
On Development of Web-based Software∗

A Divertimento of Ideas and Suggestions

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark

bjorner@gmail.com

Begun August 4, 2010; compiled October 8, 2010: 19:21

cover

Abstract

This divertimento – on the occasion of the 70th anniversary of Prof., Dr
NNN1 – sketches some observations on relationships between window- and
Web-based graphic user interfaces (GUI) and underlying Internet-based
Linda [16] and JavaSpaces-like spaces [15], that is, shared network-access-
ible repositories for arbitrary data structures. (The Preface (next) and
Sect. 1.4 on page 15 presents the structure of the paper.)

• • •

• I started working on this technical document early August 2010 with two points in
mind: (i) trying to understand the documents [10, 11, 29, 30] purportedly defining
XVSM, and (ii) trying to see whether currently fashionable issues of interactive media

could be understood as precise artifacts of computing. I think I am succeeding on
the latter point.

• The most serious “omission” in this technical note is the absence of any serious
handling of proof obligations. A beginning is laid: the considerable number of
axioms point in that direction. I intend, once all the “formulas” have been given a
first rough sketch, to go through the whole document, with a fine comb, identifying
interesting invariants (i.e., “consistent state issues”), etc.

• As of October 8, 2010 I have not printed this document and since I – unfortunately
– do not use RSL-related tools I cannot guarantee that all function types are being
respected, nor that all occurrences of function and type names have been properly
defined.

• An index is provided at the end of this report (Pages 170–186). It should help
the untrained reader to find way around the formulas. No formula is defined using
formal terms that have not already been defined.

∗This document constitutes a report on “work in progress”. A paper for the NNN
Festschrift will be a drastically reduced version of this report.

1It was hoped, when this technical work was first undertaken, that I could “spin” a 15
pages LNCS ‘Festschrift’ paper with a background in the technical woek. But that ‘hope’ is
dwindling!

1

2 On Development of Web-based Software

Preface cover

cover

• This is a mere technical report.

– The author set out to give an as complete account of a possible re-
lationship between conventional window-based graphical user inter-
faces and data spaces such as Linda [16] and JavaSpaces-like spaces
[15], that is, shared network-accessible repositories for arbitrary data
structures.

– The urge to do so was an “on and off” study that the author made in
the period mid April to late July 2010 of the XVSM [10, 11, 29, 30].

– This study began during the author’s lectures at the Technical Uni-
versity of Vienna, Austria — a most pleasant stay for which he thanks
Prof., Dr Jens Knoop profusely.

– The study first lead to an attempt to reformulate XVSM in the style
that the author best likes. The reformulation was based on [10].

– Around August 1, 2010, the author then decided to halt further
work on the XVSM. The state of that formalisation is found at:
http://www2.imm.dtu.dk/~db/xvsm-p.pdf.

• It is fun to work out the “speculated” relationship.

– I have always wanted, since the mid 1980s, to formalise so-called
human-computer interfaces (CHI, [13, 34, 3, 39, 40, 28, 19]). See
also [6, Examples 19.27–19.28, Pages 435–442] of my three volume
“grand d’oeuvre” !

– I have yet to see the published literature hint at or focus on the
relation: that the data structure of a window reflects data structures
of data bases — or vice versa.

– It is, to me, obvious that this must be the case.

– How else are we “thinking”, conceptualising.

– Other than visualising the concepts.

• In this report, we develop, in Sect. 2,

– the notions of window and shared data spaces painstakingly from
basic concepts:

∗ atomic values and types, via

∗ curtain values and types, to

∗ window values and types,

– and from there to

∗ window frames in Sect. 3 and

∗ domain frames in Sect. 4.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 3

• We first develop these information concepts, in the order listed above
before we focus

– first on domain frame operations, in Sect. 5,

– then on window frame operations, in Sect. 6.

• We wrap all of the above “algebras” up by presenting, in Sects. 7–9,

– In Section 7:

∗ the definition of a distributed system of

∗ one domain process and

∗ zero, one or more window processes.

– Whereas Sects. 2–6 are kept in a pure, functional style RSL [17, 18, 4],
Sect. 7 extends this style with RSL’s CSP [21].

– Section 8: A simple (read: idealised, näıve) coordinated transaction
processing system.

– Section 9:

∗ A less simple roll-back/roll-forward system

∗ extending that of Sect. 8

∗ to handle failures.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

4 On Development of Web-based Software

Contents

Preface cover 2

1 Introduction intro 10

1.1 Background . 10

1.2 Intuition . 10

1.2.1 Window States and Windows . 10

1.2.2 Fields of Icons . 10

1.2.3 Atomic Icons . 11

1.2.4 Curtain Icons . 11

1.2.5 Windows and Window Icons . 11

1.2.6 Special “Buttons” . 12

1.2.7 Sub-windows . 13

1.3 Trees, Stacks and Cacti [NIIST, US Govt.] . 13

1.3.1 Trees . 13

1.3.2 Stacks . 14

1.3.3 Cacti . 14

1.4 Structure of Paper . 15

2 Windows windows 16

2.1 A Review . 16

2.2 Atomic Values and Atomic Types . 17

2.2.1 Atomic Values . 17

2.2.2 Atomic Types . 17

2.2.3 Atomic Sub-types . 17

2.2.4 Atomic Super-types . 18

2.3 Curtain Values and Curtain Types . 18

2.3.1 Curtain Values . 19

2.3.2 Well-formed Curtain Values . 19

2.3.3 Curtain Types . 19

2.3.4 Curtain Super-types . 20

2.4 Tuples . 20

2.4.1 Tuple Values . 20

2.4.2 Field and Tuple Types . 21

2.5 Sub-types . 22

2.6 Keys and Relations . 22

2.6.1 Keys: Key-names, Key-Values and Key-types 22

2.6.2 Relations and Relation Types . 23

2.6.3 Auxiliary Functions on Relations . 24

2.7 Windows . 25

2.7.1 Window Values . 25

2.7.2 Window Value Types . 25

2.7.3 Window Syntax . 25

2.7.4 Well-formed Windows . 25

2.7.5 The "Select" and "Include" Buttons 26

2.7.6 Null, Initial and Nil Windows . 27

Null Windows . 27

Initial Windows . 27

Nil Tuple . 28

Nil Field Values . 29

Nil Windows . 29

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 5

3 A Window Frame System window-frames 30
3.1 Window States . 30
3.2 Well-formed Window Frames . 31
3.3 Well-formed Window States . 32
3.4 Forests of Window Frames . 32

3.4.1 The Syntax . 33
3.4.2 The Well-formedness . 33

3.5 Paths of Window Frames and Forests . 33
3.5.1 Syntax . 33
3.5.2 Window Frames Define Paths . 34
3.5.3 Forests of Window Frames Define Paths 34
3.5.4 Selection Functions . 34

Select Window Frames . 35
Select Window States . 35
Select Windows . 35
Select Window Names . 35

4 The Domain Frame System domain-frames 36
4.1 The Syntax of Domain Frames . 36

4.1.1 Well-formed Domain Frames . 36
4.2 The Syntax of Forests of Domain Frames . 36

4.2.1 Well-formed Forests of Domain Frames 37
4.3 Paths of Domain Frames and Forests of Domain Frames 37

4.3.1 Domain Frames Define Paths . 37
4.3.2 Forests of Domain Frames Define Paths 37
4.3.3 Selection Functions . 38

Select Window from Domain Frame . 38
Select Window from Forest of Domain Frames 38
Select Window Names from FoDFs . 38

5 Domain Frame Operations domain-ops 39
5.1 Commands . 39

5.1.1 Narrative . 39
5.1.2 Formalisation . 39

5.2 Operations . 39
5.2.1 The Initialize Domain Frame Operation 40
5.2.2 The Create Domain Frame Operation . 40
5.2.3 The Remove Domain Frame Operation 41

Identity of Remove Composed with Create 42
5.2.4 The Put Window Operation . 42
5.2.5 The Get Window Operation . 43

5.3 Discussion . 44
5.3.1 Mon. 30 Aug. and Thu. 23 Sept., 2010 44

6 Window Frame Commands and Operations window-ops 45
6.1 Commands . 45

6.1.1 Narratives and Brief Descriptions . 45
6.1.2 Formalisations . 45

6.2 Operations . 46
6.2.1 Open Window (Frame) . 46
6.2.2 Close Window Frame . 48
6.2.3 Click Window . 49
6.2.4 Write Window . 50
6.2.5 Put Window . 52

“Life is like a sewer ...” . 52
6.2.6 Select Tuple . 53
6.2.7 Include Tuple . 54

6.3 Discussion . 54

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

6 On Development of Web-based Software

7 A Simple Transaction System transactions 55
7.1 What Is a Transaction ? . 55

7.1.1 Transaction Syntax . 55
7.1.2 On Transaction Semantics . 56

7.2 An Analysis . 56
7.2.1 Domain Frame Elaboration (Function) Signatures 56
7.2.2 Window Frame Elaboration Function Signatures 56
7.2.3 Window Frame to Domain Frame Invocations 57
7.2.4 Changes . 57

7.3 The System . 58
7.3.1 Channels . 58
7.3.2 The System Process . 59
7.3.3 The Forest of Domain Frames Process 59
7.3.4 The Forest of Window Frames Processes 61

7.4 Discussion . 64

8 Coordinated Transaction Processing tp-system 66
8.1 An Overview of A System of Processes . 66
8.2 An Adaptation of The Two Phase Commit Protocol 2pc 67

8.2.1 A First Overview Narrative of the Two Phase Commit Protocol 67
8.2.2 A Second Narrative of the Two Phase Commit Protocol 67
8.2.3 Two Phase Commit Protocol Messages, a Resumé 2pc-msgs . . . 73
8.2.4 Analysis . 74

8.3 Some Auxiliary State Notes . 76
8.3.1 Window Schemas schemas 76
8.3.2 Unique Transaction Identifiers utids 79

8.4 Channels channels 79
8.5 States . 80

8.5.1 Window Frame Process State ΩiΣ window-i-state 80
Marking Window Schemas . 80
Forests of Designated Window Frames 81
Transactions . 82
The Forest of Window Frames Process State 83
State Well-formedness . 84
Window Process State Function Signatures 85
Discussion . 86
Redesign of Window Frame Process Windows 86

Main State Components . 87
Values and Types . 87
Names and Paths of Various Forms 87

8.5.2 Subordinate Domain Frame Process State ∆jΣ delta-j-state . . 88
Forest of Domain Frames . 88
Auxiliary State Components . 88
Auxiliary and Enduring States . 88
State Transition Functions . 88

PreCommit . 89
DeCommit . 89
Commit . 89
Get Window . 89
Close/Put Window . 90

8.5.3 Coordinator Process State, ∆0Σ delta-0-state 90
Window Catalogue . 90
User Requests and Coordinator Buckets 91
The ∆0Ω Coordinator State . 91

8.6 Processes processes 92
8.6.1 Window Process Ωi: Initial Actions . 92
8.6.2 The Coordinator Process, ∆0 . 93

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 7

∆0: Initial Actions . 93
∆0: Prepare Commit Phase Actions . 93
∆0: Commit Phase Actions . 95

8.6.3 Subordinate Domain Frame Processes, ∆j , j ∈ {1..m} 95
Coordinator–Subordinator Transactions: ∆j , j ∈ {1..m} dj0 . . . 95
Subordinator–Coordinator Transactions: ∆j∆0, j ∈ {1..m} dj1 . . . 96
The Subordinator–User Transactions: ∆jΩi, j ∈ {1..m}, i ∈ {1..n} dj2 97
The Subordinator “Own” Transactions: ∆jOwn, j ∈ {1..m} dj3 . . 98

8.6.4 Window Frame Processes, Ωi wi 99

9 Transaction Failure Techniques rollback101
9.1 WIKIPEDIA: Transaction Processing Issues . 101

9.1.1 Roll-back . 101
9.1.2 Roll-forward . 101
9.1.3 Deadlocks . 101
9.1.4 Compensating transaction . 102
9.1.5 ACID criteria (Atomicity, Consistency, Isolation, Durability) 102

9.2 An Analysis of ∆0,∆j and Ωi Failures . 102
9.2.1 Communication Failures . 103
9.2.2 Computer “Failures” . 105
9.2.3 Human Failures . 106

9.3 Redefinition of Some Functions . 107
9.4 ∆0: Coordination of Roll-backs/Roll-forwards 107
9.5 ∆j : Effectuation of Roll-backs/Roll-forwards . 107
9.6 Ωi: Transparency of Roll-backs/Roll-forwards . 107
9.7 Optimisation Issues . 108
9.8 Discussion . 109

10 An SQL-like Query Systems sql110
10.1 Clean SQL . 110
10.2 Window Relations . 110

10.2.1 Tuple and Window Values and Relation Values 110
10.2.2 Relation Identifiers: Paths and Window Names 111
10.2.3 Tuple Attribute Names and Indices . 111
10.2.4 A Relational Database . 112

10.3 The Forest of Window Frames Relations . 112
10.4 Conversion to “Clean SQL” Relational Databases 113
10.5 The Forests of Domain Frames Query Language 114
10.6 Discussion . 114

11 A Window Design Tool gui-design115
11.1 Design Principles . 115
11.2 Graphics . 116
11.3 Syntax . 117
11.4 Commands and Operations . 118

11.4.1 Commands . 119
11.4.2 Operations . 120

11.5 Discussion . 121

12 Conclusion con122
12.1 Discussion . 122

12.1.1 What Have We Achieved . 122
12.1.2 What Have We Not Achieved . 122
12.1.3 What Should We Do Next . 123

12.2 Acknowledgements . 123
12.3 Bibliographical Notes . 123

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

8 On Development of Web-based Software

A Definition of Window Frame Process Functions appWOps128
A.1 Summary of Window Operations . 128

A.1.1 Sect. 6 Window Operations: Syntax and Signatures 128
A.1.2 Sect. 8.5.1 Window Process State Function Signatures Pages 85–87 . . . 128

A.2 “Before” and Now Window Operations . 129
A.2.1 Cre FoWF: Create Forest of Designated Window Frames 129
A.2.2 Open Window . 130

Sect. 6.2.1 Open and Insert Windows . 130
Opn W: The Window Frame Process . 130

A.2.3 Close and Put Windows . 131
Sect. 6.2.2 Close Window (Frame) . 131
Sect. 6.2.5 Put Window (Frame) . 131
Clo W: The Window Frame Process . 131

A.2.4 Click and Write Windows . 132
Sect. 6.2.3: Click Windows . 132
Sect. 6.2.4: Write Windows . 132
Wri W: The Window Frame Process . 134

A.2.5 Del DFW: Delete Designated Window Frame 135

B Clean SQL appSQL136
B.1 Semantic Types . 136

B.1.1 Types . 136
B.1.2 Semantic Well-formedness . 136

B.2 Syntactics . 137
B.3 Semantics . 138

B.3.1 Semantic Well-formedness . 138
B.3.2 Auxiliary Functions . 141
B.3.3 Evaluation Functions . 142

C An RSL Primer 145
C.1 Types . 145

C.1.1 Type Expressions . 145
Atomic Types . 145
Composite Types . 145

C.1.2 Type Definitions . 147
Concrete Types . 147
Subtypes . 148
Sorts — Abstract Types . 148

C.2 Concrete RSL Types: Values and Operations . 149
C.2.1 Arithmetic . 149
C.2.2 Set Expressions . 149

Set Enumerations . 149
Set Comprehension . 149

C.2.3 Cartesian Expressions . 149
Cartesian Enumerations . 149

C.2.4 List Expressions . 150
List Enumerations . 150
List Comprehension . 150

C.2.5 Map Expressions . 150
Map Enumerations . 150
Map Comprehension . 151

C.2.6 Set Operations . 151
Set Operator Signatures . 151
Set Examples . 152
Informal Explication . 152
Set Operator Definitions . 153

C.2.7 Cartesian Operations . 153
C.2.8 List Operations . 153

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 9

List Operator Signatures . 153
List Operation Examples . 154
Informal Explication . 154
List Operator “Definitions” . 155

C.2.9 Map Operations . 156
Map Operator Signatures and Map Operation Examples 156
Map Operation Explication . 156
Map Operation “Redefinitions” . 157

C.3 The RSL Predicate Calculus . 158
C.3.1 Propositional Expressions . 158
C.3.2 Simple Predicate Expressions . 158
C.3.3 Quantified Expressions . 158

C.4 λ-Calculus + Functions . 159
C.4.1 The λ-Calculus Syntax . 159
C.4.2 Free and Bound Variables . 159
C.4.3 Substitution . 159
C.4.4 α-Renaming and β-Reduction . 160
C.4.5 Function Signatures . 160
C.4.6 Function Definitions . 160

C.5 Other Applicative Expressions . 161
C.5.1 Simple let Expressions . 161
C.5.2 Recursive let Expressions . 162
C.5.3 Non-deterministic let Clause . 162
C.5.4 Pattern and “Wild Card” let Expressions 162
C.5.5 Conditionals . 162
C.5.6 Operator/Operand Expressions . 163

C.6 Imperative Constructs . 163
C.6.1 Statements and State Changes . 163
C.6.2 Variables and Assignment . 164
C.6.3 Statement Sequences and skip . 164
C.6.4 Imperative Conditionals . 164
C.6.5 Iterative Conditionals . 165
C.6.6 Iterative Sequencing . 165

C.7 Process Constructs . 165
C.7.1 Process Channels . 165
C.7.2 Process Definitions . 165
C.7.3 Process Composition . 166
C.7.4 Input/Output Events . 166

C.8 Simple RSL Specifications . 166

Index 170

Full Index 170

Type Index 178

Function Index 180

Channel Index 182

Variable Index 183

Symbol Index 184

Last page 186

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

10 On Development of Web-based Software

1 Introduction intro

intro

1.1 Background

1.2 Intuition

. . .

an1:

an2:

anp: anm:

anr:

anq:

cnk:

cn1:

.

Window−name: wn−i

kni:

. . .
kn1:

Key wn−c

Atomic icons: Curtains:

wn−a wn−b . . .sub−windows:

Tuples

Select Include

cn2:

. . .

"blank"clicked curtain cn2:

Figure 1: Schematic windows

1.2.1 Window States and Windows

Figure 1 shows a schematic snapshot of a window. The most recently, “a-top-
of-a-window-cactus-stack” window – (upper-left-corner) is named wn-i. The
window (named) wn-i shows key fields named kn1 and kn2. These key field
names, as we shall see later, are atomic icon names of that window. We have
left the “boxed” key fields open. They are supposed to contain key field values.
These values will, initially, be identical to those of the “matching” atomic icon
fields.

1.2.2 Fields of Icons

Figure 1 shows three kinds of fields, i.e., icons: atomic icons named ana, anb,

..., anm in window wn-i; curtain icons named cn1, cn2, ... and cnk in
the window named wn-i. The intuition about windows and icons, in general,
is that they shall serve as a medium for information display, for initial data

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 11

input to general, space-oriented, possibly globally dispersed storage and for the
(occasional) update of such stored data.

1.2.3 Atomic Icons

In the following we assume that data has already been stored in some global,
say space-oriented storage. The intuition about atomic icons is the follow-
ing: Atomic icon names hint at (or, not shown in Fig. 1 on the preceding
page, directly embody) a description of the type of the atomic data of the
atomic icon field. The atomic icon field either already contains some non-"nil"
atomic data value, or contains such a "nil" value. The idea is that non-"nil"
data informs the user, whereas "nil" data optionally “invites” the user to fur-
nish (i.e., to write) a suitably typed atomic value. Atomic values can either
be integers, natural numbers, (finitely expressible) rational numbers, Booleans
("true", "false", or "yes", "no", or “similar”), or texts: for example "Dines
Bjørner", "4 October 1937", "married", etc. The system to be designed in
this report suggests that the user “signals” an intent to write into an atomic
icon value field by clicking the atomic icon name; this enables the user to “type”
(or otherwise) a representation of the value into the field, either overwriting a
"nil" or whatever value was “already” posted in that field.

1.2.4 Curtain Icons

You will note that window wn-i (Fig. 1 on the facing page) shows that curtain
name, cn2 has been “clicked” and thus its curtain is opened. The open cn2

shows an indefinite number of (ordered) atomic icon valued fields. The last field
of a curtain value is always set to ‘‘blank’’. As we shall see, curtain fields
can be overwritten and new field values appended to the “end” – where there
was a ‘‘blank’’ field value – resulting in a curtain list one longer than before
overwriting the‘‘blank’’. The intuition about curtains is the following: A
curtain is (to contain) a list of atomic values. These are to reflect sets or lists
of common, related data (i.e., information). These lists or sets are of indefinite
size, from empty, with just a single "blank" field, to some length or cardinality,
as exemplified by cn2. As for atomic icons, curtain data can be initially input
or viewed.

1.2.5 Windows and Window Icons

The intuition about windows is the following.
Windows represent pragmatically chosen complexes of information and data,

either structured “flatly”, in a set of atomic icons, or simply structured, i a set
of curtains; or more hierarchically structured is sets of windows “embedded”
within windows. The intuition about window icons is the following: A window
icon can be clicked allowing an “underlying” window to open. The fields of that
window can now be viewed, instantiated or updated. The intuition about keys
is the following. If a window has no keys then it means that that window’s field

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

12 On Development of Web-based Software

values together represent the only window value for that named window. If a
window has a key with one or more atomic icons, it means that that window’s
field values together represent one of a set of window value for that named
window, namely a window value that is indexed by the key value. We say that
if a window has a non-empty key (not shown in Fig. 1 on page 10) then it
represents a relation (over window values). Figure 1 on page 10 does not hint
at this relation. Figure 5 on page 23 does hint at this relation.

. . .

an1:

an2:

anp: anm:

anr:

anq:

cn2:

cnk:

cn1:

. . .

. . .

. . .

kni:

. . .
kn1:

Atomic icons: Curtains:

Tuples

. . .

. . .Key Relation

IncludeSelect

. . .

. . .

Figure 2: A window relation

You may think of the relation for a given, non-empty key window, as a set of
tuples of icon and curtain values with a primary key being that of the named key
fields. Once a window name is “clicked”, as for window wn-c, then the following
intermediate sequence takes place: First the dashed part of wn-c appears on the
screen. Its key fields are left blank. For the user to fill in these fields amounts
to the user selecting the tuple among the relation that matches this key. And
the entire window, window-n, with its remaining fields (atomic icons, curtains
and possibly further, embedded windows, are shown.

1.2.6 Special “Buttons”

Figure 3 on the facing page shows some additional buttons. A "read" button,
when clicked, shall lead to an update of the window relation for that window with
the field values of atomic icons and curtains. A "write" button, when clicked,
writes that window do a domain frame. A "take" button, when clicked, deletes
a window of that name from a domain frame while maintaining the current

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 13

window. A "close" button, when clicked, closes that window (in the window
frame). We have not bothered to show these “buttons” in Figs. 1 on page 10
and 2 on the facing page.

1.2.7 Sub-windows

Figure 3 shows a “state” of the window first shown in Fig. 1 on page 10. In
Fig. 1 on page 10 a number of sub-window names were listed: wn-a, wn-b and
wn-c. In Fig. 3 sub-window name wn-b appears to have been “clicked”. As
a result a window of that name has been opened. But, “to begin with”, only
with the hey fields displayed. The window ‘user’ is then expected to fill in zero,
one or more of (as here, zero or one of) the key-field values. When that has
been done the window frame will respond by selecting a suitable tuple from the
chosen window relation and display this and the rest of the (constant) window
fields.

. . .

an1:

an2:

anp: anm:

anr:

anq:

cn2:

cnk:

cn1:

.

Window−name: wn−i

kni:

. . .
kn1:

Key

Atomic icons: Curtains:

wn−asub−windows:

Tuples

wn−

Window−name: wn−b

Etcetera !

Select Include

clicked window: wn−b

Key

Read Write Take Close

kn:

Figure 3: A sub-window

1.3 Trees, Stacks and Cacti [NIIST, US Govt.]

The successive opening and closing of windows result in an underlying window
frame system “grafting” and “pruning” a cactus stack of windows. It is like a
tree, but each branch of the tree, that is, a window, allows being operated upon
during its “lifetime”.

1.3.1 Trees

http://www.itl.nist.gov/div897/sqg/dads/HTML/tree.html
Definition: A data structure accessed beginning at the root node. Each

node is either a leaf or an internal node. An internal node has one or more child

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

14 On Development of Web-based Software

nodes and is called the parent of its child nodes. All children of the same node
are siblings. Contrary to a physical tree, the root is usually depicted at the top
of the structure, and the leaves are depicted at the bottom.

Formal Definition: A tree is either

* empty (no nodes), or

* a root and zero or more subtrees.

1.3.2 Stacks

http://www.itl.nist.gov/div897/sqg/dads/HTML/stack.html
Definition: A collection of items in which only the most recently added

item may be removed. The latest added item is at the top. Basic operations
are push and pop. Often top and isEmpty are available, too. Also known as
”last-in, first-out” or LIFO.

Formal Definition: The operations new(), push(v, S), top(S), and pop(S)
may be defined with axiomatic semantics as follows.

* new() returns a stack

* popoff(push(v, S)) = S

* top(push(v, S)) = v

where S is a stack and v is a value. The pop operation is a combination of top,
to return the top value, and popoff, to remove the top value.

The predicate isEmpty(S) may be defined with the following additional ax-
ioms.

* isEmpty(new()) = true

* isEmpty(push(v, S)) = false

1.3.3 Cacti

http://www.itl.nist.gov/div897/sqg/dads/HTML/cactusstack.html
Definition: A variant of stack in which one other cactus stack may be

attached to the top. An attached stack is called a branch. When a branch
becomes empty, it is removed. Pop is not allowed if there is a branch. A branch

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 15

is only accessible through the original reference; it is not accessible through the
stack.

Formal Definition: The operations new to this variant of stack, branch(S,
T) and notch(v), may be defined with axiomatic semantics as follows.

* top(branch(S, T)) = top(S)

* notch(new()) = false

* notch(push(v, S)) = false

* notch(branch(S, T)) = true

Also known as saguaro stack.

1.4 Structure of Paper

We first (Sect. 2) develop (analyse and construct, narrate and formalise) a no-
tion of windows as composed from various forms of icons: atomic, scroll down
curtains and sub-windows.

Windows denote data structures where what you see on a screen is but part
of that data structure. With a window is associated the property that zero,
one or more of its atomic icons form a key, and, therefore, what you see on
the screen (apart from references to sub-windows) is just a tuple of a relation
whose “other” tuples are part of the window data structure. That part is not
displayed. The screen tuple can be replaced by other tuples from the relation by
changing the key values of the visible tuple. And the relation can be ‘updated’
by inserting the current key and tuple into the relation.

Then (Sect. 3) we develop (analyse and construct, narrate and formalise) a
notion of window frames – complexes of windows on a screen, for example.

Following that (Sect. 4) we develop (analyse and construct, narrate and
formalise) a notion of domain frames. That notion shall serve as the global
(Linda2, JavaSpaces3 and XVSM4-like) storage for possibly coordinated, but till
now un-coordinated users, where users are represented by window frames.

Thus window frames “get” windows from and “put windows back into a
global domain frame.

A number of operations on, first domain frames, then window frames are
then defined (Sects. 5–6).

The (Sect. 7) we describe (narrate and formalise) a simple transaction pro-
cessing system in which one domain frame and n window frames (i.e., users)
cooperate – when window frames get and put windows.

Finally (Sect. 8)5 we describe (narrate and formalise) a simple coordinated
transaction processing system (commits, etc.).6

2Linda: [16]
3JavaSpaces: [15]
4XVSM: [10, 11, 29, 30]
5A section (Sect. 11) on a graphic user interface design system is contemplated and will

appear some day!
6But as of October 8, 2010, this work has yet to be done.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

16 On Development of Web-based Software

2 Windows windows

windows

Windows are common to the user graphic computing interface, called window
frames and covered in Sect. 3 and to the global, possibly world-wide distributed
data spaces covered in Sect. 4.

2.1 A Review

Figure 4 schematizes a “generic” window. It has three sub-parts: a window
name part, shown in upper left corner of Fig. 4; a tuples part, shown covering
most of the window of Fig. 4 and a window-names part, upper right part of
Fig. 4. The tuples part has two sub-parts: a key part consisting of zero, one or

. . .

an1:

an2:

anp: anm:

anr:

anq:

cnk:

cn1:

.

Window−name: wn−i

kni:

. . .
kn1:

Key wn−c

Atomic icons: Curtains:

wn−a wn−b . . .sub−windows:

Tuples

Select Include

cn2:

. . .

"blank"clicked curtain cn2:

Figure 4: A Schematic Window

more distinctly named atomic icons, and a (“remaining tuples”) part consisting
of zero, one or more atomic icons and zero, one or more curtains. All these
are distinctly named. The window-names part consists of zero, one or more
window-names.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 17

2.2 Atomic Values and Atomic Types

2.2.1 Atomic Values

1. An atomic value is either an integer, a finitely representable rational, a
Boolean, a text, or a nil “value”.7

1. AVAL == mkIV(Int)|mkRV(Rat)|mkBV(Bool)|mkT(Text)|′′nil′′

2.2.2 Atomic Types

Values have types and type descriptors designate sets of values of the same type.

2. There are integer, rational, Boolean, text and "nil" type designators.

3. From a value one can extract its type.

type
2. ATyp = {|′′int′′,′′rat′′,′′bool′′,′′text′′,′′nil′′|}
value
3. xtr ATyp: AVAL → ATyp
3. xtr ATyp(v) ≡
3. case v of
3. mkIV() → ′′int′′,
3. mkRV() → ′′rat′′,
3. mkBV() → ′′bool′′,
3. mkTV() → ′′text′′,
3. ′′nil′′ → ′′nil′′

3. end

2.2.3 Atomic Sub-types

4. We can define a notion of atomic sub-types, is atomic sub type.

a) Value type vt is a sub-type of type vt for vt being any one of
"integer", "rat","boolean", "text", and "nil".

b) Type "int" is a [proper] sub-type of type "rat".

c) Type "nil" is a [proper] sub-type of types "int" and "text".

d) The law of transitivity expresses that if t′ is a sub-type of type t′′,
and if type t′′ is a sub-type of type t′′′, then t′ is a sub-type t′′′.

e) By the law of transitivity type "nat" is a [proper] sub-type of type
"rat".

7It is easy to extend the atomic value concept to composite value structures: sets, records,
vectors, etc.; but we leave that for an engineering project following the lines of this paper.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

18 On Development of Web-based Software

value
4. is atomic sub type: ATyp × ATyp → Bool
4. is atomic sub type(vt′,vt′′) ≡
4. case (vt′,vt′′) of
4a. (vt,vt) → true,
4b. (′′int′′,′′rat′′) → true,
4c. (′′nil′′,′′int′′) → true,
4c. (′′nil′′,′′text′′) → true
4. end
axiom
4d. ∀ t′,t′′,t′′′:ATyp •

4d. is atomic sub type(t′,t′′) ∧ is atomic sub type(t′′,t′′′)
4d. ⇒ is atomic sub type(t′,t′′′)
theorem
4e. is atomic sub type(′′nil′′,′′rat′′)

2.2.4 Atomic Super-types

5. One can define a super-type predicate:

a) Any atomic type is a super-type of itself.

b) Any non-nil atomic type is a super-type of type "nil".

c) "rat" is a super-type of "int".

value
5. is atomic super type: ATyp × ATyp → Bool
5. is atomic super type(at,at′)
5a. at=at′

5. ∨ case (at,at′) of
5b. (′′nil′′,at′) → true,
5c. (′′rat′′,′′int′′) → true,
5. → false
5. end

2.3 Curtain Values and Curtain Types

We introduce a notion of scroll down curtains. We are not happy with this
design choice. The choice was made in order to illustrate (read: show the
reader) that our modelling can capture essential aspects of actual windows. But
it gives us specification-detail problems: much too many formulas and “special
cases”: whither a field item is an atomic, or a curtain, and why only, as we
have chosen, simple atomic values as curtain elements and not also compound
values such as structures (records, Cartesians), etc. And we can model curtains
with the relational window values, as we shall see somewhat later. In a design
“refinement” we shall later remove curtain from windows.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 19

2.3.1 Curtain Values

6. A curtain value is a non-empty list of atomic values of the same type and
terminated by a "blank".

6. CVAL′ == mkCV(s vl:(AVAL|{|′′blank′′|})∗)
6. CVAL = {|vl:CVAL′

•wf CVAL(vl)|}

2.3.2 Well-formed Curtain Values

Curtain values need be well-formed.

7. All, but the last of icon value of a curtain list are of comparable types and
the last value is "blank"

value
7. wf CVAL: CVAL′ → Bool
7. wf CVAL(vl) ≡
7. ∀ i:Nat•i ∈ inds vl\{len vl}∧i+1 ∈ inds vl ⇒
7. i+1 6=len vl
7. ⇒ comp atomic types(xtr ATyp(vl(i)),xtr ATyp(vl(i+1)))
7. ∧ vl(i)6=′′blank′′ ∧ vl(len vl)=′′blank′′

7. comp atomic types: ATyp × ATyp → Bool
7. comp atomic types(t,t′) ≡ atomic sub type(t,t′) ∨ atomic sub type(t′,t)

2.3.3 Curtain Types

8. Curtain types are atomic types.8

8. CTyp == mkCT(s t:ATyp)

9. From a curtain value one can extract its curtain type.

9. xtr CTyp: CVAL → CTyp
9. xtr CTyp(mkCVAL(cv)) ≡
9. if cv=〈′′blank′′〉 then ′′nil′′ else xtr type(hd cv) end

The above definition is just a convenience. Extracting the atomic type of “in-
between” curtain list values might yield another type. Therefore we define a
notion of curtain super-types.

