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Abstract

This paper presents a warm-started Dantzig-Wolfe decomposition algorithm tailored to economic model predictive control of dy-
namically decoupled subsystems. We formulate the constrained optimal control problem solved at each sampling instant as a linear
program with state space constraints, input limits, input rate limits, and soft output limits. The objective function of the linear
program is related directly to the cost of operating the subsystems, and the cost of violating the soft output constraints. Simulations
for large-scale economic power dispatch problems show that the proposed algorithm is significantly faster than both state-of-the-art
linear programming solvers, and a structure exploiting implementation of the alternating direction method of multipliers. It is also
demonstrated that the control strategy presented in this paper can be tuned using a weighted `1-regularization term. In the presence
of process and measurement noise, such a regularization term is critical for achieving a well-behaved closed-loop performance.
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1. Introduction

Conventionally, the optimal control problem (OCP) solved
in model predictive control (MPC) is formulated as a convex
program that penalizes deviations between the controlled out-
put and a setpoint [1–4]. While this approach ensures that the
setpoint is reached in a reasonable amount of time, it does not
guarantee that the transition between setpoints is performed in
an economically efficient way. To overcome this problem, MPC
has been extended to solve OCPs with more general cost func-
tions, providing a systematic method for optimizing economic
performance [5–11]. Stability and other properties of such eco-
nomic MPC (EMPC) schemes have been addressed in [5–9, 12–
14].

The main contribution of this paper is a Dantzig-Wolfe de-
composition algorithm for EMPC of dynamically decoupled
subsystems that solves the OCP in an efficient and reliable
way. As the control law is computed in real-time, such an al-
gorithm allows EMPC to be employed even for applications
with thousands of subsystems. In particular, we consider an
`1-regularized linear type of OCP with input constraints, input
rate constraints and soft output constraints. Each subsystem is
governed by a discrete state space model. The coupling of the
subsystems occurs through a set of aggregated variables.

The Dantzig-Wolfe decomposition algorithm, presented in
this paper, exploits that dynamically decoupled subsystems give
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Figure 1: Flowchart of the delayed column generation procedure used in the
Dantzig-Wolfe decomposition algorithm for EMPC of dynamically decoupled
subsystems with linking constraints. In each iteration, dual prices associated
with the linking constraints are obtained by solving the master problem. These
prices are used by the subsystems to compute an updated solution that improves
the overall objective function.

rise to a block-angular structure in the OCP constraint matrix.
This allows the OCP to be decomposed into a master problem
and a number of subproblems [15–17]. The master problem
includes a set of linking constraints which couples the subsys-
tems, whereas the subproblems are concerned only with the in-
dividual subsystems. Using an iterative approach illustrated in
Fig. 1, the decomposed problem can be solved via a delayed
column generation procedure. Such techniques have previously
been applied to conventional norm-based MPC in [18–20].

The block-angular constraint matrix structure appears for dy-
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namically decoupled subsystems with linking constraints [21].
Dynamic multi-plant models as well as dynamic multi-product
models are examples of such models [22]. Dynamic multi-
plant models occur e.g. in the production planning for multi-
ple refineries [23]. For process systems, dynamically decou-
pled systems with linking constraints occur when independent
units are connected to shared process equipment such as pipes.
A boiler-turbine system producing high pressure (HP), middle
pressure (MP) and low pressure (LP) steam as well as electricity
is a common example of a system that can be modeled as dy-
namically decoupled subsystems (the boilers) that have linking
constraints (the demand for various steam qualities and electri-
cal power) [18, 24]. In upstream offshore oil production, the
compressors and pumps of a number of production wells share
the pipeline, separators and compressors to bring the oil on-
shore [25, 26]. This is also an example of a system that can
be modeled as dynamically decoupled subsystems with link-
ing constraints. Smart Grid systems in which a number of in-
dependent energy producers and consumers are controlled to
balance power production and consumption represent yet an-
other instance of dynamically decoupled systems with linking
constraints [20, 27]. The temperature regulation of multi-room
buildings can also be formulated as dynamically decoupled sub-
systems with linking constraints [28]. As is evident by this list
of examples, dynamically decoupled subsystems with linking
constraints are common in process systems.

To test a MATLAB implementation of the Dantzig-Wolfe de-
composition algorithm, denoted DWempc, a simple energy sys-
tems management case study is presented. We show that as
more units are added to a network of controllable generators,
DWempc becomes increasingly favorable over state-of-the-art
sparse linear programming solvers provided by Gurobi, CPLEX,
and MOSEK. It is further demonstrated that a nearly optimal solu-
tion can be acquired, even if DWempc is terminated early. This is
an attractive property in real-time applications such as EMPC,
since only a limited amount of time is available for solving the
OCP.

In addition to the general purpose solvers, DWempc is com-
pared to a structure exploiting implementation of the alternat-
ing direction method of multipliers (ADMM) [29–32], denoted
ADMMempc, with similar parallelization capabilities to DWempc.
Simulations illustrate that unless a highly suboptimal control
performance is tolerated, DWempc outperforms ADMMempc with
a significant margin. Results also show that for both algorithms,
a simple warm-start strategy yields a substantial improvement
over cold start, and that the performance of this strategy in-
creases with the weights on the `1-regularization term. Inclu-
sion of the regularization term is critical for the controller per-
formance in the face of stochastic process and measurement
noise as well as model-plant mismatch.

1.1. Paper Organization

We have organized the paper as follows. In Section 2, the
OCP solved in this paper is introduced. We decompose the
problem using Dantzig-Wolfe decomposition in Section 3, and
a column generation procedure for solving the decomposed

problem is presented. Section 4 describes a distributed imple-
mentation of ADMM for solving the OCP. Section 5 reports
performance indicators for the proposed algorithms. These per-
formance indicators are computed using a conceptual energy
systems management case study. Concluding remarks are given
in Section 6.

