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General Linear Model

Introduction

• The general linear model has the form (Mardia et al., 1979, eq. 6.1.1)

Y = XB+U, (1)

where Y(scans×voxels) is the image data, X(scans×design variables)

is the “design matrix” and B(design variables×voxels) contains para-

meters to be estimated and tested. The residuals U are usually as-

sumed Gaussian.

• Encapsulates many statistical models: t-test (paired, un-paired), F -

test, ANOVA (one-way, two-way, main effect, factorial), MANOVA,

ANCOVA, MANCOVA, simple regression, linear regression, multiple

regression, multivariate regression, . . .

• Widely used in functional neuroimaging through the SPM program

where it is performed in a mass-univerate setting — in parallel over

the columns of Y
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General Linear Model

Hypothesis test example with t-test
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Figure 1: Histogram of the lower tail
area of the t-value: 1− p-value.

Matlab program with a random design
matrix and random image data:

X = rand(12, 5);
Y = randn(size(X,1), 4000);

B = pinv(X) * Y;
dof = size(X,1) - rank(X);
U = Y - X*B;
SSE = diag(U’*U)’;
MSSE = SSE / dof;
SE = sqrt(MSSE);

C = [ 1 -1 0 0 0 ];
T = C*B ./ (SE * sqrt(C*pinv(X’*X)*C’));
P = brede_cdf_t(T, dof);

figure
hist(P, sqrt(length(P)));
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General Linear Model

Hypothesis test example with F -test
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Figure 2: Histogram of the lower tail
area of the F -value: 1− p-value.

Matlab program with a random design
matrix and random image data:

X = rand(12, 5);
Y = randn(size(X,1), 1000);

B = pinv(X) * Y;
dof = size(X,1) - rank(X);
U = Y - X*B;
SSE = sum(U.^2);
MSSE = SSE / dof;

C = [ 1 0 0 0 0 ; 0 1 0 0 0 ];
F = 1/rank(C) * (diag((C*B)’ * pinv(C * ...

pinv(X’*X) * C’) * (C*B))’ ./ MSSE);
P = brede_cdf_f(F, rank(C), dof);

figure
hist(P, round(sqrt(length(P))));
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General Linear Model

Simple regression
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Figure 3: Simple regression.

In simple regression (e.g., one

voxel) is univariate and the matri-

ces from the general linear model

become vectors or scalars: Y → y,

X→ x and B→ b

y = xb+ u, (2)

where y is the dependent variable

(usually measured), x is the inde-

pendent variable (design variable)

and b is the parameter (regression

coefficient).
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General Linear Model

Categorical variables

Categorical variable can be coded in two different ways:

“Sigma-restricted”, where two groups (e.g., male and female) are coded

in one design variables

x(1) =
[

1, −1, 1, −1, 1, −1,
]T
, (3)

that leads to a design matrix with full rank.

“Overparameterized”, where two groups are coded in two design variables

X(1:2) =

[

1 0 1 0 1 0
0 1 0 1 0 1

]T

, (4)

that leads to a design matrix of degenerate rank.

The overparameterized version is often preferred due to better “ordnung”.

(www.statsoftinc.com)
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General Linear Model

Multiple regression

With several dependent variables

y = x(1)b1+ x(2)b2+ . . .+ u, (5)

where x(1) and x(2) are column vectors. In matrix form with X =
[

x(1),x(2), . . .
]

and b= [b1, b2, . . .]

y = Xb+ u (6)

Finn Årup Nielsen 6 September 8, 2004



General Linear Model

Simple regression with intercept

In simple regression a parameter is usually added to model the the inter-

cept (µ = b2) is included

y = xb1+ b2+ u, (7)

and changed to matrix form with b= [b1, b2]
T and X = [x, 1].

This is an instance of the multiple regression model.

“Spam variable”: Seems to be automatically added by SPM and SAS?
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General Linear Model

ANCOVA — ANalysis of COVAriance
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Figure 4: ANCOVA. Two groups (e.g., normals and
patients) with and age-effect.

1) Model with categorical and con-

tinuous design variables.

2) Conditions + Nuisances (covari-

ates, e.g., age)

An instance of multiple regression.

Why ANCOVA? Because the vari-

ance induced by the covariates

might make the test less powerful!

t-statistics for the example:

tordinary = −3.1 (8)

tANCOVA = −5.0 (9)
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General Linear Model

ANCOVA with bias
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Figure 5: ANCOVA. Two groups (e.g., normals and
patients) with and age-effect where the two groups
have difference age.

ANCOVA is especially important

with bias in the independent vari-

able, e.g., in an uncontrolled study.

t-test statistics for the example

tordinary = −2.1 (10)

tANCOVA = −5.2 (11)

Thus it is able “to correct for

bias” (Armitage and Berry, 1994,

p. 301+) and remove, e.g., an age-

effect.
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General Linear Model

Interactions

With “linear” interactions (aka moderator effects)

y = x(1)b1+ x(2)b2+ (x(1) ¯ x(2))b3+ u, (12)

where ¯ is an elementwise multiplication: x(3) = x(1) ¯ x(2).
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General Linear Model

Nonlinear effects

The are many ways (a infinite number) in which the nonlinearity can be

modeled.