8See Footnote 7 on page 17.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

20 On Development of Web-based Software

2.3.4 Curtain Super-types

10. We can define a function which extracts the atomic super-type of the
non-"blank" elements of a curtain value.

a) Let a curtain list have three or more elements.

b) Let any two distinct of these other than the last, the "blank" element,
have the atomic sub-types ati and atj.

c) If ati is an atomic sub-type of atj then ati is an atomic super-type
of atj.

d) "rat" is an atomic super-type of "int".

value
10. atomic super type: CVAL → {|′′nil′′|} → Nat → Bool
10. atomic super type(mkCV(vl))(at)(i) ≡
10. if i=len vl
10. then at
10. else
10. is atomic sub type(at,xtr ATyp(vl(i))) →
10. atomic super type(mkCV(vl))(xtr ATyp(vl(i)))(i+1),
10. is atomic sub type(xtr ATyp(vl(i)),at) →
10. atomic super type(mkCV(vl))(at)(i+1)
10. end
10. pre len vl≥3 and i=1

2.4 Tuples

2.4.1 Tuple Values

11. Tuples (i.e., tuple values) are sets of fields, that is, of uniquely field-named
field values.

12. A field name is either

a) an atomic (value or type) name or

b) a simple curtain (value or type) name or

c) a curtain name with an index.

13. Window names are (also) just names.

14. Names are further undefined quantities.

15. A field value is either an atomic value or a curtain value.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 21

type
11. TVAL = (ANm →m AVAL) ∪ (CNm →m CVAL)
12. FNm = ANm | CNm
12a. ANm == mkANm(s nm:Nm)
12b. CNm == mkCNm(s nm:Nm)
12c. CNmIx == mkCNmIx(s nm:Nm,s x:Nat)
13. WNm == mkWNm(s wn:Nm)
14. Nm
15. FVAL = AVAL | CVAL

2.4.2 Field and Tuple Types

Fields or tuples are like attributes of relations. Hence field types are such at-
tributes. We shall “stick” to the names of field elements, tuples, tuples values
and tuple types (in lieu of attributes, attribute values and attribute types, re-
spectively).

16. A field, that is, a tuple element type is either an atomic type or a curtain
type.

17. A tuple type associates field names to field types.

type
16. FTyp = ATyp | CTyp
17. TTyp = (Anm →m ATyp) ∪ (CNm →m CTyp)

18. From a field value one can extract its type.

value
18. xtr FTyp: FVAL → FTyp
18. xtr FTyp(fv) ≡
18. case fv of
18. mkCV() → xtr CTyp(fv),
18. → mkAT(xtr typ(fv))
18. end

19. From a tuple value one can extract its type.

19. xtr TTyp: TVAL → TTyp
19. xtr TTyp(tv) ≡ [fn7→xtr FTyp(tv(fn))|fn:FNm•fn ∈ dom fv]

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

22 On Development of Web-based Software

2.5 Sub-types

We extend the sub-type relation of Sect. 2.2.3 to apply to any pair of types.

20. The extended sub-type relation applies to a pair of field types.

a) If the two field types, ft and ft′, are both atomic types of type at and
at′, then ft is a sub-type of ft′ if at is an atomic sub-type of at′.

b) If the two field types, ft and ft′, are both curtain, that is, atomic
types of type at and at′, then likewise.

c) Otherwise they are not sub-types.

20. sub type: FTyp × FTyp → Bool
20. sub type(ft,ft′) ≡ ft=ft′ ∨
20. case (ft,ft′) of
20a. (mkAT(at),mkAT(at′)) → is atomic sub type(at,at′),
20b. (mkCT(at),mkCT(at′)) → is atomic sub type(at,at′)
20c. → false
20. end

2.6 Keys and Relations

2.6.1 Keys: Key-names, Key-Values and Key-types

21. A key-name is an atomic icon name.

22. Key-names are sets of atomic icon names.

23. Key-values associate key-names with atomic values.

24. Key-types associate key-names with atomic types.

25. One can extract the key-type of a key-value.

type
21. KNn = ANm
22. KNms = ANm-set
23. Key, KVAL = ANm →m AVAL
24. KTyp = ANm →m ATyp
value
25. xtr KTyp: KVAL → KTyp
25. xtr KTyp(kv) ≡ [an7→xtr type(kv(an))|an:ANm•an ∈ dom kv]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 23

. . .

an1:

an2:

anp: anm:

anr:

anq:

cn2:

cnk:

cn1:

. . .

. . .

. . .

kni:

. . .
kn1:

Atomic icons: Curtains:

Tuples

. . .

. . .Key Relation

IncludeSelect

. . .
. . .

Figure 5: Red lines hint at a relation

2.6.2 Relations and Relation Types

We remind the reader of Fig. 2 repeated in Fig. 5.

26. A relation (a relation value) associates key values to fields. In a relation

a) all key values have the same definition set of key-names; and

b) all key values are sub-types of a postulated non-nil atomic super-type
which is a key-type.

type
26. RVAL′ = KVAL →m TVAL
26. RVAL = {|rv:RVAL′

•wf RVAL(rv)|}

value
26. xtr RTyp: RVAL → RTyp
26. xtr RTyp(rv) ≡ [an7→xtr type(rv(an))|an:ANm•an ∈ dom rv]

26. wf RVAL: RVAL′ → Bool
26. wf RVAL(rv) ≡
26a. ∀ kv,kv′:KVal • {kv,kv′}⊆dom rv ⇒ dom kv = dom kv′

26b. ∧ ∃ kt:KTyp • ∀ kv:KVal•kv ∈ dom rv⇒super type(kt,xtr KTyp(kv))

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

24 On Development of Web-based Software

27. A non-nil tuple value has none of its

a) atomic field values being "nil",

b) curtain values have "nil" element values.

value
27. is non nil TVAL: TVAL → Bool
27. is non nil TVAL(tv) ≡
27. ∀ fn:FNm•fn ∈ dom tv ⇒
27. case tv(fn) of
27a. mkATyp(av) → av 6=′′nil′′,
27b. mkCTyp(av) → ′′nil′′6∈ elems av
27. end

28. A relation type associates field names with field, that is non-nil atomic
icon or non-nil curtain types.

type
28. RTyp′ = (Anm →m ATyp) ∪ (CNm →m CTyp)
28. RTyp = {|rt:RTyp′

•wf RTyp(rt)|}

value
28. wf RTyp: RTyp′ → Bool
28. wf RTyp(rt) ≡
28. ∀ fn:FNm•fn ∈ dom rt ⇒
28. case rt(fn) of
28. mkATyp(at) → at6=′′nil′′,
28. mkCTyp(at) → at6=′′nil′′

28. end

2.6.3 Auxiliary Functions on Relations

29. With a key-value, a relation value and a relation type one can construct
an initial tuple for that key even though the current relation does not have
a tuple with that key-value.

30. The function init tpls generates "nil"-field values

31. of the appropriate kind.

29. sel tpls: KeyVAL × RVAL × RTyp → TVAL
29. sel tpls(kv,rval,rtyp) ≡
29. if kv ∈ dom rval then rval(kv) else init tpls(ttyp) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 25

30. init tpls: TTyp → TVAL
30. init tpls(ttyp) ≡ [fn7→init fld val(ttyp(fn))|fn:FNm•fn ∈ dom ttyp]

31. init fld val: FTyp → FVAL
31. init fld val(ftyp) ≡
31. case ftyp of
31. mkCTyp() → mkCVAL(〈′′blank′′〉)
31. → ′′nil′′

31. end

2.7 Windows

2.7.1 Window Values

32. A window value is a quadruple: a set of key names, a tuple value, a relation
value and a set of window names.

32. WVAL == mkWV(s key:KeyNms,s tpl:TVAL,s rel:RVAL,s ws:WNm-set)

2.7.2 Window Value Types

33. Window types are tuple types.

33. WTyp = TTyp

2.7.3 Window Syntax

34. A window is a triple: a window name, a window type and a window value.

type
34. W′ = WNm × WTyp × WVAL

2.7.4 Well-formed Windows

35. A window is well-formed if

a) Key-names: the names of the primary key are a subset of the names
of the atomic values of the tuple values (and hence also tuple types).

b) Fields and Window Type Names: the names of field values are the
same as the names of the fields of the window type.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

26 On Development of Web-based Software

c) Subtypes I: the type of the field values is a sub type of the window
type.

d) Consistent Key Definition Sets: the relational window value definition
set (called the indexes) contains same definition set keys;

e) Subtype II: the type of the relational field values is a sub type of the
window type;

f) No “Immediate Circular” Windows: the window name is not in the set
of sub-window names. (This is a pragmatic design point serving to
avoid confusion.)

type
35. W = {|w:W′

•wf W(w)|}
value
35. wf W: W′ → Bool
35. wf W(wn,mkWTyp(wtyp),mkWV(key,tpl,rel,wns)) ≡
35a. key ⊆ dom tpl
35b. ∧ dom wtyp = dom tpl
35c. ∧ sub type(xtr ftys(tpl),wtyp)
35d. ∧ ∀ kv:KVAL • kv ∈ dom rel ⇒ key = dom kv
35e. ∧ sub type(xtr TTyp(rel(kv)),wtyp)
35f. ∧ wn6∈ wns

2.7.5 The "Select" and "Include" Buttons

If the key-name set is non-empty then two “button” are displayed, say close to
the key. An empty key-name set designates that the window value’s relation is
similarly always empty. A non-empty key designates that the window value’s
relation is usually non-empty. It is the intention that the relation of an initial
window with a non-empty key-name set contains exactly one tuple, for example:

value
kn:KeyNm = {ka,kb}, fns:FNms-set = {fc,fd,fe}
rel = {[ka 7→′′nil′′,kb7→′′nil′′,fc 7→′′nil′′,fd7→′′nil′′,fe 7→mkCV(〈′′blank′′〉)]}

The is, the initial key-value, kv, displayed on the window, is

value
kv:KeyVAL = [ka 7→′′nil′′,kb7→′′nil′′]

Clicking the "Select" button will then display, cf. Item 29 on page 24, the
tuple:

value
tpl:TVAL = [fc7→′′nil′′,fd7→′′nil′′,fe 7→mkCV(〈′′blank′′〉)]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 27

2.7.6 Null, Initial and Nil Windows

Null Windows

36. Let us recall the syntax of windows (Items 34 and 35 on page 25).

37. A "null" window is a window with some name, say wnm, where all value
fields are empty and whose sub-window name set is empty.

type
36. W′ = WNm×WTy×mkWV(ANm-set,Tpl,FRel,WNm-set)
value
37. null W:W = (wnm,[],mkWV([],[],[],{}))

38. Null windows are well-formed for any window name.

38. theorem: wf W(wnm,[],mkWV([],[],[],{}))

Initial Windows

39. We consider init W to be a relation, a function which when invoked non-
deterministically yields

40. an arbitrarily valued

41. well-formed window.

a) The window name, the window type and the key names are thought
of as arbitrarily chosen.

b) The relation is likewise arbitrarily chosen but

i. key names must be a subset of the field names listed in the win-
dow type;

ii. tuple names must equal field names listed in the window type;
and

iii. for all field names of the tuples

iv. the type of the field name-selected value must be a sub-type of
the same-name named type in the window type.

c) The relation must satisfy the following.

i. The key name set must be a subset of the tuple names.

ii. For all key-values of the relation

1. the type of these key-values must be a sub-type of the corre-
spondingly named type of the window type;

2. the key-values must also occur in the ‘fields’;

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

28 On Development of Web-based Software

3. and type of the entire indexed field relation values must be
a sub-type of the window type;

d) The set of sub-window names is arbitrarily chosen.

value
39. init W: WNm → W
39. init W(wn) ≡
41a. let wt:WTyp,
41a. kn:KeyNm,
41b. tv:TVAL • wf iTVAL(kn,wt,tv),
41c. rv:RVAL•wf iRVAL(kn,wt,rv),
41d. ws:WNm-set in
40. (wn,wt,mkWV(kn,tv,rv,ws)) end

41. theorem: ∀ w:W • let w = init W() in wf W(w) end

value
41b. wf iTVAL: KeyNm × TTyp × TVAL → Bool
41b. wf iTVAL(kn,tt,tv) ≡
41(b)i. kn ⊆ dom tt
41(b)ii. ∧ dom tt = dom tv
41(b)iii. ∧ ∀ fn:FNm • fn ∈ dom tv ⇒
41(b)iv. sub type(xtr type(tv(fn),tt(fn)))

41c. wf iRVAL: KeyNm × WTyp × RVAL → Bool
41c. wf iRVAL(kn,wt,rv) ≡
41(c)i. kn ⊆ dom wt
41(c)ii. ∧ ∀ kv:KeyVAL • kv ∈ dom rv ⇒
41(c)ii1. sub type(xtr KTyp(kv),wt)
41(c)ii2. ∧ kv ∩ rv(kv) 6= {} ⇒
41(c)ii3. sub type(xtr FTyp(rv(kv)),wt)

Nil Tuple

42. To generate a nil tuple we must know its tuple type.

value
42. nil TVAL: TTyp → TVAL
42. nil TVAL(tt) ≡
42. [fn 7→ nil FVAL(tt(fn))|fn:FNM•fn ∈ dom tt]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 29

Nil Field Values

43. To generate a nil tuple element value we must know its type.

value
43. nil FVAL: (ATyp|CTyp) → TVAL
43. nil FVAL(ft) ≡
43. case ft of
43. mkCT(at) → mkCV(′′nil′′),
43. → ′′nil′′

43. end

Nil Windows An example initial window shall have all its value fields have the
"nil" value.

is nil W: W → Bool
is nil W(w:(wn,wtyp,mkWV(kn,tv,rv,wns))) ≡

∀ fn:FNm•fn ∈ dom tv ⇒ is nil FVAL(tv(fn))
∧ let nil kv = [an7→′′nil′′|an:ANm•an ∈ kn] in

dom rel = {nil kv}
∧ ∀ fn:FNm•fn ∈ dom rv(nil kv) ⇒ is nil FVAL((rv(nil kv))(fn)) end

is nil FVAL: FVAL → Bool
is nil FVAL(v) ≡ case v of mkCV(cv)→cv=〈′′blank′′〉, →v=′′nil′′ end

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

30 On Development of Web-based Software

3 A Window Frame System window-frames

window-frames

Operations on windows are operations on windows of a window frame.That is,
the somehow structured cluster of windows “seen” on a computer (mobile phone
or pad) display screen. Think of it as follows: There is a window and there is
an indefinite space of uniquely window-named window frames (all displayable
on a screen)9.

Window−name: wn−i

sub−windows:
Window−name:

sub−windows:

Window−name:

wn−e

wn−

wn−d

wn−g

Window−name: wn−d

Window−name: wn−g

sub−windows: wn−h

sub−windows: wn−f

Window−name: wn−h

wn−bwn−a

wn−j

wn−d

wn−a

wn−a wn−b

wn−g

wn−h

.........

.........

...........................

.........

....................................

.........

.........

Figure 6: A cactus stack of windows

Figure 6 shows such a cactus stack. A possible sequence of openings is: the
first window to be opened has name wn-j; from that window two windows were
opened: wn-a and wn-b; from window wn-b window wn-g was opened; from
window wn-a window wn-d was opened and from window wn-d window wn-h was
opened. The dotted lines (.) under the window names in the small lower
left cactus stack summary shall indicated that between these window openings
work may “progress” on already opened windows with respect to creating and
updating tuples of the window relations. At the moment the snapshot of Fig. 6
“was taken” the number of relation tuples of these windows are: window wn-j
one tuple; window wn-a two tuples; window wn-b three tuples; window wn-d
one tuple; window wn-g four tuples and window wn-h one tuple; This is why
what is “grown” here is not a conventional tree but a cactus. The snapshot
does not indicate the order in which these relation tuples were operated upon
(created or updated).

3.1 Window States

44. A window frame consists of a “root” window state and zero, one or more
window named window frames.

9We shall call the windows of thedomains part of the (window,domains) pairs for the sub-

window of the window.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 31

45. A window state is a triple: a window, a (“highlighted”) field value (of the
field designated by a cursor) and the cursor.

46. The cursor designates one of the fields of the window, that is, the cursor
“is” a field name, or an index curtain name, or a window name, or the
"update" “button” name, or the "close" “button” name.

47. A “bottom-most” window has the “built-in” name "wn bottom WF".

type
44. WF = WΣ × (WNm →m WF)
45. WΣ = W × FVAL × Cursor
46. Cursor = FNm | CNmIx | WNm | ′′update′′ | ′′close′′

value
47. wn bottom WF: WNm

That is, the cursor is positioned at

• an atomic icon, or

• a curtain, or

• a curtain element, or

• a window name, or

• the "update" “button”,

• the "close" “button”,

• the "select" “button”, or

• the "include" “button”.

3.2 Well-formed Window Frames

48. A well-formed window frame (in the context of a window name) must have

a) a well-formed window state;

b) the window name be the same as the context window name; and not
in the window’s (sub-domain) window names;

c) the definition set of the window named window frames be a subset
of the window’s (sub-domain) window names; and

d) all the opened sub-windows are well-formed.

value
48. wf WF: WF → WNm → Bool
48. wf WF(wσ:(w:(wn, ,mkWV(, , ,wns)),fval,c),wfs)(wnm) ≡
48a. wf WΣ(wσ)
48b. ∧ wn = wnm ∧ wn6∈ wns
48c. ∧ dom wfs ⊆ wns
48d. ∧ ∀ wn′:WNm•wn′ ∈ dom wfs ⇒ wf WF(wfs(wn′))(wn′)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

32 On Development of Web-based Software

3.3 Well-formed Window States

49. A window state is well-formed

a) if the (as can be assumed, the window and) window name selected
window frame is well-formed, and

b) if the cursor is positioned at a proper field (c ∈dom tpl) and the
window state’s field value equals the value of the cursor named (and
possibly indexed) field, fv=tpl(c) etc.,

c) otherwise is the window state is ill-formed.

49. wf WΣ: → Bool
49. wf WΣ(w:mkWV(, ,mkWV(,tpl, ,)),fv,c) ≡
49a. ∧ wf W(w)
49. case c of
49b. mkANm(nm) → c ∈ dom tpl ∧ fv = tpl(c),
49b. mkCNm(nm) → c ∈ dom tpl ∧ fv = tpl(c),
49b. mkCNmIx(nm,x) →
49b. nm ∈ dom tpl ∧ x ∈ inds tpl(nm) ∧ fv = (tpl(nm))(x)
49c. → false
49. end

3.4 Forests of Window Frames

We extend the notion of window frames into sets of these. Figure 7 intends to
show a computer display screen with more than one window tree.

wni3

wni12

wnj1

wnj11

wnl

wnl11

wnl1

wnj12

wnj wnk

wnj111

wni

wni2

wni121

wni11

wni1

Figure 7: A forest of window frames

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 33

3.4.1 The Syntax

50. A forest of window frames “turns” the notion of a window frame around:

• a window frame has a window state and a set of uniquely named
window frames.

• a forest of window frames has a set of uniquely named pairs of window
states and sets of uniquely name window frames.

type
50. FoWF = WNm →m (WΣ × FoWF)

3.4.2 The Well-formedness

51. The well-formedness of a forest of window frames is the well-formedness
of

a) all of its subsidiary

b) window states and

c) forest of window frames.

value
51. wf FoWF: FoWF → Bool
51. wf FoWF(fowf) ≡
51. ∀ wn:WNm•wn ∈ dom fowf ⇒
50a. let (wσ,fofw′) = fowf(wn) in
50b. wf WΣ(wσ)(wn)
50c. ∧ wf FoFW(fofw′) end

3.5 Paths of Window Frames and Forests

3.5.1 Syntax

51. A path is either a 0-path or it is a 1-path.

a) A 0-path is a sequence of zero, one or more window names.

b) A 1-path is a non-empty 0-path.

The empty path identifies the bottom window frame (otherwise “named”: "wn bottom WF").

51. P = WNm∗

51a. P0 = P
51b. P1 = {|p:P•p6=〈〉|}

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

34 On Development of Web-based Software

3.5.2 Window Frames Define Paths

52. A window frame wf:(w,wfs) defines a set of window paths.

a) The empty path is a window path.

b) If wn is a name of a window frame, wf’ of wfs, then 〈wn〉 is a path.
That path “points to” a pair: (window-state,window-frames).

c) If a path p points to a pair (window-state,window-frames) then for
every window name, wn in window-frames, p̂〈wn〉 is a path of wf.

We define the paths function to apply to window frames. The latter are intro-
duced later!

52. paths: WF → P1-set
52. paths(((wn, ,), ,),wfs) ≡
52a. let ps = {〈〉} ∪
52b. ∪{paths(wf)|wf:WF•wf ∈ rng wfs} in
52c. ∪{〈wn〉,〈wn〉̂p|p ∈ ps} end

3.5.3 Forests of Window Frames Define Paths

53. Paths of forests of window frames are defined very much like the paths of
window frames, Item 52.

type
50. FoWF = WNm →m (WΣ × FoWF)
value
53. paths: FoWF → P1-set
53. paths(fofw) ≡
53. if fofw=[]
53. then {}
53. else let ps = ∪{let (,fofw′) = fofw(wn) in
53. {〈wn〉} ∪
53. ∪{paths(fofw′)|wn:WNm•wn ∈ dom fofw} end} in
53. ∪{〈wn〉,〈wn〉̂p|p ∈ ps}
53. end end

3.5.4 Selection Functions

54. From a window (or a domain10) frame one can select a sub-window-frame
given a possibly empty path.

10Domain frames will be introduced in Sect. 4

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 35

Select Window Frames

value

54. s FoWF: P0 × FoWF
∼
→ FoWF

54. s FoWF(p,fowf) ≡
54. case p of
54. 〈wn〉 → fowf(wn),
54. 〈wn〉̂p′ → s Frame(p′,fowf(wn))
54. end
54. pre p ∈ paths(fowf)

Select Window States

55. From a window frame one can select a window state given a possibly empty
path.

value

55. s WΣ: P0 × FoWF
∼
→ WΣ

55. s WΣ(p,fowf) ≡ let (wσ,) = s FoWF(p,fowf) in wσ end
55. pre p ∈ paths(fowf)

Select Windows

56. From a forest of window frames one can select a window given a possibly
empty path.

value

56. s W: P0 × FoWF
∼
→ W

56. s W(p,fowf) ≡ let ((,w, ,),) = s FoWF(p,fowf) in w end
56. pre p ∈ paths(fowf)

Select Window Names

57. From a forest of window frames one can select a the sub-window names
of the sub-forest of window frames at a possibly empty path position.

value

57. s WNms: P0 × FoWF
∼
→ WNm-set

57. s WNms(p,fowf) ≡ let (,fowf) = s FoWF(p,fowf) in dom fowf end
57. pre p ∈ paths(fowf)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

36 On Development of Web-based Software

4 The Domain Frame System domain-frames

domain-frames

The concept of domain frames is introduced in order to cover a notion of a
possibly world-wide distributed data space, i.s., a repository. from where users
can populate their window frames and to where they can deposit windows of
their window frames.

Operations on domains are operations on domain frames.Think of it as fol-
lows: There is a window and there is an indefinite space of window-named
domains.

4.1 The Syntax of Domain Frames

58. Domain frames map window names into a pair of windows and a set of
uniquely window named domain frames11

type
58. DF = W × (WNm →m DF)

4.1.1 Well-formed Domain Frames

59. A domain frame is well-formed

a) if windows of (window,domain frames) pairs are well-formed;

b) if the domain frames part of the (window,domain frames) pairs records
exactly the window names of the window; and

c) if each domain frame of the domain frames part of the (window,domain
frames) pairs is well-formed.

value
59. wf DF: DF → Bool
59. wf DF(w:(wn, ,mkWV(, , ,wns)),dfs) ≡
59a. wf W(w)
59b. ∧ wns=dom dfs compare: Item 48c on page 31.
59c. ∧ ∀ wn:WNm • wn ∈ dom dfs ⇒ wf DF(dfs(wn))

4.2 The Syntax of Forests of Domain Frames

60. A forest of domain frames “turns” the notion of a domain frame around:

• a domain frame has a window and a set of uniquely named domain
frames.

11We shall call the domains of the domains part of the (window,domains) pairs for the sub-

domain of the window. of the window.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 37

• a forest of domain frames has a set of uniquely named pairs of win-
dows and sets of uniquely name domain frames.

60. FoDF = WNm → (W × FoDF)

4.2.1 Well-formed Forests of Domain Frames

value
wf FoDF: FoDF → Bool
wf FoDF(fodf) ≡

∀ wn:WNm•wn ∈ dom fowf ⇒
let (w,fodw′) = fodf(wn) in
wf W(w)(wn)

∧ wf FoDW(fodw′) end

4.3 Paths of Domain Frames and Forests of Domain Frames

This section is “isomorphic” to Sect. 3.5.

61. If wn is a domain name of d then 〈wn〉 is a path. That path “points to”
a pair: (window,domain frames).

62. If a path p points to a pair (window,domain frames) then for every window
name, wn in domain frames, p̂〈wn〉 is a path of df.

4.3.1 Domain Frames Define Paths

Parametrically identically to Item 52a on page 34’s definition of paths over
window frames we can define paths over domain frames.

52a. paths: DF → P1-set
52a. paths((wn,),dfs) ≡
52b. let ps′ = ∪{paths(df)|df:DF•df ∈ rng dfs} in
52b. ∪{〈wn〉,〈wn〉̂p|p ∈ ps′} end

4.3.2 Forests of Domain Frames Define Paths

63. Paths of forests of domain frames are defined very much like the paths of
window frames, Item 52.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

38 On Development of Web-based Software

type
63. FoDF = WNm →m (W × FoWF)
value
63. paths: FoDF → P1-set
63. paths(fodw) ≡
63. if fodw=[]
63. then {}
63. else let ps = ∪{let (,fodw′) = fodw(wn) in
63. {〈wn〉} ∪
63. ∪{paths(fodw′)|wn:WNm•wn ∈ dom fodw} end} in
63. ∪{〈wn〉,〈wn〉̂p|p ∈ ps}
63. end end

4.3.3 Selection Functions

Select Window from Domain Frame

64. The window selection function (Item 56 on page 35) is slightly different.

value

64. s W: P0 × DF
∼
→ W

64. s W(p,df) ≡ let (w,) = s WF(p,df) in w end
64. pre p ∈ paths(df)

Select Window from Forest of Domain Frames

65. From a forest of domain frames one can select a window given a path.

value

65. s W: P0 × FoDF
∼
→ W

65. s W(p,fodf) ≡ let (w,) = s FoWF(p,fowf) in w end
65. pre p ∈ paths(fowf)

Select Window Names from FoDFs

66. From a forest of domain frames one can select a the sub-window names of
the sub-forest of domain frames at a path position.

value

66. s WNms: P1 × FoWF
∼
→ WNm-set

66. s WNms(p,fodf) ≡ let (,fodf) = s FoWF(p,fodf) in dom fodf end
66. pre p ∈ paths(fowf)

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 39

5 Domain Frame Operations domain-ops

domain-ops

Commands are syntactic structures. Commands, when applied to states become
operations. The meanings of commands are usually state-to-state changing func-
tions. We then prefix the names of the semantics functions over such commands
int for semantics interpretation functions. When the prefix of the name of a
semantic function is eval then it is because the operation applies to a state,
does not change it, but yields a value.

5.1 Commands

5.1.1 Narrative

67. The are the following forest of domain frame commands: initialize forest,
create domain frame, remove domain frame, create window, get window,
update window, delete window.

a) The initialize domain need not present any arguments (other than
that it is an initialize domain command).

b) The create domain frame command presents a path and a window
name.

c) The remove domain frame command presents a non-empty path.

d) The update window command presents a path, the name of the win-
dow, that window.

e) The get window command presents a name path and a window name.

5.1.2 Formalisation

type
67. DFCmd = DFIniDF | DFCreDF | DFRmDF | DFPutWi | DFGetW
67a. DFIniDF == ′′initialize′′

67b. DFCreDF == mkDFCDF(s p:P0,s wn:WNm)
67c. DFRmDF == mkDFRDF(s p:P0,s wn:WNm)
67d. DFPutW == mkDFPW(s p:P0,s wn:WNm,s w:W)
67e. DFGetW == mkDFGW(s p:P0)

5.2 Operations

All operations apply in the context of a domain.

68. The get window operation possibly yields a window but does not change
the forest of domain frames.

69. All other domain operations either changes the forest of domain frames or
are undefined.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

40 On Development of Web-based Software

68. eval DFGetW: DFGetW → FoDF
∼
→ W

69. int ′′X′′: ′′X′′ → FoDF
∼
→ FoDF

where ”X” is one of DFIniDF, DFCreDF, DFRmDF or DFPutW.

5.2.1 The Initialize Domain Frame Operation

70. The initialize domain command takes only the command argument but
yields an empty domain.

70. int DFIniDF: DFIniDF → DF
70. int DFIniDF(′′initialize′′) ≡ []

5.2.2 The Create Domain Frame Operation

The domain to be created is initially empty so we need only give a path to the
position in the forest of domain frames the empty domain is to be installed.

71. The create domain frame operation, int DFCreDF(mkDFCDF(p,wn))(fodf),
is partial; it produces a changed domain.

72. To express the changed domain, from fodf to fodf′, we use the concept of
all paths, ps, ps′, of respectively fodf and fodf′. Precondition:

a) The path, p, of the command must be a path of the forest of domain
frames; and

b) the window name, wn, of the command must not be of a[n opened]
window of the forest of window frames of the forest of window frames
selected by p.

Postcondition:

c) First the only change with respect to paths is that ps′ is equal to ps
union with the new path ({p̂〈wn〉})

d) afforded by extending the forest of domain frames of the domain
frame designated by p in fodf with an initial window, named wn, as
part of the new forest of domains12.

e) Then all paths common to ps and ps′, that is, all paths of ps, designate
the same domain frames in fodf and fodf′,

f) except that the window (w) of the selected window frame has its sub-
window names part augmented (into w′) with wn (all other parts (of
w) are the same as in w′).

12How that window is initialised we do not specify – other than through the non-determinism
of the init W() operation [Item 39 on page 27.].

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 41

71. int DFCreDF: DFCreDF → FoDF
∼
→ FoDF

71. int DFCreDF(mkDFCDF(p,wn))(fodf) as fodf′

72. let ps = paths(fodf), ps′ = paths(fodf′) in
72a. pre p ∈ paths(fodf)
72b. ∧ {p̂〈wn〉}6∈ ps
72c. post ps′ = ps ∪ {p̂〈wn〉} ∧ {p̂〈wn〉}6∈ ps
72e. ∧ ∀ p′:P•p′ ∈ ps•s DF(p′,fodf)=s DF(p′,fodf′)
72d. ∧ let (w:(wn′,wt′,wv′),fodfb)=s DF(pp,fodf),
72d. (w′:(wn′′,wt′′,wv′′),fodfa)=s DF(pp,fodf′) in
72d. wn′=wn′′ ∧ wt′=wt′′ ∧ fodfa = fodfb ∪ [wn7→(init W(),[])]
72f. ∧ let mkWV(kn′,tpl′,rel′,ws′)=wv′,mkWV(kn′′,tpl′′,rel′′,ws′′)=wv′′ in
72f. kn′=kn′′ ∧ tpl′=tpl′′ ∧ rel′=rel′′ ∧ ws′′=ws′ ∪ {wn}
71. end end end

5.2.3 The Remove Domain Frame Operation

73. The remove operation, int DFRmDF(mkDFRDF(p,wn))(fodf), is partial.

Precondition:

a) The window path {p̂〈wn〉} of the command must be a window path
of fodf.

Postcondition:

b) To express the changed domain, from fodf to fodf′ we use the concept
of all paths, ps, ps′, of respectively fodf and fodf′.

c) First the change with respect to paths is that ps′ is equal to ps with
all those paths, p, in ps,

i. which are a proper prefix of paths, {p̂〈wn〉}, in ps′

ii. removed as a result of removing the domain frame designated by
{p̂〈wn〉} in fodf.

d) Then all paths common to ps and ps′, that is, all paths of ps′ designate
the same domain frames in fodf and fodf′

e) except that the window (w) of the selected window frame has its sub-
window names part reduced (into w′) with wn (all other parts (of w)
are the same as in w′).

73. int DFRmDF: DFRmDF → FoDF
∼
→ FoDF

73. int DFRmDF(mkDFRDF(p,wn))(fodf) as fodf′

73. let ps = paths(fodf), ps′ = paths(fodf′) in
73a. pre p̂〈wn〉 ∈ ps
73b. post ps′ = ps \ rm paths(ps)(p̂〈wn〉)
73d. ∧ ∀ p′:P•p′ ∈ ps′•s DF(p′,fodf)=s DF(p′,fodf′)
73e. ∧ let (w:(wn′,wt′,wv′),fodfb)=s DF(p,df),

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

42 On Development of Web-based Software

73e. (w′:(wn′′,wt′′,wv′′),fodfa)=s DF(p,df′) in
73e. wn′=wn′′ ∧ wt′=wt′′ ∧ fodfa = fodfb ∪ [wn7→(init W(),[])]
73e. ∧ let mkWV(kn,tpl,rel,ws)=wv,mkWV(kn′,tpl′,rel′,ws′)=wv′ in
73e. kn=kn′ ∧ tpl=tpl′ ∧ rel=rel′ ∧ ws′=ws \ {wn}
73. end end end

73(c)i. is prefix: P1 × P1 → Bool
73(c)i. is prefix(p,p′) ≡ len p<len p′ ∧ ∀ i:Nat•i ∈ inds p⇒ p(i)=p′(i)

73(c)ii. rm paths: P0-set → P1 → P0-set
73(c)ii. rm paths(ps)(p̂〈wn〉) ≡ {p′|p′:P0•∼prefix(p,p′)}

Identity of Remove Composed with Create

74. Given an domain, d, any path p in d and any window name wn not at p
in d.

75. The effect of creating a(n initially null) domain at p in d and then removing
the domain named wn at p in d is the initial domain d.

theorem
74. ∀ df:DF, p:P0, wn:WNm • p ∈ paths(fodf) ∧ wn 6∈ s WNms(p,fodf)
75. ⇒ let fodf′ = int DFCreDF(mkDFCDF(p,wn))(fodf) in
75. int DFRmDF(mkDFRDF(p,wn))(fodf′) = fodf end

5.2.4 The Put Window Operation

76. The int DFPutW(mkDFPW(p,wna,wa:(wnb,wta,wva)))(fodf) operation is par-
tial. Precondition:

a) To express the changed domain, from d to d′ we use the concept of
all paths, ps, ps′, of respectively fodf and fodf′.

b) The window path, p, of the command must be a window path of fodf;

c) the window name, wn, of the second argument of the command must
be the same as in the window of the command, and must be in the
domain selected by p of fodf;

d) the argument window must be well-formed; and

e) the argument window type must conform to the type of the window
in fodf at {p̂〈wn〉}.

