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Abstract

In this paper, we develop an efficient homogeneous and self-dual interior-point method (IPM) for the linear

programs arising in economic model predictive control (MPC) of linear systems. To exploit the structure in the

optimization problems, our algorithm utilizes a Riccati iteration procedure which is adapted to the linear system of

equations solved in homogeneous and self-dual IPMs, and specifically tailored to economic MPC. Fast convergence is

further achieved by means of a recent warm-start strategy for homogeneous and self-dual IPMs that has not previously

been applied to MPC. We implement our algorithm in MATLAB and C, and its performance is analyzed using a

conceptual power management case study. Closed loop simulations show that 1) our algorithm is significantly faster

than several state-of-the-art IPMs based on sparse linear algebra, and 2) warm-start reduces the number of iterations

by 35-40%.

Index Terms

Optimization algorithms, Linear programming algorithms, Predictive control for linear systems, Riccati iterations,

Energy systems

I. INTRODUCTION

During the last 30-40 years, model predictive control (MPC) for constrained dynamic systems has become the

most successful advanced control technology in the process industries [1]–[4]. MPC is attractive because of its

ability to handle constraints, time delays, and multivariate systems in a straightforward and transparent way.

The basic idea of MPC is to optimize the predicted behavior of a dynamic model over a finite horizon by

solving an optimization problem. The optimization problem is updated and resolved at each sampling instant when

new information is available. Conventionally, the optimization problem solved in MPC is formulated as a convex

program that penalizes deviations between the controlled output and a set-point. While this approach ensures that

the set-point is reached in a reasonable amount of time, it does not guarantee that the transition between set-points is
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performed in an economically efficient way. To overcome this problem, economic MPC has emerged as a promising

technology which, as an alternative to classical set-point based MPC, provides a systematic method for optimizing

economic performance [5]–[11]. Stability of economic MPC has been addressed in [5]–[9], [12].

One research area where economic MPC is receiving a growing amount of attention is within control of

smart energy systems. Such systems typically consist of a large number of power generators and consumers with

diverse operational features and capabilities. These units operate with limitations on available power and operating

conditions, and system constraints arise due to the power demand and flexibility requirements. Applications of

economic MPC in smart energy systems include cost-efficient control of refrigeration systems [13], building climate

control [14], [15], and charging batteries in electric vehicles [16].

In linear economic MPC, the constrained optimal control problem can be posed as a linear program. As the

optimization problem is solved online, the performance and reliability of the optimization algorithm solving the

linear program is important. In this paper, we develop a homogeneous and self-dual variant of Mehrotra’s predictor-

corrector method [17], [18] for economic MPC that combines the following performance improvement components:

• Riccati Iteration Procedure: The optimization problem solved in linear economic MPC is highly structured.

We exploit this structure to speed-up the most time consuming numerical operations using a Riccati iteration

procedure.

• Warm-Start: In MPC applications, the optimization problems solved at successive time steps are closely

related. To take advantage of the solution from the previous sampling instant, we implement a recently

developed warm-start strategy for homogeneous and self-dual IPMs. This method does not introduce any

additional significant computations and has been reported to reduce the number of iterations by 30-75% based

on the NETLIB collection of test problems [19].

Although Riccati-based IPMs have been developed in [20]–[23] for set-point based MPC with an `2-penalty, and in

[24] with `1-penalty, these results are not directly applicable to the homogeneous and self-dual model, which has

become widely adopted by state-of-the-art IPMs for linear programming [25], [26]. Moreover, a Riccati iteration

procedure has not previously been efficiently implemented for economic MPC. We also remark that no results on

warm-start MPC applications using the strategy of [19] has been reported.

A. Paper Organization

This paper is organized as follows. In Section II, we formulate the control law associated with economic MPC

as the solution to a highly structured linear program. A homogeneous and self-dual IPM for the linear program is

derived in Section III. Section IV and Section V demonstrate how to implement the IPM efficiently using a Riccati

iteration procedure and linear algebra routines specifically tailored to economic MPC. Warm-start is discussed in

Section VI. In Section VII, a MATLAB and C implementation of our algorithm denoted LPempc is compared to

several state-of-the-art IPMs in a simple power management case study1. Concluding remarks are given in Section

1Software is available via http://www2.imm.dtu.dk/∼jbjo/publications
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VIII. Details on our Riccati iteration procedure for economic MPC are enclosed in Appendix VIII-A.

II. OPTIMAL CONTROL PROBLEM

We consider linear state space systems in the form

xk+1 = Axk +Buk + Edk, dk ∼ N(0, Rd), (1a)

yk = Cyxk + ek, ek ∼ N(0, Re), (1b)

zk = Czxk, (1c)

where x0 ∼ N(x̂0, P0). (A,B,Cy, Cz, E) are the state space matrices, xk ∈ Rnx is the state vector, uk ∈ Rnu

is the input vector, yk ∈ Rny is the measurement vector, zk ∈ Rnz is the output vector, dk is the process noise

vector and ek is the measurement noise vector. We use bold letters to denote stochastic variables.

