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Bayesian interpretations

Bayesian interpretations

Recall the Bayes’ Theorem; here related to the conditional density of X for
given Y = y :

fX |Y=y(x ) =
fY |X=x (y)fX (x )∫
fY |X=x (y)fX (x )dx

(1)

The distribution fX (·) of X is called the prior distribution

The conditional distribution with density function fX |Y=y(x ) is called
the posterior distribution.

The conditional distribution with density fY |X=x (y) is called the
likelihood function.

In settings where X is a set off (unknown) parameters this reflects that
the parameters in a Bayesian setting are considered as random variables.
In a Bayesian framework the prior might express a so-called subjective
probability distribution.
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Bayesian interpretations

Variance-covariance separations

Recall also the rules relating conditional and marginal moments:

E[Y ] = EX [ E[ Y |X ] ] (2a)

Var[Y ] = EX [ Var[ Y |X ] ] + VarX [ E[ Y |X ] ] (2b)

Cov[Y ,Z ] = EX [ Cov[Y ,Z ] |X ] + CovX [ E[ Y |X ],E[ Z |X ] ] (2c)

An example: Regression with random X.
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Bayesian interpretations

Bayesian formulations

Examples where the ’state’ x is not (directly) observed arises in many
contexts (Hidden Markov Models, State Space Models (Kalman Filters),
etc.)
In such cases it is often useful to use a Bayesian framework.

As seen previously also the one-way random effects model may be
formulated in a Bayesian framework, where we may identify the
N(·, σ2u)-distribution of µi = µ+ Ui as the prior distribution.

The statistical model for the data is such that for given µi , are the
Yij ’s independent and distributed like N(µi , σ

2).

In a Bayesian framework, the conditional distribution of µi given
Y i = y i is termed the posterior distribution for µi .
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Bayesian interpretations

Posterior distribution of µi

Theorem (The posterior distribution of µi )

Consider again the one-way model with random effects (introduced on page 162)

Yij |µi ∼ N (µi , σ
2
) (3a)

µi ∼ N (µ, σ
2
u ) (3b)

where µ, σ2 and σ2
u are known.

The posterior distribution of µi after observation of yi1, yi2, . . . , yin is a normal distribution with mean and variance

E[µi | Y i = yi ] =
µ/σ2

u + ni ȳi/σ
2

1/σ2
u + ni/σ2

= wµ + (1− w)yi (4a)

Var[µi |Y i = yi ] =
1

1

σ2
u

+
n

σ2

(4b)

where

w =

1

σ2
u

n

σ2
+

1

σ2
u

=
1

1 + nγ
(5)

with γ = σ2
u/σ

2.
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Bayesian interpretations

The multivariate case

The results can rather easily be generalized to the multivariate case (which
for instance allow for more advance correlation structures) as shown in this
Theorem:

Theorem (Posterior distribution for multivariate normal distributions)

Let Y | µ ∼ Np(µ,Σ) and let µ ∼ Np(m,Σ0), where Σ and Σ0 are of full
rank, p, say.
Then the posterior distribution of µ after observation of Y = y is given by

µ |Y = y ∼ Np(Wm + (I −W )y , (I −W )Σ) (6)

with W = Σ(Σ0 + Σ)−1 and I −W = Σ0(Σ0 + Σ)−1
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Multivariate measurements Fixed effects

Multivariate measurements – Fixed effects

Let us now consider the situation where the individual observations are
p-dimensional vectors. Let us first consider fixed effects:

Consider the model

Xij = µ+ αi + εij , i = 1, 2, . . . , k ; j = 1, 2, . . . ,ni (7)

where µ,αi and εij denotes p-dimensional vectors and where εij are mutual
independent and normally distributed, εij ∈ Np(0,Σ), and where Σ denotes
the p × p-dimensional covariance matrix. For simplicity we will assume that
Σ has full rank.

For the fixed effects model we further assume

k∑
i=1

niαi = 0

Given these assumptions we find Zi =
∑

j Xij ∼ Np(ni(µ+ αi),niΣ).
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Multivariate measurements Fixed effects

The separation of variation

In the case of multivariate observations the variation is described by p × p-dimensional SS matrices.

Let us introduce the notation

X i+ =

ni∑
j=1

Xij /ni (8)

X++ =
k∑

i=1

ni∑
j=1

Xij /N =
k∑

i=1

niX i+/
k∑

i=1

ni (9)

as descriptions of the group averages and the total average, respectively.