Postcondition:

e) First these two sets of paths are identical.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 43

f) Then all paths, except the path to the updated window, must desig-
nate, pairwise, the same domain frames before and after the opera-
tion.

g) The window names, types and sub-domains must be unchanged.

h) The window tuple is replaced by the argument tuple.

i) The relations is updated with respect to (wrt.) what they were in the
domain frame version of the (before) window and wrt. the argument
relation.

j) The sub-domain frame window names are unchanged.

76. int DFPutW: DFPutW → FoDF
∼
→ FoDF

76. int DFPutW(mkDFPW(p,wna,wa:(wnb,wta,wva)))(fodf) as fodf′

76a. let ps = paths(fodf), ps′ = paths(fodf′),
76. mkWV(kn,tpla,rela,wsa) = wva in
76b. pre p ∈ ps ∧ p̂〈wna〉 ∈ ps
76c. ∧ wna = wnb ∧ wna ∈ s WNms(p,fodf)
76d. ∧ wf W(wa)
76e. ∧ let ((wnc,vtd,),) = s DF(p̂〈wna〉,fodf) in
76e. wna = wnc ∧ wta = wtd end
76e. post ps′ = ps
76f. ∧ ∀ p′:P•p′ ∈ ps′\{p̂〈wn〉} •s DF(p′,fodf)=s DF(p′,fodf′)
76. ∧ let ((wn,wt,wv),fodf′′) = s DF(p̂〈wna〉,fodf),
76. ((wn′,wt′,wv′),fodf′′′) = s DF(p̂〈wn〉,fodf′) in
76g. wna=wn=wn′ ∧ wt=wt′ ∧ df′′=df′′′

76. ∧ let mkWV(kn,tpl,rel,ws) = wv,
76. mkWV(kn′,tpl′,rel′,ws′) = wv′ in
76h. tpl′ = tpla
76i. ∧ rel′ = rel † [fn7→rela(fn)|fn:FNm•fn ∈ kn]
76j. ∧ ws′ = ws = wsa
76. end end end

5.2.5 The Get Window Operation

77. The get window does not change the domain – otherwise the operation
result seems obvious !.

78. The path of the command must be in the domain of the operation.

77. eval DFGetW: DFGetW → FoDF
∼
→ W

77. eval DFGetW(mkDFGW(p,wn))(fodf) ≡ s W(p,fodf,wn)
78. pre p̂〈wn〉 ∈ paths(fodf)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

44 On Development of Web-based Software

5.3 Discussion

5.3.1 Mon. 30 Aug. and Thu. 23 Sept., 2010

Some “loose” remarks – expressed at a time (Mon. 30 Aug. and Thu. 23 Sept.,
2010) when I had not yet had time to carefully study my own narratives and
formalisations from the point of view of the following issues:

• It seems that several of the annotation items can be expressed (even)
more concisely, also less operationally, and perhaps even “schematised”,
see next item.

• It seems that several of the pre- and post-condition formalisations can,
perhaps, be expressed in terms of “pre-cooked” predicate functions: many
(∧-)clauses appears to share commonalities that could be “put” into so,
appropriately named functions.

• Either of the above actions would undoubtedly lead to a clearer under-
standing of the system being designed as I (up till at least this day, Mon.
30 Aug., 2010) proceed in completing this section !

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 45

6 Window Frame Commands and Operationswindow-ops

window-ops

6.1 Commands

6.1.1 Narratives and Brief Descriptions

79. These commands are suggested to designate a set of operations on win-
dows: open window, put widow, close window, click (on) window field or
“button”, write into window field, select relation fields, and include fields.

a) The open window command presents a path, a window name and a
key-value. The path designates a domain frame (i.e., a (window,forest
of window frames)) pair. The window name designate the window.
That window is to be the result of the open window operation. If the
path is a singleton window name then a new window frame in the
current forest of window frames is created.

b) The close window command closes the designated window frame win-
dow. At the same time it closes (i.e., “removes”) all the window
frames at the designated path position and sub-windows and sub-
frames thereof. If the path is a singleton window name then and
existing window frame in the current forest of window frames is re-
moved.

c) The put (or store window value in a forest of domain frames) window
command is, in a sense, the reverse of the get window operation; it
“puts” back into the forest of domain frames a copy of a current
window (which can then, subsequently, be closed).

d) The click on (or select) window command positions the cursor at a
field of the tuple.

e) The write window command updates such a field with an atomic or
curtain value.

f) The select command “retrieves” a tuple from the (not displayed)
relation (which always “underlies” a window). The tuple which is
selected from the relation is the one which, in a sense to be made
precise, “satisfies” the key-value of the currently (displayed) tuple,

g) The include command is, in a sense, the reverse of the select com-
mand. It updates the relation with a “pair”: the [key7→tuple], where
key is from that part of the currently dispalyed window whose field
names match the window’s key-names and whose tuple are the re-
maining fields of the tuple.

6.1.2 Formalisations

type
79. WFCmd = WFOpnW|WFCloW|WFPutW|WFClkW|WFWrW|WFSelTpl|WFIncTpl

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

46 On Development of Web-based Software

79a. WFOpnW == mkWFOpnW(s p:P1,s wn:WNm,s kv:KVAL)
79b. WFCloW == mkWFCloW(s p:P1,s wn:WNm)
79c. WFPutW == mkWFPW(s p:P1,s wn:WNm)
79d. WFClkW == mkWFClkW(s p:P1,s wn:WNm,s f:FPos)
79d. FPos = ANm | CNm | CNmIx
79e. WFWrW == mkWFWrW(s p:P1,s wn:WNm,v:FVAL)
79f. WFSelTpl == mkWFSel(s p:P1,w wn:WNm,s kv:KVAL)
79g. WFIncTpl == mkWFInc(s p:P1,w wn:WNm)

6.2 Operations

To express the changed fowf (into fowf′) resulting from the operations we express
some predicates over the sets of paths, ps, ps′, of fowf and fowf′, that is, before
and after execution of the open window operation. This style of expressing
“storage” changes was used in rather much the same way for defining domain
operations (in Sect. 5.2).

6.2.1 Open Window (Frame)

The open window operation, int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf),
is intended to open a “fresh” window frame, (window,forest of window frames),
at location p under the name of wn and with an initially void forest of window
frames. That window, window, is obtained from the forest of domain frames,
fodf, at location p̂〈wn〉. The intention is now for the user to click (see Sect. 6.2.3
on page 49) on that window, to write (see Sect. 6.2.4 on page 50) into fields of
that window (which thereby is updated – to become window′), to, most likely put
(see Sect. 6.2.5 on page 52) that window back into the (global) forest of domain
frames (fodf), and, finally to close (see Sect. 6.2.2 on page 48) the window′.

80. The open window operation, int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf),
is partial.

Precondition:

a) The path p̂〈wn〉 must be a path of the forest of window frames fowf.

Postcondition:

b) The set ps′ of paths of d′ equals the set ps of paths of p with the
addition of the path to the newly opened window.

c) A window, w, is obtained from the appropriate path location in the
domain frame with

d) the result window frame arising from the insertion of, possibly a key-
value-modified version of that window in the window frame.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 47

value

80. int WFOpnW: WFOpnW → FoWF → FoDF
∼
→ FoWF

80. int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf) as fowf′

80. let ps=paths(fowf),ps′=paths(fowf′) in
80a. pre p ∈ ps ∧ p̂〈wn〉 6∈ ps
80b. post ps′ = ps ∪ {p̂〈wn〉}
80c. ∧ let w = eval DFGetW(mkDFGW(p̂〈wn〉))(fodf) in
80d. fowf′ = WF Insert W(p̂〈wn〉,kv,w)(fowf) end
80. end

81. insert W is an auxiliary function whose purpose it is to insert a possi-
bly a key-value-modified version of ab argument window at an argument
specificied path location in the window frame.

a) Same precondition as for the calling function (80a.).

b) The set ps′ of paths of fowf′ equals the set ps of paths of fowf with the
addition of the path to the newly opened window – as also expressed
in the postcondition of the calling function (80b.).

c) Paths common to fowf and fowf′, that is, in ps, designate the same
window frames in both fowf and fowf′.

d) The window at location p̂〈wn〉 in fowf′ –

e) with the window and key name as expected –

f) is a possibly key-value modified version of the argument window
(which was “copied” from location p̂〈wn〉 in the domain),

g) The window frame at p̂〈wn〉 in fowf′ is empty.

81. WF Insert W: P0 × KVAL × W → FoWF
∼
→ FoWF

81. WF Insert W(p̂〈wn〉,kv,w)(fowf) as fowf′

81. let ps=paths(fowf),ps′=paths(fowf′) in
81a. pre p̂〈wn〉 6∈ ps
81b. post ps′ = ps ∪ {p̂〈wn〉}
81c. ∧ ∀ p:P • p ∈ ps ⇒ s WF(p,fowf)=s WF(p,fowf′)
81. ∧ let (wn′,wtyp,mkWV(kn,tpl,rel)) = w in
81f. let w′ = (wn,wtyp,mkWV(kn,sel flds(kv,rel,wtyp),rel)) in
81e. wn=wn′ ∧ dom kv = kn
81d. w′ = s W(p̂〈wn〉,fowf′)
81g. ∧ s DF(p̂〈wn〉,fowf′) = []
81d. end end end

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

48 On Development of Web-based Software

6.2.2 Close Window Frame

We saw, in Sect. 5.2.3, Items 73–73e (Page 41), how the remove domain frame
operation can delete an entire ‘cactus stack’ of domain frames13. The remove
window frame operation, now to be defined, will follow the same design princi-
ple. Whereas the windows populating such a ‘cactus stack’ of window frames
have first come from the domain frame sub-system we shall, also as a design
principle, not “save” (i.e., bring “back”) the windows of such a removed window
frame. The user is, if such savings (restorations) be needed, to first perform an
appropriate number of put window operations.

82. The close window operation, int DFCloW(mkDFCloW(p,wn))(fowf), is par-
tial.

Precondition:

a) The path p̂〈wn〉 must be a path of the forest of window frames fowf.

Postcondition:

b) First the change with respect to paths is that ps′ is equal to ps with
all those paths, p, in ps,

(Cf. Item 73(c)i on page 41.) which are a proper prefix of paths,
{p̂〈wn〉}, in ps′

(Cf. Item 73(c)ii on page 41.) removed as a result of removing the
window frame designated by {p̂〈wn〉} in fowf.

c) Then all paths common to ps and ps′, that is, all paths of ps′ designate
the same domains in fowf and fowf′

The reader is encouraged to compare the remove domain frame and the close
window frame operation: Sect. 5.2.3 on page 41 versus this section.

value

82. int WFCloW: WFCloW → FoWF
∼
→ FoWF

82. int WFCloW(mkWFCloW(p,wn))(fowf) as wf′

82. let ps = paths(fowf), ps′ = paths(fowf′) in
82a. pre p̂〈wn〉 ∈ ps
82b. post ps′ = ps \ rm paths(ps)(p̂〈wn〉) ∧ {p̂〈wn〉} 6∈ ps
82c. ∧ ∀ p′:P•p′ ∈ ps′•s WF(p′,fowf)=s WF(p′,fowf′)
82. end

13It might be considered “bad programming” to do so, but there you are.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 49

6.2.3 Click Window

The intention of the click operation int WFClkW(mkWFClkW(p,wn,fp))(fowf) is
to reflect that not only has a cursor been moved to a well-defined position of
the window (i.e., screen) but also clicked on that position. The “click” is to
indicate that a subsequent write operation “writes” a given field value into that
position. The user may, instead of an immediately subsequent write operation,
decide to follow any click operation by other than write operation.

83. The click on window operation, int WFClkW(mkWFClkW(p,wn,fp))(fowf),
is partial.

Precondition:

a) The path p̂〈wn〉 must be a path of the window frame fowf.

b) The field position, fp, of the argument must be a proper position
within the window selected by p̂〈wn〉.

Postcondition:

c) The paths of the forest of window frames is unchanged.

d) All paths common to ps (except path p̂〈wn〉) and ps′, that is, all
paths of ps′ (except path p̂〈wn〉) designate the same window frames
in fowf and fowf′.

e) Path p̂〈wn〉 designates window mkWV(wnb,wtyp,flds,frel,wns) in
fowf and window mkWV(wna,wtyp′,flds′,frel′,wns′) in fowf’ where,
pairwise, wnb (before, in fowf) and wna (after, in textsffowf), wtyp
and wtyp′, flds and flds′, frel and frel′ and unchanged, i.e., the same.

f) The field position, fp, designates appropriate window positions in w
and w′.

g) The cursor, c, of the window states, wσ, becomes c′=fp of window
state wσ′.

h) and where the field value, fv, of window w becomes fv’, the feld value
at the position designated by fp in window w′.

value

83. int WFClkW: WFClkW → FoWF
∼
→ FoWF

83. int WFClkW(mkWFClkW(p,wn,fp))(fowf) as fowf′

83. let ps = paths(fowf), ps′ = paths(fowf′),
83a. pre {p̂〈wn〉} ∈ ps
83. ∧ let (wσ:(w,fv,c),wfpwn) = s Frame(p̂〈wn〉,fowf),
83. let mkWV(wnb,wtyp,flds,frel,wns) = w in
83b. appropriate FPos(fp,flds,wns)
83c. post ps′ = ps \ rm paths(ps)(p̂〈wn〉) ∧ p̂〈wn〉6∈ ps
83d. ∀ p′:P•p′ ∈ ps′⇒s Frame(p′,fowf)=s Frame(p′,fowf′)
83. ∧ let (wσ′:(w′,fv′,c′),wfpwn′) = s Frame(p̂〈wn〉,fowf′) in

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

50 On Development of Web-based Software

83. let mkWV(wna′,wtyp′,flds′,frel′,wns′) = w′ in
83e. wnb=wna∧wtyp=wtyp′∧flds=flds′∧frel=frel′∧wns=wns′

83f. ∧ appropriate FPos(fp,flds′,wns′)
83g. ∧ c′=fp
83h. ∧ fv′ = select value(flds′)(fp)
83. end end end end end

83b.,83f. appropriate FPos: FPos × Fields × WNm-set → Bool
83b.,83f. appropriate FPos(fp,flds,wns) ≡
83b.,83f. case fp of
83b.,83f. mkCNmIx(cnm,x)
83b.,83f. → appropriate FPos(mkCNm(cnm),flds,wns)
83b.,83f. ∧ x ∈ inds flds(mkCNm(cnm)),
83b.,83f. → fp ∈ dom flds ∪ wns
83b.,83f. end

83d. select value: Fields → FPos
∼
→ FV

83d. select value(flds)(fp) ≡
83d. case fp of
83d. mkCNmIx(cnm,x) → (flds(mkCNm(cnm)))(x),
83d. → flds(fp)
83d. end

6.2.4 Write Window

84. The write window operation, int WFWrW(mkWFWrW(p,wn,fv))(fowf), is
partial.

Precondition:

a) The path p̂〈wn〉 must be a path of the forest of window frames fowf.

b) If the cursor position must be appropriate.

c) The type of the value, fv, to be inserted must be a sub-type of the
field in which it is to be inserted.

Postcondition:

d) The forest of window frame structure is unchanged.

e) All paths except, the path to the designated window being written
upon, designate unchanged window frames.

f) The window being written upon does not change name, type, field
names, relation or sub-window name set.

g) Only a tuple field (including a key value) is updated.

h) The cursor does not move.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 51

value

84. int WFWrW: WFWrW → FoWF
∼
→ FoWF

84. int WFWrW(mkWFWrW(p,wn,fv))(fowf) as fowf′

84. let ps = paths(fowf), ps′ = paths(fowf′),
84a. pre p̂〈wn〉 ∈ ps
84. ∧ let (wσ:(w,fv,c),wfpwn) = s Frame(p̂〈wn〉,fowf),
84. let mkWV(wnb,wtyp,flds,frel,wns) = w in
84b. appropriate FPos(fp,fields,{})
84c. ∧ sub type(xtr typ(fv),wtyp(c)) [check!]
84d. post ps′ = ps
84e. ∧ ∀ p′:P•p′ ∈ ps′\{p̂〈wn〉}⇒s Frame(p′,fowf)=s Frame(p′,fowf′)
84. ∧ let (wσ′:(w′,fv′,c′),wfpwn′) = s Frame(p̂〈wn〉,fowf′) in
84. let mkWV(wna′,wtyp′,flds′,frel′,wns′) = w′ in
84f. wnb=wna ∧ wtyp=wtyp′ ∧ dom flds=dom flds′ ∧ frel=frel′ ∧
84g. ∧ flds′ = update field(flds,c,fv)
84h. ∧ c′=c
84. end end end end end

85. One field, designated by the current cursor position is updated with the
argument value, fv.

Precondition:

a) The cursor designates a proper field within the tuple of the window.

Postcondition:

b) For each field name, whether of a key or of the remaining tuple is
either unchanged or changed, and only one is changed.

c) If the cursor designates a curtain value, then fv must be a curtain
value which becomes the new curtain value.

d) If the cursor designates a curtain element value, then fv must be an
atomic value which becomes the new curtain element value.

e) If the cursor designates an atomic icon, then fv must be an atomic
value which becomes the new icon value.

f) Otherwise field values are unchanged.

value
85. update field: Fields × Cursor × FVAL → Fields
85. update field(flds,c,fv) as flds′

85a. pre appropriate FPos(c,flds,{})
85b. post ∀ fn:FNm•fn ∈ dom flds ⇒
85. case (c,fv,fn) of
85c. (mkCNm(n),mkCV(),mkCNm(n)) → flds′(c)=fv,
85d. (mkCNmIx(n,x), ,mkCNm(n)) → select value(flds′)(c)=fv,

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

52 On Development of Web-based Software

85e. (mkANm(n), ,mkANm(n)) → flds′(c)=fv,
85f. → flds(fn)=flds′(fn)
85. end

6.2.5 Put Window

86. The put window operation, int WFPutW(mkWFPW(p,wn))(fowf)(fodf), is
partial.

Precondition:

a) The path p̂〈wn〉 must be a path of the forest of window frames fowf.

Postcondition:

b) The forest of window frames is unchanged.

c) Let w be the window

d) being put in the domain frame sub-system which thereby “changes”
state to fodf′′.

e) The (only) effect of this window frame operation is that the domain
frame has changed to fodf′ = fodf′′.

value
86. int WFPutW: WFPutW → FoWF → FoDF → (FoDF × FoWF)
86. int WFPutW(mkWFPW(p,wn))(fowf)(fodf) as (fodf′,fowf′)
86. let ps = paths(fodf) in
86a. pre {p̂〈wn〉} ∈ ps
86b. post fowf′ = fowf
86c. ∧ let w = s W(p̂〈wn〉,wf) in
86d. let fodf′′ = int DFPutW(mkDFPW(p,wn,w))(fodf) in
86e. fodf′ = fodf′′

86. end end end

“Life is like a sewer ...”

• 2 Theorems:

– A General:

∗ An earlier version of the window, named wn at path position p
in wf put “back” into the domain frame system df:

int WFPutW(mkWFPW(p,wn))(fowf′)(fodf′)

∗ originated from that position, specifically:

let (fodf′,fowf′) = int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf)
in ... end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 53

∗ That is:

p=p′, wn=wn′

– A Specific:
∗ let (fodf’,fowf’) = int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf) in

∗ let (fodf”,fowf”) = int WFOpnW(mkWFOpnW(p,wn,kv))(fowf’)(fodf’) in

∗ let (fodf”’,fowf”’) = int WFPutW(mkWFPW(p,wn))(fowf”)(fodf”) in

∗ let (fodf””,fowf””) = int WFCloW(mkWFCloW(p,wn))(fowf”’)(fodf”’) in

∗ fowf’=fowf”=fowf”’=fowf””=fowf ∧ fodf’=fodf”=fodf”’=fodf””= fodf

∗ end end end end to be checked !

6.2.6 Select Tuple

87. The int WFSelTpl(mkWFSel(p,wn))(fowf) operation is partial.

Precondition:

a) The path to the window to be updated is in the paths of the forest
of window frames.

Postcondition:

b) The paths of the before and after forests of window frames are un-
changed.

c) For all paths, other than to the window affected, the forest of window
frames are unchanged.

d) The selected “before” and “after” windows are almost the same,

e) with the exception of the tuple value: it is that of the argument
key-value joined with the “remainder” tuple value obtained from the
relation with the proviso that if the relation does not associate the
current key-value to a “remaining” tuple then an appropriate such
nil-tuple is constructed.

value
87. int WFSelTpl: WFSelTpl → FoWF → FoWF
87. int WFSelTpl(mkWFSel(p,wn))(fowf) as fowf′

87. let ps = paths(fowf), ps′ = paths(fowf′), pn=p̂〈wn〉 in
87a. pre pn ∈ ps
87b. post ps = ps′

87c. ∧ ∀ p:P•p ∈ ps\{pn} ⇒ s WF(p,fowf)=w WF(p,fowf′)
87. ∧ let w = s W(pn,fowf), w′ = s W(pn,fowf) in
87. let (wn′,rt,mkWV(kn,tpl,rel,wns))=w,
87. (wn′′,rt′,mkWV(kn′,tpl′,rel′,wns′))=w′

87. kv = [fn7→tpl(fn)|fn:FNm•fn ∈ kn],in
87d. wn′=wn′′=wn ∧ rt=rt′ ∧ kn=kn′ ∧ rel=rel′ ∧ wns=wns′

87e. ∧ tpl′ = if kv ∈ dom rv
87e. then kv ∪ rv(kv)
87e. else kv ∪ nil FVAL(rt\dom kn)
87. end end end end

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

54 On Development of Web-based Software

6.2.7 Include Tuple

88. The int WFIncTpl(mkWFInc(p,wn))(fowf) operation is partial.

Precondition:

a) The path to the window to be updated is in the paths of the forest
of window frames.

Postcondition:

b) The paths of the before and after window frames are unchanged.

c) For all paths, other than to the window affected, the window frames
are unchanged.

d) The selected “before” and “after” windows are almost the same,

e) with the exception of the relation value: it is either overwritten by
or extended with the association of the current key value with the
current “remaining” tuple value.

value
88. int WFIncTpl: WFIncTpl → FoWF → FoWF
88. int WFIncTpl(mkWFInc(p,wn))(fowf) as fowf′

88. let ps = paths(fowf), ps′ = paths(fowf′), pn=p̂〈wn〉 in
88a. pre pn ∈ ps
88b. post ps = ps′

88c. ∧ ∀ p:P•p ∈ ps\{pn} ⇒ s WF(p,fowf)=w WF(p,fowf′)
88. ∧ let w = s W(pn,fowf), w′ = s W(pn,fowf) in
88. let (wn′,rt,mkWV(kn,tpl,rel,wns))=w,
88. (wn′′,rt′,mkWV(kn′,tpl′,rel′,wns′))=w′,
88. kv′ = [fn7→tpl(fn)|fn ∈ kn] in
88d. wn′=wn′′=wn ∧ rt=rt′ ∧kn=kn′ ∧ rel=rel′ ∧ wns=wns′

88e. ∧ rel′ = rel † [kv′7→tpl\dom kv′]
88. end end end

6.3 Discussion

It seems that many of the remarks made in Sect. 5.3.1 also apply here.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 55

7 A Simple Transaction System transactions

transactions

In this section we shall present a simple, highly “idealised” transaction system.
The simplification is that we consider only one forest of domain frames process
but n window frame processes all operating in “perfect” harmony, i.e., with-
out any mutual coordination. In the next section, Sect. 8, we shall unravel a
version of the present section’s “näıve” model, one which at least coordinates
transactions according to a two phase commit protocol. Failures of equipment:
hardware and communication will only be considered in the subsequent sec-
tion, Sect. 9. It is here we show careful narratives and formalisations of such
techniques as rollbacks and roll-forwards.

In this section we consider the pair of a forest of domain frames and a forest
of window frames to be processes. One forest of domain frames process and n
forest of window frames processes. The forest of domain frames process is able
at its own cognition to perform all the forest of domain frame operations as well
as honouring requests from any forest of window frames process (i : {1...n}) for
obtaining windows (Get Window) and storing windows (Put Window).

7.1 What Is a Transaction ?

A transaction is also referred to as a unit of work.

89. A forest of window frames or a forest of domain frames operation is a
simple transaction.

90. A general transaction is either a simple transaction

a) or the sequential combination of two or more general transactions

b) or the parallel combination of two or more general transactions.

That is, these operations may occur sequentially, in some order, or concurrently,
or both, that is, some sequentially, some concurrently. Let τi, τj , . . . , τk desig-
nate transactions, then

(τ1; || {τ21 , (τ221
; τ222

; ... ; τ22m
) , ... , τ2n

} ; τ3)

designates a transaction.

7.1.1 Transaction Syntax

type
89. ST = WFCmd | DFCmd
90. GT = ST | QT | PT
90a. QT == mkQT(s qt:GT∗)
90b. PT == mkPT(s pt:GT-set)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

56 On Development of Web-based Software

7.1.2 On Transaction Semantics

91. Let MST and MGT stand for the meaning function of simple, respective
general transactions. The meaning function of simple transactions were
defined in Sects. 5 and 6

Then the meanings, MQT and MPT , of sequential and concurrent transactions
are:

91. MST ,MGT ,MQT ,MPT : ... → ...
90a. MQT (〈t1, ..., tn−1, tn〉)(...) ≡ M;(MGT (tn)(MGT (tn−1)(...(MGT (t1)(...)))))
90b. MPT ({t1, t2, ..., tn})(...) ≡ M||{MGT (t1)(...),MGT (t2)(...), ...,MGT (tn)(...)}

We shall first define the MGT meaning function in this section (Sect. 7) —
although not based on the above syntax for general transactions. Section 8 will
redefine the MGT meaning function — basically returning to the above syntax
for general transactions.

7.2 An Analysis

We have defined, for domain frames and for window frames a number of opera-
tions. Their signatures are listed in the next paragraphs.

7.2.1 Domain Frame Elaboration (Function) Signatures

70. int DFIniDF: DFIniDF → FoDF

71. int DFCreDF: DFCreDF → FoDF
∼
→ FoDF

73. int DFRmDF: DFRmDF → FoDF
∼
→ FoDF

76. int DFPutW: DFPutW → FoDF
∼
→ FoDF

77. eval DFGetW: DFGetW → FoDF
∼
→ W

7.2.2 Window Frame Elaboration Function Signatures

80. int WFOpnW: WFOpnW → FoWF → FoDF
∼
→ FoWF

82. int WFCloW: WFCloW → FoWF
∼
→ FoWF

83. int WFClkW: WFClkW → FoWF
∼
→ FoWF

84. int WFWrW: WFWrW → FoWF
∼
→ FoWF

86. int WFPutW: WFPutW → FoWF → FoDF → (FoDF × FoWF)
87. int WFSelTpl: WFSelTpl → FoWF → FoWF
88. int WFIncTpl: WFIncTpl → FoWF → FoWF

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 57

7.2.3 Window Frame to Domain Frame Invocations

Of the above referenced forest of window frames operations only two involve the
forest of domain frames. Their interface invocations are:

value

80. int WFOpnW: WFOpnW → FoWF → FoDF
∼
→ FoWF

80. int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf) as fowf′

80. ...
80c. ... eval DFGetW(mkDFGW(p̂〈wn〉)(fodf))
80. ...

and:

value
86. int WFPutW: WFPutW → FoWF → FoDF → (FoDF × FoWF)
86. int WFPutW(mkWFPW(p,wn))(fowf)(fodf) as (fodf′,fowf′)
86. ...
86d. ... int DFPutW(mkDFPW(p,wn,w))(fodf)
86. ...

7.2.4 Changes

• The forest of domain frames process shall have a local variable, fodfv,
replacing the need for an interpretation function argument (fodf).

• Each forest of window frames process shall have a local variable, fowfv,
replacing the need for an interpretation function argument (fowf).

• The int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf) function is interpreted
in the window frame processes.

– The function invokes the eval DFGetW(mkDFGW(p,wn))fodf) func-
tion which is evaluated in the forest of domain frames process.

– That process yields, i.e., communicates, a window w.

– Hence two communications shall be offered:

∗ A request from a forest of window frames process to the forest of
domain frames process to perform eval DFGetW(mkDFGW(p)(fodf);

∗ followed by the domain process “returning” (hopefully) the win-
dow w (or else that an "error" has occurred).

• The int WFPutW(mkWFPW(p,wn))(fowf)(fodf) function is interpreted in
one of the forest of window frames processes.

– The function invokes the int DFPutW(mkDFPW(p,wn,w))(fodf) func-
tion which is interpreted in the forest of domain frames process,

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

58 On Development of Web-based Software

– which yields a side-effect on that forest of domain frames process
state.

– Hence two communications shall be offered:

∗ The request from a forest of window frames process to the forest
of domain frames process to perform the int DFPutW(mkDFPW(p,wn,w))(fodf).

∗ The reply from the domain process that the request was hon-
oured, that is, "ok", or that something went wrong, that is,
"error".

7.3 The System

92. Channels are indexed by an otherwise undefined quantity.

93. The system process is the parallel composition of one (i.e., a) domain frame
process and the parallel composition of a number of window frame pro-
cesses.

94. A domain frame process ...

95. A window frame process ...

type
92. WIdx
value
92. wis:WIdx-set

93. system: WIdx-set → Unit
93. system(cxs) ≡ domain frame(...) ‖ (‖{window frame(wi,...)|wi:WIdx•wi ∈ wis})
94. domain frame: DF → in,out ... Unit
95. window frame: i:WIdx × WF → in,out ... Unit

7.3.1 Channels

92. Channels are indexed by an otherwise undefined quantity.

96. Channels express willingness to accept and offer messages of, for the mo-
ment, further unspecified nature.

97. The is an array of channels.

type
92. WIdx
96. MSG
channel
97. {ch[wi]|wi:WIdx•wi ∈ wis}:MSG

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 59

7.3.2 The System Process

98. There is an initial association, fowfs:FoWFS, window frame indexes into
initial, not necessarily identical forests of window frames.

99. The overall system process definition can now be completed.

type
98. FoWFS = WIdx →m FoWF
value
98. wfs:WFS
99. system: WFS → in,out {ch[wi]|wi:WIdx•wi ∈ wis} Unit
99. system(fowfs) ≡ domain frame() ‖ (‖{window frame(wi,fofws(wi))|wi:WIdx•wi ∈ wis})

7.3.3 The Forest of Domain Frames Process

The forest of domain frames process, at its own volition, “alternates” between
honouring either of the five domain frame operations or accepting either of two
requests from any forest of window frames process.

100. To help determine which of these seven alternatives a command “kind”,
cmd:Cmd, of six alternative “tokens” is defined. One of these tokens, inut
(for input/output), stands for “willingness to accept either of two inputs
from any forest of window frames process.

101. The forest of domain frames process takes no argument and

102. “cycles forever”.

103. The elaboration function parameter, fodf, is provided by the contents of
an assignable domain frame valued variable, fodfv – which is initialised to
an initial forest of domain frames (cf. 70 on page 40).

104. In each step (well, cycle) of the forest of domain frames process a non-
deterministic internal choice is made (is taken) as to which kind of oper-
ation to perform.

105. If the choice is to re-initialise the domain frame then that is done.

106. If the choice is

a) to create a domain frame, or

b) to remove a domain frame, or

c) to put a window (into a domain frame), or

d) to obtain (get) a window from a domain frame,

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

60 On Development of Web-based Software

then a corresponding command is internally non-deterministically chosen
such that this command satisfies the pre condition for the corresponding
interpretation function — and the forest of domain frames variable is set
to the result of the corresponding operation.

