Learning and Generalization in linear and non-linear models

Finn Årup Nielsen

Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Lyngby, Denmark

Email: fn@imm.dtu.dk

WWW: http://www.imm.dtu.dk/~fn

OVERVIEW

- Models
 - Linear and Non-linear models
- Learning
 - Optimization, iterative
 - * Gradient
 - * Hessian
 - Probability based learning
 - * Regression
 - * Classification
- Generalization
 - Learning curve
 - Bias variance
 - Regularization
 - Pruning
 - Committee of networks
 - Generalization assessment
 - * Validation
 - * Complexity criteria

MODEL

Figure 1: Input/output model.

 A (mathematical) model is relation between a set of observables and parameters, e.g., a simple linear model

$$y = \sum_{i=1}^{d} w_i x_i \tag{1}$$

 A statistical model incorporate stochastic elements, which can be characterized by a probability distribution, e.g, a simple linear model with noise

$$t = y + \epsilon = \sum_{i=1}^{d} w_i x_i + \epsilon, \qquad (2)$$

where $\epsilon \sim p(\epsilon)$.

• Input, output, target, noise

LINEAR AND NON-LINEAR MODELS

Parameters / Input	Linear	Nonlinear
Linear	GLM with only linear terms	RBF
Nonlinear	Gamma convolution model	Neural network

Table 1: Parameter and input/output linear and nonlinear models. Partly from (Larsen 1996, table 1.1).

Linear/linear, e.g., the general linear model (GLM)

$$\mathbf{Y} = \mathbf{XB} + \mathbf{U}.\tag{3}$$

Linear/nonlinear, e.g., radial basis function networks with fixed basis functions (Bishop 1995, eq. 5.14), "generalized additive model"

$$y_k = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) \tag{4}$$

• Nonlinear/linear

$$y = \sum_{i=1}^{M} \exp(\beta_i) x_i \tag{5}$$

• Nonlinear/nonlinear, e.g., two-layer neural network (Bishop 1995, eq. 4.7), where g is nonlinear

$$y = \tilde{g} \left[\sum_{j=0}^{M} w_{kj}^{(2)} g \left(\sum_{i=0}^{d} w_{ji}^{(1)} x_i \right) \right]$$
 (6)

LEARNING

- (Bishop 1995, p. 10) distinguishes between
 - Supervized, involving a target, e.g., regression.
 - Unsupervized, e.g., probability density estimation
 - Reinforcement, target not known, but cost function is
- Define a cost function that is large when the discrepancy between the model out and the target is large.
- Batch/online
 - Batch, all examples are used in the optimization.
 - Online, one pattern at a time a "window" (some patterns are used). Stochastic, might escape, learning rate should be decreased as more examples have been presented.

OPTIMIZATION

Continuous valued smooth multidimensional functions with no constraints

ullet Taylor expansion of cost function around $\hat{\mathbf{w}}$ (Bishop 1995, eq. 7.6)

$$E(\mathbf{w}) = E(\hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \mathbf{b} + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \mathbf{H} (\mathbf{w} - \hat{\mathbf{w}}) + \dots,$$
(7)

where the gradient and Hessian is defined as

$$(\mathbf{b})_i \equiv \frac{\partial E}{\partial w_i} \bigg|_{\hat{\mathbf{w}}} \tag{8}$$

$$(\mathbf{b})_{i} \equiv \frac{\partial E}{\partial w_{i}} \Big|_{\hat{\mathbf{w}}}$$

$$(\mathbf{H})_{ij} \equiv \frac{\partial E}{\partial w_{i} \partial w_{j}} \Big|_{\hat{\mathbf{w}}}$$

$$(9)$$

- Appropriate when the cost function is *smooth*.
- Minimum of the cost function is at a stationary point

$$\left. \frac{\partial E}{\partial \mathbf{w}} \right|_{\mathbf{w}^*} = \mathbf{0}. \tag{10}$$

ullet Optimization by iterations au

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)} \tag{11}$$

OPTIMIZATION — **GRADIENT BASED**

• Gradient descent (steepest descent, for neural networks: backprobagation) (Bishop 1995, sect. 7.5)

$$\Delta \mathbf{w}^{(\tau)} = \eta \left. \frac{\partial E}{\partial \mathbf{w}} \right|_{\mathbf{w}^{(\tau)}} \tag{12}$$

Increase step size η if successful descrease of cost function, decrease if not.