Furthermore introduce

SSE =
k∑

i=1

ni∑
j=1

(Xij − X i+)(Xij − X i+)
T (10)

SSB =
k∑

i=1

ni (X i+ − X++)(X i+ − X++)
T (11)

SST =
k∑

i=1

ni∑
j=1

(Xij − X++)(Xij − X++)
T (12)

as a description of the variation between groups (SSE), between groups (SSB), and the total variation (SST ).

As previously we have the Pythagorean relation

SST = SSE + SSB (13)
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Multivariate measurements Random effects

Random effects

Consider the following model with random effects:

Xij = µ+ ui + εij , i = 1, . . . , k ; j = 1, 2, . . . , ni . (14)

where ui now are independent, ui ∼ Np(0,Σ0), and where εij is independent,
εij ∼ Np(0,Σ). Finally, u and ε are independent.

Theorem (The marginal distribution in the case of multivariate p-dimensional
observations)

Consider the model introduced in (14). Then the marginal density of Zi =
∑

j Xij is

Np(niµ,niΣ + n2
i Σ0)-distribution (15)

and the marginal density for X i+ is

Np(µ,
1

ni
Σ + Σ0) (16)

Finally, we have that SSE follows a Wishart distribution

SSE ∈Wisp(N − k ,Σ) (17)

and SSE is independent of X i+, i = 1, 2, . . . , k .
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Multivariate measurements Random effects

MLE estimation

Theorem (MLE for the multivariate random effects model)

Still under the assumptions mentioned previously we find the maximum likelihood estimates (MLEs) for µ , Σ and Σ0 by
maximizing the log-likelihood

`(µ,Σ,Σ0; x1+, . . . , xk+) = (18)

−
N − k

2
log(det(Σ))−

1

2
tr((SSE)Σ

−1
)−

k∑
i=1

[
log

(
det

(
Σ

ni

+ Σ0

))

+
1

2
(x i+ − µ)

T
(

Σ

ni

+ Σ0

)−1

(x i+ − µ)

]

with respect to µ ∈ Rp and Σ and Σ0 in the space of non-negative definite p × p matrices.

Proof.

Omitted, but follows from the fact that SSE follows a Wisp(N − k,Σ)-distribution and that SSE and

X i+, i = 1, 2, . . . , k are independent, and further that X i+ ∈ Np(µ,Σ/ni + Σ0) are independent, i = 1, 2, . . . , k .
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Multivariate measurements Random effects

Example - Variation between errors for flow meters

Flow, [m3/h]
Calibration 1 Calibration 2 Calibration 3

Meter 0.1 0.5 0.1 0.5 0.1 0.5
41 −2.0 1.0 2.0 3.0 2.0 2.0
42 5.0 3.0 1.0 1.0 2.0 2.0
43 2.0 1.0 −3.0 −1.0 1.0 0.0
44 4.0 4.0 −1.0 2.0 3.0 5.0
45 4.0 2.0 0.0 1.0 −1.0 0.0
46 5.0 9.0 4.0 8.0 6.0 10.0

Table: Results of three repeated calibrations of six flow-meters at two flows.
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Bias versus variance

Bias Variance trade off

In the previous lecture, we consideret ML versus REML estimation.
Say something - use the black board ...
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Bias versus variance

Reminder: Multivariate normal distribution

The density for a k -dimensional multivariate normal distribution with mean
vector µ and covariance matrix Σ is:

L(z ) =
1

(2π)k/2
√
|Σ|

exp

[
−1

2
(z − µ)TΣ−1(z − µ)

]
We write Z ∼ Nk (µ,Σ).

The log is:

`(z ) = −1

2

{
k log(2π|Σ|) + (z − µ)TΣ−1(z − µ)

}
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General mixed effects models

General mixed effects models

In the previous part of this course you have seen how to handle

- General linear models
- Generalized linear models
- General linear mixed models

For the rest of the course we shall look at nonlinear and non-normal
mixed effects models.

In general it is impossible to obtain closed form solutions and hence
numerical methods must be used.

Estimation and inference will be based on likelihood principle.
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General mixed effects models

General mixed effects models

The general mixed effects model can be represented by its likelihood
function:

LM (θ;y) =

∫
Rq

L(θ;u ,y)du

– y is the observed random variables

– u is the q unobserved random variables

– θ is the model parameters to be estimated

The likelihood function L is the joint likelihood of both the observed and
the unobserved random variables.

The likelihood function for estimating θ is the marginal likelihood LM

obtained by integrating out the unobserved random variables.
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General mixed effects models

Notice we have already seen this

In the Poisson distribution the variance is equal to the mean, which is
an assumption that is not always valid.

