-1) (* 2 *)

• The type of the function must have the form: τ1 * τ2 -> τ3,
because argument is a pair.

• τ3 = float because 1.0:float (Clause 1, function value.)
• τ2 = int because 0:int.
• x*power(x,n-1):float, because τ3 = float.
• multiplication can have

int*int -> int or float*float -> float

as types, but no “mixture” of int and float

• Therefore x:float and τ1=float.

The F# system determines the type float*int -> float

26 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

A higher-order version of the power function

We shall now look at a version of power x n = xn with the type

power: float -> (int -> float)

• the argument of power is the base x
• and power x is the function that maps exponent n to xn

The function may be evaluated in stages:

let pow2 = power 2.0;;

pow2 3;;
val it : float = 8.0
pow2 4;;
val it : float = 16.0

This higher-order version of power is declared by

let rec power x n = match n with
| 0 -> 1.0
| -> x * power x (n-1);;

The value of the function is a function

27 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

A expression for anonymous functions

The function expression

function
| pat1 → e1

...
| patn → en

allows you to “tabulate” argument-value pairs of a function.

function
| 2 -> 28 // February
| 4 -> 30 // April
| 6 -> 30 // June
| 9 -> 30 // September
| 11 -> 30 // November
| _ -> 31;; // All other months
val it : int -> int = <fun:clo@17-2>

it 2;;
val it : int = 28

28 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Another higher-order version of the power function

We now have another look at power x n = xn with the type

power: float -> (int -> float)

The following declaration explicitly reveals that power x is a function:

let rec power x =
function
| 0 -> 1.0
| n -> x * power x (n-1);;

29 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Booleans

Type name bool

Values false, true

Operator Type
not bool -> bool negation

not true = false
not false = true

Expressions

e1 && e2 “conjunction e1 ∧ e2”
e1 || e2 “disjunction e1 ∨ e2”

— are lazily evaluated, e.g. 1<2 || 5/0 = 1
⇝ true

Precedence: && has higher than ||

30 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Summary

• The interactive environment
• Values, expressions, types, patterns
• Declarations of values and recursive functions
• Binding, environment and evaluation
• Type inference
• higher-order functions

31 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Part 2: Lists

• Lists: values and constructors
• Recursions following the structure of lists
• Polymorphism

• The list concept is a natural, built-in ingredient of functional
languages

32 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Lists

A list is a finite sequence of elements having the same type:

[v1; . . . ; vn] ([] is called the empty list)

[2;3;6];;
val it : int list = [2; 3; 6]

["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]

[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]

[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]

[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]

33 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

List constructors

A non-empty list [x1; x2; . . . ; xn], n ≥ 1, consists of
• a head x1 and
• a tail [x2; . . . ; xn]

The list type has two constructors:
• The empty list []
• The cons constructor x1::[x2; . . . ; xn] = [x1; x2; . . . ; xn]

– they are used to construct and to decompose lists

34 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Recursion on lists – a simple example

suml[x1;x2; . . .;xn] =
n∑

i=1

xi = x1 + x2 + · · ·+ xn = x1 +
n∑

i=2

xi

Constructors are used in list patterns

let rec suml xs =
match xs with
| [] -> 0
| x::tail -> x + suml tail;;

val suml : int list -> int

suml [1;2]
⇝ 1 + suml [2] (x 7→ 1 and tail 7→ [2])
⇝ 1 + (2 + suml []) (x 7→ 2 and tail 7→ [])
⇝ 1 + (2 + 0) (the pattern [] matches the value [])
⇝ 1 + 2
⇝ 3

Recursion follows the structure of lists

35 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

A polymorphic list function (I)

The function remove y xs gives the list obtained from xs by deleting
every occurrence of y , e.g. remove 2 [1; 2; 0; 2; 7] = [1; 0; 7].

Recursion is following the structure of the list:

let rec remove y xs =
match xs with
| [] -> []
| x::tail when x=y -> remove y tail
| x::tail -> x::remove y tail;;

List elements can be of any type that supports equality

remove : ’a -> ’a list -> ’a list when’a : equality

• ’a is a type variable
• ’a : equality is a type constraint

The F# system infers the most general type for remove

36 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

A polymorphic list function (II)

• A type containing type variables is called a polymorphic type
• The remove function is called a polymorphic function.
remove : ’a -> ’a list -> ’a list when ’a : equality

The function has many forms, one for each instantiation of ’a:

Instantiating ’a with int:

remove 2 [1; 2; 0; 2; 7];;
val it : int list = [1; 0; 7]

Instantiating ’a with int list:

remove [2] [[2;1]; [2]; [0;1]; [2]; [5;6;7]];;
val it : int list list = [[2; 1]; [0; 1]; [5; 6; 7]]

Notice that -> associates to the right:

’a -> ’a list -> ’a list means ’a -> (’a list -> ’a list)

37 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Exploiting structured patterns: the isPrefix function

The function isPrefix xs ys tests whether the list xs is a prefix of
the list ys, for example:

isPrefix [1; 2; 3] [1; 2; 3; 8; 9] = true
isPrefix [1; 2; 3] [1; 2; 8; 3; 9] = false

The function is declared as follows:

let rec isPrefix xs ys =
match (xs,ys) with
| ([],_) -> true
| (_,[]) -> false
| (x::xtail,y::ytail) -> x=y && isPrefix xtail ytail;;

isPrefix [1;2;3] [1;2];;
val it : bool = false

A each clause expresses succinctly a natural property:
• The empty list is a prefix of any list
• A non-empty list is not a prefix of the empty list
• A non-empty list (...) is a prefix of another non-empty list (...) if ...

38 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

02157
Functional
Program-

ming

Michael R. Hansen

Summary

• Lists
• Polymorphism
• Constructors (:: and [] for lists)
• Patterns
• Recursion on the structure of lists
• Constructors used in patterns to decompose structured values
• Constructors used in expressions to compose structured values

Blackboard exercises
• memberOf x ys is true iff x occurs in the list ys
• insert(x , ys) is the ordered list obtained from the ordered list

ys by insertion of x
• sort(xs) gives a ordered version of xs

39 DTU Compute, Technical University of Denmark Lecture 1: Introduction and Getting Started MRH 26/08/2024

