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The Generalized Linear Model

The Generalized Linear Model

Definition (The generalized linear model)

Assume that Y1,Y2, . . . ,Yn are mutually independent, and the density
can be described by an exponential dispersion model with the same
variance function V (µ).
A generalized linear model for Y1,Y2, . . . ,Yn describes an affine
hypothesis for η1, η2, . . . , ηn , where

ηi = g(µi )

is a transformation of the mean values µ1, µ2, . . . , µn .
The hypothesis is of the form

H0 : η − η0 ∈ L,

where L is a linear subspace R
n of dimension k , and where η0 denotes a

vector of known off-set values.

Henrik Madsen Poul Thyregod Jan Kloppenborg Møller (IMM-DTU)Chapman & Hall March 9, 2012 3 / 33



The Generalized Linear Model

GLM vs GLM

General linear models Generalized linear models

Normal distribution Exponential dispersion family

Mean value linear Function of mean value linear

Independent observations Independent observations

Same variance Variance function of mean

Easy to apply Almost as easy to apply

Exact results Approximate results
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The Generalized Linear Model

Dimension and design matrix

Definition (Dimension of the generalized linear model)

The dimension k of the subspace L for the generalized linear model is the
dimension of the model

Definition (Design matrix for the generalized linear model)

Consider the linear subspace L = span{x1, . . . , xk}, i.e. the subspace is spanned
by k vectors (k < n), such that the hypothesis can be written

η − η0 = Xβ with β ∈ R
k ,

where X has full rank. The n × k matrix X is called the design matrix.
The i th row of the design matrix is given by the model vector

x i =











xi1
xi2
.
..

xik











,

for the i th observation.
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The Generalized Linear Model

The link function

Definition (The link function)

The link function, g(·) describes the relation between the linear predictor
ηi and the mean value parameter µi = E[Yi ]. The relation is

ηi = g(µi )

The inverse mapping g−1(·) thus expresses the mean value µ as a function
of the linear predictor η:

µ = g−1(η)

that is

µi = g−1(x i
Tβ) = g−1


∑

j

xijβj



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The Generalized Linear Model

Link functions

The most commonly used link functions, η = g(µ), are :

Name Link function η = g(µ) µ = g−1(η)

identity µ η
log log(µ) exp(η)
logit log(µ/(1− µ)) exp(η)/[1 + exp(η)]
inverse 1/µ 1/η

power µk η1/k

sqrt
√
µ η2

probit Φ−1(µ) Φ(η)
log-log log(− log(µ)) exp(− exp(η))
cloglog log(− log(1− µ)) 1− exp(− exp(η))

Table: Commonly used link function.
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The Generalized Linear Model

Link functions
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The Generalized Linear Model

The canonical link

The canonical link is the function which transforms the mean to the
canonical location parameter of the exponential dispersion family, i.e. it is
the function for which g(µ) = θ. The canonical link function for the most
widely considered densities are

Density Link:η = g(µ) Name

Normal η = µ identity
Poisson η = log(µ) log
Binomial η = log[µ/(1− µ)] logit
Gamma η = 1/µ inverse
Inverse Gauss η = 1/µ2 1/mu^2

Table: Canonical link functions for some widely used densities.
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The Generalized Linear Model

Specification of a generalized linear model

a) Distribution / Variance function:
Specification of the distribution – or the variance function V (µ).

b) Link function:
Specification of the link function g(·), which describes a function of
the mean value which can be described linearly by the explanatory
variables.

c) Linear predictor:
Specification of the linear dependency

g(µi) = ηi = (x i)
Tβ.

d) Precision (optional):
If needed the precision is formulated as known individual weights,
λi = wi , or as a common dispersion parameter, λ = 1/σ2, or a
combination λi = wi/σ

2.
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The Generalized Linear Model

Specification of a generalized linear model in R

> mice.glm <- glm(formula = resp ~ conc,

+ family = binomial(link = logit),

+ weights = NULL,

+ data = mice

+ )

formula; as in general linear models

family

binomial( link = logit | probit | cauchit | log | cloglog)
gaussian( link = identity | log | inverse)
Gamma( link = inverse | identity | log)
inverse.gaussian( link = 1/mu^2 | inverse | identity | log)
poisson( link = log | identity | sqrt)
quasi( link = ... , variance = ... ) )
quasibinomial( link = logit | probit | cauchit | log | cloglog)
quasipoisson( link = log | identity | sqrt)
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The Generalized Linear Model