Consider the model:

Y ∼ Pois(λ), where λ ∼ Γ

(
n,

1− φ
φ

)
0 < φ < 1

It can be shown (next lecture) that:

Y ∼ Nbinom(n, φ)

Notice:

– No λ in marginal likelihood for Y
– Analytical integration is not the typical case
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General mixed effects models

General mixed effects models

The integral shown on the previous slide is generally difficult to solve if the
number of unobserved random variables is more than a few, i.e. for large
values of q .

A large value of q significantly increases the computational demands due to
the product rule which states that if an integral is sampled in m points per
dimension to evaluate it, the total number of samples needed is mq , which
rapidly becomes infeasible even for a limited number of random effects.

The likelihood function gives a very broad definition of mixed models: the
only requirement for using mixed modeling is to define a joint likelihood
function for the model of interest.

In this way mixed modeling can be applied to any likelihood based statistical
modeling.

Examples of applications are linear mixed models (LMM) and nonlinear
mixed models (NLMM), generalized linear mixed models, but also models
based on Markov chains, ODEs or SDEs.
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General mixed effects models

Hierarchical models

As for the Gaussian linear mixed models it is useful to formulate the model
as a hierarchical model containing a first stage model

fY |u(y ;u ,β)

which is a model for the data given the random effects, and a second stage
model

fU (u ; Ψ)

which is a model for the random effects. The total set of parameters is
θ = (β,Ψ). Hence the joint likelihood is given as

L(β,Ψ;u ,y) = fY |u(y ;u ,β)fU (u ; Ψ)
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General mixed effects models

Hierarchical models

To obtain the likelihood for the model parameters θ the unobserved
random effects are again integrated out.

The likelihood function for estimating θ is as before the marginal likelihood

LM (θ;y) =

∫
Rq

L(θ;u ,y)du

where q is the number of random effects, and θ contains all parameters to
be estimated.
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Laplace approximation

The Laplace approximation

We need to calculate the difficult integral

LM (θ,y) =

∫
Rq

L(θ,u ,y)du

So we set up an approximation of `(θ,u ,y) = logL(θ,u ,y)

`(θ,u ,y) ≈ `(θ, ûθ,y)− 1

2
(u − ûθ)t

(
−`′′uu(θ,u ,y)|u=ûθ

)
(u − ûθ)

Which (for given θ) is the 2. order Taylor approximation around:

ûθ = argmax
u

L(θ,u ,y)
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Laplace approximation

With this approximation we can calculate:

LM (θ,y) =

∫
Rq

L(θ,u ,y)du

≈
∫
Rq

e`(θ,ûθ ,y)− 1
2
(u−ûθ)

t(−`′′uu (θ,u ,y)|u=ûθ)(u−ûθ)du

= L(θ, ûθ,y)

∫
Rq

e−
1
2
(u−ûθ)

t(−`′′uu (θ,u ,y)|u=ûθ)(u−ûθ)du

= L(θ, ûθ,y)

√
(2π)q

| (−`′′uu(θ,u ,y)|u=ûθ
) |

In the last step we remember the normalizing constant for a
multivariate normal, and that |A−1| = 1/|A|.
Taking the logarithm we get:

`M (θ,y) ≈ `(θ, ûθ,y)− 1

2
log(|

(
−`′′uu(θ,u ,y)|u=ûθ

)
|)+q

2
log(2π)
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Laplace approximation

The Laplace approximation

The Laplace likelihood only approximates the marginal likelihood for
mixed models with nonlinear random effects and thus maximizing the
Laplace likelihood will result in some amount of error in the resulting
estimates.

It can be shown that joint log-likelihood converges to a quadratic
function of the random effect for increasing number of observations
per random effect and thus that the Laplace approximation is
asymptotically exact.

In practical applications the accuracy of the Laplace approximation
may still be of concern, but often improved numerical approximation
of the marginal likelihood (such as Gaussian quadrature) may easily
be computationally infeasible to perform.

Another option for improving the accuracy is Importance sampling.
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Laplace approximation

Two-level hierarchical model

For the two-level or hierarchical model it is readily seen that the joint
log-likelihood is

`(θ,u ,y) = `(β,Ψ,u ,y) = log fY |u(y ;u ,β) + log fU (u ; Ψ)

which implies that the Laplace approximation becomes

`M ,LA(θ,y) = log fY |u(y ; ũ ,β) + log fU (ũ ; Ψ)− 1

2
log

∣∣∣∣H (ũ)

2π

∣∣∣∣
where H (ũ) = −`′′uu(θ,u ,y)|u=ûθ

.