Economic MPC based on the separation and certainty equivalence principle defines a control law for the system

(1) that optimizes the control actions with respect to an economic objective function, input limits, input-rate limits

and soft output limits. Evaluation of this control law requires the solution to the linear program

min.
u,x̂,ẑ,ρ

∑
j∈N0

pTk+juk+j + qTk+j+1ρk+j+1, (2a)

s.t.

x̂k+j+1|k = Ax̂k+j|k +Buk+j , j ∈ N0, (2b)

ẑk+j|k = Czx̂k+j|k, j ∈ N1, (2c)

uk+j ≤ uk+j ≤ uk+j , j ∈ N0, (2d)

∆uk+j ≤ ∆uk+j ≤ ∆uk+j , j ∈ N0, (2e)

zk+j − ρk+j ≤ ẑk+j|k ≤ zk+j + ρk+j , j ∈ N1, (2f)

ρk+j ≥ 0, j ∈ N1, (2g)

where Ni := {0 + i, 1 + i, . . . , N − 1 + i}, with N being the length of the prediction and control horizon. The

problem data are the state-space matrices, (A,B,Cz), the filtered estimate, x̂k|k, the input limits, (uk+j , uk+j),

the input-rate limits, (∆uk+j ,∆uk+j), the output limits, (zk+j , zk+j), the input prices, pk+j , and the price for

violating the output constraints, qk+j . As an example, in power systems management pk may be the cost of fuel and

qk may be the cost of not meeting the power demand. Note that for compact notation, the optimization variables

in (2) are written as u, x̂, ẑ and ρ, where u =
[
uTk uTk+1 · · · uTk+N−1

]T
, and similarly for x̂, ẑ, and ρ.

The filtered estimate, x̂k|k := E[xk|Yk], is the conditional expectation of xk given the observations Yk :=[
yT0 yT1 yT2 . . . yTk

]T
. We obtain this value using the Kalman filter.

The input-rate is defined terms of the backward difference operator

∆uk+j := uk+j − uk+j−1, j ∈ N0.
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By augmenting the state-space system such that

A :=

A 0

0 0

 , x̂k :=

 x̂k

uk−1

 , B :=

B
I

 ,
E :=

E
0

 , Cz :=
[
Cz 0

]
, Cy :=

[
Cy 0

]
,

we can express (2e) as

∆uk+j ≤uk+j −Dxk ≤ ∆uk+j , j ∈ N0,

in which D :=
[
0 I

]
. This formulation simplifies later computations considerably. To keep the notation simple

we assume that k = 0 and write x̂j := x̂0+j|0 for conditional expressions.

A. Linear Program Formulation

By aggregating the problem data into the structures g, F , b, H and c, (2) can be put into the form

min.
t,s
{gT t|Ft = b,Ht+ s = c, s ≥ 0}. (3)

As an example, consider the case for N = 2

t :=
[
uT0 x̂T1 ρT1 uT1 x̂T2 ρT2

]T
,

g :=
[
pT0 0 qT1 pT1 0 qT2

]T
,

and [
F b

]
:=

 B −I 0 0 0 0 −Ax̂0
0 A 0 B −I 0 0

 ,

[
H c

]
:=



I 0 0 0 0 0 u0

0 0 0 I 0 0 u1

−I 0 0 0 0 0 −u0
0 0 0 −I 0 0 −u1
I 0 0 0 0 0 ∆ũ0

0 −D 0 I 0 0 ∆u1

−I 0 0 0 0 0 −∆
˜
u0

0 D 0 −I 0 0 −∆u1

0 Cz −I 0 0 0 z1

0 0 0 0 Cz −I z2

0 −Cz −I 0 0 0 −z1
0 0 0 0 −Cz −I −z2
0 0 −I 0 0 0 0

0 0 0 0 0 −I 0



,
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where

∆ũ0 := ∆u0 +Dx̂0,

∆
˜
u0 := ∆u0 +Dx̂0.

Hence, (2) can be posed as a highly structured linear program with n := N(nu + nx + nz) variables, mE := Nnx

equality constraints and mI := N(4nu + 3nz) inequality constraints. We have eliminated ẑj from the optimization

problem using the linear relation (2c).

III. HOMOGENEOUS AND SELF-DUAL MODEL

The dual of the linear program (3) is

max
v,w

{−bT v − cTw| − FT v −HTw = g, w ≥ 0}, (4)

where v ∈ RmE and w ∈ RmI are dual variables corresponding to the Lagrange multipliers for the equality

constraints and the inequality constraint of (3), respectively. We assume that F has full row rank. This is always

the case for the problem (3).

In homogeneous and self-dual IPMs, the solution to (3)-(4) is obtained by solving a related homogeneous and

self-dual linear program [27]–[29]. Aside from an inherent ability to detect infeasibility, recent advances show that

IPMs based on the homogeneous and self-dual model can be warm-started efficiently [19].