107. If the choice is to be willing to accept a request from a forest of window
frames process

a) then the forest of domain frames process external non-deterministically
(⌈⌉⌊⌋) choose to accept from any forest of window frames process,
i:WIdx,

b) either a get window or a put window request;

c) if the request satisfies the precondition of the corresponding forest of
domain frames elaboration function,

d) then that operation is performed and its result communicated back
to the requesting forest of window frame process, or

e) else an "error" message is returned.

type
100. Cmd == init | crea | rmdf | putw | getw | inut
value
101. forest of domain frames: Unit → in,out {ch[wi]|wi:WIdx•wi ∈ wis} Unit
101. forest of domain frames() ≡
103. variable fodfv:FoDF := int iniFoDF();
102. while true do
104. let cmd = init⌈⌉crea⌈⌉remv⌈⌉put⌈⌉get⌈⌉inut in
101. case cmd of
105. init → fodfv := elab FoDFinit(),
106a. crea → fodfv := elab FoDFCre(c fdfv),
106b. rmdf → fodfv := elab FoDFRmv(c fdfv),
106c. putw → fodfv := elab FoDFPutW(c fdfv),
106d. getw → fodfv := elab FoDFGetW(c fdfv),
107. inut → interaction()
100. end end end

105. elab FoDFinit: Unit → FoDF
105. elab FoDFinit() ≡ int DFiniDF()

106a. elab DFCre: FoDF → FoDF
106a. elab DFCre(fodf) ≡
106a. if ∃ cdf:DFCreDF • pre:int DFCreDF(cdf)(fodf)
106a. then let cdf:DFCreDF • pre:int DFCreDF(cdf)(fodf) in
106a. int DFCreDF(mkDFCDF(p,wn))(fodf) end
106a. else df end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 61

106b. elab FoDFRmv: FoDF → FoDF
106b. elab FoDFRmv(fodf) ≡
106b. if ∃ rdf:DFRmDF • pre:int DFRmDF(rdf)(fodf) in
106b. then let rdf:DFRmDF • pre:int DFRmDF(rdf)(fodf) in
106b. int DFRmDF(cdf)(fodf) end
106b. else df end

106c. elab DFPutW: FoDF → FoDF
106c. elab DFPutW(fodf) ≡
106c. if ∃ put:DFPutW • pre:int DFPutW(put)(fodf) in
106c. then let put:DFPutW • pre:int DFPutW(put)(fodf) in
106c. int DFPutW(put)(df) end
106c. else df end

106d. elab DFGetDF: FoDF → FoDF
106d. elab DFGetDF(fodf) ≡
106d. if ∃ get:DFGetW • pre:eval DFGetW(get)(fodf) in
106d. then let get:DFGetW • pre:eval DFGetW(get)(fodf) in
106d. eval DFGetW(get)(fodf) end
106d. else df end

107. interaction: FoDF → FoDF
107. interaction(fodf) ≡
107. variable lfodfv:FoDF
107a. ⌈⌉⌊⌋{let req = ch[i]? in
107a. case req of
107b. mkDFGW(p) →
107c. if pre: eval DFGetW(mkDFGW(p))(fodf)
107d. then ch[i] ! eval DFGetW(mkDFGW(p))(fodf)
107e. else ch[i] ! ′′error′′ end ; chaos,
107b. put →
107c. if pre:int DFPutW(put)(c vdf)
107d. then lfodfv := int DFPutW(put)(df);ch[i]!′′ok′′

107e. else ch[i]!′′error′′ ; chaos end
107a. end | i:WIdx•i ∈ wis end} ; lfodf

7.3.4 The Forest of Window Frames Processes

Forest of window frames processes, at their own volition, “alternates” between
honouring either of the window frame operations – two of which requires inter-
action with the forest of domain frames process.

108. To help determine which of these seven alternatives a command “kind”,
cmd:Cmd, of sevem alternative “tokens” is defined.

109. The forest of window frames process takes no argument and

110. “cycles forever”.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

62 On Development of Web-based Software

111. The elaboration function parameter, fowf, is provided by the contents of
an assignable forest of window frames-valued variable, fowfv – which is
initialised to a “pre-set” initial forest of window frames value (cf. 98 on
page 59).

112. In each step (well, cycle), of a forest of window frames process, a non-
deterministic internal choice, ⌈⌉, is made as to which kind of operation to
perform.

113. If the choice is to open a window then an open command is internally
non-deterministically chosen such that this command satisfies the pre
condition for the open window operation;

a) the forest of window frames process communicates a get window com-
mand request (mkDFGW(p̂〈wn〉) to the forest of domain frames pro-
cess and awaits a response.

b) If the forest of domain frames process could not find the window at
the communicated path position then an "error" result is received
and chaos ensues.

c) If the forest of domain frames process does find the (a) window, w, at
the communicated path position then it is returned (from the forest of
domain frames process to the communicating forest of window frames
process) and that window, w, is inserted at the chosen path position –
by means of the auxiliary function: int Insert W(p̂〈wn〉,kv,w)(fowf).

114. If the choice is to put the current window back into the domain frame

a) then a corresponding command is internal non-deterministically cho-
sen such that this command satisfies the pre condition for the put
window operation;

b) the window process communicates a mkDFGW(p,wn) request to the
domain process and receives, in turn a result;

c) if the result is "error", that is, the domain process could not find
a window at the designated path location, p, then chaos ensues,
otherwise nothing – the window frame state is unchanged.

115. If the choice is

a) to close a window, or

b) to click on a window, or

c) to write onto a window, or

d) to select a tuple from the current window relation, or

e) to include the current tuple with the current key-value in that re-
lation,

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 63

then a corresponding command is internal non-deterministically chosen
such that this command satisfies the pre condition for the corresponding
interpretation function —

116. and the window frame variable is set to the result of the corresponding
operation.

type
108. Cmd = opn | put | clk | wri | sel | inc | clo
value
109. forest of window frames: i:WIdx × FoWF → in,out ch[i] Unit
109. forest of window frames(wi,fowf) ≡
111. variable fowfv:FoWF := fowf;
110. while true do
108. let cmd = opn⌈⌉clo⌈⌉put⌈⌉clk⌈⌉wri⌈⌉sel⌈⌉inc in
112. case cmd of
113. opn → fowfv := elab WFOpnW(wi,fowf),
114. put → fowfv := elab WFPutW(wi,fowf),
115b. clk → fowfv := elab WFClkW(fowf),
115c. wri → fowfv := elab WFWriW(fowf),
115d. sel → fowfv := elab WFSelW(fowf),
115e. inc → fowfv := elab WFIncW(fowf),
115a. clo → fowfv := elab WFCloW(fowf)
108. end end end

113. elab WFOpnW: WIdx → FoWF → in,out ch[wi] FoWF
113. elab WFOpnW(wi)(fowf) ≡
113. if ∃ ow:OpenW • pre:int OpnW(ow)(wf) in
113. then let mkOpnW(p,wn,kv):OpenW•pre:int OpnW(mkOpnW(p,wn,kv))(fowf)
113a. let w = ch[wi]!mkGW(p̂〈wn〉) ; ch[wi]? in
113b. if w=′′error′′ then chaos else skip end;
113c. insert W(p̂〈wn〉,kv,w)(fowf) end end
114. else wf end

114. elab WFPutW: WIdx → FoWF → in,out ch[wi] FoWF
114. elab WFPutW(wi)(fowf) ≡
114. if ∃ putw•pre:int WFPutW(puw)(fowf)
114. then let mkWPW(p,wn):WFPutW •

114. pre:int WFPutW(mkWPW(p,wn))(fowf) in
114a. let w = s W(p̂〈wn〉,fowf) in
114b. let result = ch[wi]!mkDFPW(p̂〈wn〉,wn,w) ; ch[wi]? in
114c. if result = ′′error′′ then chaos else skip end
114. end end end
114. else fowf end

115b. elab WFClkW: FoWF → FoWF
115b. elab WFClkW(fowf) ≡

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

64 On Development of Web-based Software

115b. if ∃ clow:ClkW • pre:int WFClkW(clow)(fowf)
115b. then let clow:ClkW • pre:int WFClkW(clow)(fowf) in
115b. int ClkW(clow)(fowf) end
115b. else wf end

115c. elab WFWriW: FoWF → FoWF
115c. elab WFWriW(fowf) ≡
115c. if ∃ wriw:WFWrW • pre:int WFWrW(wriw)(wfof)
115c. then let wriw:WFWrW • pre:int WFWrW(wriw)(fowf) in
115c. int WFWrW(wriw)(fowf) end
115c. else wf end

115d. elab WFSelW: FoWF → FoWF
115d. elab WFSelW(fowf) ≡
115d. if ∃ sel:Sel • pre:int Sel(sel)(fowf)
115d. then let sel:Sel • pre:int Sel(sel)(fowf) in
115d. int ClkW(sl)(fowf) end
115d. else wf end

115e. elab WFIncW: FoWF → FoWF
115e. elab WFIncW(fowf) ≡
115e. if ∃ incl:WFIncTpl • pre:int Inc(incl)(fowf)
115e. then let ic:Inc • pre:int Inc(ic)(fowf) in
115e. int ClkW(ic)(fowf) end
115e. else wf end

115a. elab WFCloW: FoWF → FoWF
115a. elab WFCloW(fowf) ≡
115a. if ∃ cl:CloW • pre:int CloW(clo)(fowf)
115a. then let cl:CloW • pre:int CloW(clo)(fowf) in
115a. int CloW(clo)(fowf) end
115a. else wf end

7.4 Discussion

There are (quite) a number of problems with the definition of the system process
as composed from one family of domain frames and n family of window frames
processes. In the following we will list some of these problems.

• Interference: While one forest of window frames process is operating on
a number of windows obtained from the forest of domain frames process
other forest of window frames processes put similarly named windows
back into the forest of domain frames process where they were also first
obtained.

The independence of and lack of coordination between forest of window
frames processes and their prompting their common forest of domain
frames process to put windows back into the forest of domain frames’
process “storage” is therefore the cause of domain frame data being “out
of synchronisation” with window frame data.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 65

• Ghost Windows: While one window process is “happily” operating upon
windows these same window may have been deleted by forest of domain
frames process ‘delete’ operations.

• :

• :

• :

• :

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

66 On Development of Web-based Software

8 Coordinated Transaction Processing tp-system

tp-system

In this section we shall present a corordinated version of the model of the pre-
vious section. The new thing here is the use of the two phase commit protocol.

8.1 An Overview of A System of Processes

Ω Ω 1 Ω

∆ 0

Ω n2

∆ m∆

... ...

...

... ...

... ...

... ...

......

...

...

i

j

dch[dj]

wch[wi,dj]

C
oordinator

Subordinates

Domain Frame Processes

Window Frame Processes

Figure 8: Window and Domain Frame Processors and Their Channels

Take a look at Fig. 8.

• There are m+1 domain frame processes, ∆0, ∆1, . . . , ∆j , . . . , ∆m(m ≥ 2).

– Each domain frame process ∆j , j ∈ {1..m} manages a number of
domain frames, dfsj = {DFj1 , DFj2 , . . . , DFjι

} (for j ∈ {1..m}).

– ι may vary from domain frame process to domain frame process)
such that no two domain frame processes, ∆k, ∆ℓ, manage the same
domain frames, that is: dfsk∩dfsℓ = {}.

– Domain frame process ∆0 is called the coordinator process.

– Domain frame processes ∆j (for j ∈ {1..m}) are called subordinate
processes (or cohorts).

and

• There are n window frame processes, Ω1, Ω2, . . . , Ωi, . . . , Ωn(n ≥ 1), each
Ωi managing one window frame, WFi (for i ∈ {1, 2, . . . , n}).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 67

• States: Each of the processes evolve around a state. The states differ.
The coordinator state, ∆0Σ, keeps track of which subordinate forest of
domain frame processes (i.e., their states, ∆jΣ) holds which domain frame
windows. The forest of window state processes (i.e., their states, ΩiΣ)
holds a copy of a global window schema which catalogues the sum total
of all forest of domain frames (i.e., their windows) [without, however any
information as to which subordinate process maintains those windows].
And the subordinate forest of domain frames processes (i.e., their states,
∆jΣ) not only holds the forest of domain frames windows, but also which
such windows, if any, are, at any time, allocated to forest of window frames
processes Ωi. States are defined in Sect. 8.5 (Sects. 8.5.3–8.5.2). But first
the notion of window schemas, a notion which cuts across all four state
notions, is defined in Sect. 8.3.1.

• Channels: The processes can synchronise and communicate over channels
as indicated in Fig. 8 on the preceding page and otherwise outlined in
Items 167a–167g (Pages 79–80). Channels are defined in Sect. 8.4.

• Process Actions and Interactions: The processes are defined in Sect. 8.6.

8.2 An Adaptation of The Two Phase Commit Protocol 2pc
2pc

8.2.1 A First Overview Narrative of the Two Phase Commit Protocol

117.

118.

119.

120.

121.

122.

123.

8.2.2 A Second Narrative of the Two Phase Commit Protocol

We shall adopt the two phase commit (transaction processing) protocol [35, 36,
26, 37] and adapt it to the the system of processes as outlined in the previous
section, i.e., Sect. 8.1. There are many variants of the two phase commit proto-
col. Some optimise performance in one way, some in another way. Some handle
machine (i.e., computer, including storage) or data communication crashes, in
one way or another. Etcetera [32]. We shall only present a precise description in
this section (i.e., Sect. 8.2) and a formalisation in the remainder of this overall
section (i.e., Sect. 8). Using our formalisation approach the reader can then
formalise any of the optimising or failure handling versions of the two phase
commit protocol.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

68 On Development of Web-based Software

To follow the informal description of the two phase commit protocol, which
now follows, the reader may be well adviced in using a large (A4 sheet) rendition
of Fig. 8 on page 66 and marking it with, for example coloured and number
attributed flow lines according to the very many enumerated items below !

124. There is a notion of a coordinator (or transaction) process. We decide
to let domain process ∆0 be the coordinator.

125. There is a notion of subordinate (or cohort) processes. We decide to let
the forest of domain frames processes ∆1 . . . ∆m be the subordinates.

126. And there is a notion of user process. We decide to let the forest of
window frames processes Ω1 . . . Ωn be the users.

127. There is a notion of transaction: a job to be done, usually by one or more
other processes than the user. We decide that a transaction is the set of
actions that, from the point of view of the user,

a) starts with obtaining (opening, getting) path-designated windows
from subordinates,

b) continues through the handling of (write on) these windows by the
users,

c) and completes when the last of these requested (path-designated)
windows have been returned (close/put windows) to the appropriate
subordinate.

128. Users request the coordinator to coordinate that a number of one or more
subordinates effect the transaction of the requested job.

129. A user sends a “request transaction ‘ps’ ” to the coordinator.

A transaction request consists of a set, ‘ps’, of paths to forest of domain
frames windows.2pc-co

130. The coordinator handles the transaction request as follows:

a) The coordinator receives a “request transaction ‘ps’ ” [Item 129]
from a user.

b) The coordinator assigns a fresh, that is, hitherto unused, whence a
unique transaction identifier τ to the transaction ‘ps’ [Item 129].

c) The coordinator finds, for each path, which subordinate forest of
domain frames process holds (i.e. stores) the window designated by
that path.

d) Once that is done for all paths, the coordinator sends a ‘Ωi ‘commit
request τ ‘ps’ ” to each of subordinator so designated with inquiring
whether they are free to handle exactly the paths (i.e., sending the
designated windows to the requesting users, and waiting for their
being returned).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 69

e) Once all such designated subordinators have been sent the inquiry,
the coordinator waits for their response.

f) Two possibilities now arise:

i. Either the coordinator receives a negative response, “no, unable
to handle τ” [Item 132(a)iii on the next page], from such an
inquired subordinator (before all have responded or as the last
expected response).

1. In this case the coordinator sends an “abort τ” to all those
subordinates which have either yet to respond or have re-
sponded positively.

2. The coordinator then sends a “request τ : ‘ps’ cannot be
accepted” message to the requesting user.

3. The coordinator then awaits “abort τ acknowledgement”s
of subordinators [Item 132b] having received the abort mes-
sage. Once all have acknowledged the coordinator terminates
this transaction.

ii. Or all inquired subordinators have responded positively.

1. Now the coordinator sends a “commit τ” message to all
subordinators (involved in this transaction);

2. then awaits their “commit τ acknowledgement”s [Item
132(c)i];

3. and once all such have been received, the coordinator sends a
“request τ : path index map: ‘p to wi’ ” [Item 134(a)ii]
confirmation to the requesting user with the following mes-
sage:

• the τ identifier,

• and, for each requested path, the identifier, didx of the
subordinator which handles that path window.

4. Then the coordinator ends its involvement with this trans-
action — leaving it to the user and the subordinators to
continue and end their involvements (the subordinators ac-
cepting get window and put window commands, the user
issuing these commands while, in-between, operating (write)
on these windows.

2pc-su

131. The subordinators handles transaction requests from the coordinator and
from the users.

• That is, in any one time interval a subordinator is engaged

– with the coordinator concerning a transaction request, or

– with any of a number of forest of window frames processes con-
cerning a command (get/put) request.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

70 On Development of Web-based Software

• That is, the subordinators multiplex between the coordinator and
the up to n user processes.

132. The subordinates handle the transaction request from the coordinator as
follows:

a) When it receives a “commit request τ ‘ps’ ” [Item 130d] from the
coordinator

i. then it examines [Item 132(a)i2 below] whether it is already com-
mitted the handling of certain “request τ ‘ps’ ” path-designated
windows to other ongoing actions or not.

1. The subordinate performs this examination, for example, on
the basis of a subordinate state component

type
132(a)i1. COM = UTId →m P-set.

2. com:COM registers current commitments, and, for example,
as follows:

value
132(a)i2. if ps ∩ ∪ rng com 6= {} then inability else ability end

3. Each time a “commit request τ ‘ps’ ” is accepted the
com:COM is augmented as follows:

value
132(a)i3. com ∪ [τ 7→ ps] ∈

4. Each time the subordinator receives a τ -related close win-
dow command for a given p∈ps it removes that path from
com:COM:

value
132(a)i4. com † [τ 7→ com(τ) \ {p}]

5. Once com(τ) is empty, i.e., {}, the subordinate has completed
its part of the τ transaction.

ii. If it cannot commit itself [Item 132(a)i2 just above] to the ser-
vicing of all the path designated windows then it sends an “no,
unable to handle τ” response to the coordinator [Item 130(f)i]
and “forgets” about τ .

iii. If it can pre-commit itself [Item 132(a)i2 just above] to the servic-
ing of all the path designated windows, ps, then it sends an “yes,
able to handle τ” response to the coordinator [Item 130(f)i3],
and awaits further message [Item 130(f)i1 or Item 130(f)ii1 on
the preceding page] from the coordinator.14

14This item (132(a)iii.) and Items 132(a)iii1.–132(a)iii2., defines the concept of pre-

commitment

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 71

1. This pre-commitment is recorded in a pre-commit state com-
ponent:

type
132(a)iii1. preCOM = UTId →m P-set
value
132(a)iii1. precom ∪ [τ 7→ ps]

2. If, as can be expected, the subordinate receives an “abort
τ” message from the coordinator then the pre-commitment
is abandoned:

132(a)iii2. precom \ {τ}

b) If a subordinator receives an “abort τ” [Item 130(f)i3] then it sends
an “abort τ acknowledgement” to the coordinator and “releases”
a possible earlier commitment to handle as set, ps, of path designated
windows (and “forgets” about τ).

c) If, instead, it receives a “commit τ” [Item 130(f)ii1], then it pro-
ceeds as follows:

i. First it sends a “commit τ acknowledgement” to the coor-
dinator.

ii. Then it awaits τ -identified command requests from a user [Item 133
next] — it does so interleaved with other message handling, with
the coordinator or with other users.

iii. The subordinator sends no messages when it determines that a
τ -transaction has been completed.

133. The subordinators handle transaction requests from users as follows:

a) These transaction requests are in the form of

i. “τ : get window ‘p’ ”

ii. “τ : put window ‘w’ at ‘p’ ”

b) To the “τ : get window ‘p’ ” request the subordinator responds as
follows:

i. If it finds that path ‘p’ is not a path of its forest of domain frames
then it responds: “τ : cannot find window at ‘p’ ”.

ii. If it finds that path ‘p’ is a path of its forest of domain frames
then it responds: “τ : here is path ‘p’ window: ‘w’ ”.

c) To the “τ : put window ‘w’ at ‘p’ ” request the subordinator responds
as follows:

i. If it finds that path ‘p’ is not a path of its forest of domain frames
then it responds: “τ : cannot store window at ‘p’ ”.

ii. If it finds that path ‘p’ is a path of its forest of domain frames
then it responds: “τ : path ‘p’ window has been stored”.

2pc-us

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

72 On Development of Web-based Software

134. The users handle the transaction requests as follows:

a) A user starts, [Items: 129→130a], with a “request transaction ‘ps’ ”
to the coordinator.

The user has decided upon the set, ‘ps’, of window-designat-
ing paths, by marking its copy of the window schema. This
window schema catalogues the forest of domain frame win-
dows of all forest of domain frames processes. The marking
function is described later.

In response to this the user awaits a response from the coordinator.

i. Either the user receives a “request τ : ‘ps’ cannot be ac-
cepted” rejection [Item 130(f)i2];

ii. or the user receives a “request τ : path index map: ‘p to wi’ ”
confirmation [Item 130(f)ii3].

b) In the case of a “request τ : ‘ps’ cannot be accepted” message the
user waits some time or resigns.

c) In the case of a “request τ : path index map: p to wi” confirmation
the user proceeds as follows:

i. In order to do anything on windows these must first be obatined.
The user therefore sends (one or more) “τ : get window ‘p’ ”
commands to the subordinator wi indicated by the index map:
p to wi(p). Responses to these requests are:

1. The subordinator either responds with: “τ : cannot find
window at ‘p’ ” [Item 133(c)i],

2. or it responds with: “τ : here is path ‘p’ window: ‘w’ ”
[Item 133(c)ii].

ii. In the former case the user checks whether it has used an er-
roneous path. (We do not explain the consquences of doing so
here.)

iii. In the latter case the user proceeds.

d) The user then operates on these windows now within it own forest of
window frames.

e) Terminitating its work on requested windows the user issues (one or
more) “τ : put window ‘w’ at ‘p’ ” commands to the subordina-
tor wi indicated by the index map: p to wi(p). Responses to these
requests are:

i. If it finds that path ‘p’ is not a path of its forest of domain frames
then it responds: “τ : cannot store window at ‘p’ ”.

ii. If it finds that path ‘p’ is a path of its forest of domain frames
then it responds: “τ : path ‘p’ window has been stored”.

f) In the former case the user checks whether it has used an erroneous
path. (We do not explain the consquences of doing so here.)

g) In the latter case the user proceeds to close windows and terminates
the τ transaction.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 73

8.2.3 Two Phase Commit Protocol Messages, a Resumé 2pc-msgs
2pc-msgs

135. Items 134a,129→130a: “request transaction ‘ps’ ” Ωi → ∆0

136. [Item 204b] “path(s) ‘ps′’ are not defined” ∆0 → Ωi

137. Item 130d: “please, commit request τ ‘ps’ ” ∆0 → ∆j

138. Item 132(a)ii: “no, unable to handle τ” ∆j → ∆0

139. Item 130(f)i1: “abort τ” ∆0 → ∆j

140. Item 132b: “abort τ acknowledgement” ∆j → ∆0

141. Item 132(a)iii: “yes, able to handle τ” ∆j → ∆0

142. Item 130(f)i2: “request τ : ‘ps’ cannot be accepted” ∆0 → Ωi

143. Item 130(f)ii1: “commit τ” ∆0 → ∆j

144. Items 132(c)i→130(f)ii2: “commit τ acknowledgement” ∆j → ∆0

145. Item 130(f)ii3: “request τ : path index map: ‘p to wi’ ” ∆0 → Ωi

146. Item 134(c)i→133(a)i: “τ : get window ‘p’ ” Ωi → ∆j

147. Item 133(a)ii: “τ : put window ‘w’ at ‘p’ ” Ωi → ∆j

148. Item 133(b)i: “τ : cannot find window at ‘p’ ” ∆j → Ωi

149. Item 133(b)ii: “τ : here is path ‘p’ window: ‘w’ ” ∆j → Ωi

150. Item 133(c)i: “τ : cannot store window at ‘p’ ” ∆j → Ωi

151. Item 133(c)ii: “τ : path ‘p’ window has been stored” ∆j → Ωi

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

74 On Development of Web-based Software

type
MSG = RTPS | IRPPSND | PCORTPS | NUTHT | AT | ATA |

YATHT | RTPSCBA | CT | CTA | RTPIM | TGWP |
TPWPW | CFWAP | HIPPW | CSWAP | PPWHBS

135. RTPS == mkRTPS(P-set)
“request transaction ‘ps’ ”

136. IRPPSND == mkIRPPSND(P-set)
“path(s) ‘ps′’ are not defined”

137. PCORTPS == mkPCORTPS(Υ,P-set)
“please, commit request τ ‘ps’ ”

138. NUTHT == mkNUTHT(Υ)
“no, unable to handle τ”

139. AT == mkAT(Υ)
“abort τ”

140. ATA == mkATA(Υ)
“abort τ acknowledgement”

141. YATHT == mkYATHT(Υ)
“yes, able to handle τ”

142. RTPSCBA == mkRTPSCBA(UTid,P-set)
“request τ : ‘ps’ cannot be accepted”

143. CT == mkCT(Υ)
“commit τ”

144. CTA == mkCTA(Υ)
“commit τ acknowledgement”

145. RTPIM == mkRTPIM(UTid,PIM)
“request τ : path index map: ‘p to wi’ ”

146. TGWP == mkTGWP(Υ,P)
“τ : get window ‘p’ ”

147. TPWPW == mkTPWPW(Υ,W,P)
“τ : put window ‘w’ at ‘p’ ”

148. CFWAP == mkCFWAP(Υ,P)
“τ : cannot find window at ‘p’ ”

149. HIPPW == mkHIPPW(Υ,P,W)
“τ : here is path ‘p’ window: ‘w’ ”

150. CSWAP == mkCSWAP(Υ,P)
“τ : cannot store window at ‘p’ ”

151. PPWHBS == mkPPWHBS(Υ,P)
“τ : path ‘p’ window has been stored”

8.2.4 Analysis

This ends our informal, second description of our adaptation of the two phase
commit protocol. We shall now, somewhat informally, analyse this narrative
explication.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 75

152. A user is free to pursue any activity between

• [Item 134a] a “transaction request ‘ps’ ”

and its receiving either

• [Item 130(f)i2] a “request τ : ‘ps’ cannot be accepted” reject or

• [Item 130(f)ii3] an “request τ : path index map: ‘p to wi’ ”
accept.

153. The coordinator between its receiving

• [Item 134a] a “transaction request ‘ps’ ”

and its terminating its involvement in the τ transaction:

• [Item 130(f)i2] “request τ : ‘ps’ cannot be accepted” ∆0 → Ωi

or

• [Item 130(f)ii3] “request τ : path index map: ‘p to wi’ ”∆0 → Ωi

must complete the pre-commit phase consisting of interactions:

• [Item 130d] “commit request τ ‘ps’ ” ∆0 → ∆j

• [Item 132(a)ii] “no, unable to handle τ” ∆j → ∆0

• [Item 130(f)i1] “abort τ” ∆0 → ∆j

• [Item 132(a)iii] “yes, able to handle τ” ∆j → ∆0

• [Item 130(f)i2] “request τ : ‘ps’ cannot be accepted” ∆0 → Ωi

• [Item 130(f)ii1] “commit τ” ∆0 → ∆j

• [Items 132(c)i] “commit τ acknowledgement” ∆j → ∆0

that is, must not interact with any other process.

154. The subordinator between its receiving

• [Item 130d] “commit request τ ‘ps’ ” ∆0 → ∆j

and either its

• [Item 132b] “abort τ acknowledgement” or ∆j → ∆0

• [Item 132(c)i] “commit τ acknowledgement” ∆j → ∆0

must not interact with any other process.

155. The subordinator can engage in any number and order of user interactions
between between a terminating pre-commit phase

• [Item 132b] “abort τ acknowledgement” or ∆j → ∆0

• [Item 132(c)i] “commit τ acknowledgement” ∆j → ∆0

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

76 On Development of Web-based Software

and a subsequent next (i.e., “first” next) opening pre-commit phase

• [Item 130d] “commit request τ ′ ‘ps’ ” ∆0 → ∆j

156. A user is free to pursue any activity, also with respect to subordinators,
after having received either

• [Item 130(f)i2] a “request τ : ‘ps’ cannot be accepted” reject or

• [Item 130(f)ii3] an “request τ : path index map: ‘p to wi’ ”
accept.

If the user issues no

• Item 134(c)i→133(a)i: “τ : get window ‘p’ ” Ωi → ∆j

• Item 133(a)ii: “τ : put window ‘w’ at ‘p’ ” Ωi → ∆j

or if it issues

• Item 133(a)ii: “τ : put window ‘w’ at ‘p’ ” Ωi → ∆j

before a

• Item 134(c)i→133(a)i: “τ : get window ‘p’ ” Ωi → ∆j

then, of course the user must expect problems !

In other words there need be a reasoanbly strict discipline, called a pro-
tocol, with respect to the users’ issuance of get and put commands.

8.3 Some Auxiliary State Notes

8.3.1 Window Schemas schemas
schemas

Window schemas are abstractions of forests of domain frames and of forests of
window frames. Let us remind ourselves of the overall definition of forests of
window frames and forests of domain frames (Item 36 on page 27, Item 35 on
page 25 and Item 58 on page 36):

50. FoWF = WNm →m (WΣ × FoWF)
63. FoDF = WNm →m (W × FoDF)
45. WΣ = W × FVAL × Cursor
36. W′ = WNm × WTy × mkWV(ANm-set,TVAL,RVAL,WNm-set)
35. W = {|w:W′

•wf W(w)|}

A window schema is a “stripped” forest of domain frames where, however, win-
dow names are either marked or unmarked, that is, where windows are either
“fully” present or are just schematically so. A schematically shown window
consists of just its marked or unmarked named and a set of such (cf. Item 36.
above: the first and the last type expression). Notice that a window schema is

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 77

wni

wni1 wni2 wni3

wni11

wni111

wni1111 wni1112

wni31 wni32

Legend:

Window SchemaDomain Frame

wi1111 wi1112

wi111

wi11

wi1

wi

wi3

wi31 wi32

wi2

Window kwk

paths: {<wni>,<wni,wni1>,<wni,wni1,wni11>,<wni,wni1,wni11,wni111>,...,<wni,wni3>,<wni,wni3,wni32>}

Figure 9: Commensurate domain frame, window schema and paths

the same as a forest of window schemas — although, in Fig. 9 we show a forest
of only one tree.

157. A window name is now

a) either marked

b) or it is unmarked.

and the two kinds are distinct.

158. A window schema has

159. From a window schema one can (as for forests of domain and window
frames) extract the set of all marked paths to nodes in the window schema.

160. Marked paths are sequences of marked or unmarked window names.

161. Designating paths are marked paths such that the last window name is
marked.

162. One can strip the elements of a marked path of their marking status.

163. From a forest of domain frames one can (as for a forest of window frames)
extract a window schema.

type
157. muWNm = mWNm | uWNm
157a. mWNm == mark(s wn:WNm)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

78 On Development of Web-based Software

157b. uMWn == unmk(s wn:WNm)
158. WS = muWNm →m WS
160. MP = muWNm∗

161. DP = {|dp:MP•is designating path(dp)|}
value
160. is designating path: MP → Bool
160. is designating path(mp̂〈mark()〉) ≡ true
160. is designating path(mp̂〈unmk()〉) ≡ false

159. paths: WS → MP-set
52. paths(ws) ≡
52b. let ps′ = ∪{paths(ws′)|ws′:WS•ws′ ∈ rng ws} in
52c. ∪{〈wn〉,〈wn〉̂p|wn:muWNm,p:P • wn ∈ dom ws∧p ∈ ps′} end

162. strip: MP → P
162. strip(mp) ≡ 〈s wn(mp(i))|i in [1..len mp]〉

162. strips: MP-set → P-set
162. strips(mps) ≡ {strip(mp)|mp:MP•mp ∈ mps}

163. xtr WS: FoDF → WS
163. xtr WS(f) ≡
163. [n7→[n′ 7→xtr WS(f(n′))|n′:muWNm•n′∈dom f(n)]n:muWNm•n∈dom f]

The idea is that somehow all domain frame processes and all window frame
processes share one and the same window schema, that is, have access to or
keep a continuously updated copy of a window schema, and that “the sum
total” of domain frames managed by the subordinate domain frame processes
are abstracted by this window schema.15

The idea is furthermore that forest of window frames users, i.e., the prover-
bial “end users”, while preparing for a session of window viewing and updating,
can display this, the “global” window schema. At least those parts to which
they may have been granted read/write access,16. The display can, for example,
be two-dimensionally, such as either of the two “trees” of Fig. 9 on the previous
page. A reason for a simple display could be for purposes of surveying windows,
i.e., documents. A related reason could be to select which windows they wish
to obtain (Get Window) and update (Put Window).

Since many users, that is, different forest of window frames processes, may
wish to operate on sets of possibly overlapping windows during, most likely,
overlapping time intervals, and in order to avoid that two or more users update
an initially, when first obtained, same window, we need to inform the domain

15How these processes initially obtain and regularly update identical window schema copies
is left as a simple exercise for the reader to narrate and formalise.

16We do not deal, in the current report, with window access authorisation. Since it is not
a defensive issue appears to be an “add on” with which the current design can be extended:
systematically and not too convolutely!

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 79

frame system of our intents. With the domain frame system of m forest of
domain frames processes each handling their disjoint parts of a “sum total”
forest of domain frames, being coordinated by a distinguished domain frames
process,17 ∆0, the idea is to ensure that any two forest of window frames pro-
cesses, Ωik

and Ωiℓ
, perform their operations on sets of overlapping windows in

disjoint time intervals.

8.3.2 Unique Transaction Identifiers utids
utids

The idea is now that any window process can send a request, ps, in the form of
a set of designated paths (to the coordinating domain frame process) for per-
forming a set of domain frame operations in some time interval such that no
other window process’ similar, concurrent requests, ps′, target at least one do-
main frame window already designated in request ps. The coordination domain
frame process, ∆0, upon receiving any request from a window frame process
Ωi acknowledges the receipt with a unique transaction identifier, τi. This iden-
tifier (τi) will be used in communication concerning this transaction between
processes.

