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Abstract

We describe a meta-analytic method that tests for the difference be-
tween two groups of functional neuroimaging experiments. We use kernel
density estimation in three-dimensional brain space to convert points rep-
resenting focal brain activations into a voxel-based representation. We
find the maximum in the subtraction between two probability densities
and compare its value against a resampling distribution obtained by per-
muting the labels of the two groups. The method is applied on data
from thermal pain studies where “hot pain” and “cold pain” form the two
groups.

1 Introduction

Human functional neuroimaging examines the relationship between cognitive
functions and brain area with positron emission tomography (PET) or mag-
netic resonance imaging (MRI) brain scanners. Experiments typically inves-
tigates a specific brain function and determines its “activation” in the brain
volume. This is usually done by scanning multiple subjects while they are un-
der two different conditions (e.g., “activation” and “rest”). Statistical analysis
of the scanning often employing the general linear model results in a statistical
parametric image volume, that is summarized by the significant local maxima
(Friston et al., 1995). These local maxima are presented in scientific articles by
their 3-dimensional coordinate and, e.g., their z-score or p-value.

Before the statistical analysis the brain scans are spatially normalized to a
standard brain atlas, — the so-called “Talairach atlas” (Talairach and Tournoux,
1988). This allows the 3-dimensional coordinates of the local maxima — the
“Talairach coordinates” to be compared across studies.

If meta-analysis are to be performed then optimal we should use the statis-
tical parametric image volume. Although there are beginning to appear neu-
roimaging databases that contain such data, e.g., the fMRI Data Center (Van
Horn et al., 2001) and NeuroGenerator (Roland et al., 2001), the image volumes
are typically not available and we have to resort to the Talairach coordinates.

The access to the Talairach coordinates is made easier when they are rep-
resented in a database. Two such databases exist: The BrainMap database
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(Fox and Lancaster, 1994; Fox and Lancaster, 2002) and the Brede database
(Nielsen, 2003), and a number of studies have modeled the distribution of the
Talairach coordinates, e.g., (Fox et al., 1997; Nielsen and Hansen, 2002).

If the Talairach coordinates are restricted to a specific area their distribution
may be approximated with a Gaussian distribution and inference can be made
with parametric models (Fox et al., 1997) and, e.g., the Hotelling’s T2 can be
employed to test the difference between two groups of coordinates (Christoff
and Grabrieli, 2000). However, in many cases the distribution of the Talairach
coordinates will have several spatial modes, and therefore it has been suggested
to use Gaussian mixture models (Nielsen, 2001) or kernel density estimators
(Nielsen and Hansen, 2002; Turkeltaub et al., 2002; Chein et al., 2002; Wager
et al., 2003).

When the statistic analysis is performed it is usually in a mass-univariate
setting where the number of statistical tests corresponds to the number of vox-
els in the volume. This results in a massive multiple comparison problem that
is most often countered by employing random field theory for the statistical
inference (Cao and Worsley, 2001). But permutation tests can also be used by
constructing the null distribution for the maximum statistics, where the max-
imum is taken across all the voxel in the statistical parametric image (Holmes
et al., 1996; Nichols and Holmes, 2001).

Below we will describe a meta-analytic method that uses permutation tests
together with maximum statistics and kernel density estimation to give a sta-
tistical value for the difference between two groups of Talairach coordinates and
thereby testing if two groups of functional neuroimaging experiments are differ-
ent. We will use Talairach coordinates from hot and cold pain experiments. The
pain modality is of special interest for our particular method since it typically
causes a multimodal activation pattern where several district brain regions are
involved: Thalamus, the somatosensory cortex, insula and anterior cingulate
cortex (Ingvar, 1999).

2 Methods

A probability density volume is constructed from a local maximum ! (in the fol-
lowing called “location”) positioned in Talairach space at x; by a 3-dimensional
Gaussian kernel with isotropic variance (Nielsen and Hansen, 2002; Turkeltaub
et al., 2002; Chein et al., 2002).

(X_Xl)T(X_Xl) (1)
202

When we construct the probability density corresponding to a group of exper-
iments p(x|g) we combine the contributions from all the individual locations
associated with the group

p(x|l) = (2m0?) 3/ exp [—

p(xlg) = > p(x[1) p(llg), (2)

leg

where the prior is simply set to p(l|g) = 1/|L,|, i.e., inversely proportionally to
the number of locations in the g group. The continuous probability density is
converted to a vector by sampling it in a regular grid

vy = p(x]g). (3)
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Figure 1: Visualization of the Talairach coordinates from hot pain and cold
pain studies in a corner cube environment (Rehm et al., 1998). The glyphs are
colored according to the experiment they belong to and are projected onto the
walls. The blue curves are the outline of the brain. The thick red lines are the
axes of the Talairach atlas and the view point makes the upper left part of the
back of the brain the closest point.