Log-likelihood function

The log likelihood function w.r.t. the canonical parameter

ℓθ(θ;y) =
n∑

i=1

wi(θiyi − κ(θi ))

The score function w.r.t. the canonical parameter, θ:

∂

∂θi
ℓθ(θ;y) = wi(yi − τ(θi))

or in matrix form
∂

∂θ
ℓθ(θ;y) = diag(w)(y − τ (θ))

diag(w) denotes a diagonal matrix where i th element is wi , and

τ (θ) =





τ(θ1)
τ(θ2)
...

τ(θn)




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The Generalized Linear Model

The observed information w.r.t. the canonical parameter

The observed information wrt. to θ is

j (θ;y) = diag{w} ∂

∂θ
τ (θ)

= diag{wiκ
′′(θi )}

= diag{wi V (τ(θi ))}

where V (τ(θ)) denotes the value of the variance function for µ = τ(θ).

Note that, since the observed information wrt. the canocical parameter θ
does not depend on the observation y , the expected information is the
same as the observed information.

Note that the Hessian of the likelihood function depends on θ. In the
normal case the Hessian was constant.
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The Generalized Linear Model

The score function w.r.t. the mean value parameter

The log likelihood function w.r.t. the mean value parameter

ℓµ(µ;y) = −1

2

n∑

i=1

wid(yi ;µi)

The score function w.r.t. the mean value parameter is:

l ′µ(µ;y) = diag

{
wi

V (µi )

}
(y − µ)

which shows that the ML-estimate for µ is µ̂ = y .

For a single coordinate we have the log-likelihood:
ℓ(µi ; yi) = −1

2wi2
∫ yi
µi

yi−u
V (u)du = wi

∫ µi

yi

yi−u
V (u)du

So we get the score:
∂

∂µi
ℓ(µi ; yi) = wi

∫ µi

yi
f (u)du = wi

∂
∂µi

(F (µi)− F (yi)) = wi f (µi ) =

wi
yi−µi

V (µi )
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The Generalized Linear Model

The observed information w.r.t. the mean value parameter

The observed information is

j (µ;y) = diag

{
wi

[
1

V (µi)
+ (yi − µi)

V ′(µi )

V (µi )2

]}
,

and then the expected information corresponding to the set µ is

i(µ) = diag

{
wi

V (µi)

}
,

Note that the observed information w.r.t. the mean value parameter µ
depends on the observation, y .

For a single coordinate we get:

− ∂
∂µi

wi(yi − µi)
1

V (µi )
= −wi

(
− 1

V (µi )
+ (yi − µi)

−1
(V (µi ))2

V ′(µi )
)
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The Generalized Linear Model

Maximum likelihood estimation

Theorem (Estimation in generalized linear models)

Consider the generalized linear model as defined on slide 3 for the observations

Y1, . . .Yn and assume that Y1, . . .Yn are mutually independent with densities,

which can be described by an exponential dispersion model with the variance

function V (·), dispersion parameter σ2, and optionally the weights wi .

Assume that the linear predictor is parameterized with β corresponding to the

design matrix X , then the maximum likelihood estimate β̂ for β is found as the

solution to

[X (β)]T iµ(µ)(y − µ) = 0 ,

where X (β) denotes the local design matrix and µ = µ(β) given by

µi(β) = g−1(x i
Tβ) ,

denotes the fitted mean values corresponding to the parameters β, and iµ(µ) is
the expected information with respect to µ.