• Gradient descent with momentum

$$\Delta \mathbf{w}^{(\tau)} = \eta \left. \frac{\partial E}{\partial \mathbf{w}} \right|_{\mathbf{w}^{(\tau)}} + \mu \Delta \mathbf{w}^{\tau - 1} \tag{13}$$

OPTIMIZATION — **HESSIAN BASED**

Quadratic approximation, present point ŵ and optimal point w (Bishop 1995, eq 7.90)

$$\frac{\partial E}{\partial \mathbf{w}} = \mathbf{0} = \mathbf{b} + \mathbf{H} (\mathbf{w} - \hat{\mathbf{w}}) \tag{14}$$

$$\mathbf{w} = \hat{\mathbf{w}} - \mathbf{H}^{-1}\mathbf{b} \tag{15}$$

"Newton method". Hessian not necessarily positive definite: Uphill step to maximum or saddle point.

Make the Hessian positive definite:

$$\tilde{\mathbf{H}} = \mathbf{H} + \lambda \mathbf{I} \tag{16}$$

with λ with a larger magnitude than the smallest negative eigenvalue of \mathbf{H} . This approximates the negative gradient as $\lambda \to \infty$

$$\Delta \mathbf{w} = -\left(\mathbf{H}^{-1} + \lambda \mathbf{I}\right)^{-1} \mathbf{b} = -\frac{1}{\lambda} \mathbf{b}$$
 (17)

PROBABILISTIC-BASED LEARNING

- Establish the probability density function for the stochastic element(s) in the model: $p(\mathbf{t}|\mathbf{x}, \mathbf{w})$
- Fix the data: The *likelihood*: $\mathcal{L} = p(\mathbf{t}|\mathbf{x}, \mathbf{w})$
- Cost funtion as the negative log-likelihood

$$E = -\ln \mathcal{L} \tag{18}$$

• If the patterns are independent (Bishop 1995, eq. 6.5)

$$E = -\ln \prod_{n=1}^{N} p(\mathbf{t}^n | \mathbf{x}^n) = -\sum_{n=1}^{N} \ln p(\mathbf{t}^n | \mathbf{x}^n)$$
 (19)

 Maximum a posteriori (MAP). Likelihood augmented with a prior on the weights

$$E_{\text{\tiny MAP}} = -\ln \prod_{n=1}^{N} \left[p(\mathbf{t}|\mathbf{x}, \mathbf{w}) \ p(\mathbf{w}) \right]$$
 (20)

$$E_{\text{MAP}} = -\ln \prod_{n=1} [p(\mathbf{t}|\mathbf{x}, \mathbf{w}) \ p(\mathbf{w})]$$

$$E_{\text{MAP}} = -\sum_{n=1}^{N} \ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}) + \ln p(\mathbf{w})$$
(20)

PROB. LEARNING — REGRESSION

Figure 2: Distribution of p(t|x) (Bishop 1995, figure 6.1): y should be "sufficiently general", optimized completely and N should be large.

ullet Gaussian error for the noise $\epsilon \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}
ight)$

$$p(t_k|\mathbf{x}) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left[-\frac{(y_k(\mathbf{x};\mathbf{t}) - t_k)^2}{2\sigma^2}\right]$$
(22)

Cost function for all outputs and all patterns

$$E = \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} \sum_{k=1}^{c} (y_k^n - t_k^n)^2}_{\text{Dependent on } \mathbf{w}} + Nc \ln \sigma + \frac{Nc}{2} \ln(2\pi) \quad (23)$$