2. Problem Definition

We consider M dynamically decoupled discrete state space
models in the form

x j,k+1 = A jx j,k + B ju j,k, j ∈ M, (1a)
y j,k = C jx j,k, j ∈ M, (1b)

whereM = {1, 2, . . . ,M}. The state space matrices are denoted
by (A j, B j,C j), the states by x j,k ∈ Rnx( j), the inputs by u j,k ∈

Rnu( j), and the outputs by y j,k ∈ Rny( j). Moreover, we define the
aggregated variables

yT,k =
∑
j∈M

Υ jy j,k =
∑
j∈M

Υ jC jx j,k, (2)

in which Υ j ∈ RnyT ×ny( j) are subsystem multipliers.
The OCP defining the EMPC control law for the subsystems

(1), is in this paper defined as

min
u,x,y,yT ,ρ,γ

ψ = ψeco + ψreg, (3a)

with

ψeco =
∑
k∈N0

qT
k+1ρk+1 +

∑
j∈M

pT
j,ku j,k + rT

j,k+1γ j,k+1

 , (3b)

ψreg =
∑
k∈N0

∑
j∈M

w j,k ||∆u j,k ||1, (3c)

and subject to the constraints

x j,k+1 = A jx j,k + B ju j,k, k ∈ N0, j ∈ M, (3d)
y j,k = C jx j,k, k ∈ N1, j ∈ M, (3e)

yT,k =
∑
j∈M

Υ jC jx j,k, k ∈ N1, (3f)

u j,k ≤ u j,k ≤ u j,k, k ∈ N0, j ∈ M, (3g)

∆u j,k ≤ ∆u j,k ≤ ∆u j,k, k ∈ N0, j ∈ M, (3h)

y
j,k
− γ j,k ≤ y j,k ≤ y j,k + γ j,k, k ∈ N1, j ∈ M, (3i)

0 ≤ γ j,k ≤ γ j,k, k ∈ N1, j ∈ M, (3j)

y
T,k
− ρk ≤ yT,k ≤ yT,k + ρk, k ∈ N1, (3k)

0 ≤ ρk ≤ ρk, k ∈ N1, (3l)

where ≤ and ≥ denote element-wise inequalities. The input rate
is defined as ∆uk = uk−uk−1 andNi = {0+ i, 1+ i, . . . ,N−1+ i},
with N being the length of the control and prediction horizon.

The input data to (3) are the input limits, (u j,k, u j,k), the input
rate limits, (∆u j,k,∆u j,k), the subsystem output limits, (y

j,k
, y j,k),
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the aggregated variable limits, (y
T,k
, yT,k), the input prices, p j,k,

the price for violating the subsystem output limits, r j,k, and the
price for violating the aggregated variable limits, qk. The slack
variables, γ j,k and ρk, account for the violation of the soft output
constraints. We impose upper limits, (γ j,k, ρk), on these vari-
ables, as this simplifies later computations considerably.

The objective function (3a) consists of an economic term (3b)
and a regularization term (3c). The economic term (3b) repre-
sents the cost of operating the subsystems and the cost of vio-
lating the soft output constraints. The regularization term (3c)
is included to obtain a well behaved solution. In our paper,
the regularization term is formulated as a weighted `1-penalty
on the input rate. Using an `1-penalty ensures that the resulting
OCP is a linear program that can be solved using Dantzig-Wolfe
decomposition.

Remark 1. An alternative way of expressing the OCP objec-
tive function (3a) is as a trade-off between the economic term
and the regularization term, such that

ψ = αψeco + (1 − α)ψreg, α ∈ [0, 1], (4)

where α is a user-defined parameter. [12] discusses the trade-off

between the economic term and an `2-regularization term.
The regularization term (3c) is a special case of

ψreg =
∑
k∈N0

∑
j∈M

wx
j,k+1||x j,k+1 − x̄ j,k+1||1

+
∑
j∈M

wu
j,k ||u j,k − ū j,k ||1 + w∆u

j,k ||∆u j,k ||1

 ,
(5)

in which {x̄ j,k+1, ū j,k}k∈N0, j∈M are target values that may be com-
puted by a target calculator or a real-time optimization layer.
An objective function consisting only of (5) corresponds to con-
ventional `1 norm-based MPC. [20] solves such problems using
Dantzig-Wolfe decomposition.

Remark 2. The objective function (4) is similar to the mean-
variance-based economic objective function introduced in [33]
for production optimization in an oil field. For a random cost
variable, ψeco, the mean-variance optimization criterion is

ψMV = αE[ψeco] + (1 − α)V[ψeco].

E[ψeco] is the cost expectation and V[ψeco] is the cost variance.
In (4), ψeco can be interpreted as a certainty-equivalent approxi-
mation of the mean of the random cost variable, ψeco, while the
regularization term, ψreg, is included to make the controller less
sensitive to noise. The key advantage in using the determin-
istic formulation (4) is that the computational load is signifi-
cantly reduced compared to a mean-variance approach based
on Monte Carlo simulations. Other measures of risk than the
mean-variance formulation that can be used to regularize the
solution are Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) [34].

Remark 3. The Dantzig-Wolfe decomposition algorithm is an
algorithm for solving linear programs. Consequently, the ap-
proach described in this paper is limited to solve OCPs with
a linear objective function, linear dynamics, and linear con-
straints. [35] provides a number of penalty functions that can
be expressed as linear programs. Penalty functions based on `1
norms, such as (3c) and (5), as well as `∞ norms can be ex-
pressed as linear programs. Piecewise linear approximations
accommodate the need for solving OCPs with more general
convex economic cost functions [26, 36, 37]. The disadvan-
tage of using piecewise linear approximations is that the size of
the resulting linear program may increase considerably.

Remark 4. The expression (2) for the aggregated variables is
tailored to dynamically decoupled subsystems that collaborate
to meet a common objective. The expression (2) is a special
case of the more general expression

yT,k =
∑
j∈M

Υ
y
jy j,k + Υu

ju j,k, k ∈ N1, (6)

for the aggregated variables. The general expression (6) may
be used to describe couplings between subsystems (e.g. in-
teractions between 1) process units in a process system; and
2) the transmission lines coupling producers and consumers in
a power system) [18]. When the number of aggregated vari-
ables increases, the number of linking constraints increases.
The Dantzig-Wolfe decomposition algorithm is most efficient
when the number of linking constraints is small compared to
the total number of constraints.