The estimates must be found by an iterative procedure.
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The Generalized Linear Model

Proof

ℓ′β(β,y) =

[
∂µ

∂β

]T
ℓ′µ(µ(β),y)

=

[
∂µ

∂β

]T
diag

{
wi

V (µi)

}
(y − µ)

=

[
∂µ

∂β

]T
i(µ)(y − µ)

And ∂µ
∂β =

[
∂µ
∂η

]T
∂η
∂β is called the local design matrix.
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The Generalized Linear Model

Properties of the ML estimator

Theorem (Asymptotic distribution of the ML estimator)

Under the hypothesis η = Xβ we have asymptotically

β̂ − β√
σ2

∈ Nk (0,Σ),

where the dispersion matrix Σ for β̂ is

D[β̂] = Σ = [XTW (β)X ]−1

with

W (β) = diag

{
wi

[g ′(µi)]2V (µi)

}
,
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The Generalized Linear Model

Linear prediction for the generalized linear model

Definition (Linear prediction for the generalized linear model)

The linear prediction η̂ is defined as the values

η̂ = X β̂

with the linear prediction corresponding to the i ’th observation is

η̂i =
k∑

j=1

xij β̂j = (x i)
T β̂.

The linear predictions η̂ are approximately normally distributed with

D[η̂] ≈ σ̂2XΣXT

where Σ is the dispersion matrix for β̂.
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The Generalized Linear Model

Fitted values for the generalized linear model

Definition (Fitted values for the generalized linear model)

The fitted values are defined as the values

µ̂ = µ(X β̂) ,

where the i th value is given as

µ̂i = g−1(η̂i)

with the fitted value η̂i of the linear prediction.

The fitted values µ̂ are approximately normally distributed with

D[µ̂] ≈ σ̂2

[
∂µ

∂η

]2
XΣXT

where Σ is the dispersion matrix for β̂.
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The Generalized Linear Model

Residual deviance

Definition (Residual deviance)

Consider the generalized linear model defined on slide 3. The residual

deviance corresponding to this model is

D(y ;µ(β̂)) =
n∑

i=1

wid(yi ; µ̂i)

with d(yi ; µ̂i) denoting the unit deviance corresponding the observation yi
and the fitted value µ̂i and where wi denotes the weights (if present).
If the model includes a dispersion parameter σ2, the scaled residual
deviance is

D∗(y ;µ(β̂)) =
D(y ;µ(β̂))

σ2
.
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The Generalized Linear Model

Residuals

Residuals represents the difference between the data and the model. In the
classical GLM the residuals are ri = yi − µ̂i . These are called response
residuals for GLM’s. Since the variance of the response is not constant for
most GLM’s we need some modification. We will look at:

Deviance residuals

Pearson residuals
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The Generalized Linear Model

Residuals

Definition (Deviance residual)

Consider the generalized linear model from for the observations Y1, . . .Yn .

The deviance residual for the i ’th observation is defined as

rDi = rD(yi ; µ̂i) = sign(yi − µ̂i)
√

wid(yi , µ̂i)

where sign(x ) denotes the sign function sign(x ) = 1 for x > 0 og
sign(x ) = −1 for x < 0, and with wi denoting the weight (if relevant),
d(y ;µ) denoting the unit deviance and µ̂i denoting the fitted value
corresponding to the i ’th observation.

Assessments of the deviance residuals is in good agreement with the
likelihood approach as the deviance residuals simply express differences in
log-likelihood.
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The Generalized Linear Model

Residuals

Definition (Pearson residual)

Consider again the generalized linear model from for the observations
Y1, . . .Yn .

The Pearson residuals are defined as the values

rPi = rP (yi ; µ̂i) =
yi − µ̂i√
V (µ̂i)/wi

The Pearson residual is thus obtained by scaling the response residual with√
Var[Yi ]. Hence, the Pearson residual is the response residual normalized

with the estimated standard deviation for the observation.
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Likelihood ratio tests

Likelihood ratio tests

The approximative normal distribution of the ML-estimator implies
that many distributional results from the classical GLM-theory are
carried over to generalized linear models as approximative
(asymptotic) results.

An example of this is the likelihood ratio test.

In the classical GLM case it was possible to derive the exact
distribution of the likelihood ratio test statistic (the F-distribution).

For generalized linear models, this is not possible, and hence we shall
use the asymptotic results for the logarithm of the likelihood ratio.
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Likelihood ratio tests

Likelihood ratio test

Theorem (Likelihood ratio test)

Consider the generalized linear model. Assume that the model

H1 : η ∈ L ⊂ R
k

holds with L parameterized as η = X 1β, and consider the hypotheses

H0 : η ∈ L0 ⊂ R
m

where η = X 0α and m < k , and with the alternative H1 : η ∈ L\L0.