Introduce a new set of optimization variables (t̃, ṽ, w̃, s̃), and the additional scalar variables (τ̃, κ̃). Then the

self-dual and homogeneous problem associated with (3)-(4), may be stated as the linear feasibility problem

find t̃, ṽ, w̃, s̃, τ̃, κ̃, (5a)

s.t. FT ṽ +HT w̃ + gτ̃ = 0, (5b)

bτ̃ − F t̃ = 0, (5c)

cτ̃ −Ht̃− s̃ = 0, (5d)

− gT t̃− bT ṽ − cT w̃ + κ̃ = 0, (5e)

(w̃, s̃, τ̃, κ̃) ≥ 0, (5f)

Proposition 1 shows that the solution to (3)-(4), can be obtained by solving (5).

Proposition 1: The linear feasibility problem (5) always has a strict complimentary solution (t̃∗, ṽ∗, w̃∗, s̃∗, τ̃∗, κ̃∗)

satisfying s̃∗j w̃
∗
j = 0 for j = 1, 2, . . . ,mI and τ̃∗κ̃∗ = 0. For such a solution, one of the following conditions hold

• I) τ̃∗ > 0 and κ̃∗ = 0:

The scaled solution (t∗, v∗, w∗, s∗) = (t̃∗, ṽ∗, w̃∗, s̃∗)/τ̃∗ is a primal-dual optimal solution to (3)-(4).

• II) τ̃∗ = 0 and κ̃∗ > 0:

The problem (3) is infeasible or unbounded; either −bT ṽ∗ − cT w̃∗ > 0 (implies primal infeasibility), or

gT t̃∗ < 0 (implies dual infeasibility).

Proof: See [29].
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A. Interior Point Method

We now present a homogeneous and self-dual IPM for solving (5). For compact notation, we denote the

optimization variables by φ := (t̃, ṽ, w̃, s̃, τ̃, κ̃), and introduce superscript k to indicate a particular iteration number.

The necessary and sufficient optimality conditions for (5) are (w̃, s̃, κ̃, τ̃) ≥ 0 and

V (φ) :=



V1(φ)

V2(φ)

V3(φ)

V4(φ)

V5(φ)

V6(φ)


=



FT ṽ +HT w̃ + gτ̃

bτ̃ − F t̃

cτ̃ −Ht̃− s̃

−gT t̃− bT ṽ − cT w̃ + κ̃

W̃ S̃1mI

τ̃ κ̃


=



0

0

0

0

0

0


, (6)

W̃ is a diagonal matrix with the elements of w in its diagonal, and similarly for S̃. Moreover, 1mI
is the column

vector of all ones of size mI .

To find a point satisfying the optimality conditions, we use a variant of Mehrotra’s predictor-corrector method

[17], [18]. The method tracks the central path C, which connects an initial point φ0 satisfying (w̃0, s̃0, κ̃0, τ̃0) ≥ 0

to a strict complementary solution of (5), denoted φ∗. Formally, we can write the central path as

C :=
{
φ|V (φ) = γr0, (w̃, s̃, κ̃, τ̃) ≥ 0, γ ∈ [0, 1]

}
.

In this definition

r0 : =
[
V1(φ0)T V2(φ0)T V3(φ0)T V4(φ0)T µ01TmI

µ0
]T
,

where µ0 := ((w̃0)T s̃0 + τ̃0κ̃0)/(mI + 1) is a measure of the duality gap, and Vi(φ) is the i’th set of components

of V (φ), defined as in (6).

The basic idea in IPMs is to generate a sequence of iterates along the central path {φ0, φ1, . . . , φk, . . . , φN},

such that φN → φ∗ as N →∞. In Mehrotra’s predictor-corrector method, the iterates are computed by repeating

a two-step procedure. In the first part of the procedure an affine-scaling direction is determined and an affine step

is computed. Secondly a center-corrector direction is found using information from the affine step. The resulting

optimizing search direction is then the sum of the affine-scaling direction and the center-corrector direction.

Affine Step: The affine-scaling direction, ∆φkaff, corresponds to the Newton direction for (6), and is obtained by

solving the linear system of equations

JV (φk)∆φkaff = −V (φk). (7)
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The Jacobian of V evaluated at φk is

JV (φk) =



0 FT HT 0 g 0

−F 0 0 0 b 0

−H 0 0 −I c 0

−gT −bT −cT 0 0 1

0 0 S̃k W̃ k 0 0

0 0 0 0 κ̃k τ̃k


. (8)

Given the solution to (7), we find the maximum step length in the affine-scaling direction for the primal and dual

variables, such that (5f) remains satisfied

αkaff := max

aaff ∈ [0, 1]|

w̃k
τ̃k

+ aaff

∆w̃kaff

∆τ̃kaff

 ≥ 0

 ,

βkaff := max

baff ∈ [0, 1]|

s̃k
κ̃k

+ baff

∆s̃kaff

∆κ̃kaff

 ≥ 0

 .

Accordingly, affine variables are computed as

w̃kaff : = w̃k + αkaff∆w̃
k
aff, s̃kaff : = s̃k + βkaff∆s̃

k
aff,

τ̃kaff : = τ̃k + αkaff∆τ̃
k
aff, κ̃kaff : = κ̃k + βkaff∆κ̃

k
aff.