2.1. Compact Formulation
By eliminating the states using equation (1a), we can write

the output equation, (1b), as

y j,k = C jAk
j x j,0 +

∑
i∈N0

H j,k−iu j,i, j ∈ M, k ∈ N1,

where the impulse response coefficients are given by

H j,k = C jAk−1
j B j, j ∈ M, k ∈ N1.

Consequently

yT,k =
∑
j∈M

Υ jC jAk
j x j,0 +

∑
i∈N0

Υ jH j,k−iu j,i

 , k ∈ N1.

Define the vectors

y j =
[
yT

j,1 yT
j,2 · · · yT

j,N

]T
, j ∈ M, (7a)

u j =
[
uT

j,0 uT
j,1 · · · uT

j,N−1

]T
, j ∈ M, (7b)

and the matrices

Γ j =


H j,1 0 · · · 0
H j,2 H j,1
...

...
. . .

H j,N H j,N−1 · · · H j,1

 , Φ j =


C jA j

C jA2
j

...
C jAN−1

j

 ,
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for j ∈ M. Then, for each of the subsystems (7a)

y j = Γ ju j + Φ jx j,0, j ∈ M. (8)

By introducing Γ̃ j and Φ̃ j accordingly, it follows that yT =∑
j∈M Γ̃ ju j + Φ̃ jx j,0.
The notation is simplified further with

u j =
[
uT

j,0 uT
j,1 · · · uT

j,N−1

]T
, j ∈ M,

u j =
[
uT

j,0 uT
j,1 · · · uT

j,N−1

]T
, j ∈ M,

and similarly we define ∆u j, ∆u j, y
j
, y j, y

T
, yT , γ̄ j, ρ̄, ρ, η̄ j, η j,

q, p j, r j, w j and γ j. Using these definitions, the OCP (3) may
be written in the form

min
u,ρ,γ,η

ψ = qTρ +
∑
j∈M

pT
j u j + rT

j γ j + wT
j η j (9a)

subject to a set of decoupled constraints

u j ≤ u j ≤ u j, j ∈ M, (9b)

∆u j − I0u j,−1 ≤ Λu j ≤ ∆u j − I0u j,−1, j ∈ M, (9c)

y
j
− γ j ≤ Γ ju j + Φ jx j,0 ≤ y j + γ j, j ∈ M, (9d)

I0u j,−1 − η j ≤ Λu j ≤ I0u j,−1 + η j, j ∈ M, (9e)
0 ≤ η j ≤ η, j ∈ M, (9f)
0 ≤ γ j ≤ γ, j ∈ M, (9g)

and a set of linking constraints

y
T
− ρ ≤

∑
j∈M

Γ̃ ju j + Φ̃ jx j,0 ≤ yT + ρ. (9h)

0 ≤ ρ ≤ ρ, (9i)

where Λ and I0 are defined as

Λ j =


I
−I I

. . .
. . .

−I I

 , I0 =


I
0
...
0

 .
We remark that (9e)-(9f) imply that η j,k ≥ |∆u j,k |. Note also,
that the structure of the constraint matrix in (9), can be stated in
the block-angular form illustrated in Fig. 2.

In particular, (9) is written as

min
z

ψ =
∑
j∈M̄

cT
j z j, (10a)

s.t. G jz j ≥ g j, j ∈ M̄, (10b)∑
j∈M̄

H jz j ≥ h, (10c)

with M̄ = 1, 2, . . . ,M + 1, and

z j =
[
uT

j γT
j ηT

j

]T
, c j =

[
pT

j rT
j wT

j

]T
, j ∈ M,

zM+1 = ρT , cM+1 =qT .

Figure 2: The block-angular structure of the constraint matrix in (9). The effi-
ciency of the Dantzig-Wolfe decomposition method depends on this structure.

(10b) represents the decoupled constraints (9b)-(9g), and (10c)
represents the linking constraints (9h)-(9i).

The data structures in (10) are defined as

G j =

[
Ḡ j

−Ḡ j

]
, g j =

 g
j
−g j

 , H j =

[
H̄ j

−H̄ j

]
, h =

[
h
−h

]
,

in which

[
Ḡ j g

j
g j

]
=



I 0 0 u j u j

Λ 0 0 ∆u˜j ∆ũ j

Γ j I 0 y˜j ∞

Γ j −I 0 −∞ ỹ j

0 I 0 0 γ j
−Λ 0 I −I0u j,−1 ∞

Λ 0 I I0u j,−1 ∞

0 0 I 0 η j


,

[
H̄ j h h

]
=

[
Γ̃ j 0 y˜T ∞

Γ̃ j 0 −∞ ỹT

]
,

for j ∈ M, with

y˜T = y
T
−

∑
j∈M

Φ̃ jx j,0, ỹT = yT −
∑
j∈M

Φ̃ jx j,0,

y˜j = y
j
− Φ jx j,0, ỹ j = y j − Φ jx j,0, j ∈ M,

∆u˜j = ∆u j + I0u j,−1, ∆ũ j = ∆u j + I0u j,−1, j ∈ M,

In the special case j = M + 1[
ḠM+1 g

M+1
gM+1

]
=

[
I 0 ρ

]
,

H̄M+1 =
[
I −I

]T
.

Remark 5. We only use (10) to have a convenient notation.
In the actual solution of all the linear and quadratic programs
reported in this paper, the bound constraints are exploited.
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3. Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition utilizes the fact that a convex
set can be characterized by its extreme points and its extreme
rays [15–17]. In particular, for each j ∈ M̄, the set of points
satisfying the decoupled constraints (10b) may be written as

G j = {z j|G jz j ≥ g j}

=

z j|z j =
∑
i∈P

λi
jz

i
j,
∑
i∈P

λi
j = 1, λi

j ≥ 0 ∀i ∈ P

 , (11)

where zi
j are the extreme points of G j, and λi

j are convex com-
bination multipliers. Note that since each of the sets G j are
bounded, extreme rays are not needed in their representation. P
is a set defined such that all extreme points of the set defined
by (10b) can be represented as zi = [zi

j] j∈M̄ = [zi
1; zi

2; . . . ; zi
|M̄|

]
for i ∈ P. Note that with this definition, the same extreme
point, zi

j, may appear several times in (11). This mathemati-
cal representation, with the possibility that the same subprob-
lem extreme point, zi

j, is represented several times, facilitates a
computationally efficient implementation of the Dantzig-Wolfe
decomposition algorithm.

