
DTU Compute 27-08-2024
Michael R. Hansen

Mini-project: Computing with Polynomials

This exercise concerns the development of a library for computing with polynomials of the
following form:

P (x) = a0 + a1 · x+ ...+ an · xn

where the coefficients a0, . . . , an are integers, and x is ranging over integers. It can be
completed during the first half of the semester. The aims are:

� To exercise functional programming concepts.

� To tell a coherent story, where several aspects work together in the creation of a
high-quality piece of software.

� To link the story to topics from “neighbouring courses”.

The themes of the various parts are:

� Part 1 focuses on construction of recursive list functions.

� Part 2 focuses on functional decomposition. In order to solve a more complicated
problem, invent suitable auxiliary functions (so-called helper functions) that make
the tasks easier.

� Part 3 focuses on analysis of your programs, where you should inspect whether your
programs satisfy a so-called invariant property, where only certain representations of
polynomials are meaningful.

� Part 4 focuses on disjoint unions (or tagged values) where you, in this exercise, should
make a type for degrees of polynomials with associated operations.

� In Part 5 we will have a look at program correctness, that is, the implemented func-
tions should satisfy a collection of properties. The strong mathematical foundation
of functional programming languages makes it possible, within a course like this, to
formally prove correctness of programs. We will, however, not go for mathematical
correctness proofs in this course.

Instead, we will use FsCheck to do property-based testing. In property-based testing
you make programs for the correctness properties and FsCheck can then automati-
cally test whether the properties hold on samples with randomly generated values.
Thus, in property-based testing you construct programs (not test cases) and in this
part you should apply concepts of functional programming, especially the concept of
higher-order functions, to formulate correctness properties in a succinct manner.

1

� In Part 6, a program library Polynomial for polynomials is constructed in the form
of an abstract data type, where the internal representation of polynomials is hidden
from a user of the library. This library could be used in F# and in C# programs, for
example. The C# program in the Appendix A produces the below presented output.
This illustrates interoperability on the .Net platform:

p1(x) is 1 - 3x^2

p2(x) is -2x^2

p3(x) is 1 - 5x^2 + 6x^4

p4(x) is 0

Degree of p3(x) is 4

Degree of p4(x) is -infinity

Coefficients of p3(x) are 1 0 -5 0 6

p3’(x) is -10x + 24x^3

Coefficients of p1(p2(x)) are 1 0 0 0 -12

In Appendix B you can see a stand-alone F# program that, using the library, pro-
duces the same output.

By completing all these parts you will exploit many aspects of functional programming.
Furthermore, you will see concepts from prerequisite courses being used. For example,
the concept of polynomials obviously comes from mathematics, correctness and property-
based testing exploit concepts from discrete mathematics (which should be taken at least
simultaneously with this course) and programming techniques, program correctness, use
of invariants and property-based testing are, of course, relevant to computer science.

Part 1: Recursive list functions

We represent the polynomial P (x) = a0 + a1 · x + ... + an · xn with integer coefficients
a0, a1, ..., an by the list [a0; a1; . . . ; an]. For instance, the polynomial 2 + x3 is represented
by the list [2; 0; 0; 1]. We capture this by the type declaration (actually type abbreviation):

type Poly = int list

We shall in this part implement the following operations on polynomials:

add: Poly -> Poly -> Poly

mulC: int -> Poly -> Poly

sub: Poly -> Poly -> Poly

mulX: Poly -> Poly

mul: Poly -> Poly -> Poly

eval : int -> Poly -> int

2

The function add: Poly -> Poly -> Poly

Addition of two polynomials represented by lists is performed by element-wise additions.
For example, (1 + 2x) + (3 + 4x+5x2 +6x3) = 4+ 6x+5x2 +6x3. Notice that (1 + 2x) is
represented by the list [1;2] and (3 + 4x+ 5x2 + 6x3) is represented by [3;4;5;6]. Applying
add on these two lists should give

add [1;2] [3;4;5;6] = [4;6;5;6]

The function mulC: int -> Poly -> Poly

The function mulC should implement the multiplication of a polynomial by a constant. For
example, 2 · (2 + x3) = 4 + 2x3 and therefore mulC 2 [2; 0; 0; 1] = [4; 0; 0; 2].