The affine variables provide a measure of the relative reduction in the duality gap, in the affine-scaling direction.

This information is used to update the centering parameter γ. For this purpose, we use the following heuristic

proposed in [18]

γk :=

[
µkaff

µk

]3
=

[
((w̃kaff)

T s̃kaff + τ̃kaffκ̃
k
aff)

((w̃k)T s̃k + τ̃kκ̃k)

]3
. (9)

Search Direction: The optimizing search direction, ∆φk, is the sum of the affine-scaling direction and a center-

corrector direction. Using the approach described in e.g. [18] and [30], we determine this direction by solving (7)

with a modified right hand side

JV (φk)∆φk = −V̄ (φk). (10)

V̄i(φ) := (1− γk)Viφ for i = 1, 2, 3, 4 and

V̄5(φk) := V5(φk) + ∆W̃ k
aff∆S̃

k
aff1mI

− γkµk1TmI
,

V̄6(φk) := V6(φk) + ∆τ̃kaff∆κ̃
k
aff − γkµk.

The diagonal matrices ∆W̃ k
aff and ∆S̃kaff are defined in a similar way to W̃ and S̃. Terms involving these matrices are,

as well as ∆τ̃kaff and ∆κ̃kaff, included to compensate for linearization errors [18]. We also notice that by employing

the heuristic (9), the search direction is forced towards the central path if µkaff ≈ µk, meaning that only a small step

in the non-negative orthant (w̃, s̃, κ̃, τ̃) ≥ 0 is available in the affine-scaling direction.
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1) Stopping Criteria: To classify a solution as optimal, we adopt the criteria proposed in [30]

%kE ≤ εE , %kI ≤ εI , %kD ≤ εD, %kO ≤ εO. (11)

Moreover, the problem is considered to be infeasible if τ̃k ≤ ετ max(1, κ̃k), and

%kE ≤ εE , %kI ≤ εI , %kD ≤ εD, %kG ≤ εG. (12)

ετ , εE , εI , εD, εO and εG are small user-defined tolerances and

%D : = ||V1(φ)||∞/max(1, ||
[
HT FT g

]
||∞),

%E : = ||V2(φ)||∞/max(1, ||
[
F b

]
||∞),

%I : = ||V3(φ)||∞/max(1, ||
[
H I c

]
||∞),

%G : = |L− κ̃|/max(1, ||
[
gT bT cT 1

]
||∞),

%O : = |L|/(τ̃ + | − bT ṽ − cT w̃|).

where L := gT t̃− (−bT ṽ − cT w̃) is the duality gap.

2) Algorithm: Algorithm 1 summarizes the homogeneous and self-dual IPM described in this paper. We use a

damping parameter, ν, to keep the iterates well inside the interior of the non-negative orthant, (w̃, s̃, τ̃, κ̃) ≥ 0. At

the beginning of every iteration, Algorithm 1 uses condition (11) and (12) to check for convergence.

IV. RICCATI ITERATION PROCEDURE

The main computational efforts in Algorithm 1 are the solution of the linear systems (7) and (10). For an arbitrary

right hand side, we can write these operations as

FT∆ṽ +HT∆w̃ + g∆τ̃ = r1, (13a)

b∆τ̃ − F∆t̃ = r2, (13b)

c∆τ̃ −H∆t̃−∆s̃ = r3, (13c)

gT∆t̃+ bT∆ṽ + cT∆w̃ −∆κ̃ = r4, (13d)

W̃∆s̃+ S̃∆w̃ = r5, (13e)

κ̃∆τ̃ + τ̃∆κ̃ = r6. (13f)

We remark that the system (13) is different from the system solved in standard IPMs, due to the introduction of the

homogeneous and self-dual model. Consequently, existing Riccati iteration procedures for MPC cannot be applied

directly. As shown in Proposition 2 however, the solution to (13) can be obtained by solving a reduced linear system

and a number of computationally inexpensive operations.
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Algorithm 1 Homogeneous and self-dual IPM for (5)

Require:


DATA (g, F, b,H, c)

INITIAL POINT (t̃, ṽ, w̃, s̃, τ̃, κ̃)

PARAMETERS ν ∈ [0.95; 0.999]

// initialize

µ← (w̃T s̃+ τ̃ κ̃)/(mI + 1)

while not CONVERGED do

// affine-scaling direction

∆φaff ← −JV (φ)−1V (φ)

αaff ← max {aaff ∈ [0, 1]|(w̃, τ̃) + aaff(∆w̃aff,∆τ̃aff) ≥ 0}

βaff ← max {baff ∈ [0, 1]|(s̃, κ̃) + baff(∆s̃aff,∆κ̃aff) ≥ 0}
s̃aff ← s̃+ βaff∆s̃aff, κ̃aff ← κ̃+ β̃aff∆κ̃aff

w̃aff ← w̃ + αaff∆w̃aff, τ̃aff ← τ̃ + α̃aff∆τ̃aff

µaff ← (w̃Taffs̃aff + τ̃affκ̃aff)/(mI + 1)