PROB. — CLASSIFICATION

- y_k as the probability for belong to class k.
- Multiple attributes (multivariate Bernoulli) (Bishop 1995, sect. 6.8). With $t_k \in \{0, 1\}$

$$p(\mathbf{t}|\mathbf{x}) = \prod_{k=1}^{c} p(t_k|\mathbf{x}) = \prod_{k=1}^{c} y_k^{t_k} (1 - y_k)^{1 - t_k}$$
 (24)

Normalization to range [0;1] with logistic function

$$y_k = \frac{1}{1 + \exp\left(a_k\right)} \tag{25}$$

Multiple exclusive classes (multinomial)

$$p(\mathbf{t}|\mathbf{x}) = \prod_{k=1}^{c} y_k^{t_k} \tag{26}$$

Cross-entropy error function

$$E = -\sum_{n} \sum_{k=1}^{c} t_k^n \ln y_k^n \tag{27}$$

Normalization of range to [0;1] with the softmax function

$$y_k = \frac{\exp(a_k)}{\sum_{k'} \exp(a_{k'})} \tag{28}$$

UNSUPERVISED LEARNING

 \bullet No target, density estimation of $p(\mathbf{x})$ with $p(\mathbf{x}|\boldsymbol{\theta})$

UNSUPERVISED/SUPERVISED

Figure 3: "Joint Modeling": Kernel density modeling with homogenous variance in x and y. Noise is independent between x and y.

- "Joint modeling": Unsupervised/unsupervised distinction might not always be appropriate, e.g., regression can be done with unsupervised methods, where the joint probability for input and output is modeled
- Dependent on noise assumptions (noise on the input).
- A related model in (Bishop 1995, fig 6.7)

GENERALIZATION

Figure 4: Overfitting and underfitting: Example of overfitting and underfitting for one-dimensional curvefitting (Bishop 1995, eq 1.4). $h(x) = 0.5 + 0.04 * \sin(2\pi x)$. Blue the "true curve". Red is estimated models.

- The variance on the parameters should be small: Not applicable to non-parametric models, such as a neural network because parameter space symmetries, e.g., sign-flip and hidden units permutations, (Bishop 1995, sect. 4.4).
- ullet The prediction of y on the training set should be small: Problem with overfitting.
- The prediction of y on a new dataset should be small.

LEARNING CURVE

Figure 5: Learning curves for three different models: 1st order polynomial, 10th order polynomial (blue) and a neural network (green) with 10 hidden units (W = 31). The target function is (Bishop 1995, eq 1.4).

- ullet Generalization as a function of training set size N
- Complex models should benefit more than simple models:
 - Simple linear model (red): constant error with no benefit of extra training data
 - Complex models (blue/green): Decreasing test set error.
- Select the model according to the number of training examples.

BIAS VARIANCE DECOMPOSITION

Figure 6: Bias variance decomposition.

- Ensemble of finite training sets, y a stochastic variable dependent on the training set D: p(y|D)
- Bias variance decomposition, (Bishop 1995, eq. 9.7)

$$\mathcal{E}_{D}\left[\left\{y(\mathbf{x}) - \langle t|\mathbf{x}\rangle\right\}^{2}\right] = \underbrace{\left\{\mathcal{E}_{D}\left[y(\mathbf{x})\right] - \langle t|\mathbf{x}\rangle\right\}^{2}}_{\text{(bias)}^{2}} + \underbrace{\mathcal{E}_{D}\left[\left\{y(\mathbf{x}) - \mathcal{E}_{D}\left[y(\mathbf{x})\right]\right\}^{2}\right]}_{\text{variance}} (30)$$

CONTROLLING THE EFFECTIVE COMPLEXITY

Bishop (1995, p. 332) distinguishes between:

- Structural stabilization, changing the number of parameters
 - Optimal Brain Damage (OBD) pruning
 - Optimal Brain Surgeon (OBS) pruning
 - Node pruning
- Regularization, "Adding a penalty term Ω to the cost function"
 - Weight decay, (Bishop 1995, sect. 9.2.1) also called ridge regression

$$\Omega = 1/2 \sum_{i} w_i^2. \tag{31}$$

- Soft weight sharing, Weights generated from a mixture of Gaussians.
- Early stopping. Stop the optimization when the validation set is lowest.
- Training with noise, perturbing the data points in the training set with noise.