By replacing the decision variables in (10) by convex com-
bination multipliers, we obtain the master problem formulation

min
λ

ψ =
∑
j∈M̄

∑
i∈P

ci
jλ

i
j, (12a)

s.t.
∑
j∈M̄

∑
i∈P

Hi
jλ

i
j ≥ h, (12b)

∑
i∈P

λi
j = 1, j ∈ M̄, (12c)

λi
j ≥ 0, j ∈ M̄, i ∈ P, (12d)

where we have defined

Hi
j = H jzi

j, j ∈ M̄, i ∈ P, (13a)

ci
j = cT

j zi
j, j ∈ M̄, i ∈ P. (13b)

Given a solution, λ∗, to the master problem (12), a solution to
the original problem (10) can be obtained as

z∗j =
∑
i∈P

(λ∗)i
jz

i
j, j ∈ M̄.

The number of extreme points, |P|, can increase exponentially
with the size of the original problem. In such cases, it is com-
putationally inefficient to solve the master problem directly. In
the following section, we overcome this issue by employing a
column generation procedure that replaces P by a subset P̃.

3.1. Column Generation Procedure
The dual linear program of (12) may be stated as

max
α,β

φ = αT h +
∑
j∈M̄

β j, (14a)

s.t. (Hi
j)

Tα + β j ≤ ci
j, j ∈ M̄, i ∈ P, (14b)

α ≥ 0. (14c)

α ∈ R4N and β ∈ RM+1 are the Lagrange multipliers associated
with the linking constraints (12b) and the convexity constraints
(12c), respectively.

The necessary and sufficient optimality conditions for (12)
and (14) are ∑

j∈M̄

∑
i∈P

Hi
jλ

i
j ≥ h, (15a)

∑
i∈P

λi
j = 1, j ∈ M̄, (15b)

λi
j ≥ 0, j ∈ M̄, i ∈ P, (15c)

ci
j − (Hi

j)
Tα − β j ≥ 0, j ∈ M̄, i ∈ P, (15d)

α ≥ 0, (15e)

λi
j(c

i
j − (Hi

j)
Tα − β j) = 0, j ∈ M̄, i ∈ P, (15f)

Proposition 1 shows that a solution to the master problem (12)
can be obtained by solving a restricted master problem in which
P in (12) is replaced by P̃ ⊆ P. This implies that a solution to
(12) can be obtained by solving a linear program that is often
much smaller than (12).

Proposition 1. Let P̃ ⊆ P and define (λ̃, α̃, β̃) as a primal-
dual solution to (12) and (14) with P replaced by P̃. Define
(λ∗, α∗, β∗) as

α∗ = α,

β∗j = β j, j ∈ M̄,

(λ∗)i
j =

λ̃i
j if i ∈ P̃

0 if i ∈ P \ P̃
, j ∈ M̄, i ∈ P.

If the optimal objective value of the subproblem

min
z̃ j

ϕ j = (c j − HT
j α
∗)T z̃ j − β

∗
j (16a)

s.t. G jz̃ j ≥ g j, (16b)

is non-negative for each j ∈ M̄, i.e. ϕ∗j ≥ 0∀ j ∈ M̄, then
(λ∗, α∗, β∗) satisfies the necessary and sufficient optimality con-
ditions (15), λ∗ is a minimizer of (12), and (α∗, β∗) is a maxi-
mizer of (14).

Proof. The solution (λ∗, α∗, β∗) satisfies (15a) since∑
j∈M̄

∑
i∈P

Hi
j(λ
∗)i

j =
∑
j∈M̄

∑
i∈P̃

Hi
jλ̃

i
j ≥ h,

which follows from the definition of (λ̃, α̃, β̃). Similarly, it can
be verified that the conditions (15b), (15c), (15e) and (15f) are
fulfilled.

Provided that (λ∗, α∗, β∗) is optimal, (15d) yields

ci
j − (Hi

j)
Tα∗ − β∗j = (c j − HT

j α
∗)T zi

j − β
∗
j ≥ 0, (17)

for all j ∈ M̄ and i ∈ P. By construction of (λ∗, α∗, β∗), (17)
is satisfied for all i ∈ P̃. To check that the condition holds for
all i ∈ P \ P̃, we consider the optimization problem (16). Since
this linear program minimizes the left hand side of (17) over all
possible extreme points, z̃ j, of G j, (λ∗, α∗, β∗) also satisfies the
remaining optimality condition (17) if ϕ j is non-negative for all
j ∈ M̄.
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Algorithm 1 Column generation procedure for solution of (12).
Require: (imax, ε), {z0

j } j∈M̄
i = 0, converged = false

while not converged and i < imax do
P̃ = {0, 1, . . . , i}
COMPUTE PROBLEM DATA

for j ∈ M̄ do
Hi

j = H jzi
j

ci
j = cT

j zi
j

end for
SOLVE RESTRICTED MASTER PROBLEM

(φ∗, λ∗, α∗, β∗)← solve (12) with P = P̃

SOLVE SUBPROBLEMS

for j ∈ M̄ do
(ϕ∗j , z̃

∗
j)← solve (16)

end for
CHECK IF CONVERGED

if |ϕ j| ≥ ε ∀ j ∈ M̄ then
converged = true

else
UPDATE EXTREME POINTS

for j ∈ M̄ do
zi+1

j = z̃∗j
i = i + 1

end for
end if

end while

Algorithm 1 summarizes a column generation procedure
based on Proposition 1.

Remark 6. The problem (16) is an OCP with linear constraints
and a linear objective function. [10, 11, 38] and [39] provide
an efficient Riccati-based homogeneous and self-dual interior-
point linear programming algorithm for such problems. Us-
ing the optimal interior point solution found by this algorithm,
crossover methods can be applied to obtain an optimal extreme
point for the column generation procedure [17].

3.2. Warm-Start

A sequence of closely related OCPs are solved in a moving
horizon implementation of EMPC. Therefore, in Algorithm 1
the feasible initial guess of the solution, {z0

j } j∈M̄, at the current
sampling instant is constructed from the solution at the previous
sampling instant.