The subtraction function sub: Poly -> Poly -> Poly

Subtraction of two polynomials represented by lists is performed by element-wise subtrac-
tions. For example, (1 + 2x)− (3 + 4x+ 5x2 + 6x3) = −2− 2x− 5x2 − 6x3.

The function mulX: Poly -> Poly

The multiplication function mulX should implement the multiplication of a polynomial by
x. For example, x · (2 + x3) = 2x+ x4 and therefore mulX [2; 0; 0; 1] = [0; 2; 0; 0; 1].

The multiplication function mul: Poly -> Poly -> Poly

The following properties are useful when defining multiplication:

0 ·Q(x) = 0
(a0 + a1 · x+ ...+ an · xn) ·Q(x)

= a0 ·Q(x) + x · ((a1 + a2 · x+ ...+ an · xn−1) ·Q(x))

For example, (2 + 3x+ x3) · (1 + 2x+ 3x2) = 2 + 7x+ 12x2 + 10x3 + 2x4 + 3x5.

The function eval: int -> Poly -> int

If P (x) is a polynomial and a is an integer, then the eval function should compute the
integer value P (a).

For example, if P (x) = 2 + 3x + x3 then P (2) = 2 + 3 · 2 + 23 = 16, and, therefore,
eval 2 [2; 3; 0; 1] = 16.

3

Part 2: Functional decomposition

A simple technique when solving a complex problem is

� to partition it into smaller well-defined parts and, thereafter,

� to compose these parts to solve the original problem.

The main goal is that

a program is constructed by combining simple well-understood pieces

This is a general technique that is a natural ingredient in functional programming.

Observe that multiplication of polynomials from Part 1 is implemented by composition of
operations for addition, multiplication by a constant and multiplication by x. In order
words, the problem of implementing multiplication is decomposed into implementation
problems for addition, etc.

When the decomposition is given, the original problem may be solved easily. But it may
actually be hard to find a suitable decomposition of a complex problem.

This theme is started up in this part, where you should invent suitable auxiliary functions
(helper functions) that makes programming of the following functions easy:

isLegal: int list -> bool

ofList: int list -> Poly

toString: Poly -> string

derivative: Poly -> Poly

compose: Poly -> Poly -> Poly

Following the problem formulation of Part 1, there is no unique representation of a poly-
nomial. For example, 1 + 2x − 3x2 may be represented by the lists [1;2;-3], [1;2;-3;0] and
[1;2;-3;0;0] and infinitely many others. This means that F#’ built-in equality operator on
lists cannot be used to compare polynomials (with the proposed representation).

We shall now prepare for a unique representation to be used in Part 3 and later parts,
where we consider an integer list ns to be a legal representation of a polynomial only if
ns = [] or if the last element of ns is not 0.

For example: [1;2;-3] is the only legal representation of 1+2x− 3x2 and [] is the only legal
representation of the polynomial 0.

In the above types for the functions isLegal, . . ., compose, we use the type Poly to indicate
that we only want to consider values that are legal representations of polynomials. In Parts
5 and 6, we shall see how a distinction between integer lists and polynomials is used and
can be enforced.

4

The function isLegal: int list -> bool

The function isLegal tests whether an integer lists is a legal representation of a polynomial.

The function ofList: int list -> Poly

Any integer list can be turned into a legal representation of a polynomial by removal of 0’s
occurring at the end of the list. The function ofList should do this.

The function toString: Poly -> string

Choose an appealing textual representation of a polynomial and declare an associated
toString function. You may have a look at the output presented on Page 2.

