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MODEL

— Model (with parameters)

Input Output

Figure 1: Input/output model.

e A (mathematical) model is relation between a set
of observables and parameters, e.g., a simple linear

model ]
y = sz’ T (1)
i=1

e A statistical model incorporate stochastic elements,
which can be characterized by a probability distri-
bution, e.g, a simple linear model with noise

d

t:y+6:Zwix¢—|—e, (2)
1=1

where € ~ p(e).

e Input, output, target, noise
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LINEAR AND NON-LINEAR MODELS

Parameters / Input Linear Nonlinear
Linear GLM with only linear terms RBF
Nonlinear Gamma convolution model | Neural network

Table 1: Parameter and input/output linear and nonlinear models. Partly from
(Larsen 1996, table 1.1).

e Linear/linear, e.g., the general linear model (GLM)
Y =XB+U. (3)

e Linear/nonlinear, e.g., radial basis function net-
works with fixed basis functions (Bishop 1995, eq.
5.14), “generalized additive model”

M
v =Y widi(x) (4)
j=1
e Nonlinear/linear
M
Yy = Z exp(5;); ()
i=1

e Nonlinear/nonlinear, e.g., two-layer neural net-
work (Bishop 1995, eq. 4.7), where g is nonlinear

M d
=3 |S ul (z wg-m) )
=0 i=0
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LEARNING

e (Bishop 1995, p. 10) distinguishes between
— Supervized, involving a target, e.g., regression.
— Unsupervized, e.g., probability density estima-
tion
— Reinforcement, target not known, but cost func-
tion is
e Define a cost function that is large when the dis-

crepancy between the model out and the target is
large.

e Batch/online

— Batch, all examples are used in the optimization.

— Online, one pattern at a time a “window” (some
patterns are used). Stochastic, might escape,
learning rate should be decreased as more exam-
ples have been presented.
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OPTIMIZATION

Continuous valued smooth multidimensional
functions with no constraints

e Taylor expansion of cost function around W (Bishop
1995, eq. 7.6)

E(w) = E(W)-+(w —w)" b+% (w — ) H (w — W)+ .

(7)
where the gradient and Hessian is defined as
0K
B = 5| ®)
Ok

e Appropriate when the cost function is smooth.

e Minimum of the cost function is at a stationary point
OF
ow

e Optimization by iterations 7

w(™ = w4 Aw(™ (11)

~0. (10)

W*
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OPTIMIZATION — GRADIENT BASED

e Gradient descent (steepest descent, for neural net-
works: backprobagation) (Bishop 1995, sect. 7.5)
_ OF
~ " ow
Increase step size n if successful descrease of cost

function, decrease if not.

Aw'") (12)

W(T)

e Gradient descent with momentum
) OF

Awl) = np 22
i an

+ pAw ! (13)

W(T)
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OPTIMIZATION — HESSIAN BASED

e Quadratic approximation, present point w and op-
timal point w (Bishop 1995, eq 7.90)

a_E:O:b+H(W—W) (14)

ow
w=w—-H"'b (15)
“Newton method”. Hessian not necessarily positive
definite: Uphill step to maximum or saddle point.

e Make the Hessian positive definite:

~

H=H+ ) (16)

with A with a larger magnitude than the smallest
negative eigenvalue of H. This approximates the
negative gradient as A — ¢

Aw=— (H' 4+ AI) 'b = —%b (17)
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PROBABILISTIC-BASED LEARNING

e Establish the probability density function for the
stochastic element(s) in the model: p(t|x, w)

e Fix the data: The likelihood: L = p(t|x, w)

e Cost funtion as the negative log-likelihood
E=—-InL (18)

e If the patterns are independent (Bishop 1995, eq.
6.5)

lan t"|x") Zlnp t"|x") (19)

e Maximum a posteriori (MAP). Likelihood aug-
mented with a prior on the weights
N

Ly = —In H p(t]x, w) p(w)] (20)

n=1
N

Buw=—Y lnpltlx,w) + up(w)  (21)

n=1
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PROB. LEARNING — REGRESSION

10

Figure 2: Distribution of p(t|z) (Bishop 1995, figure 6.1): y should be “suffi-
ciently general”, optimized completely and ~ should be large.

e Gaussian error for the noise ¢ ~ N (0, o’I)

(yk(x; t) _ tk)2] (22)

1
p(tp|x) = (2%02) 2 exp [ =

Cost function for all outputs and all patterns

n Nc
E = 52 ZZ r—tr) +Ncln0+71n(27r) (23)

nkl

7

Dependgnt on w

10
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PROB. — CLASSIFICATION

e ;. as the probability for belong to class k.