It is clear that as long as a likelihood function of the random effects
and model parameters can be defined it is possible to use the Laplace
likelihood for estimation in a mixed model framework.
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Laplace approximation

Gaussian second stage model

Let us assume that the second stage model is zero mean Gaussian, i.e.

u ∼ N (0,Ψ)

which means that the random effect distribution is completely
described by its covariance matrix Ψ.

In this case the Laplace likelihood in becomes

`M ,LA(θ,y) = log fY |u(y ; ũ ,β)− 1

2
log |Ψ|

− 1

2
ũTΨ−1ũ − 1

2
log |H (ũ)|

where it is seen that we still have no assumptions on the first stage
model fY |u(y ;u ,β).
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Laplace approximation

Gaussian second stage model

If we furthermore assume that the first stage model is Gaussian

Y |U = u ∼ N (µ(β,u),Σ)

then the Laplace likelihood can be further specified.

For the hierarchical Gaussian model it is rather easy to obtain a
numerical approximation of the Hessian H at the optimum, ũ

H (ũ) ≈ µ′uΣ−1µ′u
T

+ Ψ−1

where µ′u is the partial derivative with respect to u .

The approximation in is called Gauss-Newton approximation

In some contexts estimation using this approximation is also called
the First Order Conditional Estimation (FOCE) method.
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Laplace approximation

Example: Orange tree

> library(datasets)

> data(Orange)

> head(Orange)

Tree age circumference

1 1 118 30

2 1 484 58

3 1 664 87

4 1 1004 115

5 1 1231 120

6 1 1372 142
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Laplace approximation

Simple Orange data model

yij =
β1

1 + exp[−(tij − β2)/β3]
+ εij , i = 1...5, j = 1...7,

εij ∼ N (0, σ2)

0 500 1000 1500 2000

0

50

100

150

200 ββ1

ββ2 ββ3
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Laplace approximation

Fit of simple Orange data model

Fit using nls()

Estimate Std. Error t value Pr(>|t|)

Asym 192.69 20.24 9.518 7.48e-11 ***

xmid 728.75 107.30 6.792 1.12e-07 ***

scal 353.53 81.47 4.339 0.000134 ***

Residual standard error: 23.37 on 32 degrees of freedom

'log Lik.' -158.3987 (df=4)
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Laplace approximation

Example: Orange tree

First we wish to run the model:

ciri =
β1 + U (treei)

1 + exp(−(agei − β2)/β3)
+ εi

where εi ∼ N (0, σ2) and U (treei) ∼ N (0, σ2U ) independent.

Let’s first set up a function to calculate the mean for a given
observation.

> mu <- function(beta, u, tree, age) {

+ (beta[1] + u[tree])/(1 + exp(-(age - beta[2])/beta[3]))

+ }
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Laplace approximation

Example: Orange tree

The joint log likelihood is:

`(cir, u, θ) = `cir|u(cir, u, β, σ) + `U (u, σU )

The part `U (u, σU ) is implemented by:
> l.u <- function(u, s.u) {

+ sum(dnorm(u, mean = 0, sd = s.u, log = TRUE))

+ }

The part `cir|u(cir, u, β, σ) is implemented by:

> l.cir <- function(cir, u, b, s) {

+ mv <- mu(b, u, Orange$Tree, Orange$age)

+ sum(dnorm(cir, mean = mv, sd = s, log = TRUE))

+ }

And the joint negative log likelihood −`(cir, u, β) is:
> nl <- function(th, u, cir) {

+ -l.cir(cir, u, th[1:3], exp(th[4])) - l.u(u, exp(th[5]))

+ }
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Laplace approximation

Example: Orange tree

Now we can set up the Laplace approximation

> library(numDeriv)

> l.LA <- function(th) {

+ u.init <- rep(0, nlevels(Orange$Tree))

+ obj <- function(u) nl(th, u, Orange$cir)

+ est <- nlminb(u.init, obj)

+ lval <- est$obj

+ u <- est$par

+ H <- hessian(obj, u)

+ lval + 0.5 * log(det(H)) - length(u)/2 * log(2 * pi)

+ }

And optimize w.r.t. the model parameters in θ

> fit <- nlminb(c(300, 700, 200, 0, 0), l.LA)

> H <- hessian(l.LA, fit$par)
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Laplace approximation