164. Thus there is an indefinite set, i.e., a type of unique transaction identifiers.

165. And there is an “oracle” function which, when invoked, yields a unique
transaction identifier.

166. This function makes use, for technical reasons, see below, of a domain
frame process, ∆0, local variable uτs.

type
164. Υ
variable
165. uτs:Υ-set := {}
value
166. uniq τ : Unit → Υ
166. uniq τ() ≡ let τ :Υ•τ 6∈c uτs in uτs := c uτs ∪ {τ}; τ end

8.4 Channels channels
channels

167. Frame Process Indices and Channels:

a) The set of domain frame processes are uniquely indexed over DIdx.
So is the set of window frame processes which are indexed over WIdx.

b) d0 is the index of the unique coordinator (domain frame processes).

c) wis is the set of window frame process indices.

17This distinguished domain frames process, ∆0, turns out, we have decided, not itself to
administer an own forest of domain frames.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

80 On Development of Web-based Software

d) dis is the set of domain frame process indices.

e) d0 is in DIdx and there are m+1 domain frame processes and there
are n window frame processes.

f) Each window frame process can communicate with any domain frame
process – via (WIdx×DIdx)-indexed channels – and vice versa.

Thus there are n × m+1 window (to/from domain) channels.

No Ωi or ∆j can communicate with itself.

g) Domain frame process ∆0 can communicate with any other domain
frame process – via DIdx-indexed channels.

Thus there are m domain frame channels.

∆0 cannot communicate with itself and ∆jk
cannot communicate

with ∆jℓ
for jk and jℓ different from 0.

type
167a. DIdx, WIdx
value
167b. d0:DIdx
167c. wis:(WIdx×DIdx)-set
167d. dis=DIdx-set
axiom
167e. d0 ∈ dis ∧ card dis=m ∧ card wis=n
channel
167f. {wch[wi,dj]|wi:WIdx,dj:DIdx•wi ∈ wis∧dj ∈ dis}:M18

167g. {dch[dj]|dj:DIdx}:M

8.5 States

8.5.1 Window Frame Process State ΩiΣ window-i-state
window-i-state

Marking Window Schemas

168. There is a select and mark function: It internal non-deterministically se-
lects such window names that is wishes to mark, or unmark; and proceeds
to do so.

value
168. mark: WS → WS
168. mark(ws) as ws′ post strips(paths(ws)) = strips(paths(ws′))19

18Mnemotechnics: we have chosen wi’s to be window indexes and dj’s to be doma“j”n
indexes.

19Personally, we quite like this function definition: it shows abstraction at its best. Any
marking and un-marking is, of course, possible; a user do not wish to be constrained; and the
function definition gives “absolutely” no hint as to how one could, algorithmically, implement
it !

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 81

• • •

Please keep these distinctions in mind:

• paths, p:P, Item 51 on page 33;

• marked paths, mp:MP, Item 160 on page 77; and

• designated paths, dp:DP, Item 161 on page 77.

The pragmatics is:

• Paths locate windows, w:W, Item 32 and Item 35 on page 25.

• Marked paths locate actual or un-selected windows.

The actual and un-selected window notions will be explained shortly.

• For actual windows, aw:AW, see Item 169b.

• For un-selected windows, uw:UW, see Item 169a.

Forests of Designated Window Frames The idea is then that forest of win-
dow frame processes work on not exactly the window frames of Sect. 3.1 on
page 30 but on modified versions, called forest of designated window frames.
We modify the window frames of Sect. 3.1 on page 30 into designated window
frame. A forest of designated window frames is like a forest of window frames
except that where the forest of window frames process, in its designated window
paths, for example, dp:DP, have indicated that a window name is unmarked the
“corresponding” window, in a forest of designated window frames, is an closed
window and where window name is marked the “corresponding” windows, in a
forest of designated window frames, is either a closed or an opened window.

169. A designated window frame, cf. Fig. 10 on the following page, consists of
a pair of an unmarked or an actual window and a possibly empty set of
uniquely marked or unmarked window name-identified actual, respectively
unmarked windows.

a) A closed window is a pair of a marked or unmarked window name
and a set of marked or unmarked window names.

b) An opened window is a window whose window name is a marked
window name.

Thus marked windows can be open or closed. Unmarked windows can on be
(shown) closed.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

82 On Development of Web-based Software

wi1112

wi11 wi32

wi2

wni1111

wni111

wni1

wni

wni3

wni31

Legend:

Unmarked

open window

closed window

closed window

Marked

Marked

Figure 10: A designated window frame of a forest of such

type
169. FoDWF = muWNm →m (CoOW × FoDWF)
169. CoOW = CW | OW
169a. CW == mkCW(s wn:muWNm,s wns:muWNm-set)
169b. OW == mkOW(w:W)
axiom
169b. ∀ mkOW(w):OW•s wn:w ∈ mkWNm

170. Designated window frames must be well-formed.

• For now we omit definition of well-formedness of designated window
frames.

• We refer instead to Sect. 3.2 Item 48 on page 31 [Well-formed Window
Frames] and Sect. 4.1.1 Item 59 on page 36 [Well-formed Domain
Frames], for examples of what has to be expressed.

Transactions We now “assemble” disjoint sets of forest of designated window
paths and unique transaction identifiers into one state component: transactions.
The idea is that a set of forest of window frames processes can pursue one or
more transactions concurrently. These transactions are sets, {fodwpij

, fodwpik
,

. . . fodwpiℓ
}, of forest of designated window paths. They will first have been

OK’ed by the forest of domain frames coordinator on behalf of those subordinate
forest of domain frames processes, indexed by djjq

, djj2 , . . . , djjp
:DIdx, which

“hold” the windows requested by the forest of window frames processes. The
OKs are in the form of proper commit communications from ∆0. These commits

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 83

provide the transaction requesting forest of window frames process with a a pair:
a unique transaction identifier and map from designated forest of window frame
paths to forest of domain frames process identifiers.

171. Commit transactions, ctrs:CTRS, are pairs of a unique transaction identi-
fier and a forest of domain frames window allocation, fdfwas:FoDFWAs.

a) Domain frame window allocations, fdfwas:FoDFWAs, map each re-
quested and OK’ed designated window path into the identity of the
identifier of the forest of domain frames process which stores the
designated window.

b) For simplicity we assume that the coordinating forest of domain
frames process, ∆0, identified by d0 holds no windows.20

type
171. CTRS = TId × FoDFWAs
171a. FoDFWAs = DP →m DIdx
axiom
171b. ∀ fodfwas:FoDFWAs•d0 6∈ rng fodfwas

The Forest of Window Frames Process State

172. Any forest of window frames process evolves around accessing and updat-
ing a local state, ΩΣik

which consists of the following separate components:

and a window schema,

a) a transaction map, tm:TM, from unique transaction identifiers to
domain frame window allocations, and

an evolving forest of window frames.

173. No two domain frame window allocations of a transaction map can share
designated paths.

type
172. ΩΣ = WS × TM × FoWF
172a. TM = UTId →m FoDFWAs

theorem:
173. ∀ tm:TM,uti,uti′:UTId • uti6=uti′ ⇒ dom tm(uti) ∩ dom tm(uit′) = {}

20The coordinating forest of domain frames process may have “its own” forest of domain
frames. But the windows of that forest cannot be operated upon by any forest of window
frames processes, only by the coordinator process.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

84 On Development of Web-based Software

The left-to-right order of the three state components, WS×TM×FoWF is prag-
matically motivated: From the less dynamic, that is, to the user, least often
changing – usually not changing from session to session21 – via session-stable
window schemas and transaction maps, to the most dynamic, that is, to the
user, most often changing component values.

Usually the following is a common pattern of operations on a forest of window
frames state: (i) A session starts with the user marking the window schema.
(ii) Then requesting permission to perform window operations on the desig-
nated windows (as marked). (iii) Then performing a time-wise possibly length
sequence of window operations: (iii.a) initially some opening of windows, (iii.b)
then some writing on these windows, and (iii.c) then the putting of updated
windows back to the forest of domain frames processes from where (cf. (iii.a))
possibly earlier versions of these windows were first obtained. (iv) Finally all
opened windows have been returned and the session is over.

State Well-formedness

174. Forest of window frames process states, ωσ : ΩΣ, must be well-formed.

174.a Let the state be composed: ωσ:(ws,fowf,tm).

174.b The set of stripped forest of designated window frame paths, fowf,
must be equal to the set of stripped designated paths of the transac-
tiom map tm.

This constraint expresses that the forest of designated window frames,
fowf, is initially constructed from the transactiom map tm and that
openings, closings and other operations on marked windows of that
forest does not change its structure, i.e., does not add or delete any
windows.

174.c The set of stripped designated paths of the transactiom map, tm,
must be a subset of the set of stripped designated paths of the window
schema ws.

This constraint expresses that transaction map tm was the result,
from the forest of domain frames coordinator, of a request from the
current forest of window frames process to commit a number of win-
dows based on a set of designated window paths. This set of des-
ignated window paths was first constructed (i.e., indicated) by the
current forest of window frames process by a marking, say on a tem-
porary copy of the window schema.

value
174. wf ΩΣ: ΩΣ → Bool
174.a wf ΩΣ(ws,fowf,tm) ≡
174.b-.c stripped fowf paths(fowf) = stripped tm paths(tm) ⊆ stripped ws paths(ws)

21By a session we shall understand a time interval during which a user works on a dedicated
set of windows.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 85

174.b stripped fowf paths: FoDWF → P-set
174.b stripped tm paths: TM → P-set
174.c stripped ws paths: WS → P-set

Window Process State Function Signatures A number of functions apply
to forest of window frames process states and either evaluate to a value (but)
with no state transition or effect a state transition. These functions and their
signatures are:

175. Cre DFW: create a designated window frame, cf. Appendix A.2.1

176. Opn W: open an indicated marked window, cf. Appendix A.2.2

177. Clo W: close an indicated marked window, cf. Appendix A.2.3

178. Wri W: click and write into a window field, cf. Appendix A.2.4

179. Del DFW: delete the designated window frame, cf. Appendix A.2.5

value

175. Cre DWF: ΩΣ
∼
→ΩΣ

176. Opn W: P→ΩΣ
∼
→ΩΣ

177. Clo W: P→ΩΣ
∼
→ΩΣ

178. Wri W: P→FNm×FVAL→ΩΣ
∼
→ΩΣ

179. Del DFW: ΩΣ
∼
→ΩΣ

We now show a sequence of “opening” the windows of a window schema.

wni1111

wni111

wni1

wni

wni3

wni31

wni2

wni32wni11

wni1112

1.

wni1111

wni111

wni1

wni

wni3

wni31

wni2

wni32

wni1112

wi11

2.

wni1111

wni111

wni1

wni

wni3

wni31

wni2

wni1112

wi11 wi32

3.
wni1111

wni111

wni1

wni

wni3

wni31

wni2

wi11 wi32

wi1112

4.

wni1111

wni111

wni1

wni

wni3

wni31wi11 wi32

wi1112

wi2

5.
A snapshot of a series of window frame window openings

You may think of snapshot 1. as the result of executing

1. Create DFW(dwf,tm) −→ (dwfα,tm)22

22−→ denotes: “resulting in”.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

86 On Development of Web-based Software

where what we see in snapshot 1. is indeed the dwfα. It has been constructed
sôlely from the transaction map tm.

You can then think of snapshots 2.–5. as the result of four successive exe-
cutions:

2. Opn W(〈wni, wni1 , wni11
〉)(dwfα,tm) −→ (dwfβ ,tm),

3. Opn W(〈wni, wni3 , wni32
〉)(dwfβ ,tm) −→ (dwfγ ,tm),

4. Opn W(〈wni, wni1 , wni11
, wni111

, wni1112
〉)(dwfγ ,tm) −→ (dwfζ ,tm),

5. Opn W(〈wni, wni2 〉)(dwfζ ,tm) −→ (dwfη,tm).

If these five functions remind you of the window frame operations of Sect. 6
then that is no coincidence. Their [re]definition is found in Appendix A. But
we need first “clean-up” the window frame process state.

Discussion

180. We have made a number of design simplifications. These are:

181. Instead of separate close and put window operations we merge these into
one, the Clo W(p)(ωσ) operation.

• Where the former close operation involved only the window frame

• and the put operation involved both the window and the domain
frames,

• the current close operation is both a designated window frame process
and a domain frame process operation.

182. Instead of separate click on window and write to window operations, we
merge these into one, the Wri W(p)(ωσ)(p)(fn,fv)(ωσ) operation.

• We use this “merger” to simplify our window design.

• Now there is no need to “remember”

– which field (etc.) was most recently clicked,

– nor the value of the most recent write.

183. Finally we remove the concept of (scroll down) curtains.

Redesign of Window Frame Process Windows With the design re-decisions
of Item 181, Item 182 and Item 183 and with notions of designated window
paths, window schemas, and designate window frames, the former design can
be reduced.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 87

Main State Components

type
172. ΩΣ = WS × TM × FoWF
158. WS = muWNm →m WS
172a. TM = UTId →m FoDFWAs
171a. FoDFWAs = DP →m DIdx
169. FoDWF = CoOW × (muWNm →m CoOW)
169. CoOW = CW | OW
169a. CW == mkCW(s wn:muWNm,s wns:muWNm-set)
169b. OW == mkOW(w:W)
36. W′ = mkWNm × WTy × WVAL
35. W = {|w:W′

•wf W(w′)|}
32. WVAL == mkWV(s key:KNms,s tpl:TVAL,s rel:RVAL,s ws:muWNm-set)

Values and Types

1. AVAL == mkIV(Int)|mkRV(Rat)|mkBV(Bool)|mkT(Text)|′′nil′′

2. ATyp = {|′′int′′,′′rat′′,′′bool′′,′′text′′,′′nil′′|}
11. TVAL = ANm →m AVAL
16. FTyp = ATyp
17. TTyp = ANm →m ATyp
21. KNm = ANm
22. KNms = KNm-set
23. KVAL = ANm →m AVAL
24. KTyp = ANm →m ATyp
26. RVAL′ = KVAL →m TVAL
26. RVAL = {|rv:RVAL′

•wf RVAL(rv)|}
33. WTyp = TTyp

Names and Paths of Various Forms

12. FNm = ANm
12a. ANm == mkANm(s nm:Nm)
13. WNm == mkWNm(s wn:Nm)
14. Nm
157. muWNm == mWNm | uWNm
157a. mWNm == mark(s wn:WNm)
157b. uWNn == unmk(s wn:WNm)
160. MP = muWNm∗

161. DP = {|dp:MP•is designating path(dp)|}

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

88 On Development of Web-based Software

8.5.2 Subordinate Domain Frame Process State ∆jΣ delta-j-state

delta-j-state

Forest of Domain Frames

184. The main state component of any subordinator is the forest of domain
frames.

type
184. FoDF = WNm →m (W × FoDF)

Auxiliary State Components

185. Auxiliary state components of any subordinator are recordings, pcom:PreCom,
of which commitments are being tentative,

186. and which are committed, com:Com.

187. A window-designating path three states: "unread", "read" or "written".

type
185. Wuse == unread | read | written
186. PreCOM = UTid →m P1-set
187. COM = UTid →m (P1 →m Wuse)

Auxiliary and Enduring States

188. We decide to “split” the subordinator state into two, the auxiliary ∆jΣ
and the more “enduring”23 forest of domain frames.

189. Thus the signature of the ∆j processes contain both:

type
188. ∆jΣ = PreCOM × COM
value
189. ∆j : ... → ∆jΣ → FoDF → Unit

State Transition Functions

23By an ‘enduring’ state we mean one whose values transgress transactions.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 89

PreCommit

190. When a subordinator replies with a “yes, able to handle τ” message
to a coordinator’s “please, commit request τ ‘bs’ ” message, then
that subordinator places the pair [τ 7→bs] in the pre-commitment state
component.

value
190. PreCommit: (Υ × Bucket) → ∆jΣ → PreCOM
190. PreCommit(τ ,ps)(δjσ:(pcom,com)) ≡ pcom ∪ [τ 7→ps]

DeCommit

191. When a subordinator receives the “abort τ” message then the subordi-
nator removes the τ entry from the pre-commitment state component.

value
191. DeCommit: Υ → ∆jΣ → COM
191. DeCommit(τ)(δjσ:(pcom,com)) ≡ pcom \ {τ}

Commit

192. When a subordinator receives the “commit τ” message then the subor-
dinator moves the τ entry from the pre-commitment state component to
the commitment state component.

value
192. Commit: Υ → ∆jΣ → ∆jΣ
192. Commit(τ)(δjσ:(pcom,com)) ≡
192. (pcom\{τ},com ∪ [τ 7→(p,′′unread′′)|p:P1•p ∈ ps])

Get Window

193. When a subordinator receives a “τ : get window ‘p’ ” from some user
and replies to that user: “τ : here is path ‘p’ window: ‘w’ ”

a) the subordinator marks the (τ ,p) entry in the resulting com′ state
component with a "in use" mark;

b) this component’s (τ ,p) entry, before the get operations was marked
"not in use";

c) all else is unchanged in the ∆jΣ state and in the forest of domain
frames,

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

90 On Development of Web-based Software

d) except that now the argument window, w, is at position p in the
resulting forest of domain frames.

value
193. GetW: (Υ×P) → ∆jΣ → FoDF → ∆jΣ × W
193. GetW(τ ,w)(δjσ:(pcom,com))(fodf) as (δjσ

′:(pcom′,com′),w)
193. pre τ ∈ dom com
193b. ∧ (p,′′not in use′′) ∈ com(τ)
193. ∧ p ∈ paths(fodf)
193. post p ∈ paths(fodf′)
193d. ∧ w = s W(p)(fodf′)
193. ∧ paths(fodf) = paths(fodf′)
193d. ∧ ∀ p′:P1•p′ ∈ paths(fodf′)\{p}⇒sel W(p)(fodf)=s W(p)(fodf′)
193a. ∧ (p,′′in use′′) ∈ com(τ)

Close/Put Window

194. When a subordinator receives a “τ : put window ‘w’ at ‘p’ ” from
some user and has replied “τ : path ‘p’ window has been stored”
then the subordinator moves the τ entry ‘p’ from the commitment state
component. If that was the last path in the “τ commitment” in com then
the subordinator erases the τ entry (which is now empty) from com.

194. Close Put: (Υ×P×W) → ∆jΣ → FoDF → ∆jΣ × FoDF
194. Close Put(τ ,p,w)(δjσ:(pcom,com))(fodf) as (δjσ

′:(pcom′,com′),fodf′)
194. pre τ 6∈ dom pcom ∧ τ ∈ dom com
194. ∧ p ∈ com(τ) ∧ p ∈ paths(fodf)
194. ∧ (p,′′in use′′) ∈ com(τ)
194. post p ∈ paths(fodf′)
194. ∧ w = sel W(p)(fodf′)
194. ∧ paths(fodf) = paths(fodf′)
194. ∧ ∀ p′:P1•p′ ∈ paths(fodf′)\{p}⇒sel W(p)(fodf)=sel W(p)(fodf′)
194. ∧ com′(τ)=com\{τ}
194. ∧ com′=[] ⇒ [no special action]

8.5.3 Coordinator Process State, ∆0Σ delta-0-state
delta-0-state

Window Catalogue

195. The coordinator process state, δ0σ contains a catalogue which for every
path of every forest of domain frames records the process index, di:DIdx,
which holds the window designated by that path.

196. Let cat:CAT be the “typical” catalogue in use at any time by ∆0, i.e., in
δ0σ.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 91

197. Let, cf. 167d on page 80, dis:DIdx-set be the set of indices all domain
processes. Then the image, kwrng cat, of the catalogue is a subset of dis.

type
195. CAT = P →m DIdx
value
196. cat:CAT
axiom
197. rng cat ⊆ dis\{d0}

User Requests and Coordinator Buckets

198. A request:Request is a the set of paths to windows for which (i.e., the
windows) a user is requesting read/write access, respectively the request
at a designated forest of domain frames process.

199. A bucket:Buckets is a technical concept: it records, for some domain pro-
cess indices which

200. Given a catalogue, cat, one can analyse(ps)(cat) a request, ps, into the set
of all those buckets, one for each relevant forest of domain frames process,
each of which records a the request for a distinct forest of domain frames
process’s windows.

type
198. Request = P1-set
199. Buckets = DIdx →m Request
value
200. analyse: Request → CAT → Buckets
200. analyse(ps)(cat) ≡ [dj7→{p|dj:DIdx,p:P1•p ∈ ps ∧ cat(p)=dj}]

The ∆0Ω Coordinator State

201. The ∆0Ω coordinator state consists of (so far24) of the catalogue state
component.

type
201. ∆0Ω :: s cat:CAT × ...

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

92 On Development of Web-based Software

8.6 Processes processes
processes

8.6.1 Window Process Ωi: Initial Actions

202. A request for a set of Open Window and Put Window operations is a set
of paths: ps.

203. Window Process Ωi: Initial Actions

a) Ωi first selects an appropriate subset ‘ps’ of paths of itw window
schema.

b) Then Ωi sends “request transaction ‘ps’ ” [mkRTPS(ps)] to ∆0.

c) Now Ωi awaits a reesponse from ∆0.

d) If the response from ∆0 is “request τ : ‘ps’ cannot be accepted”
[ι130(f)i2 π69] then that’s it.

e) If the response from ∆0 is “request τ : path index map: ‘p to wi’ ”,

i. then that map becomes the basis for a session of get and put
window commands.

ii. The window schema for that get and put window session is un-
changed.

iii. The forest of window frames is derived directly from the index
map.

iv.

type
202. Request =P1-set
axiom
202. ∀ ps:Request•ps 6={}
value
203. Ωi: wi:WIdx → ΩiΣ
203. → in,out dch[wi,d0]:(RTPS|RTPSCBA|RTPIM) Unit
203. Ωi(wi)(ws,tm,fowf) ≡
203a. let ps = paths(mark(ws)) in
203b. dch[wi,d0] ! mkRTPS(ps) ;
203c. let re = dch[wi,d0]? in
203. case re of
203d. mkRTPSCBA(u,ps) → Ωi(wi)(ws,tm,fowf),
203e. mkRTPIM(u,tm′) →
203(e)i. let tm′′ = tm′,
203(e)ii. ws′ = ws,
203(e)iii. fofw′:FoFW • paths(fofw′)=dom tm′ in
203(e)iv. Get Put Session(ws′,tm′,fowf′)
203. end end end end

24further work may reveal the need for more – or changed – state components

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 93

8.6.2 The Coordinator Process, ∆0

∆0: Initial Actions

204. The Coordinator Process, ∆0: Initial Actions:

a) ∆0 receives the request, ps, from window frame process j.

b) ∆0 checks that the request paths are indeed paths of some domain
frame of some domain frame process. If not, the request is “returned”
“path(s) ps′ are not defined” where ps′ are those paths of ps
which are not in any of the subordinator forests of domain frames.
∆0 abandons any further handling of the request.

c) If all paths are defined ∆0 analyses ps into a number of sub-requests.

d) Each sub-request, psdi
, is a subset of rq; each such psdi

“destined”
for domain frame process ∆i which possesses exactly those windows
in rq designated by psdi

and only those.

e) To help perform this “bucketing” ∆0 has a catalogue which lists
which domain frame processes stores the window designated by any
one path.

value
204. ∆0: ∆0Σ → in,out {wch[wi,dj]
204. | wi:WIdx,dj:DIdx•wi ∈ wis∧dj ∈ dis\{d0}}:(RTPS|IRPPSND) Unit
204. ∆0(δ0σ :(cat,...)) ≡
204c. ⌈⌉⌊⌋{let mkRTPS(ps) = wch[wi,d0]? in
204b. if ps ∼⊆ dom cat
204b. then wch[wi,d0] ! mkIRPPSND(ps/dom cat) ; ∆0(cat,...)
204e. else let bs = analyse(ps), τ = unique τ() in
205. ∆0 PREPARE PHASE(τ ,wi,bs)(δ0σ) end
204. end end | wi:WIdx} ;
204. ∆0(δ0σ)

After an initial request from some window frame process Ωi, with its analysis of
“requested paths”, the coordinating domain frame process ∆0 enters a prepare
phase.

∆0: Prepare Commit Phase Actions

205. The Coordinator Process, ∆0, PREPARE PHASE:

a) Based on a successful analysis of request paths into “buckets”, ∆0

now sends a message to each of the subordinate domain frame pro-
cesses identified in “bucket” bs. The message, directed at those sub-
ordinate domain frame processes, contains paths to windows in that
process’s forest of domain frames.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

94 On Development of Web-based Software

b) The coordinator now collects, into a set, the answers, either “yes,
able to handle τ”: mkYATHT(utid) or “no, unable to handle
τ”: mkNUTHT(utid) from each of these subordinate domain frame
processes – as to whether they are able to accept or not accept trans-
actions involving all of these path windows.

They might already be engaged in coordinated transactions with win-
dow frame processes, and some of these engagements may conflict,
that is, target paths in the preparation message.

c) Having collected all the replies the coordinator inquires as to the
composition of the set of replies:25.

d) If “yes, able to handle τ” then the coordinator proceeds to the
COMMIT PHASE.

e) If at least one inquired domain frame process replies “no, unable to
handle τ” then the coordinator proceeds to the ABORT PHASE.

type
205b. RPLS = DIdx →m YATHT|NUTHT
value
205. ∆0 PREPARE PHASE: (UTId×wi:WIdx×Bucket) → ∆0Ω →
207. in,out {dch[dj]|dj|DIfx•dj∈dis\{d0}}:(PCORTPS|YATHT|NUTHT) Unit
205. Ω0 PREPARE PHASE(τ ,wi,bs)(δ0ω) ≡
205a. ‖{dch[dj] ! mkPCORTPS(τ ,bs(dj))|dj:DIdx•dj∈dombs} ;
205b. let repls = ∪{[dj7→dch[dj]?]|dj:DIdx•dj∈dombs} in
205c. case rng repls of
205d. {mkYATHT(τ)} → ∆0 COMMIT PHASE(τ ,wi,bs)(δ0ω),
205e. {mkNUTHT(τ)} ∪ rpls′ → ∆0 ABORT PHASE(τ ,wi,rpls)(δ0ω)
205. end end

206. The Coordinator Process, ∆0, ABORT PHASE:

a) The requesting window frame processor, (still wi) is sent the mes-
sage “request τ : ‘ps’ cannot be accepted” (mkRTPSCBA(τ ,ps))
(due to one or more domain frame processes already committed to
other window frame processes’ request for overlapping path-designated
windows); and, concurrently

b) each of the accepting window frame processes is sent a message
“abort τ” (mkAT(τ)) to abort their τ transactions.

206. ∆0 ABORT PHASE: (TId×WIdx×RPLS) → ∆0Σ →
206. out {wch[wi,d0]|wi:WIdx•wi ∈ wis}:RTPSCBA

25These reply sets contain either one element (either “no, unable to handle τ” or “yes,

able to handle τ”) or two elements (both of these replies).

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 95

206. {dch[dj]!dj:DIdx•dj ∈ dis\{d0}}:AT Unit
206. ∆0 ABORT PHASE(τ ,wi,rpls)(δ0σ) ≡
206a. (wch[wi] ! mkRTPSCBA(τ ,ps) ‖
206b. ‖{dch[dj] ! mkAT(τ) |dj:DIdx•dj ∈ dom rpls∧rpls(dj)=mkYATHT(τ)})

∆0: Commit Phase Actions

207. ∆0 sends a “commit τ” [mkCT(τ)] message to all relevant subordinate
domain processes.

208. Then ∆0 awaits receiving an acknowledgement, “commit τ acknowl-
edgement” [mkCTA(τ)], from each of these relevant subordinate domain
processes.

209. For the time being we shall omit explaining what is to with the accumu-
lated acknowledgements, acks.

210. Finally the coordinator end the τ transaction once having received all
acknowledgements by sending the requesting forest of window frames pro-
cess a “request τ : path index map: ‘p to wi’ ”, i.e., mkRTPIM(τ ,pim)
where pim maps requested paths into forest of domain frames process iden-
tifiers.

type
207. PIM = P →m DIdx
value
207. ∆0 COMMIT PHASE: (UTId×wi:WIdx×Buckets) → ∆0Σ →
207. in,out {dch[dj]|dj:DIfx • dj ∈ dis\{d0}}:CT
207. in,out {wch[wi,dj]:wi:WIdx,dj:DIdx • wi ∈ dis∧dj ∈ dis\{d0}}:RTPIM Unit
207. ∆0 COMMIT PHASE(τ ,wi,bs)(δ0σ) ≡
207. ‖{dch[dj] ! mkCT(τ) | dj:DIdx•dj ∈ dom bs} ;
208. let acks = ∪{[dj7→dch[dj]?]|dj:DIdx•dj ∈ dom bs} in dispose(acks) end
210. let pim = [p7→cat(p)|p:P1•p ∈ dom bs] in
210. wch[wi] ! mkRTPIM(τ ,pim) end

8.6.3 Subordinate Domain Frame Processes, ∆j , j ∈ {1..m}
dj0

Coordinator–Subordinator Transactions: ∆j , j ∈ {1..m} dj0

211. Each ∆j , j ∈ {1..m} internally non-deterministically

a) either engages with the coordinator ∆0,

b) or with a user, Ωi,

c) or itself performs window operations.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

96 On Development of Web-based Software

value
211. ∆j : dj:DIdx → ∆Ω → FoDF →
211. in,out dch[0]
211. in,out {wch[wi,dj]|wi:WIdx • wi ∈ dis} Unit
211. ∆j(dj)(δσ)(fodf) ≡
211a. ∆j∆0(dj)(δσ)(fodf)
211b. ⌈⌉ ∆jΩi(dj)(δσ)(fodf)
211c. ⌈⌉ ∆jOwn(dj)(δσ)(fodf)

dj1

Subordinator–Coordinator Transactions: ∆j∆0, j ∈ {1..m} dj1

212. The ∆j∆0, j ∈ {1..m} process has same state signature as the ∆j process
but only communicates with the coordinator.

a) Each ∆j∆0 initially expresses willingness to engage with the coordi-
nator, ∆0

b) expecting a “first” engagement to be the receipt of the message:
“please, commit request τ ‘ps’ ” (mkPCORTPS(τ ,ps)).

c) ∆j∆0 now inspects its current commitments.

d) If there are conflicts then ∆j∆0 sends the message “no, unable to
handle τ” (mkNUTHT(τ)) and reverts to being ∆i.

e) If there are no conflicts

i. then ∆j∆0 sends the message “yes, able to handle τ” (mkYATHT(τ))

ii. and ∆j∆0 registers the bucket message in its pre-commitment
stage component and awaits further commit messages:

1. either the coordinator eventually sends an “abort τ” (mkAT(τ))
message and ∆j∆0 removes the pre-commitment bucket where-
upon ∆j∆0 reverts to being ∆j ;

2. or the coordinator eventually sends a “commit τ” (mkCT(τ))
message and ∆j∆0 moves the pre-commitment bucket to the
commitment state component and becomes ∆j .

value
212. ∆j∆0: dj:DIdx → ∆Ω → FoDF → in,out dch[0] Unit
212. ∆j∆0(dj)(δσ)(fodf) ≡
212a. case dch[0]? of
212b. mkPCORTPS(τ ,bs)
212c. → if ↑ com ∩ ps 6= {}
212d. then dch[0] ! mkNUTHT(τ)
212(e)i. else (dch[0] ! mkYATHT(τ);
212(e)ii. ∆j(dj)(reg B(bs)(δσ))(fodf)) end,
212(e)ii1. mkAT(τ) → ∆j(dj)(rem B(bs)(δσ))(fodf),
212(e)ii2. mkCT(τ) → ∆j(dj)(mov B(bs)(δσ))(fodf)
212. end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 97

dj2The Subordinator–User Transactions: ∆jΩi, j ∈ {1..m}, i ∈ {1..n} dj2

213. The ∆jΩi, j ∈ {1..m}, i ∈ {1..n} process only communicates with users.

a) Each subordinator expresses willingness to engage with any user.

(Hence the external non-deterministic choice ⌈⌉⌊⌋ over the index range
of users.)

i. Each subordinator, when interacting with users, is prepared to
receive either of two messages: either the subordinator receives
the message “τ : get window ‘p’ ” [mkTGWP(τ ,p)] – in which
case:

1. either the p is *** and the subordinator retrieves the re-
quested window and sends it in a a message “τ : here is
path ‘p’ window: ‘w’ ” [mkHIPPW(τ ,p,w)] to to the user
and reverts to being ∆i.

2. or the p is not *** and the subordinator sends a message “τ :
cannot find window at ‘p’ ” [mkCFWAP(τ ,p)] to the user
and reverts to being ∆i,

ii. Or the subordinator receives the message “τ : put window ‘w’

at ‘p’ ” [mkTPWPW(τ ,w,p)] – in which case:

1. either the p is not *** and the subordinator sends a message
“τ : cannot store window at ‘p’ ” [mkCSWAP(τ ,p)] to to
the user and reverts to being ∆i.