γ ← (µaff/µ)3

// optimizing search direction

∆φ← −JV (φ)−1V̄ (φ)

α← max {a ∈ [0, 1]|(w̃, τ̃) + a(∆w̃,∆τ̃) ≥ 0}

β ← max {b ∈ [0, 1]|(s̃, κ̃) + b(∆s̃,∆κ̃) ≥ 0}
t̃← t̃+ νβ∆t̃, s̃← s̃+ νβ∆s̃, κ̃← κ̃+ νβ∆κ̃

ṽ ← ṽ + να∆ṽ, w̃ ← w̃ + να∆w̃, τ̃ ← τ̃ + να∆τ̃

µ← (w̃T s̃+ τ̃ κ̃)/(mI + 1)

end while

Proposition 2: The solution to (13) can be obtained by solving
0 FT HT

−F 0 0

−H 0 W̃−1S̃



f1 h1

f2 h2

f3 h3

 =


r1 −g

r2 −b

r3 −c

 , (14)
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and subsequent computation of

∆τ̃ =
r6 − τ̃(gT f1 + bT f2 + cT f3)

κ̃+ τ̃(gTh1 + bTh2 + cTh3)
,

∆t̃ = f1 + h1∆τ̃,

∆ṽ = f2 + h2∆τ̃,

∆w̃ = f3 + h3∆τ̃,

∆κ̃ = gT∆t̃+ bT∆ṽ + cT∆w̃ − r4,

∆s̃ = W̃−1(rC − S̃∆w̃),

where r3 := r3 + W̃−1r5 and r6 := r6 + τ̃ r4.

Proof: See [30].

Appendix VIII-A provides an efficient Riccati iteration procedure for the solution of (14). The proposed method

has order of complexity O(N(nu + nx + nz)
3) per iteration. In comparison, the complexity of solving the system

directly using sparse linear algebra routines is linear to quadratic in N , while a general purpose solver using dense

linear algebra scales cubically [31]. We remark that if the number of states, nx, is large compared to the number

of inputs, nu, condensing methods are more efficient than Riccati-based solvers [21].

V. SPECIAL OPERATORS

To speed-up the numerical computations and reduce the storage requirements of our algorithm, operations

involving the structured matrices F and H are implemented as specialized linear algebra routines [32].

Denote the Lagrange multipliers associated with the inequality constraints (2d)- (2g) as η, λ, υ, ω, γ, ζ and ξ

where

η :=
[
ηT0 ηT1 . . . ηTN−1

]T
,

and similarly for λ, υ, γ, ζ and ξ. The multipliers (η, λ) are associated with the input limits (2d), (υ, ω) are

associated with the input-rate limits (2e), (γ, ζ) are associated for the output limits (2f), and ξ is associated with

the non-negative constraints (2g).

Using the notation above, we can write the optimization variables, (t̃, ṽ, w̃), as

t̃ =
[
uT0 x̂T1 ρT1 uT1 x̂T2 ρT2 . . . uTN−1 x̂TN ρTN

]T
,

ṽ =
[
ṽT1 ṽT2 . . . ṽTN

]T
,

w̃ =
[
ηT λT υT ωT γT ζT ξT

]T
.
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The rows of FT ṽ and Hw̃ are computed as

(FT ṽ)i =



BT ṽj , i ∈ I1,

AT ṽj+1 − ṽj , i ∈ I2,

0, i ∈ I4,

−ṽj−2, i ∈ I4,

where I1 := 1, 4, . . . , 3N − 2, I2 := 2, 5, . . . , 3N − 4, I3 := 3, 6, . . . , 3N , I4 := 3N − 1 and j := bi/3c + 1.

Moreover

(HT w̃)i =



ηj−1 − λj−1 + υj−1 − ωj−1, i ∈ I1,

DT (ωj − υj) + CTz (γj − ζj), i ∈ I2,

−γj−1 − ζj−1 − ξj−1, i ∈ I3,

CTz (γj−2 − ζj−2), i ∈ I4,

where j := bi/3c+ 1. For F t̃ and Ht̃ we have

(F t̃)i =

Bui−1 − x̂i, i = 1,

Ax̂i−1 +Bui−1 − x̂i, i = 2, 3, . . . , N,

and

(Ht)i =



uj , i = 1, . . . , N,

−uj , i = N + 1, . . . , 2N,

u0, i = 2N + 1,

−Dx̂j + uj , i = 2N + 2, . . . , 3N,

−u0, i = 3N + 1,

Dx̂j − uj , i = 3N + 2, . . . , 4N,

Czx̂j+1 − ρj+1, i = 4N + 1, . . . , 5N,

−Czx̂j+1 − ρj+1, i = 5N + 1, . . . , 6N,

−ρj+1, i = 6N + 1, . . . , 7N.

in which j := (i− 1) mod N .

VI. WARM-START

We apply the warm-starting strategy from [19] to pick an initial point for Algorithm 1. The main idea is to

combine a guess of the solution (candidate point) with a standard cold starting point φ0 = (0, 0,1mI
,1mI

, 1, 1).