The function derivative: Poly -> Poly

For a polynomial P (x) = a0 + a1 · x+ a2 · x2 + ...+ an · xn, we recall that the derivative is

P ′(x) = a1 + 2 · a2 · x+ ...+ n · an · xn−1

The function compose: Poly -> Poly -> Poly

The composition of polynomials P (x) and Q(x) is defined by: (P ◦Q)(x) = P (Q(x)).

For example, if P (x) = 2 + 4x3 and Q(x) = 3x+ 2x2, then

(P ◦Q)(x) = P (Q(x)) = 2 + 4(3x+ 2x2)3 = 2 + 108x3 + 216x4 + 144x5 + 32x6

Therefore, compose [2; 0; 0; 4] [0; 3; 2] should give [2; 0; 0; 108; 216; 144; 32].

Remark: It is possible to define a function computing the integral of a polynomial. This,
however, requires division of numbers and for that it would be natural to base the decla-
rations on floating point numbers rather than on integers.

However, floating point numbers (type float) only provide approximations of the real
numbers, and these approximations will cause many extra technicalities when we con-
sider property-based testing in Part 5. These technicalities are not particularly related to
functional programming, so we stick to the integer-based types in this exercise.

5

Part 3: Preserving an invariant

The function isLegal describes a subset of the values of type Poly, namely the ones we
consider legal (or meaningful or well-formed) representations of polynomials.

This property must be preserved by the operations on polynomials. For example, when
declaring the addition function add p1 p2 it can be assumed that the arguments p1 and p2
are legal representations of polynomials, and you are obliged to declare the function so
that the result is legal as well. We say that add preserves the invariant isLegal when this
property holds. The other functions on polynomials should also preserve this invariant.

This describes a typical situation that may pop up in different contexts. For example, in
object-oriented programming, the objects of a class may be subject to some condition, a
class invariant, and the methods of the class must preserve this invariant.

� Inspect each function declaration from Part 1 and decide whether it preserves the
invariant isLegal.

� If a function declaration does not preserve the invariant, then revise the declaration.

� You may also consider the functions from Part 2.

Part 4: Tagged values – Degrees of polynomials

The degree of a polynomial P (x) = a0+a1 ·x+...+an ·xn is n when an ̸= 0. The polynomial
0 is a special case and this polynomial has −∞ as degree. For example:

� polynomial 0 has degree −∞,

� polynomial 5 has degree 0, and

� polynomial 2 + x3 has degree 3.

Declare a type Degree having two kinds of values. The value MinusInf corresponds to
the degree −∞ and Fin n, where n is a (non-negative) integer, corresponds to a “normal”
degree n of a polynomial.

Give a declaration for the function degree: Poly -> Degree computing degrees of poly-
nomials. For example, degree [] = MinusInf, degree [5] = Fin 0 and degree [2; 0; 0; 1] =
Fin 3.

If the constructor MinusInf occurs before the constructor Fin in the declaration of Degree,
then the built-in ordering becomes natural for degrees, where MinusInf <= d for any degree
d, and Fin n1<= Fin n1 iff n1<= n2.

6

� Test on a few examples that the built-in operator <= works as intended for degrees
and that the built-in max function does as well.

� Declare an F# function addD: Degree -> Degree -> Degree adding degrees. For
finite degrees it boils down to adding numbers. For example, addD (Fin 7) (fin 8)

= Fin 15. Furthermore, adding something to minus infinity gives minus infinity.

Part 5: Correctness - property-based testing

In this part we shall use property-based testing (in the form of FsCheck) to test three kinds
of properties: the invariant properties considered in Part 3, well-known algebraic properties
of polynomials (e.g. addition is commutative) and structure-preserving properties. By
completion of this part you will gain confidence in the correctness of your programs.

Preserving an invariant

Consider as an example the add function. It should satisfy the property:

isLegal(xs) ∧ isLegal(ys) =⇒ isLegal(add xs ys) (1)

for all integer lists xs and ys.