e Multiple attributes (multivariate Bernoulli) (Bishop
1995, sect. 6.8). With t; € {0,1}

plthx) = Hpmx [Toc-w'™ (@
k=1

Normallzatlon to range |0; 1] with logistic function

S (25)
T o (ap)
e Multiple exclusive classes (multinomial)
p(t]x) = H y (26)

Cross-entropy error functlon

— Z Z ty Inyy (27)

n k=1
Normalization of range to [0;1] with the softmax

function
exp (ag)

Yk —
Zk’ exp (ax)

(28)

11
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UNSUPERVISED LEARNING

e No target, density estimation of p(x) with p(x|0)

12
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UNSUPERVISED/SUPERVISED

Joint probability between x and y Marginal distribution at x=0.12 and x=0.6
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Figure 3: “Joint Modeling”: Kernel density modeling with homogenous vari-
ance in z and y. Noise is independent between = and y.

e “Joint modeling”: Unsupervised/unsupervised dis-
tinction might not always be appropriate, e.g., re-
gression can be done with unsupervised methods,
where the joint probability for input and output is
modeled

e Dependent on noise assumptions (noise on the in-
put).
e A related model in (Bishop 1995, fig 6.7)

13
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GENERALIZATION

1'st order polynomial 10’th order polynomial

Figure 4: Overfitting and underfitting: Example of overfitting and underfitting
for one-dimensional curvefitting (Bishop 1995, eq 1.4). h(z) = 0.5+0.04xsin (27z).
Blue the “true curve”. Red is estimated models.

e The variance on the parameters should be small:
Not applicable to non-parametric models, such as
a neural network because parameter space symme-
tries, e.g., sign-flip and hidden units permutations,
(Bishop 1995, sect. 4.4).

e The prediction of ¥y on the training set should be
small: Problem with overfitting.

e The prediction of y on a new dataset should be
small.

14
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LEARNING CURVE

Learning curve
10
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Figure 5: Learning curves for three different models: 1st order polynomial,
10th order polynomial (blue) and a neural network (green) with 10 hidden
units (W = 31). The target function is (Bishop 1995, eq 1.4).

e Generalization as a function of training set size N

e Complex models should benefit more than simple
models:

— Simple linear model (red): constant error with no
benefit of extra training data

— Complex models (blue/green): Decreasing test
set error.

e Select the model according to the number of training
examples.

15
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BIAS VARIANCE DECOMPOSITION

10

<t|x>=[tp(t|x) dt

41+

3- p(yID)
E,[PID)]

2
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Figure 6: Bias variance decomposition.

e Ensemble of finite training sets, y a stochastic vari-
able dependent on the training set D: p(y|D)

e Bias variance decomposition, (Bishop 1995, eq. 9.7)
é |{yx) — (tx))] = (29)
{Enly()] — ()Y’ + €n [{ylx) — Ep [yx)1}* 80

V -/

(bias)? variance

16
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CONTROLLING THE EFFECTIVE
COMPLEXITY

Bishop (1995, p. 332) distinguishes between:

e Structural stabilization, changing the number of pa-
rameters
— Optimal Brain Damage (OBD) pruning
— Optimal Brain Surgeon (OBS) pruning
— Node pruning

e Regularization, “Adding a penalty term €2 to the cost
function”

— Weight decay, (Bishop 1995, sect. 9.2.1) also
called ridge regression

Q=1/2) w}. (31)

— Soft weight sharing, Weights generated from a
mixture of Gaussians.

— Early stopping. Stop the optimization when the
validation set is lowest.

— Training with noise, perturbing the data points in
the training set with noise.

17
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EARLY STOP

Levenberg—Marquardt Gradient descent
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Figure 7: Two-layer neural network curvefitting with least squares an with
40 hidden units and N = 10 training examples. “x” is training set and “0” is
validation set.

e Effective optimization (Levenberg-Marquardt): fast
learning and fast overfitting.

e Slow optimization (gradient descent with adaptive
step size): Slow convergence, but no overfitting

(yet!).

18



Finn ,&rup Nielsen, IMM, DTU March 18, 2002

REGULARIZATION FROM PROBABILISTIC
ASSUMPTIONS

e Bayes formula, (Bishop 1995, eq. 10.3)

Diw)p(w
plwip) = PETE) 32
where w is the parameters and D = (¢t},...,t") is
the training set of the target.
e p(D) is constant for a fixed data set
p(w|D) o p(D|w) p(w) (33)
e Cost function
E=—Inp(D|lw) — Inp(w) (34)

e If Gaussian prior (indepedent) on the weights
p(W) oc exp(—A 3, wy)

E=—lnp(Dlw)+ 1Y w] (35)

which is weight decay.