Given the solution to (16)

u∗j =
[
u∗Tj,0 · · · u∗Tj,N−1

]T
, j ∈ M,

γ∗j =
[
γ∗Tj,1 · · · γ∗Tj,N

]T
, j ∈ M,

η∗j =
[
η∗Tj,0 · · · η∗Tj,N−1

]T
, j ∈ M,

ρ∗ =
[
ρ∗T1 · · · ρ∗TN

]T
,

we construct an initial point for the following sampling instant
as

z0
j =

[
(u0

j )
T (γ0

j )
T (η0

j )
T
]T
, j ∈ M,

where

u0
j =

[
u∗Tj,1 · · · u∗Tj,N−1 (u0

j,N)T
]T
, j ∈ M,

γ0
j =

[
γ∗Tj,2 · · · γ∗Tj,N (γ0)T

j,N+1

]T
, j ∈ M,

η0
j =

[
η∗Tj,1 · · · η∗Tj,N−1 (η0)T

j,N

]T
, j ∈ M.

Finally

z0
M+1 = ρ0 =

[
ρ∗T2 · · · ρ∗TN (ρ0)T

N+1

]T
.

The original solution values are thus shifted forward in time,
and u0

j,N , γ0
j,N+1, η0

j,N and ρ0
N+1 are appended to the resulting

initial point.
In our implementation, we use

u0
j,N = u∗j,N−1, j ∈ M,

η0
j,N = 0, j ∈ M.

We use the state space equations (1) and (2) to compute y0
j,N+1

and y0
T,N+1 associated with the input sequence {u0

j } j∈M. We con-
struct the initial slack values as

γ0
j,N+1 = max(y

j,N+1
− y0

j,N+1, 0) + max(y0
j,N+1 − y j,N+1, 0),

for each j ∈ M, and

ρ0
N+1 = max(y

T,N+1
− y0

T,N+1, 0) + max(y0
T,N+1 − yT,N+1, 0).

As the solution to the OCP often only differs slightly be-
tween successive sampling instants, the initial point generated
as above provides a warm-start for Algorithm 1.

3.3. Cold-Start

In the case that no previous solution is available for generat-
ing a warm start, a feasible initial guess of the solution, {z0

j } j∈M̄,
in Algorithm 1 can be constructed by adjusting the slack vari-
ables, γ0

j and ρ0. Let {u0
j } j∈M be feasible with respect to the

input constraints and the input-rate constraints. Such a point is
easily obtained in practice. As an example consider u0

j = u j
for each j ∈ M. Then, in a similar way as for the warm-start
strategy, we compute

γ0
j,k = max(y

j,k
− y0

j,k, 0) + max(y0
j,k − y j,k, 0),

ρ0
k = max(y

T,k
− y0

T,k, 0) + max(y0
T,k − yT,k, 0),

where k ∈ N1, j ∈ M. The values, y0
j,k and y0

T,k are the sub-
system outputs and the aggregated variables associated with the
inputs, {u0

j } j∈M, computed via (1) and (2). Finally, η0
j = ∆u0

j for
each j ∈ M.
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4. The Alternating Direction Method of Multipliers

ADMM has been demonstrated as a powerful algorithm for
solving large-scale structured convex optimization problems
[29]. The problems successfully solved by ADMM includes
a range of OCPs arising in MPC applications [30–32]. In this
section, we present a distributed ADMM scheme for solving
the OCP (10) that exploits the block-angular structure of (10).
We refer to [29] for details and proofs related to ADDM.

To solve (10) via ADMM, we first introduce the auxiliary
variables v j ∈ R4NnyT for j = 1, 2, . . . ,M and vM+1 ∈ R4N , and
write the OCP as

min
z,v

ψ =
∑
j∈M̄

cT
j z j,

s.t. G jz j ≥ g j, j ∈ M̄,

H jz j = v j, j ∈ M̄,∑
j∈M̄

v j ≥ h,

Using indicator functions, this problem can be stated in the
standard ADMM form

min
z,v

ψ =
∑
j∈M̄

(
cT

j z j + IZ j (z j)
)

+ IV(v), (18a)

s.t. H jz j = v j, j ∈ M̄ (18b)

whereZ j =
{
z j|G jz j ≥ g j

}
,V =

{
v|

∑
j∈M̄ v j ≥ h

}
, and IA is the

indicator function of a set A defined as

IA(x) =

{
0 if x ∈ A,
∞ otherwise.

For the problem (18), the ADMM recursions described in [29]
becomes

zi+1
j = argmin

z j∈Z j

cT
j z j +

ρ
2 ||H jz j − vi

j + ui
j||

2
2, j ∈ M̄, (19a)

vi+1 = argmin
v∈V

ρ
2

∑
j∈M̄

||H jzi+1
j − v j + ui

j||
2
2, (19b)

ui+1
j = ui

j + H jzi+1
j − vi+1

j , j ∈ M̄, (19c)

where ui is a scaled dual variable.
The update of z j, (19a), thus consists of solving the con-

strained quadratic program

min
z j

ρ
2 zT

j HT
j H jz j + (c j + ρ(−vi

j + ui
j)

T H j)T z j, (20a)

s.t. G jz j ≥ g j (20b)

for each j ∈ M̄.
The update for v, (19b), yields the explicit solution

vi+1
j = H jzi+1

j + ui
j + max(l/(M + 1), 0), j ∈ M̄,

where l = h −
∑

j∈M̄ H jzi+1
j + ui

j. Each subsystem can thus
perform its own update of z j. Having computed l with a con-
tribution from all the subsystems, v j and u j can be determined
individually as well.