EARLY STOP

Figure 7: Two-layer neural network curvefitting with least squares an with 40 hidden units and N=10 training examples. "x" is training set and "o" is validation set.

- Effective optimization (Levenberg-Marquardt): fast learning and fast overfitting.
- Slow optimization (gradient descent with adaptive step size): Slow convergence, but no overfitting (yet!).

REGULARIZATION FROM PROBABILISTIC ASSUMPTIONS

• Bayes formula, (Bishop 1995, eq. 10.3)

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w}) p(\mathbf{w})}{p(\mathcal{D})},$$
 (32)

where w is the parameters and $\mathcal{D} \equiv (t^1, \dots, t^N)$ is the training set of the target.

 \bullet $p(\mathbf{D})$ is constant for a fixed data set

$$p(\mathbf{w}|\mathcal{D}) \propto p(\mathcal{D}|\mathbf{w}) p(\mathbf{w})$$
 (33)

Cost function

$$E = -\ln p(\mathcal{D}|\mathbf{w}) - \ln p(\mathbf{w}) \tag{34}$$

• If Gaussian prior (indepedent) on the weights $p(\mathbf{w}) \propto \exp(-\lambda \sum_i w_i^2)$

$$E = -\ln p(\mathcal{D}|\mathbf{w}) + \lambda \sum_{i} w_i^2$$
 (35)

which is weight decay.

PRUNING BY OBD

Figure 8: Pruning by OBD in a two-layer neural network curvefitting with least squares and with 40 hidden units and N=50 training examples and $N_{\mbox{Val}}=50$ validation examples.

 Optimal Brain Damage (OBD) considers the saliency of weights: The change in the cost function when a small perturbation is made on a weight (Bishop 1995, eq. 9.66)

$$\delta E = \underbrace{\sum_{i} \frac{\partial E}{\partial w_{i}} \, \delta w_{i}}_{\text{Ignore if optimized}} + \frac{1}{2} \sum_{i} \sum_{j} H_{ij} \, \delta w_{i} \, \delta w_{j} + \dots$$
(36)

and diagonal approximation to the Hessian. Erase (set to zero) the weigths associated with low effect (saliency).

COMMITTEE OF NETWORKS

Figure 9: Committee network for model with two outputs.

• Consensus model, e.g., average output of L models, (Bishop 1995, eq. 9.83)

$$y_{\text{com}}(\mathbf{x}) = \frac{1}{L} \sum_{i=1}^{L} y_i(\mathbf{x})$$
 (37)

- This prediction is better than the average error of the individual models ($E_{\rm com} < E_{\rm av}$), if
 - Errors are uncorrelated. Fully correlated (the same model) $E_{\mbox{\tiny COM}}=E_{\mbox{\tiny AV}}.$
 - Error function is convex, e.g., Gaussian

COMMITTEE OF NETWORKS

Figure 10: Committee network for model with two outputs.

With no model bias against the true output

$$E_{\text{\tiny COM}} = \frac{1}{L} E_{\text{\tiny AV}} \tag{38}$$

$$E_{\text{AV}} = \frac{1}{L} \sum_{i=1}^{L} E_i = \frac{1}{L} \sum_{i=1}^{L} \mathcal{E} \left[\epsilon_i^2 \right]$$
 (39)

$$E_{\text{\tiny COM}} = \mathcal{E}\left[\left(\frac{1}{L}\sum_{i=1}^{L}y_i(\mathbf{x} - h(\mathbf{x})\right)^2\right] = \mathcal{E}\left[\left(\frac{1}{L}\sum_{i=1}^{L}\epsilon_i\right)^2\right]$$
(40)

COMMITTEE OF NETWORKS

Figure 11: Committee neural network prediction.