One could strive for mathematical proofs of properties like (1). We will, however, instead
go for property-based testing. Conjunction and implication are easily expressed in F# and
a predicate implementing (1) could be:

let addInvSimple xs ys = if isLegal xs && isLegal ys

then isLegal(add xs ys) else true

However, when using FsCheck as follows Check.Quick addInvSimple a majority of the
generated integer lists will violate isLegal and hence a majority of the generated tests
will be useless.

To circumvent this problem, an FsCheck-generator: smallPolyGen, for legal representa-
tions of polynomials having small degrees and coefficients, has been developed. Using this
generator, the invariant property for add, for example, can be validated as follows:

let addInv (p1: Poly) (p2: Poly) = isLegal(add p1 p2);;

let _ = Check.Quick addInv;;

as the values of type Poly that is generated using smallPolyGen will be legal representa-
tions. The declaration of the generator is shown in Appendix C. This generator is a part

7

of a script file Part5Skeleton.fsx that is handed out together with this mini-project.
You can use this file when you develop your own property-based tests for programs on
polynomials:

� check the property isLegal(ofList xs), that is, the result of applying ofList will
be a legal polynomial, and

� check that the functions from Part 1 preserve the invariant. You may also consider
functions from Part 2.

You may use higher-order functions to formulate the properties in a succinct manner.
Furthermore, inject errors in some of your programs and see whether they are spotted by
property-based testing.

Properties of a commutative ring

Preserving the invariant isLegal is one aspect of correctness for a library for polynomi-
als. But polynomials also possess many properties that are well-known for numbers, for
example, addition and multiplication of polynomials are commutative operations.

In this part you should validate that your functions on polynomials satisfy the axioms
(properties) of a (commutative) ring, where + and · are binary operations, − is a unary
operation and Zero and One are polynomials.

1. For all p1, p2, p3:

(p1 + p2) + p3 = p1 + (p2 + p3) + (add) is associative

2. For all p1, p2:

p1 + p2 = p2 + p1 + is commutative

3. There is a polynomial Zero so that for all p:

p+ Zero = p = Zero + p Zero is called the additive identity

4. For all p:

p+ (−p) = Zero −p is called the additive inverse of p

5. For all p1, p2, p3:

(p1 · p2) · p3 = p1 · (p2 · p3) · (mul) is associative

8

6. For all p1, p2:

p1 · p2 = p2 · p1 · is commutative

7. There is a polynomial One so that for all p:

p ·One = p = One · p One is called the multiplicative identity

8. For all p1, p2, p3:

p1 · (p2 + p3) = p1 · p2 + p1 · p3

9. For all p1, p2, p3:

(p1 + p2) · p3 = p1 · p3 + p2 · p3

where 8. and 9. express that multiplication is distributive with respect to addition.

Each of the above properties can be validated individually in a manner similar to the check
above of whether add preserves the invariant.

You should, however, combine this technique with functional-programming concepts to
avoid repetitions of almost identical code.

For example, the associative law appears three times (Properties 1., 5. and 10. (see below))
and the commutative law twice. You may consider using techniques from Section 2.9 in
the textbook to declare just one function expressing, for example, that an infix operator is
associative. This function could then be applied several times.

Furthermore, certain collections of axioms express the same general property. For example,

1. 1. and 3. are the properties of a monoid with addition operation and Zero as identity,

2. 5. and 6. are the properties of a monoid with multiplication operation and One as
identity, and

3. 10. and 11. (see below) are the properties of a monoid with composition operation
and Id as identity.

You should now

� give F# declarations for additive identity Zero, multiplicative identity One and the
additive inverse −, and

� check the properties 1. - 9. using property-based testing.

9

The composition function ◦ (i.e. compose) satisfies the axioms of a monoid:

10. For all p1, p2, p3:

(p1 ◦ p2) ◦ p3 = p1 ◦ (p2 ◦ p3) ◦ is associative

11. There is a polynomial Id so that for all p:

p ◦ Id = p and Id ◦ p = p Id is called the identity

You may now give an F# declaration for Id and test Properties 10 and 11.