Algorithm 2 ADMM algorithm for the solution of (10)
Require: (ρ, α, imax, εP, εD), (v0, u0), (εP, εD)

i = 0, converged = false

while converged = false and i < imax do
UPDATE VARIABLES

for j ∈ M̄ do
zi+1

j = argmin
z j∈Z j

cT
j z j +

ρ
2 ||H jz j − vi

j + ui
j||

2
2

end for
l = h −

∑
j∈M̄ αH jzi+1 − (1 − α)(−vi

j) + ui
j

for j ∈ M̄ do
vi+1

j = αH jzi+1 − (1 − α)(−vi
j) + ui

j + max(l/(M + 1), 0)
ui+1

j = ui
j + αH jzi+1 − (1 − α)(−vi

j) − vi+1
j

end for
COMPUTE RESIDUALS

for j ∈ M̄ do
ri+1

j = ρH jzi+1
j − vi+1

j

si+1
j = −ρHT

j (vi+1 − vi)
end for
CHECK IF CONVERGED

if ||ri+1||2 ≤ εP and ||si+1||2 ≤ εD then
converged = true

end if
i← i + 1

end while

Algorithm 2 provides an overview of the ADMM steps de-
scribed above. Under mild assumptions, the ADMM algorithm
converges with a linear convergence rate to the optimal solu-
tion of the OCP [29, 40]. Note that we have replaced H jzi+1

j

with αH jzi+1 − (1 − α)(−vi
j) in the recursions for v j and u j. As

described in [29, 41] such a relaxation often speeds up con-
vergence. The relaxation parameter α ∈ [0, 2] is tuned to the
particular application.

To detect an optimal solution in Algorithm 2, we have
adopted the stopping criteria proposed in [29]. For the specific
problem formulation (18), these criteria can be written as

||ri||2 ≤ εp, ||si||2 ≤ εd,

in which

si+1
j = −ρHT

j (vi+1 − vi), ri+1
j = ρH jzi+1

j − vi+1
j ,

measure the primal and dual residual. These stopping criteria
may be extended to include a relative measure as well [29].

As for the Dantzig-Wolfe decomposition algorithm, a warm
start for Algorithm 2 can be constructed by shifting the closed-
loop solution values, v∗ and u∗, forward in time. If such a solu-
tion is not available, the standard cold-starting point (v0, u0) =

(0, 0) is used. We remark that in comparison to the Dantzig-
Wolfe decomposition algorithm, the initial point does not need
to be feasible. Moreover, the extensions of Algorithm 2 are
not restricted only to linear programming [30–32]. One could
consider more general regularization terms in (4), e.g. `2-
regularization terms.
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Figure 3: EMPC diagram for the Dantzig-Wolfe decomposition algorithm for a
dynamic multi-plant system with linking constraints.

Remark 7. The optimization problem (20) is an OCP with a
quadratic cost function and linear constraints. Efficient algo-
rithms for such structured QPs include active-set methods [42–
44], interior-point methods [10, 45–50] and first-order methods
[49, 51].

5. Smart Energy Systems Case Study

To handle the volatile and unpredictable power generation as-
sociated with technologies such as wind, solar and wave power,
energy systems management has emerged as a promising appli-
cation area for EMPC. In EMPC of energy systems, the power
production planning is handled in real-time by computing an
optimal production plan based on the most recent information
available such as forecasts of energy prices, wind power pro-
duction, and district heating consumption [52–57].

In this section we use a conceptual energy systems manage-
ment case study to test a MATLAB implementation of Algo-
rithm 1, DWempc, and a MATLAB implementation of Algorithm
2, ADMMempc. The energy system considered, consists of a col-
lection of power generating units in the form

Y j(s) =
1

(τ js + 1)3

(
U j(s) + D j(s)

)
+ E j(s), j ∈ M, (21)

where D j(s) is the process noise, E j(s) is the measurement
noise, U j(s) is the input (power production setpoint) to the j’th
power unit and Y j(s) is its power production. The third or-
der model, (21), has been validated against actual measurement
data in [58]. This system is a dynamic multi-plant system. Fig.
3 illustrates the Dantzig-Wolfe decomposition algorithm for a
dynamic multi-plant system.

To represent different types of power generating units, we
vary the time constants, τ j; values in the range 40-80 are asso-
ciated with slow units such as centralized thermal power plants,
while values in the range 20-40 represent units with faster dy-
namics such as diesel generators and gas turbines.

In the case study, the controller must compute the most cost-
efficient feasible power setpoint for each power generating unit
such that the total power production satisfies the time varying
power demand.

The total power produced by the M generating units is

YT (s) =

M∑
j=1

1
(τ js + 1)3

(
U j(s) + D j(s)

)
. (22)

Using a discrete state space representation, (21)-(22) may be
expressed as

x j,k+1 = A jx j,k + B ju j,k + E jd j,k, j ∈ M, (23a)
y j,k = C jx j,k + e j,k, j ∈ M, (23b)

yT,k =
∑
j∈M

C jx j,k, (23c)

In the resulting model structure, u j,k ∈ R is the unit input (power
setpoint), y j,k ∈ R is the unit power production, and yT,k ∈ R is
the total power production. We assume that x j,0 ∼ N(x̂ j,0, P j,0),
d j,k ∼ N(0,R j,d), and that e j,k ∼ N(0,R j,e). By employing the
Kalman filter, the separation principle, and the certainty equiv-
alence principle, the OCP in EMPC for (23) can be stated in the
form (3) with Υ j = 1 for all j ∈ M, see e.g. [38].

5.1. Suboptimality Measure

The Dantzig-Wolfe decomposition algorithm and the
ADMM algorithm satisfy the subsystem constraints (10b) in
every iteration. Therefore, a set of feasible but not necessar-
ily optimal inputs, {û j}

M
j=1, is available for the power generating

units at each iteration of the algorithms. Consequently, the al-
gorithms may be terminated early and still provide a feasible
suboptimal solution. Using (9), we can compute the cost asso-
ciated with the suboptimal inputs as

ψ̂ = qT ρ̂ +
∑
j∈M

pT
j û j + rT

j γ̂ j + wT
j η̂,

where ρ̂, γ̂ j and η̂ j are completely determined by û j. Based on
ψ̂ and the optimal value ψ∗, we define the level of suboptimality
as

ω = 100
ψ̂ − ψ∗

max(|ψ∗|, 1)
. (24)

This definition of suboptimality provides a quality measure of
the current available inputs.

Remark 8. In Dantzig-Wolfe decomposition, the solution to
the restricted master problem, (12) with P replaced by P̃ ⊂ P,
provides an upper bound on the optimal objective value. More-
over, a lower bound can be determined without much extra
work via the Lagrangian relaxation techniques described in
[59]. Therefore, a bound on (24) can be computed in each iter-
ation of Algorithm 1.
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Table 1: Case study simulation and controller parameters.

