
DTU Compute Lyngby 23-10-24
Michael R. Hansen

Mini-project: Simple compiler

Compilers for high-level languages like Java, . . . typically target an abstract machine that
can execute programs in a so-called intermediate language. Compilation from intermediate
languages to target architectures with register machines like x86, ARM and MIPS are
then done by other compilers. A compiler from a high-level language typically comprises
a part that compiles expressions to stack-machine code. An aspect that is included in a
compilation from an intermediate language is register allocation.

This exercise introduces semantics, symbolic manipulation and compilation to stack-machine
code in the context of a very simple expression language. It can be completed when the
topic finite trees is studied. The aims are:

� to exercise functional programming concepts on finite trees,

� to introduce techniques that are based on the treatment of programs as data, and

� to provide an appetizer for a following course: Computer Science Modelling.

The themes of the various parts are:

� Part 1 focuses on construction of simple abstract stack-based machine. The program-
ming language for this machine is called the target language. This part can be solve
immediately as it is not based on finite trees; ”just” disjoint union.

� Part 2 focuses on abstract syntax and semantics of a simple expression language.
This language is called the source language. This part exercises understanding of
finite trees and recursion following the structures of trees.

� Part 3 focuses on a compilation from source language to the target language. This
part exercises recursion following the structure of finite trees on the basis of a fun-
damental concept: postfix form (or reverse polish notation) for expressions.

� Part 4 focuses on optimization addressed through simplifications/symbolic manipu-
lations of source programs. This part requires a more complicated form of recursion
compared to the previous parts.

Furthermore, correctness issues involving compilation and optimization are addressed by
using property-based testing.

1

Part 1: A simple stack machine

We consider a simple abstract stack machine with instructions for addition, subtraction,
change sign and absolute value, and an instruction for pushing an integer to the top of the
stack.

The instruction set of this stack machine is modelled by the following F# type:

type Instruction = | ADD | SUB | SIGN | ABS | PUSH of int

A stack for this machine is a list of integers.

The execution of an instruction maps a stack to a new stack:

� The execution of ADD with stack a b c · · · yields a new stack: (b+ a) c · · · , where
the top two elements a and b on the stack have been replaced by the single element
(b+ a). Similarly with regard to the instruction SUB.

� The execution of SIGN with stack a b · · · yields a new stack: −a b · · · , where the
top element a on the stack has been replaced by the single element −a Similarly with
regard to the instruction ABS.

� The execution of PUSH r with the stack a b c · · · pushes r on top of the stack, that

is, the new stack is: r a b c · · · .

Declare a type Stack for representing the stack, and declare an F# function to interpret
the execution of a single instruction:

intpInstr: Stack -> Instruction -> Stack

A program for the stack machine is a list of instructions [i1, i2, . . . , in]. A program is executed
by executing the instructions i1, i2, . . . , in one after the other, in that order, starting with an
empty stack. The result of the execution is the top value of the stack when all instructions
have been executed.

Declare an F# function to interpret the execution of a program:

exec: Instruction list -> int

Remark: This stack machine is kept to the minimum so that it just can calculate the
value of expressions constructed from constants using the operations for addition, sub-
traction, change sign and absolute value. Instructions for branching, for example, are not
needed. Furthermore, since there are not function calls, memory management instructions
are avoided as well.

2

Part 2: Expressions: Syntax and semantics

You shall make a type declaration for expressions that are formed from a single variable
(constructor X) and integer constants (constructor C) using operations for addition (con-
structor Add), subtraction (constructor Sub), change sign (constructor Minus) and absolute
value (constructor Abs).

Declare a type Exp for expressions so that

� X, C -2, C 7

� Abs X, Minus(C 7),

� Add(Abs(Minus(C 7)), Sub(X, Minus(Add(C 2, X))))

are six values of type Exp.

The type declaration for Exp defines a so-called abstract syntax for expressions. Since values
of type Exp are trees, details that appear in concrete textual representations of expressions
can be ignored, such as use of parenthesis and concrete textual representation of functions.

The semantics (or meaning) of expressions is given by a function:

sem : Exp → int → int

where the value of sem e x is the integer computed from e using that variable X has value
x and the constructors Add, Sub, Abs, Minus correspond in an obvious way to operations
on integers. Make a declaration of sem.

Part 3: Compilation to stack-machine code

You should now construct a compiler that transforms an expression into a list of instruc-
tions. Execution of the instruction list must give the same value as the semantics of the
expression.

The compilation function is a curried function in order to have a simple setting for handling
the variable X:

compile: Exp -> int -> Instruction list

where the value of the expression compile e x is a list of instructions prg satisfying

exec prg = sem e x

for every expression e and integer x.

3

The idea behind the compilation of an expression e is that the instruction list for e corre-
sponds to a postfix form of e and the effect of executing the instruction list for e should
be that e’s value is pushed on the stack. In a postfix form of an arithmetical expression e
each operator is preceded by its operands. For example:

3 + 7 has postfix form 3 7 +
4− 5 has postfix form 4 5 −
(3 + 7) + (4− 5) has postfix form 3 7 + 4 5 − +

Observe that execution of [PUSH 3; PUSH 7; ADD; PUSH 4; PUSH 5; SUB; ADD] gives
the value of the expression (3 + 7) + (4− 5).

Postfix form is also called reverse polish notation and has, for example, the property that
any expression can be expressed without using parentheses.

Give a declaration of the compile function and use property-based testing to validate that
it is in accordance with the semantics of expressions as described above.

Part 4: Optimization: Expression reductions

Optimizations are typically performed in all phases of a compiler. In this part we shall
study optimization at the source-language level in the form of reduction of expressions.

In particular, we shall first consider the below eleven reductions that all are characterized
by the fact that the number of constructors in an expression is decreased:

Reductions where Add is the ”outermost” constructor:

Add(C i, C j) is reduced to C(i+ j)
Add(e, C 0) is reduced to e
Add(C 0, e) is reduced to e

Reductions where Sub is the ”outermost” constructor:

Sub(C i, C j) is reduced to C(i− j)
Sub(e, C 0) is reduced to e
Sub(C 0, e) is reduced to Minus e

Reductions where Minus is the ”outermost” constructor:

Minus(C i) is reduced to C(−i)
Minus(Minus e) is reduced to e

Reductions where Abs is the ”outermost” constructor:

Abs(C i) is reduced to C(abs(i))
Abs(Minus e) is reduced to Abs e
Abs(Abs e) is reduced to Abs e

4

Declare a function red: Exp -> Exp that performs the above reductions and does it in a
manner so that no further reduction is possible for the returned expression.

Use property-based testing to validate that your implementation of red is sound in the
sense that

sem e x = sem (red e) x

for every expression e and integer x.

While it is not too difficult to do some reductions, it is more complicated to make sure
that the result cannot be reduced. Analyze your program to convince yourself that none
of the eleven reductions mentioned above can be applied on a reduced expression.

Declare a function reducible: Exp -> bool that checks whether an expression can be
reduced, that is, some reduction is possible somewhere in an expression.

Use property-based testing to validate that your implementation of red is complete in the
sense that

¬(reducible(red e)) holds

for every expression e.

Can you device further reductions that decrease the number of constructors in an expres-
sion?

5