It is convenient/necessary that the generated polynomials have small degrees when Prop-
erty 10 is checked. (Can you see why?)

Properties of structure-preserving functions

We now address correctness by considering properties of two so-called structure-preserving
functions. One is the eval functions that maps polynomials to integers. The other is a
function degree: Poly -> Degree that gives the degree of a polynomial.

Properties of the eval function

We shall now look at and test properties of the eval function, where eval k p computes
P (k) when list p representations polynomial P (x). let hk denote the function: eval k :
Poly → int. The function hk satisfies the properties:

12. For all k, p1, p2:

hk(add p1 p2) = hk(p1) + hk(p2)

13. For all k, p1, p2:

hk(mul p1 p2) = hk(p1) · hk(p2)

Property 12 expresses that evaluating the sum of two polynomials add p1 p2 can be eval-
uated by adding the numbers achieved by individual evaluation of p1 and p1. Property 13
has a similar explanation.

Remark: The function hk is in algebra called a homomorphism. It is a structure-preserving
function, in this case, from the type Poly with operations add and mul to the algebra of
integers with matching operations for addition and multiplication.

Validate that Properties 12 and 13 hold using property-based testing.

10

Degrees of polynomials

The function degree should satisfy the following properties:

14. For all p1, p2:

degree(add p1 p2) ≤ max (degree p1) (degree p2)

15. For all p1, p2:

degree(mul p1 p2) = addD (degree p1) (degree p2)

Use property-based testing to

� validate that these two properties for degree hold, and to

� find a counter-example for the property

degree(add p1 p2) = max (degree p1) (degree p2)

Part 6: The library Polynomial

You should now implement a library for polynomials using the techniques described in
Chapter 7 of the textbook.

On DTU Learn you can find a three-project solution to a minimal part of this mini-project.
This solution comprises

� PolyLib: an F# library for polynomials

� CSharpApp: a C# console application using the library

� FSharpApp: an F# console application using the library

and it was developed using the Command Line Interface (CLI) tool. On DTU Learn you
can also find information about how the project was developed and how it can be used.

You can solve the remaining part af this mini-project by extending this three-project
solution.

Your library should, in addition to the functions mentioned in the previous parts, include
following function:

toList: Poly -> int list

and perhaps perhaps conversion functions between integer arrays and polynomials.

The internal representation of polynomials must be hidden from a user of the library, so
that a user cannot violate the invariant isLegal.

11

Furthermore,

� Customize the string function for type Poly. See Section 7.7 in the textbook.

� Overload the operators +, - and * so that they also may operate on polynomials. See
Sections 7.3 and 7.4 in the textbook.

� Hide the representation of degrees from a user of the library, customize the string

function and overload +. To do so you will need techniques from Sections 7.6 and 7.7
to customize equality and ordering.

Doing so it becomes impossible to create meaningless degrees like Fin -2; but you
can still use the build-in functions max and = on degrees.

You may test your library from F# script files and perhaps also from programs like the
ones shown in Appendices A and B.

12

Appendix A

// Michael R. Hansen 09-08-2023

using System;

using Microsoft.FSharp.Collections; // where the type FSharpList<T> is found

namespace ConsoleApp1

{

class Program

{

static void Main(string[] args)

{ int[] n1 = new int[] {1, 0, -3 };

FSharpList<int> n3;

Polynomial.Poly p1 = Polynomial.ofArray(n1);

Polynomial.Poly p2 = Polynomial.ofArray(new int[] { 0, 0, -2});

Polynomial.Poly p3 = p1 + p2 * p1;

Polynomial.Poly p4 = p3 - p3;

Polynomial.Degree d3 = Polynomial.degree(p3);

Polynomial.Degree d4 = Polynomial.degree(p4);

Console.WriteLine("p1(x) is " + p1);

Console.WriteLine("p2(x) is " + p2);

Console.WriteLine("p3(x) is " + p3);