τi pk uk uk ∆uk ∆uk

Generating Unit 1 65 1/65 0 4 -1 1
Generating Unit 2 75 1/75 0 4 -1 1

5.2. Simulation Parameters
In the simulations presented below, the control and prediction

horizon is N = 60 time steps, and a sampling time of Ts = 5
seconds is used. Each generating unit is represented by a system
in the form (21) with a time constant, τ j, sampled from the
uniform distribution over the interval [20, 80]. For simplicity, it
is assumed that d j,k ∼ N(0, (10σ)2I), e j,k ∼ N(0, σ2I), and that
full initial state information is given such that x j,0 ∼ (0, 0).

The power generating unit input price is p j,k = 1/τ j. This im-
plies that fast units are more expensive to use than slow units.
The conflict between response time and operating costs repre-
sents a common situation in the power industry: Large thermal
power plants often produce a majority of the electricity, while
the use of units with faster dynamics such as diesel generators
and gas turbines are limited to critical peak periods.

We define the input limits and the input rate limits as

(u j,k, u j,k,∆u j,k,∆u j,k) = (0, 8/M,−M/4,M/4).

In this way, the possible contribution from each unit to the over-
all power production diminishes as the number of units is in-
creased. Local output constraints in the form (3i)-(3j) are not
present. The local output variables, y j,k, and the local slack vari-
ables, γ j,k, are thus excluded from the optimization problem.

The penalty for not satisfying the electricity demand (3k) is
fixed to ρk = 10. For ADMMmpc, we use the algorithm parame-
ters ρ = 1 and α = 1.8. These parameters have been carefully
tuned to this particular application. The tolerance parameter
for DWempc is set to ε = 1e-4. ADMMmpc uses the following
primal and dual tolerance specification: εP = εD = 1e-2. Both
DWempc and ADMMempc use CPLEX for solving the subproblems.
Although the subproblems are solved sequentially, we refer to
their effective CPU time in this paper, assuming that the sub-
problems are solved in parallel. The reason for this is to report
the full potential of the distributed optimization algorithms.

5.3. Closed-Loop Simulations
We first consider an example with M = 2 power generating

units. Table 1 lists the system and controller parameters.
Fig. 4 illustrates closed-loop simulations for different val-

ues of the noise parameter, σ, and the regularization weights,
w = w j,k. As indicated in Fig. 4(b), the closed-loop input
variance increases significantly if no penalty is imposed on the
input rate. This happens even for small values of the noise
parameter. By assigning a penalty to the input-rate, the solu-
tion becomes more well-behaved and better suited for practi-
cal applications. Table 2 shows that the addition of regulariza-
tion also reduces the computing time for DWempc as well as for
ADMMempc. E.g. for scenario s6, corresponding to σ = 0.01 and
w = 0.1, the average number of iterations performed by DWempc
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Figure 5: Suboptimality level of the closed-loop solution obtained by DWempc

and ADMMempc when terminated after 0.01 seconds.

is reduced by more than 40% compared to the case without reg-
ularization, i.e. the case with w = 0. Also observe that while
warm-start only leads to a marginal improvement in the itera-
tion count for DWempc, a substantial reduction in the number of
iterations is achieved for ADMMempc.

Fig. 5 shows the level of suboptimality, ω, computed
via (24), for scenario s5 when the run time of DWempc and
ADMMempc is limited to 0.01 seconds. We observe that DWempc
is up to approximately 30% suboptimal when cold-started, and
not more than than 5% suboptimal when warm-started. Hence,
although the number of iterations only decreases slightly when
DWempc is warm-started, the quality of the solution obtained af-
ter terminating early improves significantly. By the same token,
warm-start reduces the level of suboptimality for ADMMempc by
several orders of magnitude.

Provided that the number of iterations is small, the effort per
iteration is approximately equal for DWempc and ADMMempc. Ta-
ble 2 reports that ADMMempc requires many more iterations than
DWempc. Accordingly, we expect DWempc to provide a more
accurate solution than ADMMempc within the same time frame.
This is confirmed by Fig. 5. Note however, that the comput-
ing time per iteration is constant for ADMMempc, while each it-
eration of DWempc requires an increasing work-load since ex-
treme points are added to the restricted master problem on the
fly. Nonetheless, in all our simulations DWempc outperforms
ADMMempc by a significant margin.
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Figure 4: Closed-loop simulations of the system (23) controlled by EMPC. The OCP (3) representing the EMPC is solved to a specified tolerance using CPLEX.
The figures illustrate the total output and the inputs for different values of the noise parameter, σ, and the regularization weights, w. The effect of the regularization
is most clearly observed in the inputs. At the expense of slightly less tight control on the total power output, the inputs become less volatile when the regularization
weight is increased.
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Figure 6: Level of suboptimality as a function of the CPU time, for a single
instance of the OCP with 128 generating units.

Fig. 6 depicts the level of suboptimality as a function of the
CPU time for DWempc and ADMMempc. A single instance of the
OCP with 128 generating units is solved. Initially, ADMMempc
finds the best solution. The quality of this solution is how-
ever far from optimal, making it economically very inefficient.
For DWempc, fast convergence is observed after 0.2 seconds,
and at 0.3 seconds a solution which is less than 1% subopti-
mal is found. Moreover, while DWempc keeps improving until
a highly accurate solution is found, ADMMempc suffers from a

Table 3: Tolerance specifications for DWempc and ADMMempc.

Accuracy ε εP εD

High (h) 1e-6 1e-4 1e-4
Medium (m) 1e-5 1e-3 1e-3
Low (l) 1e-4 1e-2 1e-2

much slower convergence rate. Only after 10 seconds is a solu-
tion with a suboptimality level of 1% found by this algorithm.