In the present application we use a coarse grid of (8mm)? resulting in 7752
voxels. As a statistics for the difference between two volumes (vi and vs) we
simply use the subtraction performed separately for each voxel

t = V] — Va. (4)

To counter the multiple comparison problem a null distribution use the maxi-
mum value across voxels
t= maxi(ti) (5)

The null distribution of this maximum statistics is established by permutation:
A distribution is build up by permuting the assignment of experiments to the two
groups resulting in two new groups vi and vj, that each comprises of the same
number of experiments as the original two groups, thus the null distribution of
the maximum statistics appear as

tr = miax(vii - ng) (6)
The permutation is randomized sufficiently many times to generate a “smooth”
and stable distribution.

To demonstrate the method we invoke data from thermal pain studies, where
the two groups are hot and cold pain. Such studies will typically employ a
45 — 50°C or 0 — 5°C stimulus to the subjects. The studies were added to
the Brede database (Nielsen, 2003). Slight variations among the studies appear
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Figure 2: Empirical histogram of the maximum statistics after 1000 permuta-
tions. The red lines indicate the maxima for the hot and cold pain statistics
thot and teold.

in the application of the Talairach atlases, and locations that conform to the
so-called MNT space are adjusted before entry (Brett, 1999). All the locations
from the pain experiments are shown in two panels in figure 1, where the color
indicates the experiments the locations originate from. Table 1 lists all the
included 24 hot and 8 cold pain experiments. Note that the pain stimulus
is induced under varying contexts and some studies contributed with several
experiments, e.g., a study by Faymonville et al. contributes with 6 experiments.

Both the statistics for hot and cold pain are considered, — simply by revers-
ing the subtraction

thot = mzax(vhot,i_vcold,i) (7)

teold = m?X(Ucold,i_Uhot,i) (8)

Many of the operations performed in the method described above are imple-
mented in the Brede Neuroinformatics Toolbox (Nielsen and Hansen, 2000).

3 Results and discussion

Figure 2 displays the empirical histogram of the null distribution of the max-
imum statistics t*. The red lines indicate the maximum statistics of the com-
parisons of interest tno; and teoq. It indicates that our method does not find
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WOEXT: 183 - Hot pain

WOEXT: 186 - Attended heat pain on right hand
WOEXT: 187 - Distracted heat pain on right hand
WOEXT: 188 - Attended heat pain on left hand
WOEXT: 189 - Distracted heat pain on left hand
WOEXT: 217 - Hot pain in right hand

WOEXT: 225 - Hot pain on left hand (group 1)
WOEXT: 227 - Hot pain on left hand (group 2)
WOEXT: 230 - Painful heat on right fingers
WOEXT: 233 - Hot pain on right hand in rest,
mental imagery and hypnosis

WOEXT: 234 - Hot pain on right hand in rest and
mental imagery

WOEXT: 235 - Hot pain on right hand during
hypnosis

WOEXT: 237 - Interaction between hypnosis and
hot pain on right hand

WOEXT: 238 - Correlated with pain ratings in
hot pain on right hand in rest, mental imagery
and hypnosis

WOEXT: 240 - Interaction between hypnosis and
pain ratings in hot pain on right hand.

WOEXT: 245 - Heat pain on right arm

WOEXT: 246 - Positive correlation with pain
threshold
WOEXT: 248 - Correlation with pain intensity

WOEXT: 249 - Correlation with pain unpleasant-
ness

WOEXT:
WOEXT:
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WOEXT:
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298 - Early phase heat pain

299 - Late phase heat pain

312 - Heat pain on left hand

314 - Heat pain on left volar forearm
319 - Heat pain on left arm

182 - Cold pain

184 - Cold pain in left hand

213 - Cold pain in right hand
WOEXT: 263 - Cold pain on right foot

WOEXT: 264 - Cold pain on right foot masked
by silent word reading

WOEXT: 265 - Silent word reading while cold
pain on right foot

WOEXT: 266 - Cold pain versus cold pain with
silent word reading

WOEXT: 320 - Cold pain on left arm
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Table 1: List of included hot and cold pain experiments
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Figure 3: Results from the permutation test in a corner cube environment. Red
isosurfaces are for hot pain and light blue isosurface is for cold pain.

any larger differences between hot and cold pain: The statistics of both hot and
cold pain is found in the middle of the null distributions.

Figure 3 shows the result in a corner cube environment. Isosurfaces with a
very liberal threshold are shown in the subtraction image for hot ty.; and cold
pain teoq. The right hemisphere is the most is where any change first occure.

We have previously proposed a method that uses a database of experiments
to generate a null distribution of the correlation coefficient between two volumes
(Nielsen, 2004; Nielsen and Hansen, 2004). That method requires a database of
dissimilar experiments to build up a null hypothesis, e.g., a pain experiment is
compared with a memory or language experiment. The method we present in
this contribution does not need this extra data, but relies only on data from the
two groups that are being compared. Furthermore, our previous method is a
global method performing an omnibus test for the entire volume, while our new
method allows us to make inference on the voxel-level. Our presented method
does, however, requires that there are sufficient experiments in each group for
the reason of statistical power.
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