2. or the p is *** and the subordinator sends a message “τ :
path ‘p’ window has been stored” [mkPPWHBS(τ ,p)]
to to the user and reverts to being ∆i with the updated
window.

value
213. ∆jΩi: dj:DIdx → ∆jΣ → FoDF →
213. in,out {wch[wi,dj]:wi:WIdx • wi ∈ dis} Unit
213. ∆jΩi(dj)(δσ)(fodf) ≡
213a. ⌈⌉⌊⌋ {case wch[wi,dj] ? of
213(a)i. mkTGWP(τ ,p)
213(a)i1. → if p ∈ paths(fodf)∧com(p)=wi
213(a)i1. then wch[wi,dj] ! mkHIPPW(τ ,p,GetW(p,fodf))
213(a)i2. else wch[wi,dj] ! mkCFWAP(τ ,p);
213(a)i2. ∆j(dj,com,pcom,fodf,{}) end
213(a)ii. mkTPWPW(τ ,w,p)
213(a)ii1. → if p ∈ paths(fodf)∧com(p)=wi
213(a)ii1. then (wch[wi,dj] ! mkPPWHBS(τ ,p);
213(a)ii1. ∆j(dj,com,pcom,fodf,{}))
213(a)ii2. else (wch[wi,dj] ! mkCSWAP(τ ,p);
213(a)ii2. ∆j(dj)(δσ)(PutW(p,w)(fodf))) end
213. end | wi:WIdx•wi ∈ wis }

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

98 On Development of Web-based Software

The Subordinator “Own” Transactions: ∆jOwn, j ∈ {1..m} dj3dj3

We are first reminded of the simple transaction system’s forest of domain frames
process (cf. Sect. 7.3.3 on page 59):

type
100. Cmd == init | crea | rmdf | putw | getw | inut
value
101. forest of domain frames: Unit → in,out {ch[wi]|wi:WIdx•wi ∈ wis} Unit
101. forest of domain frames() ≡
103. variable fofwv:FoDF := int iniFoDF();
102. while true do
104. let cmd = init⌈⌉crea⌈⌉remv⌈⌉put⌈⌉get⌈⌉inut in
101. case cmd of
105. init → fofwv := elab FoDFinit(),
106a. crea → fofwv := elab FoDFCre(c vdf),
106b. rmdf → fofwv := elab FoDFRmv(c vdf),
106c. putw → fofwv := elab FoDFPutW(c vdf),
106d. getw → fofwv := elab FoDFGetW(c vdf),
107. inut → interaction()
100. end end end

107. interaction: FoDF → FoDF
107. interaction(fodf) ≡
107. variable lfodf:FoDF
107a. ⌈⌉⌊⌋{let req = ch[i]? in
107a. case req of
107b. mkDFGW(p) →
107c. if pre:eval DFGetW(mkDFGW(p))(fodf)
107d. then ch[i]!eval DFGetW(mkDFGW(p))(fodf)
107e. else ch[i]!′′error′′ end ; chaos,
107b. put →
107c. if pre:int DFPutW(put)(c vdf)
107d. then lfodf := int DFPutW(put)(df);ch[i]!′′ok′′

107e. else ch[i]!′′error′′ ; chaos end
107a. end | i:WIdx•i ∈ wis end} ; lfodf

• We need to modify formula Lines 100–107e slightly.

214.

215.

216.

217.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 99

218.

219.

220.

221.

222.

value
214. ∆jOwn: dj:DIdx → ∆jΣ → FoDF →
214. in,out {wch[wi,dj]|wi:WIdx•wi ∈ wis} Unit
214. ∆j Own(dj)(δσ)(fodf)
215.
216.
217.
218.
219.
220.
221.
222.

8.6.4 Window Frame Processes, Ωi wi

dj0

We are first reminded of the simple transaction system’s forest of window frames
process (cf. Sect. 7.3.4 on page 61):

type

108. Cmd = opn | put | clk | wri | sel | inc | clo

value

109. forest of window frames: i:WIdx × FoWF
109. → in,out ch[i] Unit

109. forest of window frames(wi,fowf) ≡
111. variable fowfv:FoWF := fowf;
110. while true do

108. let cmd = opn⌈⌉clo⌈⌉put⌈⌉clk⌈⌉wri⌈⌉sel⌈⌉inc in

112. case cmd of

113. opn → fowfv := elab WFOpnW(wi,fowf),
114. put → fowfv := elab WFPutW(wi,fowf),
115b. clk → fowfv := elab WFClkW(fowf),
115c. wri → fowfv := elab WFWriW(fowf),
115d. sel → fowfv := elab WFSelW(fowf),
115e. inc → fowfv := elab WFIncW(fowf),
115a. clo → fowfv := elab WFCloW(fowf)
108. end end end

113. elab WFOpnW: WIdx → FoWF →
113. in,out ch[wi] FoWF
113. elab WFOpnW(wi)(fowf) ≡
113. if ∃ ow:OpenW • pre:int OpnW(ow)(wf) in

113. then let mkOpnW(p,wn,kv):OpenW •

113. pre:int OpnW(mkOpnW(p,wn,kv))(fowf)
113a. let w = ch[wi]!mkGW(pb〈wn〉) ; ch[wi]? in

113b. if w=′′
error

′′ then chaos else skip end;
113c. insert W(pb〈wn〉,kv,w)(fowf) end end

114. else wf end

114. elab WFPutW: WIdx → FoWF → in,out ch[wi] FoWF
114. elab WFPutW(wi)(fowf) ≡
114. if ∃ putw•pre:int WFPutW(puw)(fowf)
114. then let mkWPW(p,wn):WFPutW •

114. pre:int WFPutW(mkWPW(p,wn))(fowf) in

114a. let w = s W(pb〈wn〉,fowf) in

114b. let result = ch[wi]!mkDFPW(pb〈wn〉,wn,w) ;
114b. ch[wi]? in

114c. if result = ′′
error

′′ then chaos else skip end

114. end end end

114. else fowf end

We need to modify formula Lines 108–114c slightly.

223. Window Frame Processes, Ωi:

a)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

100 On Development of Web-based Software

b)

c)

d)

e)

f)

g)

223. Ωi: wi:WIdx → in,out {wch[wi,dj]|dj:DIdx•dj ∈ dis} Unit
223a.
223b.
223c.
223d.
223e.
223f.
223g.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 101

9 Transaction Failure Techniques rollback

rollback

So far we have assumed ideal machine processing: no fall-outs of distributed
storage, no data communication failures, etc.

We shall now consider a number of failure issues.
First we quote from Wikipedia: http://en.wikipedia.org/wiki/Trans-

action processing26.

9.1 WIKIPEDIA: Transaction Processing Issues

9.1.1 Roll-back

Transaction-processing systems ensure database integrity by recording inter-
mediate states of the database as it is modified, then using these records to
restore the database to a known state if a transaction cannot be committed.
For example, copies of information on the database prior to its modification by
a transaction are set aside by the system before the transaction can make any
modifications (this is sometimes called a before image). If any part of the trans-
action fails before it is committed, these copies are used to restore the database
to the state it was in before the transaction began.

9.1.2 Roll-forward

It is also possible to keep a separate journal of all modifications to a database
(sometimes called after images); this is not required for rollback of failed trans-
actions, but it is useful for updating the database in the event of a database
failure, so some transaction-processing systems provide it. If the database fails
entirely, it must be restored from the most recent back-up. The back-up will not
reflect transactions committed since the back-up was made. However, once the
database is restored, the journal of after images can be applied to the database
(roll-forward) to bring the database up to date. Any transactions in progress
at the time of the failure can then be rolled back. The result is a database in a
consistent, known state that includes the results of all transactions committed
up to the moment of failure.

9.1.3 Deadlocks

In some cases, two transactions may, in the course of their processing, attempt to
access the same portion of a database at the same time, in a way that prevents
them from proceeding. For example, transaction A may access portion X of
the database, and transaction B may access portion Y of the database. If,
at that point, transaction A then tries to access portion Y of the database
while transaction B tries to access portion X, a deadlock occurs, and neither

26The almost two page quote from Wikipedia is meant as a working note to the author. I
will, eventually get close to a library and study the seminal book of my old colleague at IBM
Research, 1970-1973: Jim Gray [26].

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

102 On Development of Web-based Software

transaction can move forward. Transaction-processing systems are designed
to detect these deadlocks when they occur. Typically both transactions will be
cancelled and rolled back, and then they will be started again in a different order,
automatically, so that the deadlock doesn’t occur again. Or sometimes, just one
of the deadlocked transactions will be cancelled, rolled back, and automatically
re-started after a short delay.

Deadlocks can also occur between three or more transactions. The more
transactions involved, the more difficult they are to detect, to the point that
transaction processing systems find there is a practical limit to the deadlocks
they can detect.

9.1.4 Compensating transaction

In systems where commit and rollback mechanisms are not available or undesir-
able, a Compensating transaction is often used to undo failed transactions and
restore the system to a previous state.

9.1.5 ACID criteria (Atomicity, Consistency, Isolation, Durability)

Transaction processing has these benefits:

* It allows sharing of computer resources among many users

* It shifts the time of job processing to when the computing

resources are less busy

* It avoids idling the computing resources without

minute-by-minute human interaction and supervision

* It is used on expensive classes of computers to help amortize

the cost by keeping high rates of utilization of those expensive

resources

* A transaction is an atomic unit of processing.

9.2 An Analysis of ∆0, ∆j and Ωi Failures

In principle communication failures, in the form of the absence of expected
messages, is a class of failures. We say: “in principle” because such failures
are expected masked by the error-correcting data communication “layer” of
the underlyig operating and data commun ication systems. We shall, however,
bring an analysis of such failures, if for nothing else, as an example of failures.
Subsequently we shall cover “more interresting” failures. In our analysis we
make the followig assumptions:

• The domain processes — except for the subordinate processes’ “own” op-
erations — are fully computerised and without any human interfactions.
Failures of the coordinator and the non-“own” aspects of subordinate pro-
cesses are thus computer failures.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 103

• The user processes are rather completely under human (i.e., interactive)
control. That is, non-communication failures of user processes, to simplify
matters, are thus human failures.

9.2.1 Communication Failures

Let us analyse what can go wrong during the processing of a transaction request,
that is, from the first “request transaction ‘ps’ ” to the final “τ : path ‘p’

window has been stored”.

224. After a user has issued “request transaction ‘ps’ ” to the coordinator,
that user expects an answer from the coordinator:

a) either “path(s) ‘ps′’ are not defined”

b) or “request τ : ‘ps’ cannot be accepted”

c) or “request τ : path index map: ‘p to wi’ ”.

Failure to receive a response, say within some reasonable time, is consid-
ered Failure [224]. Failure [224]

We suggest to handle Failure [224] as follows ***

225. After the coordinator issues “please, commit request τ ‘ps’ ” to a set
of subordinators some of these fail to respond.

a) Some subordinators may respond: “yes, able to handle τ”

b) Other subordinators may “no, unable to handle τ” – in which case
the coordinator issues an “abort τ” and expects those subordinators
which have (already) responded positively to respond with an “abort
τ acknowledgement”.

c) If no subordinators responds negatively but only a proper subset of
those inquired subordinators respond positively, then we say that
Failure [225c] has occurred. Failure [225c]

We suggest to handle Failure [225c] as follows ***

d) If some subordinators have responded positively and been sent an
“abort τ” bu failed to reply with a “abort τ acknowledgement”
then we say that Failure [225d] has occurred. Failure [225d]

We suggest to handle Failure [225d] as follows ***

226. After a subordinator acknowledging “please, commit request τ ‘ps’ ”
with either a “no, unable to handle τ” or a “yes, able to handle τ”
the subordinator “hears no more”, at least within a reasonable time. [The
subordinator expects to receive, from the coordinator, either an “abort
τ” or a “commit τ”.] We consider this to be Failure [226]. Failure [226]

We suggest to handle Failure [226] as follows ***

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

104 On Development of Web-based Software

227. After a user has sent a subordinator a “τ : get window ‘p’ ” request it
expects either “τ : cannot find window at ‘p’ ” or a “τ : here is path
‘p’ window: ‘w’ ” response within a reasonable time. If the user does
not receive any response Failure [227] is adjudged to have occurred.Failure [227]

We suggest to handle Failure [227] as follows ***

228. After a user has sent a “τ : put window ‘w’ at ‘p’ ” request to a
subordinator it expects either of a “τ : cannot store window at ‘p’ ”
or a “τ : path ‘p’ window has been stored” response. If the user does
not receive any response Failure [228] is adjudged to have occurred.Failure [228]

We suggest to handle Failure [228] as follows ***

229. After a user has received a “τ : here is path ‘p’ window: ‘w’ ” response
from a subordinator, that subordinator expects, after a reasonable time,
say with a day or so, to receive, from the user, “τ : put window ‘w’

at ‘p’ ” request. If the subordinator does not receive such a request
Failure [229] is adjudged to have occurred.Failure [229]

We suggest to handle Failure [229] as follows ***

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 105

9.2.2 Computer “Failures”

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

106 On Development of Web-based Software

9.2.3 Human Failures

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 107

9.3 Redefinition of Some Functions

9.4 ∆0: Coordination of Roll-backs/Roll-forwards

9.5 ∆j: Effectuation of Roll-backs/Roll-forwards

9.6 Ωi: Transparency of Roll-backs/Roll-forwards

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

108 On Development of Web-based Software

9.7 Optimisation Issues

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 109

9.8 Discussion

rds: Wikikedia ces Wikipedia Atomicity analyse ps wi subordinators

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

110 On Development of Web-based Software

10 An SQL-like Query Systems sql

sql

10.1 Clean SQL

Appendix B shows a description, narrative and formal, of a relational query
language, Clean SQL. It is like SQL [33, 41], but relations of Clean SQL are sets
nut multisets. Thus the Oracle implementation, which uses multisets, is not
acceptable as an approximate implementation of Clean SQL. Instead the Front-
Base27 implementation is acceptable. In the Appendix B description relation
tuples are sequences of atomic values and there is a notion of tuple types (which
are there taken to be the same as relation types). In the window relations, see
next, tuples are maps from atomic names to atomic values. Therefore we need
a “translation” from atomic names into indices; and we need a “translation”
from (stripped) path names into relation identifiers. But first, let us take a look
at window values and relation (value)s.

10.2 Window Relations

10.2.1 Tuple and Window Values and Relation Values

We shall show how the ‘data structures’ of forests of domain and window frames
“hide” a set of windows.

60. FoDF = WNm →m (W × FoDF)

So does the forest of designated window frames:
Each window “hides” a relation in the form of the tuple and relation values,
tval:TVAL,rval:RVAL:

36. W28 = WNm × WTy × mkWV(ANm-set,TVAL,RVAL,WNm-set)
11. TVAL = ANm →m AVAL
26. RVAL = KVAL →m TVAL

230. We can convert a relation value into a set of tuple values.

value
230. convert rel tuples: RVAL → TVAL-set
230. convert rel tuples(rv) ≡ {kv ∪ rv(kv)|kv:KVAL•kv ∈ dom rv}

231. A tuple is a map from field names to field values, where field names are
atomic names and field values are atomic values.

27http://www.frontbase.com/
28Here, and elsewhere, from now on, we omit the ′s that normally signify that the type need

a well-formedness constraint.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 111

232. A relation is a set of tuples all having the same definition set, with all
tuples having, for each attribute name, a value of the same type.

233. From a window, (wn,wt,tv,rv,wns), we extract a relation,

type
231. TVAL = ANm →m AVAL
232. REL = TVAL-set
axiom
232. ∀ rel:REL,tup,tup′:TVAL • tup ∈ rel ⇒
232. dom tup=dom tup′

232. ∧ ∀ an:ANm•an ∈ dom tup ⇒ xtr ATyp(tup(an))=xtr ATyp(tup′(an))
value
233. xtr REL: W | (TVAL×RVAL) → REL
233. xtr REL(, ,tv,rv,) ≡ {tv} ∪ conv rel tuples(rv)
233. xtr REL(tv,rv) ≡ {tv} ∪ conv rel tuples(rv)

10.2.2 Relation Identifiers: Paths and Window Names

234. Relation identifiers form a type of unique tokens.

235. We can postulate a pair of bijective encoding functions

a) which applies to pairs of paths (of window names) forests of domain
frames (of which the path is indeed a path) and yield relation iden-
tifiers,

b) respectively to relation identifiers and yield paths.

type
234. Rn See also Page 136
value

235a. P to Rn: P → FoDF
∼
→ Rn

235b. Rn to P: Rn → P
axiom
235. ∀ fodf:FoDF,p:P,rn:Rn •

235. p ∈ paths(fodf)
235. ∧ Rn to P(P to Rn(p)(fodf))= p ∧ P to Rn(Rn to P(rn))(fodf)=rn

10.2.3 Tuple Attribute Names and Indices

236. We can postulate a function which applies to path names and a forest of
domain frames and yields an index map from the attribute (i.w. field)
names of the window of at that path in some forest of domain frames to
indexes in a linear sequence of attribute values,

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

112 On Development of Web-based Software

a) where these index maps are bijective and where indexes range from
1 to the number of window attributes.

value
236. P to AIdx: P → FoDF → (ANm →m Nat)
axiom
236. P to AIdx(p)(fodf) as aidx
236. pre p ∈ paths(fodf)
236. post rng aidx = {1..card dom aidx}

10.2.4 A Relational Database

We refer again to Appendix B.

237. A relational database, rdb:RDB, maps relation names, rn:Rn, into pairs of
relation types and relations.

a) Relation types maps (atomic) attribute names into atomic types.

b) The tuple values of any relation must be of the type of that relation.

type
237. RDB = Rn →m (RelTyp × REL)
237a. RelTyp = ANm →m ATyp
axiom
237b. ∀ (rt,rv):(RelTyp×REL) •

237b. ∀ t:TUP • tc ∈ rv ⇒
237b. ∀ an:ANm • an ∈ dom t ⇒
237b. xtr ATyp(t(an)) = rt(an)

10.3 The Forest of Window Frames Relations

From a forest of window frames we can extract the set of all relations over that
forest.

238. The extraction function of the set of all relations over a forest of domain
frames, fodf, is defined as follows:

a) for every path of fodf

b) encode that path into its unique relation name, rn, and map that rn
into a pair (rt,rv),

c) where the relation type rt is the window type of,

d) and the relation value rv is extracted from

e) the window, w, located by p in fodf.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 113

value
238. xtr RDB: FoDF → RDB
238. xtr RDB(fodf) ≡
238b. [(P to Rn(p)(fodf))7→(rt,rv)
238a. | p:P•p ∈ paths(fodf) •

238e. let (,wt,(,tv,rv),) = s W(p,fodf) in
238c. rt = wt
238d. ∧ rv = xtr REL(tv,rv) end]

10.4 Conversion to “Clean SQL” Relational Databases

From Appendix B we show its definition of a relational database.

type
1. AVAL == mkIV(Int)|mkRV(Rat)|mkBV(Bool)|mkT(Text)|′′nil′′

2. ATyp = {|′′int′′,′′rat′′,′′bool′′,′′text′′,′′nil′′|}
240. sTVAL = {| vl:AVAL∗ • len vl≥1 |}
241. sTTyp = {| vtl:ATyp∗ • len vtl≥1 |}
242. sREL′ = sTVAL-set
242. sREL = {| r:sREL′

• wf sREL(r) |}
243. Rn
244. sRDB′ = Rn →m (sTTyp×sREL)
244. sRDB = {| rdb:sRDB′

• wf sRDB(rdb) |}

Most of the type definitions can be made to agree with those of this section.
The only type definition that differs is the tuple type definition. Here we now
make use of the P to NATs, Item 236a on the preceding page, function which
maps paths into a compact set of indexes.

value
238. xtr sRDB: FoDF → sRDB
238. xtr sRDB(fodf) ≡
238b. [(P to Rn(p)(fodf))7→(rt,rv)
238a. | p:P•p ∈ paths(fodf) •

238e. let (,wt,(,tv,rv),) = s W(p,fodf) in
238c. rt = convert type(wt)(fodf)
238d. ∧ rv = convert value(xtr REL(tv,rv))(fodf) end]

238c. convert type: RelTyp → FoDF → sTTyp
238d. convert value: REL → FoDF → sREL

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

114 On Development of Web-based Software

10.5 The Forests of Domain Frames Query Language

We have almost “connected” up to the description of Clean SQL (Appendix B).
There remains only to show how queries in Clean SQL can be invoked from a
forest of window frames or a forest of domain frames process. Based on a forest of
domain (or window) frames, fodf:FoDF, and the above (Item 238 on page 112)
xtr sRDB(fodf) one obtains a Clean SQL relational database, srdb:sRDB, with
which the query evaluation takes place. Please make note of different relation
names: rn:Rn for those of the data base, and rid:Rid for the vurtual ones of the
range expression.

type
241. sTTyp = {| vtl:ATyp∗ • len vtl≥1 |}
242. sREL = sTVAL-set
243. Rn
244. sRDB = Rn →m (sTTyp×sREL)

246. Query = Targ∗ × (Rid →m Range) × Wff
247. Targ == mkRn(ri:Rid) | mkRnIdx(ri:Rid,i:Nat)
248. Range == mkRnm(rn:Rn) | mkInfR(lr:Range,o:RelOp,rr:Range)

value
267. E Query: Query → sRDB → sREL
267a. E Query(tal,rm,wff)(rdb)

10.6 Discussion

• This discussion

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 115

11 A Window Design Tool gui-design

gui-design

11.1 Design Principles

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

116 On Development of Web-based Software

11.2 Graphics

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 117

11.3 Syntax

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

118 On Development of Web-based Software

11.4 Commands and Operations

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 119

11.4.1 Commands

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

120 On Development of Web-based Software

11.4.2 Operations

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 121

11.5 Discussion

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

122 On Development of Web-based Software

12 Conclusion con

con

12.1 Discussion

12.1.1 What Have We Achieved

• To appreciate what we have done is to first understand

1. that there does not seem to be a general idea, let alone a precise
description of what windows are;

2. that there is a notion of data spaces such as provided by Linda [16],
JavaSpaces [15] and XVSM [10, 11, 29, 30];

3. and that these (1.–2.) are not professionally described.

• Finally one must appreciate the relevance of the question:

4. how are data in data spaces first initialised and regularly updated ?

• This report provides the following answers:

1. the report suggests a way to describe windows in a proper manner;

2. the report suggests a way to describe data spaces in a proper manner;

3. the report shows one such professional approach; and

4. the report suggests that data initialisation and update occurs via
windows.

• We do believe that we have achieved to precisely describe a version of XVSM
[10, 11, 29, 30]: the query language, but in a far more general form than in
[10, 11, 29, 30] and the so-called “application programmers interface[s]”:
CAPI-1, CAPI-2, etc., again in a precise manner.

12.1.2 What Have We Not Achieved

• We set out, in late April 2010, to describe XVSM [10, 11, 29, 30] as it can
now be professionally described by several companies around the world,
from Japan29 via Europe30 to the USofA31.

• But we failed to complete our task. The available reports were such that
we could not do it, from the distance there is between Vienna and Copen-
hagen. And we were not able to return to Vienna to complete the task
there — that might have been possible.

• Instead we “crystallized” an essence of the Linda, JavaSpaces and XVSM

concepts as they are presented in this report.

29http://www.csk.com/support e/vdm/index.html
30http://www.altran-praxis.com/whitePapers.aspx, http://www.clearsy.com/ and many

others.
31http://www.csl.sri.com/programs/formalmethods/

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 123

12.1.3 What Should We Do Next

• The report itself needs being reviewed, first by ourself,

– printing it out, spreading it out on a large desk, carefully checking
all formulas, identifying all proof oblgations, etc.;

– analysing the definitions to possibly identify more general abstrac-
tions, both as concerns types — but probably more as concerns func-
tion definitions; and

– “distilling” from the current transaction process descriptions such
which capture the essence of transaction processing and proving prop-
erties of such “distillates”.

12.2 Acknowledgements

The window formalisation dates back some 20 years and is recorded in [6, Ex-
amples 19.27–19.28, Pages 435–442]. The connection between window states
and WindowSpaces arose as a result of trying to understand [11, 29, 30, 10,
XVSM].

12.3 Bibliographical Notes

We have advocated using, in enumerated expressions and statements, as precise
a subset of a national language, as here English, as possible, and “pairing”
such narrative elements with correspondingly enumerated clauses of a formal
specification language. For our formalisations we have used the RAISE formal
Specification Language, RSL, [17, 18, 4, 5, 6].

But any of the model-oriented approaches and languages, as offered by Alloy

[27], Event B [1], VDM [8, 9, 14] and Z [42], should work as well.
No single one of the above-mentioned formal specification languages, how-

ever, suffices. Often one has to carefully combine the above with elements
of Petri Nets [38], CSP: Communicating Sequential Processes [21], MSC:
Message Sequence Charts [22], Statecharts [20], and some temporal logic,
for example either DC: Duration Calculus [43] or TLA+ [31].

Research into how such diverse textual and diagrammatic languages can be
meaningfully and proof-theoretically combined is ongoing [2].

The recent book Logics of Specification Languages [12] covers ASM, Event B,

CafeObj, CASL, Duration Calculus, RAISE, TLA+, VDM and Z; and the re-
cent double journal issue on Formal Methods of Program Development [7] covers
Alloy, ASM, Event B, Duration Calculus, RAISE, TLA+, VDM and Z.

References

[1] J.-R. Abrial. The B Book: Assigning Programs to Meanings and Modeling
in Event-B: System and Software Engineering. Cambridge University Press,
Cambridge, England, 1996 and 2009.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

124 On Development of Web-based Software

[2] K. Araki et al., editors. IFM 1999–2009: Integrated Formal Methods, vol-
ume 1945, 2335, 2999, 3771, 4591, 5423 (only some are listed) of Lecture
Notes in Computer Science. Springer, 1999–2009.

[3] D. Beech, editor. Concepts in User Interfaces: A (VDM) Reference Model
for Command and Response Languages, volume 234 of Lecture Notes in
Computer Science. Springer, 1986.

[4] D. Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006. .

[5] D. Bjørner. Software Engineering, Vol. 2: Specification of Systems and
Languages. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006. Chapters 12–14 are primarily authored by Christian Krog
Madsen.

[6] D. Bjørner. Software Engineering, Vol. 3: Domains, Requirements and
Software Design. Texts in Theoretical Computer Science, the EATCS Se-
ries. Springer, 2006. .

[7] D. Bjørner. Editor: Special Double Issue on Formal Methods of Program
Development. International Journal of Software and Informatics, 4(2–3),
2010. Contains papers on Alloy (D.Jackson et al.), ASM (M.Veanes et
al.), Event B (D.Méry), RAISE (A.E.Haxthausen), TLA+ (S.Merz et al.),
VDM-SL (J.Fitzgerald et al.) and Z (J.Woodcock et al.).

[8] D. Bjørner and C. B. Jones, editors. The Vienna Development Method:
The Meta-Language, volume 61 of LNCS. Springer, 1978.

[9] D. Bjørner and C. B. Jones, editors. Formal Specification and Software
Development. Prentice-Hall, 1982.

[10] S. Craß. A Formal Model of the Extensible Virtual Shared Memory (XVSM)
and its Implementation in Haskell – Design and Specification. M.sc., Tech-
nische Universität Wien, A-1040 Wien, Karlsplatz 13, Austria, Febrauary
5 2010.

[11] S. Craß, E. Kühn, and G. Salzer. Algebraic Foundation of a Data Model for
an Extensible Space-based Collaboration Protocol. In B. C. Desai, editor,
IDEAS 2009, pages 301–306, Cetraro, Calabria, Italy, September 16–18
2009.

[12] Dines Bjørner and Martin C. Henson, editor. Logics of Specification Lan-
guages. EATCS Series, Monograph in Theoretical Computer Science.
Springer, Heidelberg, Germany, 2008.

[13] D. Duce, E. Fielding, and L. Marshall. Formal specification and graphic
software. Technical report, Rutherford Appleton Laboratory, August 1984.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 125

[14] J. Fitzgerald and P. G. Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, Cam-
bridge, UK, Second edition, 2009.

[15] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns,
and Practice. Jini Technology Series from Sun Microsystems, Inc. Prentice
Hall, June 1999. ISBN: 0-201-30955-6.

[16] D. Gelernter. Mirrorworlds. Oxford University Press, 1992.

[17] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B.
Nielsen, S. Prehn, and K. R. Wagner. The RAISE Specification Language.
The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England,
1992.

[18] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S.
Pedersen. The RAISE Development Method. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1995.

[19] J. A. Goguen. An introduction to algebraic semiotics, with applications to
user interface design. In C. Nehaniv, editor, Computation for Metaphor,
Analogy and Agents, volume 1562 of Springer Lecture Notes in Artificial
Intelligence, pages 242–291, 1999.

[20] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[21] C. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in
Computer Science. Prentice-Hall International, 1985. Published electroni-
cally: http://www.usingcsp.com/cspbook.pdf (2004).

[22] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC),
1992, 1996, 1999.

[23] K. E. Iverson. A Programming Language. John Wiley and Sons, 1962.

[24] K. E. Iverson. Notation as a tool of thought. Communications of the ACM,
23(8):444–465, 1980.

[25] K. E. Iverson and A. D. Falkoff. A Source Book In APL. APL Press, 1981.

[26] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan-Kaufman, Redwood, CA, 1992.

[27] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[28] C. W. Johnson. Literate specification: Using design rationale to support
formal methods in the development of human-machine interfaces. Human-
Computer Interaction, 11(4):291–320, 1996.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

126 On Development of Web-based Software

[29] E. Kühn, R. Mordinyi, L. Keszthelyi, and C. Schreiber. Introducing the
Concept of Customizable Structued Space for Agent Coordination in the
Production of Automation Domain. In S. Decker, Sichman and Castel-
franchi, editors, 8th Intl. Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS 2009), volume 625–632 of Proceedings of Autonomous
Agents and Multi-Agent Systems, Budapest, Hungary, May 10–15 2009. 8.

[30] E. Kühn, R. Mordinyi, L. Keszthelyi, C. Schreiber, S. Bessler, and S. Tomic.
Aspect-oriented Space Containers for Efficient Publish/Subscribe Scenarios
in Intelligent Transportation Systems. In T. D. and P. H. Meersmann,
editors, OTM 2009, Part I, volume 5870 of LNCS, pages 432–448. Springer,
2009.

[31] L. Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA,
2002.

[32] B. Lampson and D. Lomet. A New Presumed Commit Optimization for
Two Phase Commit. In 19th VLDB Conference, 1993.

[33] P. M. Lewis, A. Bernstein, and M. Kifer. Databases and Transaction Pro-
cessing: An Application-Oriented Approach. Addison Wesley, 2002.

[34] L. Marshall. A Formal Description Method for User Interfaces. PhD thesis,
University of Manchester, Oct. 1986.

[35] C. Mohan and B. Lindsay. Efficient commit protocols for the tree of pro-
cesses model of distributed transactions. ACM SIGOPS Operating Systems
Review, 19(2):40–52, April 1985.

[36] Philip A. Bernstein and Vassos Hadzilacos and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison Wesley, 1987.

[37] Y. Raz. The Dynamic Two Phase Commitment (D2PC) Protocol. In
Database Theory ICDT ’95, volume 893 of Lecture Notes in Computer
Scienc, pages 162–176. Springer, 1995. ISBN 978-3-540-58907-5.

[38] W. Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstu-
dien. Leitfäden der Informatik. Vieweg+Teubner, 1st edition, 15 June 2010.
248 pages; ISBN 978-3-8348-1290-2.

[39] B. A. Sufrin. Formal methods and the design of effective user interfaces. In
M. D. Harrison and A. F. Monk, editors, People and Computers: Designing
for Usability. Cambridge University Press, 1986.

[40] V. P. Team. Man machine interface: Final specification. Report
VIP.T.E.8.3, VIP, Praxis Systems, Bath, England, December 1988.

[41] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database Systems: The
Complete Book. Prentice Hall, Upper Saddle River, NJ, USA, 2001.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 127

[42] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refine-
ment. Prentice Hall International Series in Computer Science, 1996.

[43] C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach
to Real–time Systems. Monographs in Theoretical Computer Science. An
EATCS Series. Springer–Verlag, 2004.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

128 On Development of Web-based Software

A Definition of Window Frame Process Functions
appWOps

appWOps

A.1 Summary of Window Operations

A.1.1 Sect. 6 Window Operations: Syntax and Signatures

type
79. WFCmd = WFOpnW|WFCloW|WFPutW|WFClkW|WFWrW|WFSelTpl|WFIncTpl
79a. WFOpnW == mkWFOpnW(s p:P0,s wn:WNm,s kv:KeyVAL)
79b. WFCloW == mkWFCloW(s p:P0,s wn:WNm)
79c. WFPutW == mkWFPW(s p:P0,s wn:WNm)
79d. WFClkW == mkWFClkW(s p:P0,s wn:WNm,s f:FPos)
79d. FPos = ANm | CNm | CNmIx
79e. WFWrW == mkWFWrW(s p:P0,s wn:WNm,v:FVAL)
79f. WFSelTpl == mkWFSel(s p:P0,w wn:WNm,s kv:KeyVAL)
79g. WFIncTpl == mkWFInc(s p:P0,w wn:WNm)

A.1.2 Sect. 8.5.1 Window Process State Function Signatures Pages 85–87

value

175. Cre DFW: ΩΣ
∼
→ΩΣ

176. Opn W: P→ΩΣ
∼
→ΩΣ

177. Clo W: P→ΩΣ
∼
→ΩΣ

178. Wri W: P→FNm×FVAL→ΩΣ
∼
→ΩΣ

179. Del DFW: ΩΣ
∼
→ΩΣ

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 129

A.2 “Before” and Now Window Operations

A.2.1 Cre FoWF: Create Forest of Designated Window Frames

239. The create forest of designated window frames operation is explained as
follows.

a) The transaction map, tm, component of the window frame process
state contains all the designated paths that (are to be) paths of the
designated window frame to be created.32

• The transaction map is tm: UTId →m (DP →m DIdx).

• rng tm is a value of type (DP →m DIdx)-set.

• Taking the ∪ over such a set gives us a map of type (DP →m DIdx).

• Finally taking the domain of such a map gives us a set of DPs.

b) That designated window frame are characterised by exactly all and
only these paths and then that all the windows at the nodes of these
paths are unmarked windows.