5.4. Large-Scale Simulations

We compare the performance of the algorithms presented in
this paper to the performance of Gurobi, CPLEX and MOSEK.
These state-of-the-art linear programming solvers are invoked
via a MEX interface in MATLAB. We use their default toler-
ance settings. The algorithms are run on an Intel(R) Core(TM)
i7-4770K CPU @ 3.50GHz with 16 GB RAM running a 64-bit
Windows 8.1 Pro operating system. For each solver, the com-
putation time of solving the OCP (3) is reported as a function
of the number of generating units. Table 3 lists the different
accuracy settings used by DWempc and ADMMempc in our bench-
marks.
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Table 2: Iteration information table for the closed-loop simulation scenarios depicted in Fig. 4. The minimum, maximum and average number of iterations is listed
for both cold start and for warm start (in parentheses).

σ w DWempc ADMMempc

s1 0 0 [6(2), 16(17), 12(11)] [47(2), 485(410), 097(66)]
s2 0 0.01 [6(2), 15(18), 10(09)] [35(3), 469(410), 088(56)]
s3 0 0.1 [5(2), 15(17), 07(07)] [33(6), 359(280), 149(48)]
s4 0.01 0 [7(2), 18(19), 13(11)] [47(2), 485(410), 094(65)]
s5 0.01 0.01 [6(2), 17(17), 10(09)] [35(2), 469(410), 088(58)]
s6 0.01 0.1 [5(2), 13(16), 07(06)] [32(6), 380(290), 145(50)]
s7 0.1 0 [7(2), 17(20), 12(11)] [46(2), 485(410), 091(66)]
s8 0.1 0.01 [6(2), 17(16), 09(09)] [35(2), 469(410), 084(60)]
s9 0.1 0.1 [5(2), 14(14), 07(06)] [32(6), 359(279), 144(47)]
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Figure 7: CPU time for the different solvers as a function of the number of
power generating units, M.

Fig. 7 and Table 4 report the CPU time of solving the OCP
for different number of generating units and optimization algo-
rithms. For large problems, ADMMempc does not converge to
high accuracy solutions within a reasonable amount of time.
Therefore, Table 4 is incomplete.

For large problems, DWempc is faster than all other solvers
tested in our case study. Observe also that Gurobi, CPLEX
and MOSEK perform almost as well as DWempc in terms of CPU
time. For high accuracy solutions, DWempc is 2 times faster than
CPLEX and 5 times faster than Gurobi. DWempc and ADMMempc

can easily accommodate very large problems in memory while
Gurobi, CPLEX and MOSEK fail due to insufficient memory. The
threshold when memory becomes an issue is around M = 3000
generating units. Consequently, when considering both CPU
time and memory requirements, DWempc is an attractive opti-
mization algorithm for large scale dynamically decoupled en-
ergy management problems.

Note from Fig. 6 that ADMMempc needs many more iterations
to converge than DWempc for the high accuracy tolerance spec-
ification, (h). Table 5 further shows that the number of itera-
tions increases with the problem size for ADMMempc. Therefore,
ADMMempc is less attractive from a scalability point of view. Ap-
parently, the number of iterations used by DWempc does not de-
pend on the number of generating units, M.

Table 6 lists the suboptimality level of the solution deter-
mined by DWempc and ADMMempc for different values of M.

As observed from Table 6, DWempc is not only faster than
ADMMempc for the tolerance specifications listed in Table 3, but
the solution accuracy is also significantly better.

6. Conclusions

In this paper, we developed and presented a warm-started
possibly early terminated Dantzig-Wolfe decomposition algo-
rithm for `1-regularized linear EMPC of dynamically decou-
pled subsystems. Simulations show that a MATLAB imple-
mentation of the proposed algorithm, denoted DWempc, is faster
than CPLEX, Gurobi and MOSEK, as well as a special-purpose
implementation of ADMM denoted ADMMempc. Both DWempc

and ADMMempc have similar parallelization capabilities. They
are able to handle much larger problems than the general pur-
pose solvers. The simulations also demonstrate that in combi-
nation with warm-start, early termination of DWempc yields a
highly accurate solution after only a few iterations. In contrast
to ADMMempc, the number of iterations required by DWempc to
achieve a certain tolerance level does not grow with the problem
size.

For cases when the number of DWempc iterations is large,
DWempc may be slower than ADMMempc. The reason is that
the computing time per iteration of DWempc grows with the
iteration number. Conversely, the time spent per iteration by
ADMMempc is constant. Although this is a potential drawback
of the Dantzig-Wolfe decomposition algorithm that favors the
ADMM algorithm, we have not observed this being the case
in any of our simulations. In all our simulations, DWempc out-
performs ADMMempc; in some cases by several orders of magni-
tude.
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Table 4: CPU time for solving (3) with an increasing number of generating units, M.

solver/M 16 32 64 128 256 512 1024 2048

Gurobi 1.16e-1 2.93e-1 8.22e-1 1.85 3.94 9.76 2.49e1 5.00e1
CPLEX 1.73e-1 3.49e-1 1.86 9.54e-1 1.83 4.02 8.28 1.83e1
MOSEK 1.60e-1 4.14e-1 8.66e-1 2.23 3.59 7.96 2.19e1 4.54e1
DWempc(l) 4.70e-2 6.25e-2 9.04e-2 1.83e-1 2.94e-1 6.78e-1 1.22 3.54
DWempc(m) 4.95e-2 7.20e-2 1.54e-1 2.61e-1 4.59e-1 1.28 2.78 5.20
DWempc(h) 6.48e-2 9.48e-2 2.03e-1 3.58e-1 6.74e-1 1.80 4.91 9.61
ADMMempc(l) 9.13e-1 1.65 3.38 4.50 6.44 1.16e1 2.32e1 5.70e1
ADMMempc(m) 1.76 3.06 4.28 1.03e1 2.45e1 7.76e1 2.58e2 -
ADMMempc(h) 8.49 7.88e1 5.59e2 - - - - -

Table 5: The number of iterations performed by DWempc and ADMMempc in solving (3) for an increasing number of generating units, M.

solver/M 16 32 64 128 256 512 1024 2048

DWempc(l) 9 8 7 7 6 6 5 5
DWempc(m) 10 9 10 9 8 9 8 6
DWempc(h) 12 12 11 12 11 10 11 11
ADMMempc(l) 93 157 303 352 395 436 530 615
ADMMempc(m) 178 286 370 705 1284 2520 4994 -
ADMMempc(h) 865 7468 50000 - - - - -
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