An important feature of the homogenous and self-dual model is that this cold-starting point is perfectly centralized

with respect to the central path [19].
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The initial point is defined as

w̃0 = λw̄ + (1− λ)1mI
, s̃0 =λs̄+ (1− λ)1mI

,

t̃0 = λt̄, ṽ0 =λv̄,

τ̃0 = 1, κ̃0 =(w̃0)T s̃0/mI ,

where (t̄, v̄, w̄, s̄) is the candidate point and λ ∈ [0, 1] is a tuning parameter. Notice that in case λ = 0, the initial

point becomes the standard cold-starting point. Conversely, λ = 1 means that the initial solution becomes the

candidate point. Since this point typically lies close to the boundary of the non-negative orthant, (w̃, s̃, κ̃, τ̃) ≥ 0,

λ = 1 can lead to ill-conditioned linear systems and/or blocking of the search direction [33].

In MPC applications, the optimal control problem is solved in a closed-loop fashion. Therefore, a good choice

of the candidate point at time k can be constructed using the solution from the previous time step. As an example

consider the solution of (3)-(4) at time step k = 0, for N = 3

t∗ :=
[
u∗T0 x̂∗T1 ρ∗T1 u∗T1 x̂∗T2 ρ∗T2 u∗T2 x̂∗T3 ρ∗T3

]T
.

In this case we use the following candidate point at time step k = 1

t̄ :=
[
u∗T1 x̂∗T2 ρ∗T2 u∗T2 x̂∗T3 ρ∗T3 u∗T2 x̂∗T3 ρ∗T3

]T
.

Similarly, we left-shift the slack variables, s, and the dual variables v and w.

VII. POWER MANAGEMENT CASE STUDY

In this section we compare LPempc against IPMs from the following software packages: Gurobi, SeDuMi,

MOSEK, LIPSOL, GLPK. These state-of-the-art IPMs are mainly written in low-level language such as FORTRAN

and C, and rely on sparse linear algebra that are specifically tailored to the solution of large-scale sparse linear

and conic programs. We also include the simplex method provided by CPLEX in our comparisons, as well as the

automatic code generation based IPM FORCES [34]. All solvers are called from MATLAB using MEX interfaces.

We have performed our simulations using an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz with 4 GB RAM

running a 64-bit Ubuntu 12.04.1 LTS operating system.

The test system is a system of m generic power generating units in the form introduced in [35]. For i = 1, 2, . . . ,m

Yi(s) =
1

(τis+ 1)3
(Ui(s) +Di(s)) + Ei(s). (15)

Di(s) is the process noise, Ei(s) is the measurement noise, Ui(s) is the power set-point and Yi(s) is the power pro-

duction. The total production from the m power generating units is simply the sum Z(s) =
∑m
i=1

1
(τis+1)3 (Ui(s) +Di(s)) .

We convert the transfer function model into the state space form (1) using a sampling time of Ts = 5 seconds. In

the resulting model structure, uk ∈ Rnu is the nu power set-points, yk ∈ Rny is the measured power production,

and zk ∈ Rnz is the total power production. Note that nu = ny = m and nz = 1. It is assumed that dk ∼ N(0, σI),

and ek ∼ N(0, σI).
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TABLE I

CASE STUDY PARAMETERS

τi pk uk uk ∆uk ∆uk

Power Plant 1 90 100 0 200 -20 20

Power Plant 2 30 200 0 150 -40 40

A. Simulations

An example with two power generating units is considered; a cheap/slow unit, and an expensive/fast unit. This

conflict between response time and operating costs represents a common situation in the power industry where large

thermal power plants often produce a majority of the electricity, while the use of units with faster dynamics such

as diesel generators and gas turbines are limited to critical peak periods. The controller objective is to coordinate

the most cost-efficient power production, respecting capacity constraints and a time-varying electricity demand. It

is assumed that full information about the initial state is given x0 ∼ (0, 0), and that the penalty of violating the

output constraints is qk = 104 for all time steps. Table I lists the system and controller parameters. We set the

prediction and control horizon to N = 80 time steps. Fig. 1 shows a closed-loop simulation with σ = 1. The figure

illustrates the power production of each power generating unit. The cheap unit produces 97% of the energy, while

the expensive unit is activated only to compensate for the power imbalances otherwise caused by the slow unit.

Fig. 1 also shows that warm-start yields a significant reduction in the number of iterations. On average the number

of iterations is reduced by approximately 37%.

Fig. 2 shows a number of box-plots used to tune the warm-start parameter λ. The case λ = 0 corresponds to a

cold-start. For all values of λ warm-start reduces the average number of iterations. We have chosen λ = 0.99 for

our controller. This value of λ yields an initial point which is both close to the candidate point and lies well inside

the interior of the non-negative orthant, (w̃, s̃, κ̃, τ̃) ≥ 0. Fig. 2 shows that for λ = 0.99, the number of iterations

is reduced even when the variance of the process and measurement noise is increased significantly.