- Models should be heterogenous, e.g., a linear model will fit the same curve.
- Averaging over models mostly reduces the *variance* rather than the *bias*.
- Neural network committee example (permuting training and test set, different seed, very little regularization) with validation set and early stop. 10 networks in committee.

$$E_{\text{AV. Test set}} = 0.0394$$
 (41)

$$E_{\text{COM, Test set}} = 0.0084$$
 (42)

2 individual models were better, 8 worse. Empirical observation: Errors are not necessarily Gaussian

MODEL ORDER SELECTION, VALIDATION

- Validation-based (Bishop 1995, sect. 9.8.1), testset should be independent "Hold out method") and from the same distribution
 - Single-set validation. A finite size validation set will be "noisy".
 - Cross-validation, partition the data set in S distinct segments. S times larger computation

Figure 12: Cross-validation partioning (Bishop 1995, figure 9.17). With N=50 examples and S=5 distinct partitions of the data.

- Leave-one-out. Only one example in the validation set.
- "Overvalidation": If the validation set is applied too much the model might not generalize (Bishop 1995, p. 364–365), e.g., consider random models picked by the validation set.

BIAS VARIANCE TRADE-OFF

Figure 13: Bias variance decomposition on a 20th order polynomial with a weight decay hyperparameter varied with N=10 examples and 100 runs (Bishop 1995, fig. 9.16, eqs. 9.109 and 9.110).

- ullet Bias variance as a function of model complexity (Bishop 1995, figure 9.16): $\mathcal{E}_D[y] pprox ar{y} = \sum_{i=1}^{100} y_i$ and $\langle t|x \rangle$ assessed by large validation set
- Simple models: High bias, low variance, e.g., a constant model y=0 have no variance and bias as $\langle t|\mathbf{x}\rangle^2$.
- Complex model: Might have low bias and high variance, e.g., a model that fits the data points perfectly.

MODEL ORDER SELECTION — COMPLEXITY CRITERIA

• Complexity criteria, (Bishop 1995, sect. 9.8.3). One of the forms (Bishop 1995, eq. 9.111)

$$PE = training error + complexity term$$
 (43)

For sum-of-squares error, $E = \frac{1}{2} \sum_{n=1}^{N} \left[y(\mathbf{x}, \mathbf{w}) - t \right]^2$

Final prediction error (FPE), (Bishop 1995, eq. 9.112)

$$\mathsf{FPE} = \frac{2E}{N} + \frac{W}{N}\sigma^2 \tag{44}$$

where W is the number of free parameters.

Generalized prediction error (GPE)

$$\mathsf{GPE} = \frac{2E}{N} + \frac{2\gamma}{N}\sigma^2 \tag{45}$$

where γ is an effective number of parameters.

CONCLUSION

- Learning can be performed in a variaty of ways: gradient, Hessian-based.
- Learning problems can be based on probabilistic models: regression, classification, ...
- Model should generalize well: It should not only consider presented data (training) but fit new data as well.
- Complexity of model can be adjusted by varying the number of free paramters, by regularization, pruning or by not training the model "well".
- Combining models ("consensus models", "committee of network") might improve generalization.
- Generalization can be assessed by validation set or by complexity criteria.

REFERENCES

References

Bishop, C. M. (1995). *Neural Networks for Pattern Recognition*. Oxford University Press. Larsen, J. (1996, January). *Design of Neural Network Filters*. Ph. D. thesis, Electronics Institute, Technical University of Denmark, Lyngby, Denmark. Second edition.