
DTU Compute 04-11-2024
Michael R. Hansen

Mini-project: Propositional Logic

Imagine you are on an island populated by two kinds of inhabitants: Knights, who always
tell the truth, and knaves, who always lie.

You meet three inhabitants: k1, k2 and k3 and ask them about their kinds:

� k1 mumbles and you cannot really understand what he says.

� k2 says: ”k1 said he is a knave.”

� k3 says: ”k2 is lying”.

This is an example of aKnights and Knaves puzzle originating from the logician R. Smullyan
[1], where you, on the basis of utterances from inhabitants should solve the puzzle by
deciding what kinds they are.

These puzzles can be formalized, analysed and solved using propositional logic using con-
cepts, techniques and results from the course on discrete mathematics – a prerequisite that
is recommended that you take at least simultaneous with this course.

In the previous two mini projects you have seen the role of discrete mathematics and logic
as a meta language to make precise the requirements for solutions, express properties of
programs and so on, and you may have observed that the mathematical foundation of
functional programming languages can be exploited to address properties of programs in
a formal manner.

In this exercise we shall study propositional logic as a topic by developing programs for
symbolic manipulation of propositions to implement some results you have meet in the
course on discrete mathematics. You will see the use of finite trees in connection with
symbolic computations, and you may get a closer look at propositional logic, where you,
amongst other things, should transform propositions to disjunctive normal form and com-
pute all satisfying assignments for a proposition. Moreover, you should express and solve
a couple of Smullyan puzzles.

1

Propositional Logic

In this assignment you shall consider formulas of propositional logic, also called proposi-
tions, which are generated from a set of atoms a, b, c, . . . by use of the well-known operators:
negation ¬, disjunction ∨ and conjunction ∧.

Knowing the truth values of atoms, the truth value of propositions can be computed. For
example, if a is true and b is false then a ∧ ¬b is true and b ∨ ¬a is false, by use of the
truth tables for negation, conjunction and disjunction.

An association of truth values to atoms is also called an assignment. If A is the set of all
atoms, then an assignment is a subset of A, where the atoms contained in an assignment
are those being true. For example, the assignment {a} express that a is true, while false
is the truth value of all other atoms (like, for example, b).

The meaning of propositions is defined in terms the semantic relation:

asg |= P reads: ”proposition P is true for assignment asg

For example:

� {a} |= a holds,

� {a} |= b does not hold,

� {a} |= a ∧ ¬b holds, and

� {a} |= (¬a) ∨ b does not hold.

We write asg ̸|= A to denote that asg |= A does not hold.

The semantic relation asg |= P is defined by induction on the structure of propositions as
follows1:

asg |= a iff a ∈ asg atoms
asg |= ¬P iff asg ̸|= P negation
asg |= P1 ∨ P2 iff asg |= P1 or asg |= P2 disjunction
asg |= P1 ∧ P2 iff asg |= P1 and asg |= P2 conjunction

Two propositions P and Q are equivalent if they have the same truth value for every
assignment, that is asg |= P iff asg |= Q, for every assignment asg .

Any other propositional operator can be expressed using ¬,∨, and ∧. (Actually nega-
tion together with just disjunction or just conjunction would suffice.) Implication and
biimplication (or equivalence), for example, are definable as follows

P ⇒ Q is expressed as (¬P) ∨Q
P ⇔ Q is expressed as (P ⇒ Q) ∧ (Q ⇒ P)

1’iff’ reads ”if and only if”.

2

Part 1: Abstract syntax and semantics

In this part you shall define a type for the abstract syntax of propositions and a function
for the semantics of propositions.

1. Declare a type Prop<’a> for propositions so that

� A "a" : Prop<string> represents the atom a,

� A("a",3) : Prop<string*int> represents the atom (a, 3),

� Dis(A "a", A "b") : Prop<string> represents the proposition a ∨ b,

� Con(A "a", A "b") : Prop<string> represents the proposition a ∧ b, and

� Neg(A "a"): Prop<string> represents the proposition ¬a.

2. Declare a function sem: Prop<’a> -> Set<’a> -> bool so that

sem p asg = true iff asg |= p holds

Part 2: Negation Normal Form

A proposition is in negation normal form if the negation operator just appears as applied
directly to atoms.

3. Declare function toNnf p transforming a proposition p into an equivalent proposition
in negation normal form, using the de Morgan laws:

¬(P ∧Q) is equivalent to (¬P) ∨ (¬Q)
¬(P ∨Q) is equivalent to (¬P) ∧ (¬Q)

and the law: ¬(¬P) is equivalent to P .

The correctness of toNnf is addressed in two steps.

4. First, declare a function onNnf: Prop<’a> -> bool that can decide whether a propo-
sition is on negation normal form, and use property-based testing to validate that
toNnf p is on negation normal form for propositions p of type Prop<string>.

The second step should validate that p is equivalent to toNnf p, that is, sem p asg =
sem (toNnf p) asg, for every proposition p and assignments asg.

Notice that if FsCheck.Check.Quick is used to validate this property for propositions of
type Prop<string>, the generated strings will to a large extend be different for very many
of the generated pairs of propositions and assignments. Thus, there will be a tendency to
assign false to most atoms in the generated propositions. To address this inadequacy, a
type with a small number of values could be used as a type for atoms.

3

5. Declare a type Finite having n values. Choose n small; but be aware that it should
be meaningful to let FsCheck.Check.Quick generate 100 random assignments.

6. Use property-based testing to validate that p is equivalent to toNnf p, where p :
Prop<Finite>.

Part 3: Disjunctive Normal Form

A literal is an atom or the negation of an atom and a elementary conjunction is a conjunc-
tion of literals:

lit1 ∧ lit2 ∧ · · · ∧ litm

where m > 0 and lit j, 1 ≤ j ≤ m, is a literal.