Fig. 3 depicts the computation time of solving the LP (2) as a function of the number of power generating units,

m, and the length of the horizon, N . The figure shows that LPmpc is faster than all other solvers with a significant

margin. In addition to the algorithms included in Fig. 3, the problem (2) was solved using the code generation

based IPM CVXGEN [36]. For problems larger than m = 4 and N = 12 however, CVXGEN code generation fails

due to the problem size. Therefore, we have not included results for CVXGEN in our benchmark. In general, code

generation based solvers such as CVXGEN and FORCES are most competitive for small-dimensional problems

[34]. Fig. 4 shows CPU-timings for a closed-loop simulation with 15 power generating units and a prediction

horizon of N = 200 time steps. Only the most competitive solvers are included. In this simulation LPempc is

up to an order of magnitude faster than CPLEX, Gurobi, SeDuMi and MOSEK, depending on the problem data.

On average, LPempc is approximately 5 times faster than Gurobi, 6 times faster than MOSEK, 19 times faster

than SeDuMi, and 22 times faster CPLEX. Notice that when the number of units is large, the optimization problem
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Fig. 1. Closed-loop simulation of a power system controlled by economic MPC. Warm-start (λ = 0.99) yields a significant reduction in the

number of iterations.

(2) may be solved using Dantzig-Wolfe decomposition [37]. The Dantzig-Wolfe decomposition algorithm solves a

number of subproblems that have the structure (2). These subproblems can be solved efficiently using LPempc.

VIII. CONCLUSIONS

In this paper, we have developed a computationally efficient IPM for linear economic MPC. The novelty of our

algorithm is the combination of a homogeneous and self-dual model, and a Riccati iteration procedure specifically

tailored to MPC. This is a significant contribution since existing Riccati iteration procedures for MPC are not

directly applicable to the homogeneous and self-dual model that has become widely adopted by state-of-the-art

IPMs for linear programming. We have also implemented and tested a recent warm-start strategy for homogeneous

and self-dual IPMs that has not previously been used in MPC applications. Our simulations show that this strategy

reduces the average number of iterations by 30%-35%, and that a MATLAB and C implementation of our algorithm,

LPempc, is significantly faster than several state-of-the-art IPMs. In a conceptual power management case study

LPempc is up to an order of magnitude faster than CPLEX, Gurobi, SeDuMi and MOSEK. This is important,

since the computing time of solving the optimal control problem is critical in MPC applications. The simulation
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Fig. 2. Number of iterations as a function of the tuning parameter λ, and the noise parameter σ. Each box-plot has been generated based on

an entire closed-loop simulation. In the top plot we have fixed σ = 1, and in the bottom plot λ = 0.99.

results also show that the difference in computing time becomes larger with the problem size, as LPempc scales

in a favourable way.

A. Riccati Iteration Procedure for Economic MPC

Consider the system (14) 
0 FT HT

−F 0 0

−H 0 W̃−1S̃



f1 h1

f2 h2

f3 h3

 =


r1 −g

r2 −b

r̂3 −c

 .
For a single arbitrary right hand side, we may write this system as

0 FT HT

−F 0 0

−H 0 W̃−1S̃




∆t̃

∆ṽ

∆w̃

 =


rD

rE

rI

 . (16)
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Fig. 3. CPU-time for the different solvers as a function of the horizon N length and the number of power generators m.

Using the same notation as in Section V, we write the solution to (16) in the form

∆t̃ =
[
∆uT0 ∆x̂T1 ∆ρT1 . . . ∆uTN−1 ∆x̂TN ∆ρTN

]T
,

∆ṽ =
[
∆ṽT0 ∆ṽT1 . . . ∆ṽTN−1

]T
,

∆w̃ =
[
∆ηT ∆λT ∆υT ∆ωT ∆γT ∆ζT ∆ξT

]T
.

Accordingly, we partition the right hand side such that

rD =
[
rTu,0 rTx,1 rTw,1 . . . rTu,N−1 rTx,N rTw,N

]T
,

rE =
[
RTv,0 RTv,1 . . . RTv,N−1

]T
,

rI =
[
rTη rTλ rTυ rTω rTγ rTζ rTξ

]T
,

and write the diagonal matrix W̃−1S̃ in terms of diagonal submatrices

W̃−1S̃ = diag
(
ΣTη ,Σ

T
λ ,Σ

T
υ ,Σ

T
ω ,Σ

T
γ ,Σ

T
ζ ,Σ

T
ξ

)
.
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Fig. 4. CPU-time for solving (2) with 15 power generating units and a prediction horizon of 200 time steps. We observe that warm-starting

reduces the average number of iterations by approximately 40%.