Then the likelihood ratio test for H0 has the test statistic

−2 log λ(y) = D
(
y ;µ(α̂)

)
−D

(
y ;µ(β̂)

)

When H0 is true, the test statistic will asymptotically follow a χ2(k −m)
distribution.

If the model includes a dispersion parameter, σ2, then D
(
µ(β̂);µ(α̂)

)
will

asymptotically follow a σ2χ2(k −m) distribution.
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Likelihood ratio tests

Test for model ’sufficiency’

In analogy with classical GLM’s one often starts with formulating a
rather comprehensive model, and then reduces the model by
successive tests.

In contrast to classical GLM’s we may however test the goodness of
fit of the initial model.

The test is a special case of the likelihood ratio test.
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Likelihood ratio tests

Test for model ’sufficiency’

Test for model ’sufficiency’

Consider the generalized linear model, and assume that the dispersion
σ2 = 1.

Let Hfull denote the full, or saturated model, i.e. Hfull : µ ∈ R
n and

consider the hypotheses
H0 : η ∈ L ⊂ R

k

with L parameterized as η = X 0β.

Then, as the residual deviance under Hfull is 0, the test statistic is the

residual deviance D
(
µ(β̂)

)
. When H0 is true, the test statistic is

distributed as χ2(n − k). The test rejects for large values of D
(
µ(β̂)

)
.
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Likelihood ratio tests

Residual deviance measures goodness of fit

The residual deviance D
(
y ;µ(β̂)

)
is a reasonable measure of the

goodness of fit of a model H0.

When referring to a hypothesized model H0, we shall sometimes use
the symbol G2(H0) to denote the residual deviance D

(
y ;µ(β̂)

)
.

Using that convention, the partitioning of residual deviance may be
formulated as

G2(H0|H1) = G2(H0)−G2(H1)

with G2(H0|H1) interpreted as the goodness fit test statistic for H0

conditioned on H1 being true, and G2(H0) and G2(H1), denoting the
unconditional goodness of fit statistics for H0 and H1, respectively.
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Likelihood ratio tests

Analysis of deviance table

The initial test for goodness of fit of the initial model is often
represented in an analysis of deviance table in analogy with the
ANOVA table for classical GLM’s.

In the table the goodness of fit test statistic corresponding to the
initial model G2(H1) = D

(
y ;µ(β̂)

)
is shown in the line labelled

“Error”.

The statistic should be compared to percentiles in the χ2(n − k)
distribution.

The table also shows the test statistic for Hnull under the assumption
that H1 is true.

The test investigates whether the model is necessary at all, i.e.
whether at least some of the coefficients differ significantly from zero.
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Likelihood ratio tests

Analysis of deviance table

Note, that in the case of a generalized linear model, we can start the
analysis by using the residual (error) deviance to test whether the
model may be maintained, at all.

This is in contrast to the classical GLM’s where the residual sum of
squares around the initial model H1 served to estimate σ2, and
therefore we had no reference value to compare with the residual sum
of squares.

In the generalized linear models the variance is a known function of
the mean, and therefore in general there is no need to estimate a
separate variance.
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Likelihood ratio tests

Analysis of deviance table

Source f Deviance Mean deviance Goodness of fit
interpretation

Model Hnull k − 1 D
(
µ(β̂); µ̂null

) D
(
µ(β̂); µ̂null

)

k − 1
G2(Hnull |H1)

Residual (Error) n − k D
(
y ;µ(β̂)

) D
(
y ;µ(β̂)

)

n − k
G2(H1)

Corrected total n − 1 D
(
y ; µ̂null

)
G2(Hnull)

Table: Initial assessment of goodness of fit of a model H0. Hnull and µ̂null refer
to the minimal model, i.e. a model with all observations having the same mean
value.

Henrik Madsen Poul Thyregod Jan Kloppenborg Møller (IMM-DTU)Chapman & Hall March 9, 2012 32 / 33



Odds ratio

Odds Ratio

If an event occurs with probability p, then the odds in favor of the event is

Odds =
p

1− p

A comparison between two events can be made by computing the odds
ratio:

OR =
p1/(1− p1)

p2/(1− p2)

An odds ratio larger than 1 is an indication the event is more likely in the
first group than in the second group.
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