One of the simplest ways is by elementwise squaring of the dependent

variable so the second column in the design matrix becomes

x(2) = [x2
1,1, x

2
2,1, x

2
3,1, . . .]. (13)

There is no canonical nonlinearity: Squaring is just one way.
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General Linear Model

Paired t-test
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Figure 6: Design matrix X for paired t-test with 12 scans.

Paired t-test example

y =
[

d1,2, d3,4, . . . , d11,12

]T
,

(14)

where, e.g., d1,2 = y1 − y2

Degrees of freedom is lost.

New degrees of freedom

r = N − rank(X) (15)

= 12− 7 = 5 (16)
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ANCOVA or paired t-test? An example
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Figure 7: Distribution volume values (DV3) for left
orbitofrontal cortex as a function of subject age from
Steven Haugbøl’s study. Tourette paired with con-
trols.

Context: Two subject groups

(Tourette and controls) and the

subjects have different age. The

measured variable (“altanserin DV3”)

is dependent on age (Adams et al.,

2004).

Should ANCOVA or paired t-test be

chosen as the analysis?

Paired t-test: Subjects are paired

with respect to age.

ANCOVA: Subjects are not paired

and the age confound is modeled by

adding one row to the design matrix
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General Linear Model

ANCOVA or paired t-test?
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Figure 8: Comparison of two-tailed P -values between
ANCOVA and paired t-test for a set of regions.

Comparison of P -values between

ANCOVA and paired t-test.

Paired t-test: One design variable

(intercept), 20 samples.

ANCOVA t-test: Four design vari-

ables (subject group 1, subject

group 2, age, intercept), 40 sam-

ples.

(Here) ANCOVA is “better” than

paired t-test. If you are allow to

choose between the two analyses!
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General Linear Model

Estimation

The “normal equation” to estimate the parameters B

B̂= (XTX)−1XTY, (17)

or with the pseudo-inverse † (pinv in Matlab)

B̂ = X†Y. (18)

The pseudo-inverse will also work for design matrices of degenerate rank.

The “‘fitted’ error matrix” (Mardia)

Û = Y −XB̂. (19)

The residual sum of squares and products (SSP) matrix ÛTÛ is a (voxels×

voxels)-matrix. In a mass-univariate test only the diagonal is used

“Extra sum-of-squares” (ESS in SPM, “extra” variance not explained by

the design variables)
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General Linear Model

“General Linear Hypothesis”

Most general form (Mardia et al., 1979, sec. 6.3)

CBM= D (20)

Usually only a “null” (D = 0) hypothesis is tested and with M= I

CB = 0 (21)

Univariate hypothesis with an F -test

Cb = 0 (22)

A univariate t-test with c as a row vector

cb= 0, (23)

Mass-univariate t-test

cB= 0T. (24)
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General Linear Model

Example contrasts

F -contrast for ANOVA with 3 groups encoded in an overparametrized

design matrix (cf. SPM2 spm conman.m)

C =

[

+1 −1 0 0
0 +1 −1 0

]

(25)

t-contrast with 2 groups, one covariate and one grand mean

C =
[

+1 −1 0 0
]

(26)
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General Linear Model

Testable contrasts

For design matrices of degenerate rank not all contrasts are valid: The

contrast matrix C should be testable (Mardia et al., 1979, sec. 6.4).

C should be in the subspace of X: C ⊂ X

0 = C−CX†X (27)

In practice it should be numerically zero.

With rank(X)-truncated singular value decomposition of X

X = ULVT+ E, (28)

the projection can be computed from the eigenvectors V

X†X = VVT. (29)

(SPM2 spm sp.m lines 973–980, 1211–1217; spm SpmUtil.m line 282)

Finn Årup Nielsen 18 September 8, 2004



General Linear Model

Nuisances: Simultaneous or “pre-processing”

Design matrix with interesting variables XI and with uninteresting effects

(nuisances/confounds) XN

“Simultaneous” modeling:

Y = [XI ,XN ]B+U (30)

“Pre-processed”: Initial extration of confounds

Y = XNBN + Ũ “Pre-processing”

Ũ = XIBI +U Actual analysis
(31)

“Post-processed”: Initial analysis of interesting effects followed by mod-

eling of non-interesting effects.

What is the difference between the results from the three analyses?
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Masked estimation (a la Goutte)
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General Linear Model

Resources

Short Course on Statistical Parametric Mapping,

ftp://ftp.fil.ion.ucl.ac.uk/spm/course/notes04/slides/london2004.htm

Jonathan Taylors notes for his “stats191” course: http://www-

stat.stanford.edu/˜jtaylo/courses/stats191/spring.2004/

“General Linear Models” StatSoft, Inc, http://www.statsoftinc.com-

/textbook/stglm.html
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