The linear system of equations (16) can now be stated in the form

∆ηi −∆λi + ∆υi −∆ωi +BT∆ṽi = ru,i, i ∈ N0,

−∆ui + Ση,i∆ηi = rη,i, i ∈ N0,

∆ui + Σλ,i∆λi = rλ,i, i ∈ N0,

−∆ui +D∆x̂i + Συ,i∆υi = rυ,i, i ∈ Ñ0,

∆ui −D∆x̂i + Σω,i∆ωi = rω,i, i ∈ Ñ0,

∆x̂i+1 −A∆x̂i −B∆ui = Rv,i, i ∈ Ñ0,

∆ρi − Cz∆x̂i + Σγ,i∆γi = rγ,i, i ∈ N1,

∆ρi + Cz∆x̂i + Σζ,i∆ζi = rζ,i, i ∈ N1,

∆ρi + Σξ,i∆ξi = rξ,i, i ∈ N1,

−∆γi −∆ζi −∆ξi = rw,i, i ∈ N1,

−∆ṽi + CTz (∆γi+1 −∆ζi+1) +AT∆ṽi

+DT (ωi −∆υi) = rx,i, i ∈ Ñ0,
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with Ñ0 := N0 \ 0 and the special cases

−∆u0 + Συ,0∆υ0 = rυ,0,

∆u0 + Σω,0∆ω0 = rω,0,

∆x̂1 −B∆u0 = Rv,0,

−∆ṽN−1 + CTz (∆γN −∆ζN ) = rx,N .

By eliminating the Lagrange multipliers for the inequality constrains ∆η, ∆λ, ∆υ, ∆ω, ∆γ, ∆ζ and ∆ξ we get

the reduced set of equations

BT∆ṽ0 + U0∆u0 = Ru,0, (17a)

BT∆ṽi + Ui∆ui +Gi∆x̂i = Ru,i, i ∈ Ñ0, (17b)

−∆x̂1 +B∆u0 = Rv,0, (17c)

−∆x̂i+1 +A∆x̂i +B∆ui = Rv,i, i ∈ Ñ0, (17d)

Wi∆ρi +MT
i ∆x̂i = Rw,i, i ∈ N1, (17e)

−∆ṽi−1 +Mi∆ρi + X̄i∆x̂i

+GTi ∆ui +AT∆ṽi = R̄x,i, i ∈ Ñ0, (17f)

−∆ṽN−1 +MN∆ρN + X̄N∆x̂N = R̄x,N , (17g)

where we have defined

Ui := Σ−1η,i + Σ−1λ,i + Σ−1ω,i + Σ−1υ,i , i ∈ N0,

Gi := −(Σ−1ω,i + Σ−1υ,i)D, i ∈ Ñ0,

Wi := Σ−1ζ,i + Σ−1ξ,i + Σ−1γ,i , i ∈ N1,

Mi := CTz (Σ−1ζ,i − Σ−1γ,i), i ∈ N1,

X̄i := CTz (Σ−1ζ,i + Σ−1υ,i)Cz +DT (Σ−1γ,i + Σ−1ω,i)D, i ∈ Ñ0,

X̄N := CTz (Σ−1ζ,N + Σ−1υ,N )Cz.

Furthermore

Ru,i := ru,i + r̄λ,i + r̄ω,i − r̄η,i − r̄υ,i, i ∈ N0,

Rv,i := −Rv,i, i ∈ N0,

Rw,i := rw,i−1 + r̄ζ,i−1 + r̄ξ,i + r̄γ,i, i ∈ N1,

R̄x,i := rx,i + CTz (r̄ζ,i − r̄γ,i) +DT (r̄υ,i − r̄ω,i), i ∈ Ñ0,

R̄x,N := rx,N + CTz (r̄ζ,N − r̄γ,N ).
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For compact notation, we have introduced the notation r̄λ,i := Σ−1λ,irλ,i, and in a similar way we define r̄ω,i, r̄η,i,

r̄υ,i, r̄ζ,i, r̄ξ,i and r̄γ,i. Solving (17e) for ∆ρi gives

∆ρi = W−1i (Rw,i −MT
i ∆x̂i), i ∈ N1. (18)

Substituting back into (17) yields the equations

BT∆ṽ0 + U0∆u0 = Ru,0

BT∆ṽi + Ui∆ui +Gi∆x̂i = Ru,i, i ∈ Ñ0

−∆x̂1 +B∆u0 = Rv,0

−∆x̂i+1 +A∆x̂i +B∆ui = Rv,i, i ∈ Ñ0

−∆ṽi−1 +Xi∆x̂i +GTi ∆ui +AT∆ṽi = Rx,i, i ∈ Ñ0

−∆ṽN−1 +XN∆x̂N = Rx,N

where Xi := X̄i −MiW
−1
i MT

i and Rx,i := R̄x,i −MiW
−1
i Rw,i. As an example let N = 3. In this case, the

equations above may be arranged as

U0 BT

B −I

−I X1 GT1 AT

G1 U1 BT

A B −I

−I X2 GT2 AT

G2 U2 BT

A B −I

−I X3





∆u0

∆ṽ0

∆x̂1

∆u1

∆ṽ1

∆x̂2

∆u2

∆ṽ2

∆x̂3



=



Ru,0

Rv,0

Rx,1

Ru,1

Rv,1

Rx,2

Ru,2

Rv,2

Rx,3


This system can be solved efficiently by a Riccati iteration procedure [20], [22]–[24].
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