The windows at paths which end with a marked window name are
those that the user can open (i.e., ge from a domain frame process
identified in the transaction map), write to and close (i.e., put back
into the domain frame process from whither it came).

c)

d)

value

175. Cre FoFW: ΩΣ
∼
→ΩΣ

239. Cre FoFW(,tm) as (fofw,tm)
239a. let ps = dom(∪(rng(tm))) in
239b.
239c.
239d.
239. end

32The almost APL-like [23, 24, 25] one-liner (formula Line 239a.) achieves “assembling” all
these paths.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

130 On Development of Web-based Software

A.2.2 Open Window

Sect. 6.2.1 Open and Insert Windows

value

80. int WFOpnW: WFOpnW → FoWF → FoDF
∼
→ FoWF

80. int WFOpnW(mkWFOpnW(p,wn,kv))(fowf)(fodf) as fowf′

80. let ps=paths(fowf),ps′=paths(fowf′) in
80a. pre p ∈ ps ∧ p̂〈wn〉 6∈ ps
80b. post ps′ = ps ∪ {p̂〈wn〉}
80c. ∧ let w = eval DFGetW(mkGW(p̂〈wn〉,fodf)) in
80d. fowf′ = WF InsertW(p̂〈wn〉,kv,w)(fowf) end
80. end

81. WF Insert W: P0 × KVAL × W → FoWF
∼
→ FoWF

81. WF Insert W(p̂〈wn〉,kv,w)(fowf) as fowf′

81. let ps=paths(fowf),ps′=paths(fowf′) in
81a. pre p̂〈wn〉 6∈ ps
81b. post ps′ = ps ∪ {p̂〈wn〉}
81c. ∧ ∀ p:P • p ∈ ps ⇒ s WF(p,fowf)=s WF(p,fowf′)
81. ∧ let (wn′,wtyp,mkWV(kn,tpl,rel)) = w in
81f. let w′ = (wn,wtyp,mkWV(kn,sel flds(kv,rel,wtyp),rel)) in
81e. wn=wn′ ∧ dom kv = kn
81d. w′ = s W(p̂〈wn〉,fowf′)
81g. ∧ s DF(p̂〈wn〉,fowf′) = []
81d. end end end

Opn W: The Window Frame Process

value

176. Opn W: P→ΩΣ
∼
→ΩΣ

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 131

A.2.3 Close and Put Windows

Sect. 6.2.2 Close Window (Frame)

value

82. int WFCloW: WFCloW → FoWF
∼
→ FoWF

82. int WFCloW(mkWFCloW(p,wn))(fowf) as wf′

82. let ps = paths(fowf), ps′ = paths(fowf′) in
82a. pre p̂〈wn〉 ∈ ps
82b. post ps′ = ps \ rm paths(ps)(p̂〈wn〉) ∧ {p̂〈wn〉} 6∈ ps
82c. ∧ ∀ p′:P•p′ ∈ ps′•s WF(p′,fowf)=s WF(p′,fowf′)
82. end

Sect. 6.2.5 Put Window (Frame)

value
86. int WFPutW: WFPutW → FoWF → FoDF → (FoDF × FoWF)
86. int WFPutW(mkWFPW(p,wn))(fowf)(fodf) as (fodf′,fowf′)
86. let ps = paths(fodf) in
86a. pre {p̂〈wn〉} ∈ ps
86b. post fowf′ = fowf
86c. ∧ let w = s W(p̂〈wn〉,wf) in
86d. let fodf′′ = int DFPutW(mkDPW(p,wn,w))(fodf) in
86e. fodf′ = fodf′′

86. end end end

Clo W: The Window Frame Process

value

177. Clo W: P→ΩΣ
∼
→ΩΣ

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

132 On Development of Web-based Software

A.2.4 Click and Write Windows

Sect. 6.2.3: Click Windows

value

83. int WFClkW: WFClkW → FoWF
∼
→ FoWF

83. int WFClkW(mkWFClkW(p,wn,fp))(fowf) as fowf′

83. let ps = paths(fowf), ps′ = paths(fowf′),
83a. pre {p̂〈wn〉} ∈ ps
83. ∧ let (wσ:(w,fv,c),wfpwn) = s Frame(p̂〈wn〉,fowf),
83. let mkWV(wnb,wtyp,flds,frel,wns) = w in
83b. appropriate FPos(fp,flds,wns)
83c. post ps′ = ps \ rm paths(ps)(p̂〈wn〉) ∧ p̂〈wn〉6∈ ps
83d. ∀ p′:P•p′ ∈ ps′⇒s Frame(p′,fowf)=s Frame(p′,fowf′)
83. ∧ let (wσ′:(w′,fv′,c′),wfpwn′) = s Frame(p̂〈wn〉,fowf′) in
83. let mkWV(wna′,wtyp′,flds′,frel′,wns′) = w′ in
83e. wnb=wna∧wtyp=wtyp′∧flds=flds′∧frel=frel′∧wns=wns′

83f. ∧ appropriate FPos(fp,flds′,wns′)
83g. ∧ c′=fp
83h. ∧ fv′ = select value(flds′)(fp)
83. end end end end end

83b.,83f. appropriate FPos: FPos × Fields × WNm-set → Bool
83b.,83f. appropriate FPos(fp,flds,wns) ≡
83b.,83f. case fp of
83b.,83f. mkCNmIx(cnm,x)
83b.,83f. → appropriate FPos(mkCNm(cnm),flds,wns)
83b.,83f. ∧ x ∈ inds flds(mkCNm(cnm)),
83b.,83f. → fp ∈ dom flds ∪ wns
83b.,83f. end

83d. select value: Fields → FPos
∼
→ FV

83d. select value(flds)(fp) ≡
83d. case fp of
83d. mkCNmIx(cnm,x) → (flds(mkCNm(cnm)))(x),
83d. → flds(fp)
83d. end

Sect. 6.2.4: Write Windows

value

84. int WFWrW: WFWrW → FoWF
∼
→ FoWF

84. int WFWrW(mkWFWrW(p,wn,fv))(fowf) as fowf′

84. let ps = paths(fowf), ps′ = paths(fowf′),
84a. pre p̂〈wn〉 ∈ ps
84. ∧ let (wσ:(w,fv,c),wfpwn) = s Frame(p̂〈wn〉,fowf),

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 133

84. let mkWV(wnb,wtyp,flds,frel,wns) = w in
84b. appropriate FPos(fp,fields,{})
84c. ∧ sub type(xtr typ(fv),wtyp(c)) [check!]
84d. post ps′ = ps
84e. ∧ ∀ p′:P•p′ ∈ ps′\{p̂〈wn〉}⇒s Frame(p′,fowf)=s Frame(p′,fowf′)
84. ∧ let (wσ′:(w′,fv′,c′),wfpwn′) = s Frame(p̂〈wn〉,fowf′) in
84. let mkWV(wna′,wtyp′,flds′,frel′,wns′) = w′ in
84f. wnb=wna ∧ wtyp=wtyp′ ∧ dom flds=dom flds′ ∧ frel=frel′ ∧
84g. ∧ flds′ = update field(flds,c,fv)
84h. ∧ c′=c
84. end end end end end

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

134 On Development of Web-based Software

Wri W: The Window Frame Process

value

178. Wri W: FNm×FVAL→ΩΣ
∼
→ΩΣ

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 135

A.2.5 Del DFW: Delete Designated Window Frame

value

179. Del DFW: ΩΣ
∼
→ΩΣ

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

136 On Development of Web-based Software

B Clean SQL appSQL

appSQL

B.1 Semantic Types

B.1.1 Types

We use several of the value and type concepts of earlier. A few need be recast.

240. A sequential tuple value is a sequence of atomic values.

241. A sequential tuple types is a sequence of atomic types.

242. A sequential relation is a set of sequential tuples all of the same non-zero
length.

243. Relation names are further undefined quantities.

244. A relational data base maps relation names into pairs of tuple types and
relations such that types fits relations.

type
1. AVAL == mkIV(Int)|mkRV(Rat)|mkBV(Bool)|mkT(Text)|′′nil′′

2. ATyp = {|′′int′′,′′rat′′,′′bool′′,′′text′′,′′nil′′|}
240. sTVAL = {| vl:AVAL∗ • len vl≥1 |}
241. sTTyp = {| vtl:ATyp∗ • len vtl≥1 |}
242. sREL′ = sTVAL-set
242. sREL = {| r:sREL′

• wf sREL(r) |}
243. Rn
244. sRDB′ = Rn →m (sTTyp×sREL)
244. sRDB = {| rdb:sRDB′

• wf sRDB(rdb) |}

B.1.2 Semantic Well-formedness

value
242. wf sREL: sREL′ → Bool
242. wf sREL(r) ≡ ∀ t,t′:sTVAL•{t,t′}⊆r⇒0<len t=len t′>0

244. wf sRDB: sRDB′ → Bool
244. wf sRDB(rdb) ≡
244. ∀ (tt,rel):(sTTyp×sREL) • (tt,rel)∈ rng rdb⇒wf sR(tt,rel)

244. wf sR: sTTyp × sREL → Bool
244. wf sR(tt,rel) ≡
244. ∀ t:sTVAL • t ∈ rel ⇒
244. len t = len tt ∧ ∀ i:Nat • i ∈ inds t ⇒ tt(i)=xtr ATyp(t(i))

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 137

B.2 Syntactics

The motivation for the query language of SQL-like RDMSs is found in the usual
set comprehension expression:

{ (a,b,...,c) | a:A,b:B,...,c:C • p(a,b,...,c) }

Either the individual as, bs, . . . , cs of the above set comprehension are element
values of tuples or subsequences of these are tuple values of relations. That
is, the individual As, Bs, . . . , Cs of the above set comprehension are attribute
names, or subsequences of these are relation names. The predicates p are just
that. The SQL-like query language of the RDMS being illustrated in this section
now follows the above schematised set comprehension.

245. The token types Rid and Tid model various kinds of (free) identifiers. Rids
stand for relations (defined in range expressions) and Tids stand for tuples
(defined in quantified expressions, see below).

246. A query consists of three parts:

a) a target list, corresponding to the (a,b,...,c) expression of the set
comprehension,

b) a binding of variable identifiers to relations and

c) the (well-formed formula, Wff) corresponding to the p(a,b,...,c) pred-
icate of the set comprehension.

247. The target list consists of either relation names or of tuple element index
qualified relation names.

248. A range expression either names a relation or is an infix expression denot-
ing the union, the intersection or the complement of of the value of two
range expressions.

249. A well-formed formula is either a quantified, or an infix, or a negated, or
an atomic well-formed formula.

a) A quantified well-formed formula indicates the quantifier (∀, ∃), iden-
tifies, by t:Tid, the name of an arbitrary, the quantified tuple in a
named relation (rn:Rn), and states the subsidiary well-formed for-
mula (in which t is expected to occur free and range over the tuples
of the named relation, rn:Rn).

b) An infix well-formed formula expresses the conjunction (AND) or the
disjunction (OR) of two subsidiary well-formed formulas.

c) A negated well-formed formula expresses the negation of a (the sub-
sidiary) well-formed formula.

d) An atomic well-formed formula expresses an arithmetic relation (less
than, less than or equal, equal, not equal, larger than or

equal, or larger than) between two term values.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

138 On Development of Web-based Software

250. A term expression is either a simple atomic value or stands for an indexed
tuple element value.

251. An indexed tuple element value names a range expression relation and
gives an index (into tuples of that range relation).

252. The name of a range expression relations is either a range relation identifier
or a range tuple identifier.

type
245. Rid, Tid
246. Query′ = Targ∗ × (Rid →m Range) × Wff
246. Query = {| q:Query′

• wf Query(q) |}
247. Targ == mkRn(ri:Rid) | mkRnIdx(ri:Rid,i:Nat)
248. Range == mkRnm(rn:Rn) | mkInfR(lr:Range,o:RelOp,rr:Range)
248. RelOp == UNION | INTER | COMPL
249. Wff = QPre | IPre | NPre | APre
249a. QPre == mkQ(q:Quan,ti:Tid,rn:Rnm,cond:Wff)
249a. Quan == ALL | EXISTS
249b. IPre == mkI(lp:Wff,ao:BOp,rp:Wff)
249b. BOp == AND | OR
249c. NPre == mkN(pr:Wff)
249d. APre == mkA(lt:Term,ar:ARel,rt:Term)
249d. ARel == LESSEQ | LESS | EQUAL | NOTEQ | LARG | LARGEQ
250. Term = AVAL | Elem
251. Elem == mkE(vt:RTid,i:Nat)
252. RTid == mkR(ri:Rid) | mkT(ti:Tid)

B.3 Semantics

B.3.1 Semantic Well-formedness

253. The function attributes yields a set of attributes of named relations.

254. For a query to be evaluated its precondition for evaluation must hold:

a) the target list must be well-formed,

b) the range expressions must be well-formed and

c) the predicate (wff) must be well-formed.

255. The well-formedness of these syntactic quantities depends on a context.

a) For target list well-formedness the context is a dictionary, ∆, which
maps identifiers of tuples into index sets.

b) For the range expression well-formedness the context is the relational
database.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 139

c) And for the predicate well-formedness the context is both the dictio-
nary mentioned above and the database.

256. The function dict creates from the range expressions and the database a
dictionary. It does so using the auxiliary function attrs. For every relation
name, rn, of the range expression map, rm, attrs extracts the attribute
names for that relation.

257. The function attrs should be reasonably self-explanatory.

258. A target list is well-formed if all of its target expressions are well-formed
in the same dictionary context.

a) A target expression is either a simple relation identifier which must
then be defined in the dictionary,

b) or it is a pair of a relation identifier and an attribute name where the
formed must be defined in the dictionary and the latter must be in
the definition set of attribute names for that relation identifier.

259. The range expression map (from relation identifiers to range expressions)
is well-formed if all of the range expressions are well-formed.

a) A range expression is either just the name of a relation which must
then be defined in the database,

b) or it is an infix range expression both of whose range expressions
must be well-formed.

260. The well-formedness of a predicate expression wff depends on the kind of
expression it is.

a) If wff is a quantified expression then its relation name, rn, must be de-
fined in the database and the contained wff, pr, must be well-formed
in a context which keeps the database but updates the dictionary to
map the quantified tuple variable to the set of attribute names of the
relation rn.

b) If wff is an infix predicate expression then both predicate expression
operands must be well-formed.

c) If wff is a negated predicate expression then that predicate expression
operand must be well-formed.

d) Finally, if wff is an atomic expression of two terms (and an arithmetic
relation operator) then the two terms must be well-formed.

261. The well-formedness of a term depends on the kind of expression it is.

a) A simple term value is always well-formed.

b) A term reference of a relation or a tuple identifier and a tuple element
index is well-formed if

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

140 On Development of Web-based Software

i. the relation or a tuple identifier is defined in the dictionary,

ii. and the index is in the definition set of that identifier (in the
dictionary).

value
253. attributes: Rnm → sRDB → Nat-set
253. attributes(rn)(rdb) ≡ let (tt,) = rdb(rn) in inds tt end

254. pre E Query: Query → sRDB → Bool
254. pre E Query(tal,rm,wff) ≡
254a. wf Targl(tal)(dict(rm,rdb))
254b. ∧ wf Ranges(rm)(rdb)
254c. ∧ wf Wff(wff)(rdb)(dict(rm,rdb))

type
255a. ∆ = (Rid|Tid) →m Nat-set

value
256. dict: (Rid →m Range) × sRDB → ∆
256. dict(rm,rdb) ≡ [ri7→attrs(rm(ri),rdb)|ri:Rid•ri ∈ dom rm]

257. attrs: Range × RDB → Nat-set
257. attrs(range,rdb) ≡
257. case range of
257. mkRnm(rn)→attributes(rnm)(rdb),
257. mkInfR(lr, ,)→attrs(lr,rdb)
257. end

258. wf Targl: Targ∗ → ∆ → Bool
258. wf Targl(tal)(δ) ≡ ∀ t:Targ • t ∈ elems tal ⇒ wf Targ(t)

258. wf Targ: Targ → ∆ → Bool
258. wf Targ(t)(δ) ≡
258. case t of
258a. mkRn(ri) → ri ∈ dom δ,
258b. mkRnAn(ri,i) → ri ∈ dom δ ∧ i ∈ δ(ri)
258. end

259. wf Ranges: (Rid →m Range) → sRDB → Bool
259. wf Ranges(rm)(rdb) ≡
259. ∀ range:Range • range ∈ rng rm ⇒ wf Range(rng)(rdb)

259. wf Range: Range → sRDB → Bool
259. wf Range(range)(rdb) ≡
259. case range of

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 141

259a. mkRnm(rn) →
259a. rn ∈ dom rdb,
259b. mkInfR(lr, ,rr) →
259b. wf Ranges(lr)(rdb)∧wf Ranges(rr)(rdb)
259b. ∧ attrs(lr)(rdb)=attrs(rr)(rdb)
259. end

260. wf Wff: Wff → RDB → ∆ → Bool
260. wf Wff(wff)(rdb)(δ) ≡
260. case wff of
260a. mkQ(,ti,rn,pr) →
260a. rn ∈ dom rdb
260a. ∧ wf Wff(pr)(δ†[ti7→attrs(rn)(rdb)]),
260b. mkI(lp, ,rp) →
260b. wf Wff(lp)(rdb)(δ) ∧ wf Wff(rp)(rdb)(δ),
260c. mkN(pr) →
260c. wf Wff(pr)(rdb)(δ),
260d. mkA(lt,ar,rt) →
260d. wfTerm(lt)(δ)∧wf Term(rt)(δ)
260. end

261. wf Term: Term → ∆ → Bool
261. wf Term(trm)(δ) ≡
261. case trm of
261a. mkV() → true,
261(b)i. mkE(mkR(ri),i) → ri ∈ dom δ ∧ i ∈ δ(ri),
261(b)ii. mkE(mkT(ti),i) → ti ∈ dom δ ∧ i ∈ δ(ti)
261. end

B.3.2 Auxiliary Functions

262. V Rs stands for virtual relations.

263. VRs stands for sets of virtual tuples.

264. G: For each combination of (a1,b1j),. . . ,(an,bnj) in
[a1 7→{b11,...,b1m1},a2 7→{b21,...,b2m2},...,an 7→{bn1,... bnmn}]
G delivers the map [a1 7→b1j,...,an 7→bnj] in the set G(rm) of such maps.

265. C: For a pair of a list 〈a′,a′′,...,a′′′〉 and a map m:[a1 7→b1j,...,an 7→bnj] C
delivers a tuple 〈 m(a′),m(a′′),...,m(a′′′)〉.

266. Conc take a list of tuples and produces a tuple.

type
262. V Rs = Rid →m sREL

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

142 On Development of Web-based Software

263. VRs = (Rid →m sTVAL)-set

value
264. G: V Rs → VRs
264. G(vrs) ≡
264. if vrs=[] then {[]}
264. else { [v 7→t] ∪ m | v:Rid,t:sTVAL •

264. v ∈ dom vrs∧t ∈ vrs(v)∧m ∈ G(vrs\{v})} end

265. C: Targ∗ × VRs → sTVAL∗

265. C(tal)(vrs) ≡
265. 〈 case tal(i) of
265. mkRn(rn) → vrs(rn),
265. mkRnAn(rn,i) → 〈(vrs(rn))(i)〉 end | i in [1..len tal] 〉

266. Conc: sTVAL∗ → sTVAL
266. Conc(tupl) ≡ if tupl=〈〉 then 〈〉 else hd tupl ̂ Conc(tl tupl) end

B.3.3 Evaluation Functions

267. The evaluation of a query, E Query, results in a relation.

a) Query evaluation takes place in the context of the state of the database,

b) and makes use of an auxiliary evaluation function E Pred, and the
auxiliary functions G, C and Conc.

• G is applied to the range definitions and yields a set of mappings
from range identifiers to tuples.

• For each such mapping, m, E Pred is applied to the wff and the
database. If true, then the mapping m is made into a tuple of
tuples by means of the target list and using function C.

• Finally the tuple of tuples is “straightened out” into a simple
tuple using function Conc.

• And this is done for all mappings m, hence generating a set of
simple tuples, i.e., a relation.

268. Evaluation, E Pred, of a predicate proceeds according to the form of the
predicate.

a) The predicate wff:mkQ(ALL,ti,rn,pr) holds if the predicate pr holds
for ti being bound to every tuple, tup, in the rn-named relation in
database rdb.

b) The predicate, wff:mkQ(EXISTS,ti,rn,pr) holds if the predicate pr holds
for ti being bound to some tuple, tup, in the rn-named relation.

c) The predicate wff:mkI(lp,AND,rp) holds if both the predicates lp and
rp holds.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

A Divertimento, Ideas and Suggestions 143

d) The predicate wff:mkI(lp,OR,rp) holds if either of the predicates lp or
rp hold.

e) The predicate wff:mkN(pr) holds if pr does not hold.

f) The atomic expression wff:mkA(lt,ao,rt) holds if the values of the
terms lt and rt stand in the relation designated by the arithmetic
relation operator ao.

269. Evaluation, E Range, of a range expressions seems pretty obvious.

270. Evaluation, E Term, of a term, t, proceeds according to the form of the
term t:

a) The term t:mkV(v) evaluates to that value v.

b) The term t:mkE(vt,i) evaluates to the i indexed tuple value designated
by vt.

c) The term t:mkT(ti) evaluates to the i indexed tuple value designated
by ti.

value
267. E Query: Query → sRDB → sREL
267a. E Query(tal,rm,wff)(rdb) ≡
267. let v rs = [v 7→E Range(rm(v))(rdb)|v:Vid•v ∈ dom rm] in
267b. {Conc(C(tal,m))|m:VRs•m ∈ G(v rs)∧E Pred(wff)(m)(rdb)}
267. end

268. E Pred: Wff → VRs → sRDB → Bool
268. E Pred(wff)(vrs)(rdb) ≡
268. case wff of
268. mkQ(q,ti,rn,pr) →
268. let (,rel) = rdb(rn) in
268. case q of
268a. ALL → ∀ tup:sTVAL • tup ∈ rel
268a. ∧ E Pred(pr)(vrs † [ti7→tup])(rdb),
268b. EXISTS → ∃ tup:sTVAL • tup ∈ rel
268b. ∧ E Pred(pr)(vrs † [ti7→tup])(rdb)
268. end end
268c. mkI(lp,bo,rp) →
268c. let lb = E Pred(lp)(vrs)(rdb), rb = E Pred(rp)(vrs)(rdb) in
268d. case bo of AND → lb∧rb, → OR → lb∨rb end,
268e. mkN(pr) → ∼E Pred(pr)(vrs)(rdb),
268f. mkA(lt,ao,rt) →
268f. let lv = E Term(lt)vrs, rv = E Term(rt)vrs in
268f. case ao of
268f. LESSEQ → lv≤rv, LESS → lv<rv, EQUAL → lv=rv,
268f. NOTEQ → lv 6=rv, LARG → lv>rv, LARGEQ → lb≥rv

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

144 On Development of Web-based Software

268. end end end end

269. E Range: Range → sRDB → sREL
269. E Range(re)(rdb) ≡
269. case re of
269. mkRnm(rn) → rdb(rn),
269. mkInfR(lr,o,rr) → let lrel = E Range(lr)(rdb),
269. rrel = E Range(rr)(rdb) in
269. case o of
269. UNION → lrel ∪ rrel,
269. INTER → lrel ∩ rrel,
269. COMPL → lrel \ rrel
269. end end end

270. E Term: Term → VRs → AVAL
270. E Term(t)(vrs) ≡
270. case t of
270a. mkV(v) → v,
270b. mkE(vt,i) → (vrs(vt))(i),
270c. mkT(ti) → (vrs(ti))(i),
270. end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 145

C An RSL Primer

This is an ultra-short introduction to the RAISE Specification Language, RSL.
Examples follow and expand on the examples of earlier sections.

C.1 Types

The reader is kindly asked to study first the decomposition of this section into
its sub-parts and sub-sub-parts.

C.1.1 Type Expressions

Type expressions are expressions whose values are types, that is, possibly infinite
sets of values (of “that” type).

Atomic Types Atomic types have (atomic) values. That is, values which we
consider to have no proper constituent (sub-)values, i.e., cannot, to us, be mean-
ingfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers,
natural numbers, reals, characters, and texts.

Basic Types

type
[1] Bool
[2] Int

[3] Nat

[4] Real
[5] Char
[6] Text

1. The Boolean type of truth values
false and true.

2. The integer type on integers ...,
–2, –1, 0, 1, 2,

3. The natural number type of pos-
itive integer values 0, 1, 2, ...

4. The real number type of real val-
ues, i.e., values whose numerals

can be written as an integer, fol-
lowed by a period (“.”), followed
by a natural number (the frac-
tion).

5. The character type of character
values ′′a′′, ′′b′′, ...

6. The text type of character string
values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

Composite Types

Composite types have composite values. That is, values which we consider to
have proper constituent (sub-)values, i.e., can, to us, be meaningfully “taken
apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian
products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

146 Version 17 1

Composite Type Expressions

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 147

[7] A-set
[8] A-infset
[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B

[13] A → B

[14] A
∼
→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

7. The set type of finite cardinality set
values.

8. The set type of infinite and finite car-
dinality set values.

9. The Cartesian type of Cartesian val-
ues.

10. The list type of finite length list values.

11. The list type of infinite and finite
length list values.

12. The map type of finite definition set
map values.

13. The function type of total function val-
ues.

14. The function type of partial function
values.

15. In (A) A is constrained to be:

• either a Cartesian B × C × ... ×
D, in which case it is identical to
type expression kind 9,

• or not to be the name of a built-
in type (cf., 1–6) or of a type, in
which case the parentheses serve
as simple delimiters, e.g., (A →m
B), or (A∗)-set, or (A-set)list, or
(A|B) →m (C|D|(E →m F)), etc.

16. The postulated disjoint union of types
A, B, . . . , and C.

17. The record type of mk id-named record
values mk id(av,...,bv), where av, . . . ,
bv, are values of respective types. The
distinct identifiers sel a, etc., designate
selector functions.

18. The record type of unnamed record
values (av,...,bv), where av, . . . , bv, are
values of respective types. The distinct
identifiers sel a, etc., designate selector
functions.

C.1.2 Type Definitions

Concrete Types Types can be concrete in which case the structure of the type
is specified by type expressions:

Type Definition

type
A = Type expr

Variety of Type Definitions

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

148 Version 17 1

... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′ • P(v) |}

where a form of [2–3] is provided by combining the types:

Record Types

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are
distinct and due to the use of the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in
a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by
means of predicates. The set of values b which have type B and which satisfy
the predicate P , constitute the subtype A:

Subtypes

type
A = {| b:B • P(b) |}

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type
A, B, ..., C

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 149

C.2 Concrete RSL Types: Values and Operations

C.2.1 Arithmetic

Arithmetic

type
Nat, Int, Real

value
+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,6=,≥,> (Nat|Int|Real) × (Nat|Int|Real) → Bool

C.2.2 Set Expressions

Set Enumerations Let the below a’s denote values of type A, then the below
designate simple set enumerations:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ⊆ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ⊆ A-infset

Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehen-
sion. The expression “builds” the set of values satisfying the given predicate. It
is abstract in the sense that it does not do so by following a concrete algorithm.

Set Comprehension

type
A, B
P = A → Bool

Q = A
∼
→ B

value
comprehend: A-infset × P × Q → B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

C.2.3 Cartesian Expressions

Cartesian Enumerations Let e range over values of Cartesian types involving
A, B, . . ., C, then the below expressions are simple Cartesian enumerations:

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

150 Version 17 1

Cartesian Enumerations

type
A, B, ..., C
A × B × ... × C

value
(e1,e2,...,en)

C.2.4 List Expressions

List Enumerations Let a range over values of type A, then the below expres-
sions are simple list enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ⊆ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ⊆ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then
expresses the set of integers from the value of ei to and including the value of
ej . If the latter is smaller than the former, then the list is empty.

List Comprehension

The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A → Bool, Q = A
∼
→ B

valuecomprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

C.2.5 Map Expressions

Map Enumerations Let (possibly indexed) u and v range over values of type
T 1 and T 2, respectively, then the below expressions are simple map enumera-
tions:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 151

Map Enumerations

type
T1, T2
M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
{[], [u7→v], ..., [u1 7→v1,u2 7→v2,...,un7→vn],...} ⊆ M

Map Comprehension

The last line below expresses map comprehension:

Map Comprehension

type
U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool
value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

C.2.6 Set Operations

Set Operator Signatures

Set Operations

value
19 ∈: A × A-infset → Bool
20 6∈: A × A-infset → Bool
21 ∪: A-infset × A-infset → A-infset
22 ∪: (A-infset)-infset → A-infset
23 ∩: A-infset × A-infset → A-infset
24 ∩: (A-infset)-infset → A-infset
25 \: A-infset × A-infset → A-infset
26 ⊂: A-infset × A-infset → Bool
27 ⊆: A-infset × A-infset → Bool
28 =: A-infset × A-infset → Bool
29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼
→ Nat

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

152 Version 17 1

Set Examples

Set Examples

examples
a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

Informal Explication

19. ∈: The membership operator expresses that an element is a member of a
set.

20. 6∈: The nonmembership operator expresses that an element is not a mem-
ber of a set.

21. ∪: The infix union operator. When applied to two sets, the operator gives
the set whose members are in either or both of the two operand sets.

22. ∪: The distributed prefix union operator. When applied to a set of sets,
the operator gives the set whose members are in some of the operand sets.

23. ∩: The infix intersection operator. When applied to two sets, the operator
gives the set whose members are in both of the two operand sets.

24. ∩: The prefix distributed intersection operator. When applied to a set of
sets, the operator gives the set whose members are in some of the operand
sets.

25. \: The set complement (or set subtraction) operator. When applied to
two sets, the operator gives the set whose members are those of the left
operand set which are not in the right operand set.

26. ⊆: The proper subset operator expresses that all members of the left
operand set are also in the right operand set.

27. ⊂: The proper subset operator expresses that all members of the left
operand set are also in the right operand set, and that the two sets are
not identical.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 153

28. =: The equal operator expresses that the two operand sets are identical.

29. 6=: The nonequal operator expresses that the two operand sets are not
identical.

30. card: The cardinality operator gives the number of elements in a finite
set.

Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

Set Operation Definitions

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

C.2.7 Cartesian Operations

Cartesian Operations

type
A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value
va:A, vb:B, vc:C, vd:D

(va,vb,vc):G0,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

C.2.8 List Operations

List Operator Signatures

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

154 Version 17 1

List Operations

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool
6=: Aω × Aω → Bool

List Operation Examples

List Examples

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty
list. For empty lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in
a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having
a number of elements larger than or equal to i, gives the ith element of
the list.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 155

• ̂: Concatenates two operand lists into one. The elements of the left
operand list are followed by the elements of the right. The order with
respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not
identical.

The operations can also be defined as follows:

List Operator “Definitions”

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
case (q,i) of

(〈〉,1) → chaos,
(,1) → let a:A,q′:Q • q=〈a〉̂q′ in a end

→ q(i−1)
end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉

pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

156 Version 17 1

C.2.9 Map Operations

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a2 7→b2,...,an7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a2 7→b2,...,an7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′ 7→b′]

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′ 7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b7→c,b′7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a
map.

• rng: Range/Image Set gives the set of values which are mapped to in a
map.

• †: Override/Extend. When applied to two operand maps, it gives the map
which is like an override of the left operand map by all or some “pairings”
of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these
maps.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 157

• \: Restriction. When applied to two operand maps, it gives the map
which is a restriction of the left operand map to the elements that are not
in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map
which is a restriction of the left operand map to the elements of the right
operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not
identical.

• ◦: Composition. When applied to two operand maps, it gives the map
from definition set elements of the left operand map, m1, to the range
elements of the right operand map, m2, such that if a is in the definition
set of m1 and maps into b, and if b is in the definition set of m2 and maps
into c, then a, in the composition, maps into c.

Map Operation “Redefinitions”

The map operations can also be defined as follows:

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

158 Version 17 1

C.3 The RSL Predicate Calculus

C.3.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values
(true or false [or chaos]). Then:

Propositional Expressions

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are
Boolean connectives (i.e., operators). They can be read as: not, and, or, if then
(or implies), equal and not equal.

C.3.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values,
let x, y, ..., z (or term expressions) designate non-Boolean values and let i, j, . . .,
k designate number values, then:

Simple Predicate Expressions

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.

C.3.3 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z)
designate predicate expressions in which x, y and z are free. Then:

Quantified Expressions

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds;

there exists (at least) one y (value in type Y) such that the predicate Q(y)
holds; and there exists a unique z (value in type Z) such that the predicate
R(z) holds.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 159

C.4 λ-Calculus + Functions

C.4.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

C.4.2 Free and Bound Variables

Free and Bound Variables Let x, y be variable names and e, f be λ-
expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

C.4.3 Substitution

In RSL, the following rules for substitution apply:

Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a 6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

160 Version 17 1

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P

(where z is not free in (N P)).

C.4.4 α-Renaming and β-Reduction

α and β Conversions

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in
λy•subst([y/x]M). We can rename the formal parameter of a λ-function
expression provided that no free variables of its body M thereby become
bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result. (λx•M)(N)
≡ subst([N/x]M)

C.4.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type
A, B, ..., C

value
ωB: A → B
...
ωC: A → C

These functions cannot be defined. Once a domain is presented in which sort A
and sorts or types B, ... and C occurs these observer functions can be demon-
strated.

C.4.6 Function Definitions

Functions can be defined explicitly:

type
A, B

value
f: A → B [a total function]

f(a expr) ≡ b expr

g: A
∼
→ B [a partial function]

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 161

g(a expr) ≡ b expr
pre P(a expr)

P: A → Bool

a expr, b expr are A, respectively B valued expressions of any of the kinds illus-
trated in earlier and later sections of this primer.
Or functions can be defined implicitly:

value
f: A→B
f(a expr) as b
post P(a expr,b)
P: A×B→Bool

g: A
∼
→B

g(a expr) as b
pre P′(a expr)
post P(a expr,b)
P′: A→Bool

where b is just an identifier.