Console.WriteLine("p4(x) is " + p4);

Console.WriteLine("Degree of p3(x) is " + d3);

Console.WriteLine("Degree of p4(x) is " + d4);

n3 = Polynomial.toList(p3);

Console.Write("Coefficients of p3(x) are ");

foreach (int n in n3)

Console.Write(n + " ");

Console.WriteLine("");

Console.WriteLine("p3’(x) is " + Polynomial.derivative(p3));

n3 = Polynomial.toList(Polynomial.compose(p1, p2));

Console.Write("Coefficients of p1(p2(x)) are ");

foreach (int n in n3)

Console.Write(n + " ");

Console.WriteLine("");

Console.ReadKey();

}

}

}

13

Appendix B

// Michael R. Hansen 09-08-2023

open System

let printNumbers ns =

let _ = List.iter (fun n -> Console.Write (string n + " ")) ns

ignore (Console.WriteLine(""))

[<EntryPoint>]

let main argv =

let p1 = Polynomial.ofList [1; 0; -3]

let p2 = Polynomial.ofList [0; 0; -2]

let p3 = p1 + p2 * p1

let p4 = p3 - p3

let d3 = Polynomial.degree p3

let d4 = Polynomial.degree p4

let _ = Console.WriteLine("p1(x) is " + string p1)

let _ = Console.WriteLine("p2(x) is " + string p2)

let _ = Console.WriteLine("p3(x) is " + string p3)

let _ = Console.WriteLine("p4(x) is " + string p4)

let _ = Console.WriteLine("Degree of p3(x) is " + string d3)

let _ = Console.WriteLine("Degree of p4(x) is " + string d4)

let _ = Console.Write("Coefficients of p3(x) are ")

let _ = printNumbers(Polynomial.toList p3)

let _ = Console.WriteLine("p3’(x) is " + string(Polynomial.derivative p3))

let ns = Polynomial.toList(Polynomial.compose p1 p2)

let _ = Console.Write "Coefficients of p1(p2(x)) are "

let _ = printNumbers ns

let _ = Console.ReadKey()

0 // return an integer exit code

14

Appendix C

// Skeleton file for property-based testing

// Part 5 of the mini-project on Polynomials

// Michael R. Hansen 08-08-2023

....

open FsCheck

....

type Poly = int list

(*

The following part contains a generator: smallPolyGen,

to be used by FsCheck to generate legal representations

of polynomials, values of type Poly, with a certain

maxaimal degree and a certain range for coefficients.

You do neither need to consider nor need to change this part.

*)

let maxDegree = 6;;

let maxCoeff = 10;;

// Generator for small coefficients

let smallCoeffGen = Gen.choose(-maxCoeff,maxCoeff)

// and one for non-zero small coeffocients

let smallNonZeroCoeffGen =

gen {let! i = Gen.choose(1,maxCoeff) (* 1 *)

let! b = Arb.generate<bool> (* 2 *)

return if b then i else -i} (* 3 *)

(* This is a recipie for a generator that reads:

(1) generate a number between 1 and maxCoeff - call it i

(2) generate a truth value call it b

(3) return if i if b is true and -i otherwise

*)

15

// A generator for polynomials with degree i

let polyGenN i = gen {let! last = smallNonZeroCoeffGen

let! prefix = Gen.listOfLength (i-1) smallCoeffGen

return List.rev (last::prefix)}

// A generator for small polynomials

let smallPolyGen = gen {let! i = Gen.choose(0,maxDegree+1)

return! if i=0 then Gen.constant []

else polyGenN i}

// The following "registration" make FsCheck use smallPolyGen for the

// generation of legal polynomials of degree at most maxDegree

type MyGenerator =

static member Poly() =

{new Arbitrary<Poly>() with

override x.Generator = smallPolyGen

override x.Shrinker t = seq []};;

Arb.register<MyGenerator>();;

// FsCheck will from now on generate values of type Poly

// that are legal polynomials.

....

16