Example: Orange tree

> fit

$par
[1] 192.053210 727.906549 348.073223 2.059623 3.454621

$objective
[1] 131.5719

$convergence
[1] 0

$iterations
[1] 54

$evaluations
function gradient

60 307

$message
[1] "relative convergence (4)"

> cbind(est = fit$par, sd = sqrt(diag(solve(H))))

est sd
[1,] 192.053210 15.6576723
[2,] 727.906549 35.2486970
[3,] 348.073223 27.0798192
[4,] 2.059623 0.1290996
[5,] 3.454621 0.3242544
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Laplace approximation

Laplace approximation work flow

0. Initialize θ to some arbitrary value θ0

1. With current value for θ optimize joint likelihood w.r.t. u to
get ûθ and corresponding Hessian H (ûθ).

2. Use ûθ and H (ûθ) to approximate `M (θ)

3. Compute value and gradient of `M (θ)

4. If the gradient is ”>ε” set θ to a different value and go to 1.

Notice the huge number of — possibly high dimensional — optimizations
that are required.

Henrik Madsen Poul Thyregod Anders Nielsen () Chapman & Hall April 30, 2012 34 / 46



Laplace approximation

Other models..

(5.111) (plus random component for sampling occasion (j))

yij =
β1 + u1i + u2j

1 + exp[−(tj − β2)/β3]
+ εij (19)

(5.112) (seasonal variation):

yij =
β1 + u1i

1 + exp[−((tj − β2)/β3 + sjβ4)]
+ εij (20)

(5.113) (First order AR)

cov(εij , εij ′) = σ2 exp(−φ|tj ′ − tj |/(365/2)), φ ≥ 0 (21)

ie. the full covariance matrix is block diagonal.
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Laplace approximation

Table: Parameter estimates (and standard errors) and log-likelihoods for models
estimated for the orange tree data.

Model β1 β2 β3 β4 σ σu1 σu2 ρ log(L)
(??) 192.1 727.9 348.1 7.84 31.6 -131.57

(15.7) (35.3) (27.1)
(19) 196.2 748.4 352.9 5.30 32.6 10.5 -125.45

(19.4) (62.3) (33.3)
(20) 217.1 857.5 436.8 0.322 4.79 36.0 -116.79

(18.1) (42.0) (24.5) (0.038)
(19) + (21) 192.4 730.1 348.1 6.12 32.7 12.0 0.773 -118.44

(19.6) (63.8) (34.2)
(20) + (21) 216.2 859.1 437.8 0.330 5.76 36.7 0.811 -106.18

(17.6) (30.5) (21.6) (0.022)
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Laplace approximation

Beetles exposed to ethylene oxide

Ten groups beetles were exposed to different concentrations of ethylene
oxide and it was recorded how many died.

> conc <- c(24.8, 24.6, 23, 21, 20.6, 18.2, 16.8, 15.8, 14.7, 10.8)

> n <- c(30, 30, 31, 30, 26, 27, 31, 30, 31, 24)

> y <- c(23, 30, 29, 22, 23, 7, 12, 17, 10, 0)

The natural model is a binomial, and we wish to setup a logit-linear model
as a function of the logarithm of the concentrations

yi ∼ Bin(ni , pi) , where

logit(pi) = µ+ β log(conci)

> resp <- cbind(y, n - y)

> fit <- glm(resp ~ I(log(conc)), family = binomial())
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Laplace approximation

Beetles exposed to ethylene oxide

We get:

> fit

Call: glm(formula = resp ~ I(log(conc)), family = binomial())

Coefficients:

(Intercept) I(log(conc))

-17.867 6.265

Degrees of Freedom: 9 Total (i.e. Null); 8 Residual

Null Deviance: 138

Residual Deviance: 36.44 AIC: 68.02

> 1 - pchisq(fit$deviance, fit$df.residual)

[1] 1.456223e-05

Henrik Madsen Poul Thyregod Anders Nielsen () Chapman & Hall April 30, 2012 38 / 46



Laplace approximation

Grouping structures and nested effects

For nonlinear mixed models where no closed form solution to the likelihood
function is available it is necessary to invoke some form of numerical
approximation to be able to estimate the model parameters.

The complexity of this problem is mainly dependent on the dimensionality of
the integration problem which in turn is dependent on the dimension of U
and in particular the grouping structure in the data for the random effects.

These structures include a single grouping, nested grouping, partially crossed
and crossed random effects.