The symbol
∼
→ indicates that the function is partial and thus not defined for

all arguments. Partial functions should be assisted by preconditions stating the
criteria for arguments to be meaningful to the function.

Finally functions, f, g, ..., can be defined in terms of axioms over function
identifiers, f, g, ..., and over identiers of function arguments and results.

type
A, B, C, D, ...

value
f: A → B
g: C → D
...

axiom
∀ a:A, b:B, c:C, d:D, ...

P1(f,a,b) ∧ ... ∧ Pm(f,a,b)
...
Q1(g,c,d) ∧ ... ∧ Qn(g,c,d)

where P1, . . . , Pm and Q1, . . . , Qn designate suitable predicate expressions.

C.5 Other Applicative Expressions

C.5.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

162 Version 17 1

C.5.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions

let f = λa•E(f,a) in B(f,a) end
let f = (λg•λa•E(g,a))(f) in B(f.a) end
let f = F(f) in E(f,a) end where F ≡ λg•λa•E(g,a)
let f = YF in B(f,a) end where YF = F(YF)

We read f = YF as “f is a fix point of F”.

C.5.3 Non-deterministic let Clause

The non-deterministic let clause:

let a:A • P(a) in B(a) end

expresses the non-deterministic selection of a value a of type A which satisfies
a predicate P(a) for evaluation in the body B(a). If no a:A • P(a) the clause
evaluates to chaos.

C.5.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end
let [a 7→b,] ∪ m = map in ... end

C.5.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 163

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n end

C.5.6 Operator/Operand Expressions

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

C.6 Imperative Constructs

C.6.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly
abstract, sorts and applicative constructs which, through stages of refinements,
are turned into concrete types and imperative constructs.

Imperative constructs are thus inevitable in RSL.

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

164 Version 17 1

Unit
value

stmt: Unit → Unit
stmt()

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an
argument of type Unit.

C.6.2 Variables and Assignment

Variables and Assignment

0. variable v:Type := expression
1. v := expr

C.6.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement
having no value or side-effect.

2. skip
3. stm 1;stm 2;...;stm n

C.6.4 Imperative Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 165

C.6.5 Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

C.6.6 Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

C.7 Process Constructs

C.7.1 Process Channels

Let A, B and D stand for two types of (channel) messages and i:KIdx for channel
array indexes, then:

Process Channels

channel
c,c′:A

channel
{k[i]|i:KIdx}:B
{ch[i]i:KIdx}:B

declare a channel, c, and a set (an array) of channels, k[i], capable of communi-
cating values of the designated types (A and B).

C.7.2 Process Definitions

A process definition is a function definition. The below signatures are just
examples. They emphasise that process functions must somehow express, in
their signature, via which channels they wish to engage in input and output
events.

Processes P and Q are to interact, and to do so “ad infinitum”. Processes
R and S are to interact, and to do so “once”, and then yielding B, respectively
D values.

value
P: Unit → in c out k[i] Unit
Q: i:KIdx → out c in k[i] Unit
P() ≡ ... c ? ... k[i] ! e ... ; P()
Q(i) ≡ ... k[i] ? ... c ! e ... ; Q(i)

R: Unit → out c in k[i] B
S: i:KIdx → out c in k[i] D
R() ≡ ... c′ ? ... ch[i] ! e ... ; B Val Expr
S(i) ≡ ... ch[i] ? ... c ! e ...; D Val Expr

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

166 Version 17 1

C.7.3 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express
willingness to engage in input and/or output events, thereby communicating
over declared channels. Let P and Q stand for process expressions, and let Pi

stand for an indexed process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖

express the parallel (‖) of two processes, or the nondeterministic choice between
two processes: either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composi-
tion expresses that the two processes are forced to communicate only with one
another, until one of them terminates.

C.7.4 Input/Output Events

Let c and k[i] designate channels of type A and e expression values of type A,
then:

[1] c?, k[i]? input A value
[2] c!e, k[i]!e output A value

value
[3] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[4] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[5] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

[5] expresses the willingness of a process to engage in an event that [1,3] “reads”
an input, respectively [2,4] “writes” an output. If process P reaches the c!e
“program point before” process Q ‘reaches program point’ c? then process
P “waits” on Q — and vice versa. Once both processes have reached these
respective program points they “synchronise while communicating the message
vale e.

The process function definitions (i.e., their bodies) express possible [out-
put/input] events.

C.8 Simple RSL Specifications

Besides the above constructs RSL also possesses module-oriented scheme, class
and object constructs. We shall not cover these here. An RSL specification is
then simply a sequence of one or more clusters of zero, one or more sort and/or
type definitions, zero, one or more variable declarations, zero, one or more chan-
nel declarations, zero, one or more value definitions (including functions) and
zero, one or more and axioms. We can illustrate these specification components
schematically:

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 167

Simple RSL Specifications

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

168 Version 17 1

type
A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset
J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼
→ Ki

N == alpha | beta | ... | omega

O == µHf(as:Hf)
| µKf(el:Kf) | ...

P = Hf | Kf | L | ...
variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[i]|i:A}:B

value
va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼
→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit
...

axiom
Pi(f1,va),

Pj(f2,vb),

...
Pk(f3,ve)

The ordering of these clauses is immaterial. Intuitively the meaning of these
definitions and declarations are the following.

The type clause introduces a number of user-defined type names; the type
names are visible anywhere in the specification; and either denote sorts or con-
crete types.

The variable clause declares some variable names; a variable name denote
some value of decalred type; the variable names are visible anywhere in the
specification: assigned to (‘written’) or values ‘read’.

The channel clause declares some channel names; either simple channels or
arrays of channels of some type; the channel names are visible anywhere in the
specification.

The value clause bind (constant) values to value names. These value names
are visible anywhere in the specification. The specification

type
A

value
a:A

non-deterministically binds a to a value of type A. Thuis includes, for example

type
A, B

value
f: A → B

which non-deterministically binds f to a function value of type A→B.
The axiom clause is usually expressed as several “comma (,) separated”

predicates:

Pi(Ai, fi, vi),Pj(Aj , fj , vj), . . .,Pk(Ak, fk, vk)

where (Ak, fℓ, vℓ) is an abbreviation for Aℓ1 , Aℓ2 , . . . , At, fℓ1 , fℓ2 , . . . , fℓf
,

vℓ1 , vℓ2 , . . . , vℓv
. The indexed sort or type names, A and the indexed function

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

An RSL Primer 169

names, d, are defined elsewhere in the specification. The index value names, v
are usually names of bound ‘variables’ of universally or existentially quantified
predicates of the indexed (“comma”-separated) P .

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

170 Version 17 1

Full Index

∆0 [ι204], 93
∆0

ABORT PHASE [ι206], 94
COMMIT PHASE [ι207], 95
PREPARE PHASE [ι205], 94

∆j [ι211], 95
∆jOwn [ι214], 99
∆j∆0 [ι212], 96
∆jΩi [ι212], 97
∆jΣ [ι188], 88
ΩΣ [ι172], 83
Ωi [ι203], 92
Ωi [ι223], 100
Υ [ι164], 79
2pc (two phase commit), 67–76

A- (atomic)
Nm [ι12a], 20
Typ [ι2], 17
VAL [ι1], 17

abandon
pre-commit, 71

abort
ι205e, 94
ι206, 94
ι206b, 94

∆0

ABORT PHASE [ι206], 94
analyse [ι200], 91
analyse [ι204d], 91
appropriate FPos [ι83b], 50, 132
appropriate FPos [ι83f], 50, 132
APre [ι249d], 138
ARel [ι249d], 138
atomic

icon, 10
type, 17

sub, 17
value, 17

atomic
super type [ι10], 20

attribute, 21
relation, 112–113

tuple, 112–113
type, 21
value, 21

attributes [ι253], 140

BOp [ι249b], 138
branch

cactus, 15
Buckets [ι199], 91
Buckets [ι204d], 91
button

close, 31
include, 31
select, 31
update, 31

C [ι265], 142
C- (curtain)

Nm [ι12b], 20
NmIx [ι12c], 20
Typ [ι8], 19
VAL [ι6], 19

cactus, 14
branch, 15
new, 15
notch, 15
pop, 15
popoff, 15
push, 15
stack, 30
top, 15
tree, 14

CAT [ι195], 91
ch[i] [ι97], 58
channel, 58, 67
Clean SQL, 110
Clo W [ι177], 85
close

button, 31
Close Put [ι194], 90
cohort

domain frame process, 66
COM [ι187], 88

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

FULL INDEX 171

commit
ι207, 95
prepare

ι205, 93
∆0

COMMIT PHASE [ι207], 95
Commit [ι192], 89
communication

domain and window frame, 67
comp atomic types [ι7], 19
Conc [ι266], 142
concurrent

transaction [ι90b], 55
convert

rel tuples [ι230], 110
type [ι238c], 113
value [ι238d], 113

coordinator
process, 66, 68

CoOW [ι169], 81
Cre DFW [ι175], 85
Cre DWF [ι175], 85
Cre FoFW [ι175], 129
CTRS [ι171], 83
Cursor [ι46], 31
curtain, 18–20

icon, 10
type, 19

super, 20
value, 19

CW [ι169a], 81

dch
channels [ι167g], 80

DeCommit [ι191], 89
Del DFW [ι179], 85
∆ [ι255a], 140
∆0 [ι204], 93
∆0

PREPARE PHASE [ι205], 94
∆j [ι211], 95
designated

window
forest, 81–82

designating
path [ι161], 77

DF
Cmd [ι67], 39
Cmd [ι89], 55
CreDF [ι67b], 39
GetW [ι67e], 39
IniD [ι67a], 39
PutW [ι67d], 39
RmDF [ι67c], 39

DF [ι58], 36, 76
DFWAs [ι171a], 83
dict [ι256], 140
DIdx [ι167a], 80
domain

frame [ι100], 60
frame [ι94], 58

and window frame
communication, 67
synchronisation, 67

frame, 36–38
forest, 36–38, 55
operations, 39–44
path, 37
process, 55

path
frame, 37

process
coordinator, 66

sub- (Footnote 11), 36
to domain

channel, 67
to window

channel, 67
DP [ι161], 77

E
Pred [ι268], 143
Query [ι267], 143
Range [ι269], 143
Term [ι270], 144

elab
DF

Cre [ι106a], 60
GetDF [ι106d], 61
init [ι105], 60
PutW [ι106c], 61
RmDF [ι106b], 61

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

172 Version 17 1

WF
ClkW [ι115b], 63
CloW [ι115a], 64
IncW [ι115e], 64
OpnW [ι113], 63
PutW [ι114], 63
SelW [ι115d], 64
WriW [ι115c], 64

Elem [ι251], 138
empty

stack, 14
tree, 14

eval
DF

GetW [ι68], 39
GetW [ι77], 43, 56
GetW inv. [ι80d], 46, 130

uation functions, 39

F- (field)
Nm [ι12], 20
Typ

redefined [ι16], 87
Typ [ι16], 21
VAL [ι15], 20

field, 10, 20
= attribute, 21
value, 21

fields
same as tuple, 20–21

FoDF [ι184], 88
FoDF [ι60], 37
FoDF [ι63], 76, 110
FoDWF [ι169], 81
forest

designated
window, 81–82

domain
frame, 36–38, 55

window
frame, 32–34, 55

forest of
domain

frames [ι100], 60
window

frames [ι108], 63

FoWF [ι50], 33, 76
frame

domain, 36–38
forest, 36–38
operations, 39–44

forest
domain, 55
window, 55

path
window, 33

root
window state, 30

window, 30–35
operations, 45–54

window,forest, 32–34

G [ι264], 142
general

transaction [ι90], 55
GetW [ι193], 90
GT [ι90], 55
GUI, graphic user interface , 1

icon, 10
atomic, 10
curtain, 10

include
button, 31

init
fld val [ι31], 24
tpls [ι30], 24
W [ι39], 28

int
DF

CreDF [ι71], 40, 56
IniD [ι70], 40
IniDF [ι70], 56
PutW [ι76], 43, 56
RmDF [ι73], 41, 56

erpretation functions, 39
WF

ClkW [ι83], 49, 56, 132
CloW [ι82], 48, 56, 131
CWrW [ι84], 56
IncTpl [ι87], 54
IncTpl [ι88], 56

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

FULL INDEX 173

OpnW [ι80], 46, 56, 130
PutW [ι86], 52, 56, 131
SelTpl [ι87], 53, 56
WrW [ι84], 50, 132

interaction [ι107], 61
IPre [ι249b], 138
is

atomic
sub type [ι4], 18
super type [ι5], 18

designating path [ι160], 77
nil

FVAL, 29
W, 29

non nil TVAL [ι27], 24
prefix [ι73(c)i], 42

JavaSpaces, 1, 2

K- (key)
Nm [ι21], 22
Nms [ι22], 22
Typ [ι24], 22
VAL (same as Key) [ι23], 22

Key
same as KVAL [ι23], 22

key, 22
field, 10

name, 10
value, 10

name, 22
type, 22
value, 22

Linda, 1, 2

M

GT [ι91], 56

PT [ι90b], 56

QT [ι90a], 56

ST [ι91], 56
mark [ι168], 80
marked

path [ι160], 77
window

schema [ι158], 77

marked window name [ι157a], 77
marking

window
schema [ι168], 80

mk
DF

CDF [ι67b], 39
GW [ι67e], 39
PW [ι67d], 39
RDF [ι67c], 39

FPos [ι79d], 46, 128
WF

ClkW [ι79d], 46, 128
CloW [ι79b], 45, 128
Inc [ι79g], 46, 128
OpnW [ι79a], 45, 128
Sel [ι79f], 46, 128
WFPW [ι79c], 45, 128
WrW [ι79e], 46, 128

MP [ι160], 77
MSG [ι96], 58

new
cactus, 15
stack, 14

nil
FVAL [ι43], 29
TVAL [ι42], 28

Nm [ι14], 20
notch

cactus, 15
NPre [ι249c], 138
null W [ι35a], 27

Ωi [ι203], 92
Ωi [ι223], 100
operations

domain
frame, 39–44

window
frame, 45–54

Opn W [ι176], 85
Oracle, 110
OW [ι169b], 81

P [ι51], 33

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

174 Version 17 1

P-
0 (i.e. P0) [ι51a], 33
1 (i.e., P1) [ι51b], 33

P to AIdx [ι236a], 112
P to Rn [ι235a], 111
path, 33–34

designating [ι161], 77
frame

domain, 37
window, 33

marked [ι160], 77
paths

DF [ι52a], 37
of forests of window frames [ι53],

34, 37
of window frames [ι52a], 34

paths [ι159], 77
pop

cactus, 15
stack, 14

popoff
cactus, 15
stack, 14

pre-commit
(Footnote 14) [ι132(a)iii], 70
abandon , 71
state, 71

pre E Query [ι254], 140
preCOM [ι132(a)iii1], 71
preCOM [ι186], 88
PreCommit [ι190], 89
prepare

commit
ι205, 93

process
coordinator, 68
coordinator of domain frames,

66
domain

frame, 55
forest

of domain frames, 55
of window frames, 55

state
fore of window frames, 83–87

subordinate, 68

user, 68
window

frame, 55
protocol

2pc (two phase commit), 67–76
two phase commit (2pc), 67–76

ps
ι129, 68
ι132(a)i3, 70
ι134a, 72

PT [ι90b], 55
push

cactus, 15
stack, 14

QPre [ι249a], 138
QT [ι90a], 55
QUAN [ι249a], 138
Query [ι246], 138

R- (relation)
VAL [ι26], 23

R- (type)
Typ [ι28], 24

Range [ι248], 138
RDB [ι237], 112
redefined

FTyp [ι16], 87
KNm [ι21], 87
KNms [ι22], 87
KTyp [ι24], 87
KVAL [ι23], 87
TTyp [ι17], 87
TVAL [ι11], 87

REL [ι231], 111
relation, 23–25

attribute, 112–113
tuple, 112–113
type, 23
value, 23

RelOp [ι248], 138
RelTyp [ι237a], 112
remaining tuples, 16
request, 92
Request [ι198], 91
Request [ι202], 92

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

FULL INDEX 175

Rid [ι245], 138
rm paths [ι73(c)ii], 42
Rn [ι234], 111
Rn [ι243], 113, 136
Rn to P [ι235b], 111
roll-back, 101–109
roll-forward, 101–109
root

of stack, 14
of tree, 14
window

state, 30
RPLS [ι205b], 94
RTid [ι252], 138

s
FoWF [ι54], 35
W

from FoDF [ι65], 38
from FoWF [ι56], 35

WΣ [ι55], 35
W, from DF [ι64], 38
WNms [ι57], 35, 38

saguaro stack, 15
schema

marked window [ι158], 77
marking window [ι168], 80
window, 76–79

sel tpls [ι29], 24
select

button, 31
select value [ι83d], 50, 132
semantics

of transactions, on..., 56
sequential

transaction [ι90a], 55
simple

transaction [ι89], 55
SQL, 110–114

Clean, 110
sRDB [ι244], 113, 136
sREL [ι242], 113, 136
ST [ι89], 55
stack, 14

empty, 14
new, 14

pop, 14
popoff, 14
push, 14
root, 14
saguaro, 15
top, 14

state
forest

window frames process, 83–
87

pre-commit
component, 71

window, 30, 31
strip [ι162], 77
stripped

fowf paths [ι174], 84
tm paths [ι174], 84
ws paths [ι174], 84

strips [ι162], 77
sTTyp [ι241], 113, 136
sTVAL [ι240], 113, 136
sub

type, 22
atomic, 17

sub-
domain (Footnote 11), 36

sub
type [ι20], 22

subordinate
domain frame process, 66
process, 68

subtree, 14
super

type
curtain, 20

synchronisation
domain and window frame, 67

syntax
of transactions, 55

system [ι93], 58
system [ι99], 59

T- (tuple)
Typ

redefined [ι17], 87
Typ [ι17], 21

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

176 Version 17 1

VAL
redefined [ι11], 87

VAL (same as fields) [ι11], 20
Targ [ι247], 138
Term [ι250], 138
Tid [ι245], 138
TM [ι172a], 83
top

cactus, 15
stack, 14

transaction
completion [ι127c], 68
concurrent [ι90b], 55
continuation [ι127b], 68
coordinator, 68
general [ι90], 55
same as unit of work, 55
semantics, 56
sequential [ι90a], 55
simple [ι89], 55
start [ι127a], 68
subordinate, 68
syntax, 55
user, 68
what is a, 55

transaction [ι127], 68
tree, 13

cactus, 14
empty, 14
root, 14
subtree, 14

tuple
relation, 112–113
remaining, 16
same as fields, 20–21
type, 21
value, 20

two phase commit (2pc), 67–76
type

atomic, 17
sub, 17

curtain, 19
key, 22
of attribute, 21
relation, 23
sub, 22

tuple, 21

uτs [ι165], 79
uniq τ [ι166], 79
unique transaction identifier, 68
unit of work

same as transaction, 55
unmarked window name [ι157b], 77
update

button, 31
update field [ι84g], 51
user

process, 68

V Rs [ι262], 141
value

atomic, 17
curtain, 19
field, 21
of attribute, 21
relation, 23
tuple, 20
type, 25
window, 25

VRs [ι263], 141

W
Idx [ι92], 58
VAL [ι32], 25

W [ι35], 26, 76, 110
W′ [ι34], 25
WΣ [ι45], 31
W’ [ι36], 76
W- (window)

Nm [ι13], 20
Typ [ι33], 25

wch
channels [ι167f], 80

WF
Insert
W [ι80d], 47, 130

ClkW [ι79d], 46, 128
CloW [ι79b], 45, 128
Cmd [ι79], 45, 128
Cmd [ι89], 55
FPos [ι79d], 46, 128

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

FULL INDEX 177

IncTpl [ι79g], 46, 128
OpnW [ι79a], 45, 128
PutW [ι79c], 45, 128
SelTpl [ι79f], 46, 128
WrW [ι79e], 46, 128

WF [ι44], 31
wf

ΩΣ [ι174], 84
CVAL [ι7], 19
DF [ι59], 36
FoDF, 37
FoWF [ι51], 33
iRVAL [ι41c], 28
iTVAL [ι41b], 28
R

Typ [ι28], 24
VAL [ι26], 23

Range [ι259], 140
Ranges [ι259], 140
sR [ι244], 136
sRDB [ι244], 136
sREL [ι242], 136
Targ [ι258], 140
Targl [ι257], 140
Term [ι261], 141
W [ι35], 26
WΣ [ι49], 32
WF [ι48], 31
Wff [ι260], 141

Wff [ι249], 138
WFS [ι98], 59
WIdx [ι167a], 80
window, 10, 16–29

frame [ι95], 58
and domain frame

communication, 67
and frame frame

synchronisation, 67
cactus stack, 10
designated

forest, 81–82
frame, 30–35

forest, 32–34, 55
operations, 45–54
path, 33
process, 55

process state, forest of, 83–87
name

marked [ι157a], 77
unmarked [ι157b], 77

path
frame, 33

schema, 76–79
marked [ι158], 77
marking [ι168], 80

state, 30, 31
root frame, 30

sub, (Footnote 9), 30
to domain

channel, 67
type, 25
value, 25

wis [ι92], 58
wn bottom

WF, 33
WF [ι47], 31

Wri W [ι178], 85
WS [ι158], 77
Wuse [ι185], 88

xtr
ATyp [ι3], 17
CTyp [ι9], 19
FTyp [ι18], 21
K

Typ [ι25], 22
R

Typ [ι26], 23
RDB [ι238], 113
REL [ι231], 111
sRDB [ι238], 113
T

Typ [ι19], 21
WS [ι163], 77

XVSM, 2

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

178 Version 17 1

Type Index

∆jΣ [ι188], 88
ΩΣ [ι172], 83
Υ [ι164], 79

A- (atomic)
Nm [ι12a], 20
Typ [ι2], 17
VAL [ι1], 17

APre [ι249d], 138
ARel [ι249d], 138

BOp [ι249b], 138
Buckets [ι199], 91
Buckets [ι204d], 91

C- (curtain)
Nm [ι12b], 20
NmIx [ι12c], 20
Typ [ι8], 19
VAL [ι6], 19

CAT [ι195], 91
COM [ι187], 88
CoOW [ι169], 81
CTRS [ι171], 83
CW [ι169a], 81

∆ [ι255a], 140
DF

Cmd [ι67], 39
CreDF [ι67b], 39
GetW [ι67e], 39
IniD [ι67a], 39
PutW [ι67d], 39
RmDF [ι67c], 39

DF [ι58], 36, 76
DFWAs [ι171a], 83
DIdx [ι167a], 80
DP [ι161], 77

Elem [ι251], 138

F- (field)
Nm [ι12], 20
Typ

redefined [ι16], 87
Typ [ι16], 21
VAL [ι15], 20

FoDF [ι184], 88
FoDF [ι60], 37
FoDF [ι63], 76, 110
FoDWF [ι169], 81
FoWF [ι50], 33, 76

IPre [ι249b], 138

K- (key)
Nm [ι21], 22
Nms [ι22], 22
Typ [ι24], 22
VAL (same as Key) [ι23], 22

Key
same as KVAL [ι23], 22

mk
DF

CDF [ι67b], 39
GW [ι67e], 39
PW [ι67d], 39
RDF [ι67c], 39

WF
ClkW [ι79d], 46
Inc [ι79g], 46
OpnW [ι79a], 45
WFPW [ι79c], 45
WrW [ι79e], 46

MP [ι160], 77

Nm [ι14], 20
NPre [ι249c], 138

OW [ι169b], 81

P [ι51], 33
P-

0 (i.e. P0) [ι51a], 33
1 (i.e., P1) [ι51b], 33

preCOM [ι186], 88

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

TYPE INDEX 179

QPre [ι249a], 138
QUAN [ι249a], 138
Query [ι246], 138

R- (relation)
VAL [ι26], 23

R- (type)
Typ [ι28], 24

Range [ι248], 138
RDB [ι237], 112
redefined

FTyp [ι16], 87
KNm [ι21], 87
KNms [ι22], 87
KTyp [ι24], 87
KVAL [ι23], 87
TTyp [ι17], 87
TVAL [ι11], 87

REL [ι231], 111
RelOp [ι248], 138
RelTyp [ι237a], 112
Request [ι198], 91
Request [ι202], 92
Rid [ι245], 138
Rn [ι234], 111
Rn [ι243], 113, 136
RPLS [ι205b], 94
RTid [ι252], 138

sRDB [ι244], 113, 136
sREL [ι242], 113, 136
sTTyp [ι241], 113, 136
sTVAL [ι240], 113, 136

T- (tuple)
Typ

redefined [ι17], 87
Typ [ι17], 21
VAL

redefined [ι11], 87
VAL (same as fields) [ι11], 20

Targ [ι247], 138
Term [ι250], 138
Tid [ι245], 138
TM [ι172a], 83

V Rs [ι262], 141

VRs [ι263], 141

W
VAL [ι32], 25

W [ι35], 26, 76, 110
W′ [ι34], 25
W’ [ι36], 76
W- (window)

Nm [ι13], 20
Typ [ι33], 25

WF
ClkW [ι79d], 46
CloW [ι79b], 45
Cmd [ι79], 45
SelTpl [ι79f], 46

Wff [ι249], 138
WIdx [ι167a], 80
WS [ι158], 77
Wuse [ι185], 88

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

180 Version 17 1

Function Index

∆0 [ι204], 93
∆0

ABORT PHASE [ι206], 94
COMMIT PHASE [ι207], 95
PREPARE PHASE [ι205], 94

∆j [ι211], 95
∆jOwn [ι214], 99
∆j∆0 [ι212], 96
∆jΩi [ι212], 97
Ωi [ι203], 92
Ωi [ι223], 100

∆0

ABORT PHASE [ι206], 94
analyse [ι200], 91
analyse [ι204d], 91
appropriate FPos [ι83b], 50, 132
appropriate FPos [ι83f], 50, 132
atomic

super type [ι10], 20
attributes [ι253], 140

C [ι265], 142
Clo W [ι177], 85
Close Put [ι194], 90
∆0

COMMIT PHASE [ι207], 95
Commit [ι192], 89
comp atomic types [ι7], 19
Conc [ι266], 142
convert

rel tuples [ι230], 110
type [ι238c], 113
value [ι238d], 113

Cre DFW [ι175], 85
Cre DWF [ι175], 85
Cre FoFW [ι175], 129

DeCommit [ι191], 89
Del DFW [ι179], 85
∆0 [ι204], 93
∆0

PREPARE PHASE [ι205], 94

∆j [ι211], 95
dict [ι256], 140
domain

frame [ι94], 58

E
Pred [ι268], 143
Query [ι267], 143
Range [ι269], 143
Term [ι270], 144

eval
DF

GetW [ι68], 39
GetW [ι77], 43
GetW inv. [ι80d], 46, 130

uation functions, 39

G [ι264], 142
GetW [ι193], 90

init
fld val [ι31], 24
tpls [ι30], 24
W [ι39], 28

int
DF

CreDF [ι71], 40
IniD [ι70], 40
PutW [ι76], 43
RmDF [ι73], 41

erpretation functions, 39
WF

ClkW [ι83], 49, 132
CloW [ι82], 48, 131
IncTpl [ι87], 54
OpnW [ι80], 46, 130
PutW [ι86], 52, 131
SelTpl [ι87], 53
WrW [ι84], 50, 132

is
atomic

sub type [ι4], 18
super type [ι5], 18

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

FUNCTION INDEX 181

designating path [ι160], 77
nil

FVAL, 29
W, 29

non nil TVAL [ι27], 24
prefix [ι73(c)i], 42

mark [ι168], 80

nil
FVAL [ι43], 29

Ωi [ι203], 92
Ωi [ι223], 100
Opn W [ι176], 85

P to AIdx [ι236a], 112
P to Rn [ι235a], 111
paths

DF [ι52a], 37
of forests of window frames [ι53],

34, 37
of window frames [ι52a], 34

paths [ι159], 77
pre E Query [ι254], 140
PreCommit [ι190], 89

rm paths [ι73(c)ii], 42
Rn to P [ι235b], 111

s
FoWF [ι54], 35
WΣ [ι55], 35
W, from DF [ι64], 38

sel tpls [ι29], 24
select value [ι83d], 50, 132
strip [ι162], 77
stripped

fowf paths [ι174], 84
tm paths [ι174], 84
ws paths [ι174], 84

strips [ι162], 77
sub

type [ι20], 22
system [ι93], 58

uniq τ [ι166], 79

update field [ι84g], 51

W
Idx [ι92], 58

WF
Insert
W [ι80d], 47, 130

wf
ΩΣ [ι174], 84
CVAL [ι7], 19
DF [ι59], 36
FoDF, 37
FoWF [ι51], 33
iRVAL [ι41c], 28
iTVAL [ι41b], 28
R

Typ [ι28], 24
VAL [ι26], 23

Range [ι259], 140
Ranges [ι259], 140
sR [ι244], 136
sRDB [ι244], 136
sREL [ι242], 136
Targ [ι258], 140
Targl [ι257], 140
Term [ι261], 141
W [ι35], 26
Wff [ι260], 141

window
frame [ι95], 58

Wri W [ι178], 85

xtr
ATyp [ι3], 17
CTyp [ι9], 19
FTyp [ι18], 21
K

Typ [ι25], 22
R

Typ [ι26], 23
RDB [ι238], 113
REL [ι231], 111
sRDB [ι238], 113
T

Typ [ι19], 21
WS [ι163], 77

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

182 Version 17 1

Channel Index

dch
channels [ι167g], 80

wch
channels [ι167f], 80

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

VARIABLE INDEX 183

Variable Index

ps
ι129, 68
ι132(a)i3, 70
ι134a, 72

uτs [ι165], 79

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

184 Version 17 1

Symbol Index

Literals, 145–165
Unit, 165
chaos, 155
false, 145
true, 145
chaos, 153
false, 158
true, 158

Arithmetic Constructs, 149
ai=aj , 158
ai≥aj , 158
ai>aj , 158
ai≤aj , 158
ai<aj , 158
ai 6=aj , 158

Cartesian Constructs, 149–150, 153
(e1,e2,...,en) , 150

Combinators, 161–165
... elsif ... , 163
case be of pa1 → c1, ... pan → cn

end , 163
if be then cc else ca end , 163
let a:A • P(a) in c end , 162
let pa = e in c end , 161
variable v:Type := expression , 164
case be of pa1 → c1, ... pan → cn

end, 164
do stmt until be end, 165
for e in listexpr • P(b) do stm(e)

end, 165
if be then cc else ca end, 164
while be do stm end, 165
v := expression , 164

Function Constructs, 160
post P(args,result), 161
pre P(args), 161
f(args) as result, 161
f(a), 159
f(args) ≡ expr, 161

f(), 164

List Constructs, 150, 153–155
<Q(l(i))|i in<1..lenl> •P(a)> , 150
ℓ(i) , 154
ℓ′ = ℓ′′ , 154
ℓ′ 6= ℓ′′ , 154
ℓ′̂ℓ′′ , 154
elems ℓ , 154
hd ℓ , 154
inds ℓ , 154
len ℓ , 154
tl ℓ , 154

Logic Constructs, 148–158
bi ∨ bj , 158
∀ a:A • P(a) , 158
∃! a:A • P(a) , 158
∃ a:A • P(a) , 158
∼ b , 158
false, 145
true, 145
false, 158
true, 158
bi ⇒ bj , 158
bi ∧ bj , 158

Map Constructs, 150–151, 156–157

mi /mj , 156

mi \mj , 156

mi ◦mj , 156
domm, 156
rngm, 156
mi =mj, 156
mi ∪mj , 156
mi †mj , 156
mi 6=mj, 156
m(e), 156
[F(e)7→G(m(e))|e:E•e∈dom m∧P(e)]

, 151

Process Constructs, 165–166
channel c:T , 165

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

SYMBOL INDEX 185

channel {k[i]•i:KIdx} : T , 165
P:Unit→ in cout k[i]Unit, 165
Q: i:KIdx →out c ink[i]Unit, 165
c ! e, 166
c ?, 166
k[i] ! e, 166
k[i] ?, 166
pi⌈⌉⌊⌋pj , 166
pi⌈⌉pj , 166
pi‖pj , 166
pi–‖pj , 166

Set Constructs, 149, 151
∩{s1,s2,...,sn} , 151
∪{s1,s2,...,sn} , 151
card s , 151
e∈s , 151
e 6∈s , 151
si=sj , 151
si∩sj , 151
si∪sj , 151
si⊂sj , 151
si⊆sj , 151
si 6=sj , 151
si\sj , 151

Type Expressions, 147
(T1×T2×... ×Tn) , 147
Unit, 164
Bool, 145
Char, 145
Int, 145
Nat, 145
Real, 145
Text, 145
mk id(s1:T1,s2:T2,...,sn:Tn) , 147
s1:T1 s2:T2 ... sn:Tn , 147
T∗ , 147
Tω , 147
T1 × T2 × ... × Tn , 147
T1 | T2 | ... | T1 | Tn , 147
Ti →m Tj , 147

Ti
∼
→Tj , 147

Ti→Tj , 147
T-infset, 147
T-set, 147

Type Definitions, 147–148
T = Type Expr, 147
T={| v:T′• P(v)|} , 148
T==TE1 | TE2 | ... | TEn , 147

October 8, 2010, 19:21, NNN Festschrift c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

186 Version 17 1

Last page

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark NNN Festschrift October 8, 2010, 19:21

