Combing Hair and Sampling Directions
 Jeppe Revall Frisvad

December 2014 (extra slide added October 2018)

The Hairy Ball Theorem

- An even-dimensional sphere does not possess any continuously differentiable field of unit tangent vectors.
- Is it possible to comb a coconut flat?
- How do we comb it well?

Failed attempt to comb a hairy ball,
leaving an uncomfortable tuft at each pole [Wikipedia]

- Is it possible to consistently pick a perpendicular vector?

Monte Carlo Ray Tracing

- One of the most commonly used operations in MC ray tracing is to sample a direction according to a distribution around a normal.
- Directions will be sampled millions and millions of times in a common rendering.
- The direction is usually sampled in spherical coordinates.
- We need a change of basis.

- How do we efficiently get this rotation?

Sample Space to World Space

- We sample spherical coordinates (θ, ϕ).

- We convert to a local coordinate system with basis $\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{n}\right\}$ by

$$
(x, y, z)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

- The change of basis is simply

$$
\vec{\omega}=x \vec{b}_{1}+y \vec{b}_{2}+z \vec{n}
$$

but we typically have no explicit knowledge of \vec{b}_{1} and \vec{b}_{2}.

- We need a technique for building an orthonormal basis from a unit vector.

Rotation from One Vector to Another

- If we use quaternions, we do not need a basis.
- The unit quaternion $\widehat{\boldsymbol{q}}$ that specifies the rotation from \boldsymbol{u} to \boldsymbol{v} :

$$
\widehat{\boldsymbol{q}}=\left(\boldsymbol{q}_{v}, q_{w}\right)=\left(\sin \frac{\theta}{2} \boldsymbol{w}, \cos \frac{\theta}{2}\right)=\left(\frac{\boldsymbol{u} \times \boldsymbol{v}}{\sqrt{2(1+\boldsymbol{u} \cdot \boldsymbol{v})}}, \frac{1}{2} \sqrt{2(1+\boldsymbol{u} \cdot \boldsymbol{v})}\right)
$$

- Let us set $\boldsymbol{u}=(0,0,1)$ and $\boldsymbol{v}=\vec{n}=\left(n_{x}, n_{y}, n_{z}\right)$, then

$$
\widehat{\boldsymbol{q}}=\left(\frac{\left(-n_{y}, n_{x}, 0\right)}{\sqrt{2\left(1+n_{z}\right)}}, \frac{1}{2} \sqrt{2\left(1+n_{z}\right)}\right)
$$

- Applying $\widehat{\boldsymbol{q}}$ to our sampled direction, we rotate to world space: $\widehat{\boldsymbol{q}}(x, y, z, 0) \widehat{\boldsymbol{q}}^{*}$.

Quaternion Versus Change of Basis Matrix

- Quaternion:
- No need to build a basis.
- Involves square roots and quaternion multiplications.
- Singularity for $\vec{n}=(0,0,-1)$.
- Change of basis matrix:
- Build an orthonormal basis from the normal.
- Involves cross products and vector normalization.
- Avoid choosing a vector parallel with the normal when building the basis.
- Both methods accomplish the same.
- What basis is created by the quaternion technique?

Building an Orthonormal Basis

- Doing some lengthy calculations and simplifications, I found that

$$
\left(\widehat{\boldsymbol{q}}(x, y, z, 0) \widehat{\boldsymbol{q}}^{*}\right)_{v}=\left(x\left(\begin{array}{c}
1-n_{x}^{2} /\left(1+n_{z}\right) \\
-n_{x} n_{y} /\left(1+n_{z}\right) \\
-n_{x}
\end{array}\right)+y\left(\begin{array}{c}
-n_{x} n_{y} /\left(1+n_{z}\right) \\
1-n_{y}^{2} /\left(1+n_{z}\right) \\
-n_{y}
\end{array}\right)+z\left(\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right)\right)
$$

- This is an extremely efficient way to rotate sampled directions to world space (no square roots, easy to optimize).
- As a by-product, it is also a new way to build an orthonormal basis from a 3D unit vector:

$$
\vec{b}_{1}=\left(1-\frac{n_{x}^{2}}{1+n_{z}},-\frac{n_{x} n_{y}}{1+n_{z}},-n_{x}\right), \quad \vec{b}_{2}=\left(-\frac{n_{x} n_{y}}{1+n_{z}}, 1-\frac{n_{y}^{2}}{1+n_{z}},-n_{y}\right) .
$$

Rendering Advantages

- Faster sampling of directions

(sampling of spherical coordinates becomes advantageous compared to von Neumann rejection sampling.)
- We can use it to produce tangent vector directions that are consistent (no discontinuities).

- Thus, this method is probably also good for combing of hairy objects.

Avoiding the singularity and the branching

- Duff et al. [2017] improved the sampling technique by flipping signs in the basis so that we avoid numerical issues around the singularity.

$$
\vec{b}_{1}=\left(1-\frac{n_{x}^{2}}{1+\left|n_{z}\right|},-\frac{n_{x} n_{y}}{1+\left|n_{z}\right|},-n_{x} \operatorname{sgn}\left(n_{z}\right)\right), \quad \vec{b}_{2}=\left(-\frac{n_{x} n_{y}}{1+\left|n_{z}\right|} \operatorname{sgn}\left(n_{z}\right),\left(1-\frac{n_{y}^{2}}{1+\left|n_{z}\right|}\right) \operatorname{sgn}\left(n_{z}\right),-n_{y}\right)
$$

- The trade-off is that the tangent vector directions are no longer consistent across the equator of the unit sphere.

```
inline void rotate_to_normal(const optix::float3& normal, optix::float3& v)
{
    const float sign = copysignf(1.0f, normal.z);
    const float a = -1.0f/(1.0f + fabsf(normal.z));
    const float b = normal.x*normal.y*a;
    v = optix::make_float3(1.0f + normal.x*normal.x*a, b, -sign*normal.x)*v.x
        + optix::make_float3(sign*b, sign*(1.0f + normal.y*normal.y*a), -normal.y)*v.y
        + normal*v.z;
}
```