For problems with only one level of grouping the marginal likelihood can be
simplified as

LM (β,Ψ;y) =

M∏
i=1

∫
Rqi

fY |ui
(y ;u i ,β)fUi (u i ; Ψ) du i

where qi is the number of random effects for group i and M is the number
of groups.
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Laplace approximation

Grouping structures and nested effects

Instead of having to solve an integral of dimension q it is only
necessary to solve M smaller integrals of dimension qi .

In typical applications there is often just one or only a few random
effects for each group, and this thus greatly reduces the complexity of
the integration problem.

If the data has a nested grouping structure a reduction of the
dimensionality of the integral similar to that shown on the previous
slide can be performed.

An example of a nested grouping structure is data collected from a
number of schools, a number of classes within each school and a
number of students from each class.
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Laplace approximation

Grouping structures and nested effects

If the nonlinear mixed model is extended to include any structure of
random effects such as crossed or partially crossed random effects it is
required to evaluate the full multi-dimensional integral

Estimation in these models can efficiently be handled using the
multivariate Laplace approximation, which only samples the integrand
in one point common to all dimensions.
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Laplace approximation

Importance sampling

Importance sampling is a re-weighting technique for approximating
integrals w.r.t. a density f by simulation in cases where it is not
feasible to simulate from the distribution with density f .

Instead it uses samples from a different distribution with density g ,
where the support of g includes the support of f .

For general mixed effects models it is possible to simulate from the
distribution with density proportional to the second order Taylor
approximation

L̃(θ, ûθ,Y ) = e`(θ,ûθ,Y )−1
2 (u−ûθ)

T (−`′′uu (θ,u ,Y )|u=ûθ
)(u−ûθ)

which, apart from a normalization constant, it is the density
φûθ,V̂θ(u) of a multivariate normal with mean ûθ and covariance

V̂ θ = H−1(ûθ) = (−`′′uu(θ,u ,Y )|u=ûθ)
−1.
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Laplace approximation

Importance sampling

The integral to be approximated can be rewritten as:

LM (θ,Y ) =

∫
L(θ,u ,Y )du =

∫
L(θ,u ,Y )

φûθ,V̂θ(u)
φûθ,V̂θ(u)du .

So if u (i), i = 1, . . . ,N is simulated from the multivariate normal
distribution with mean ûθ and covariance V̂ θ, then the integral can be
approximated by the mean of the importance weights

LM (θ,Y ) =
1

N

∑ L(θ,u (i),Y )

φûθ,V̂θ(u
(i))
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Laplace approximation

Two-level hierarchical model

For the two-level or hierarchical model it is readily seen that the joint
log-likelihood is

`(θ,u ,y) = `(β,Ψ,u ,y) = log fY |u(y ;u ,β) + log fU (u ; Ψ)

which implies that the Laplace approximation becomes

`M ,LA(θ,y) = log fY |u(y ; ũ ,β) + log fU (ũ ; Ψ)− 1

2
log

∣∣∣∣H (ũ)

2π

∣∣∣∣
It is clear that as long as a likelihood function of the random effects
and model parameters can be defined it is possible to use the Laplace
likelihood for estimation in a mixed model framework.
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Laplace approximation

Gaussian second stage model

Let us assume that the second stage model is zero mean Gaussian, i.e.

u ∼ N (0,Ψ)

which means that the random effect distribution is completely
described by its covariance matrix Ψ.

In this case the Laplace likelihood in becomes

`M ,LA(θ,y) = log fY |u(y ; ũ ,β)− 1

2
log |Ψ|

− 1

2
ũTΨ−1ũ − 1

2
log |H (ũ)|

where it is seen that we still have no assumptions on the first stage
model fY |u(y ;u ,β).
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Laplace approximation

Gaussian second stage model

If we furthermore assume that the first stage model is Gaussian

Y |U = u ∼ N (µ(β,u),Σ)

then the Laplace likelihood can be further specified.

For the hierarchical Gaussian model it is rather easy to obtain a
numerical approximation of the Hessian H at the optimum, ũ

H (ũ) ≈ µ′uΣ−1µ′u
T

+ Ψ−1

where µ′u is the partial derivative with respect to u .

The approximation in is called Gauss-Newton approximation

In some contexts estimation using this approximation is also called
the First Order Conditional Estimation (FOCE) method.

Henrik Madsen Poul Thyregod Anders Nielsen () Chapman & Hall April 30, 2012 46 / 46


	Bayesian interpretations
	Multivariate measurements
	Fixed effects
	Random effects

	Bias versus variance
	General mixed effects models
	Laplace approximation