A proposition is in disjunctive normal form if it is a disjunction of elementary conjunctions,
that is, it has the form:

EC 1 ∨ EC 2 ∨ · · · ∨ EC n

where n > 0 and EC i, 1 ≤ i ≤ n, is an elementary conjunction.

7. Declare a function dnf that transforms a proposition in negation normal form into
an equivalent proposition in disjunctive normal form using the distributive laws:

a ∧ (b ∨ c) is equivalent to (a ∧ b) ∨ (a ∧ c)
(a ∨ b) ∧ c is equivalent to (a ∧ c) ∨ (b ∧ c)

8. Declare a function toDnf that transforms a proposition to disjunctive normal form.

9. Declare a function onDnf that decides whether a proposition is on disjunctive normal
form.

10. Use property-based testing to validate that for every proposition p

� toDnf p is on disjunctive normal form and

� toDnf p is equivalent to p.

4

Part 4: Satisfying assignments

The disjunctive normal form can be used to extract the assignments satisfying a proposi-
tion. Consider, for example, the following elementary conjunction:

a ∧ ¬b ∧ c

having three atom a, b and c. It is directly observed that an assignment where a and c are
true and b is false satisfies the proposition.

On the other hand, no assignment can satisfy the elementary conjunction:

¬a ∧ b ∧ a

as atom a occurs both in a not negated and a negated form. Such elementary conjunctions
are called inconsistent. In general, an elementary conjunction (or a list of literals) is called
consistent if for no atom a the elementary conjunction (or list) contains both a and ¬a.

For a proposition in disjunctive normal form

EC 1 ∨ EC 2 ∨ · · · ∨ EC n

a list of consistent literal lists can be obtained from the consistent elementary conjunctions.
For example the list of consistent literal lists for

(a ∧ ¬b) ∨ (¬a ∧ b ∧ a) ∨ (¬a ∧ b ∧ c)

is [[a;¬b]; [¬a; b; c]] as the middle elementary conjunction is inconsistent. In such lists we
do not care about the sequence of elements and duplicated elements2.

11. Declare a function ecToList to extract the list of literals occurring in an elementary
conjunction.

12. Declare a function to test consistency of a list of literals.

13. Declare a function toEClists p that gives a list of lists of literals, where the literal
lists come from the consistent elementary conjunctions of p’s disjunctive normal form.

14. Introduce an abbreviation for implication ⇒ and construct F# values for the two
propositions:

(¬P ⇒ ¬Q) ⇒ (P ⇒ Q)
(¬Q ⇒ ¬P) ⇒ (P ⇒ Q)

� Find by yourself the satisfying assignments for these two propositions.

� Apply toEClists and reflect over whether the results match your expectations.
2One could also declare a function to extract a set of satisfying assignments. The list of list represen-

tation may be easier to interpret and is therefore chosen here.

5

Part 5: Solving puzzles

The general setting for Knights and Knaves puzzles was given in the introduction. Consider
now the following puzzle that also appears in [1].

Three inhabitants: k1, k2 and k3, are talking about themselves:

� k1 says: ”All of us are knaves.”

� k2 says: ”Exactly one of us is a knight.”

To solve the puzzle you should determine what kinds of citizens k1, k2 and k3 are.

15. Declare a type Inhabitant having three values K1, K2 and K3.

16. Model the two utterances of the puzzle as a proposition puzzle1:Prop<Inhabitants>.
You may introduce an abbreviation for biimplication ⇔.
Hint: Use atoms ki, i = 1, 2, 3, for the three inhabitants and construct your proposi-
tion so that ki being true means that Ki is a knight, and ki being false means that Ki
is a knave.

17. Solve first the puzzle by yourself. Then use toEClists to analyse puzle1. Reflect
over whether the result matches your expectation.

18. Solve the puzzle from the introduction by yourself. Then model and solve the puzzle
using toEClists. Reflect over whether the result matches your expectation.

6

Part 6: Exponential blow-up of disjunctive normal forms

The Boolean satisfiability problem SAT is the problem of deciding whether a given propo-
sition has a satisfying assignment. This decision problem was the first problem shown to be
an NP-complete problem, where NP stands for nondeterministic polynomial and complete
means that it is at least as hard to decide as any other problem in NP.

Without going into formal details, NP is the set of decision problems that can be verified
in polynomial time and SAT is in NP because for a give proposition p and assignment
(witness) asg, the sem function can verify efficiently (in polynomial time) the truth of p
for assignment asg. But notice that there are 2n possible assignments for a proposition
having n atoms.

Many famous problems are NP-complete and only solutions having a worst-case exponential
running time have been found for these problems.

The satisfiability of a formula in disjunctive normal form is easily checked (in polynomial
time) as we have seen above.

We shall, therefore, illustrate that the transformation to disjunctive normal form may
give an exponential blow-up of the size of propositions. In particular, we shall consider
propositions of the following form:

(p1 ∨ q1) ∧ (p2 ∨ q2) ∧ · · · ∧ (pn ∨ qn) (1)

and illustrate that the disjunctive normal forms of such propositions will have 2n elementary
conjunctions.

19. Declare an F# function badProp n representing proposition (1). You may use atoms
like A("P",i) and A("Q",i) in the declaration of badProp.

20. Compute toEClists(badProp n) for a small number of cases and check that the
resulting lists indeed have 2n elements.

There are many excellent SAT-solving tools (implemented using other techniques than
those used in this exercise). They all have an exponential worst-case complexity, but have,
despite of that, been used to solve huge problem instances in many areas of computer
science.

References

[1] Raymond M. Smullyan, What is the name of this book? The Riddle of Dracula and
Other Logical Puzzles, Dover Publications, 2011 (Originally published by Prentice-Hall,
1978)

7