19
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PRUNING BY OBD

Pruning evolution
T

Normalized validation error
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Number of parameter

Figure 8: Pruning by OBD in a two-layer neural network curvefitting with least
squares and with 40 hidden units and N = 50 training examples and Ny = 50

validation examples.

e Optimal Brain Damage (OBD) considers the saliency
of weights: The change in the cost function when
a small perturbation is made on a weight (Bishop
1995, eq. 9.66)

) 1
OF = i a—wzdwz +§;;Hij5w¢5wj+...

A - 7

Ignore if;ptimized
(36)
and diagonal approximation to the Hessian. Erase
(set to zero) the weigths associated with low effect
(saliency).

20
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COMMITTEE OF NETWORKS

0

1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
yl

Figure 9: Committee network for model with two outputs.

e Consensus model, e.g., average output of L models,
(Bishop 1995, eq. 9.83)

o) = 7 S () 37

e This prediction is better than the average error of
the individual models (E,,, < E,,), if

— Errors are uncorrelated. Fully correlated (the
same model) £, = E,..

— Error function is convex, e.g., Gaussian

21
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COMMITTEE OF NETWORKS
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Figure 10: Committee network for model with two outputs.

e With no model bias against the true output

1
ECOM — _EAV 38
- 39

1 & ] &
Eszngz:Z;g [622] (39)

22
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COMMITTEE OF NETWORKS

Figure 11: Committee neural network prediction.

e Models should be heterogenous, e.g., a linear
model will fit the same curve.

e Averaging over models mostly reduces the variance
rather than the bias.

e Neural network committee example (permuting
training and test set, different seed, very little reg-
ularization) with validation set and early stop. 10
networks in committee.

EAV, Test set —— 00394 (41)
ECOM, Test set —— 00084 (42)

2 individual models were better, 8 worse. Empirical
observation: Errors are not necessarily Gaussian

23
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MODEL ORDER SELECTION, VALIDATION

e Validation-based (Bishop 1995, sect. 9.8.1), test-
set should be independent “Hold out method”) and
from the same distribution

— Single-set validation. A finite size validation set
will be “noisy”.

— Cross-validation, partition the data set in S dis-
tinct segments. S times larger computation

| | | |
10 20 30 40 50
Examples

Figure 12: Cross-validation partioning (Bishop 1995, figure 9.17). With N =50
examples and S = 5 distinct partitions of the data.

— Leave-one-out. Only one example in the valida-
tion set.

— “Overvalidation”: If the validation set is applied
too much the model might not generalize (Bishop
1995, p. 364-365), e.g., consider random models
picked by the validation set.

24
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BIAS VARIANCE TRADE-OFF

Bias variance decomposition

m—Bigs?
= = Variance

45

40

35

w
o

Test set variance
N
(6]
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Figure 13: Bias variance decomposition on a 20th order polynomial with a
weight decay hyperparameter varied with ¥ = 10 examples and 100 runs
(Bishop 1995, fig. 9.16, eqs. 9.109 and 9.110).

e Bias variance as a function of model complexity
(Bishop 1995, figure 9.16): Epfyl ~ =S\ y; and
1=1
(t|x) assessed by large validation set

e Simple models: High bias, low variance, e.g., a con-
stant model y = 0 have no variance and bias as
(tx)*.

e Complex model: Might have low bias and high vari-

ance, e.g., a model that fits the data points per-
fectly.

25
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MODEL ORDER SELECTION —
COMPLEXITY CRITERIA

e Complexity criteria, (Bishop 1995, sect. 9.8.3). One
of the forms (Bishop 1995, eq. 9.111)

PE = training error + complexity term (43)
For sum-of-squares error, £ = %fozl ly(x, w) — t]°
— Final prediction error (FPE), (Bishop 1995, eq.

9.112)
2FE W
FPE = : 44
~ T NC (44)
where W is the number of free parameters.
— Generalized prediction error (GPE)
2 2v
PE = 4
G ~ TN (45)

where ~ is an effective number of parameters.

26
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CONCLUSION

e Learning can be performed in a variaty of ways: gra-
dient, Hessian-based.

e Learning problems can be based on probabilistic
models: regression, classification, ...

e Model should generalize well: It should not only
consider presented data (training) but fit new data
as well.

e Complexity of model can be adjusted by varying the
number of free paramters, by regularization, prun-
ing or by not training the model “well”.

e Combining models (“consensus models”, “commit-
tee of network”) might improve generalization.

e Generalization can be assessed by validation set or
by complexity criteria.

27
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