
The TSE Trading Rules

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

January 28, 2010

2 January 28, 2010 Dines Bjørner

The reason why these notes are written is the appearance of [1].
I have taken the liberty of including that paper in this document, cf. Appendix C.

I had the good fortune of visiting Prof. Tetsuo Tamai, Tokyo Univ., 8–Dec.8, 2009.
I read [1] late November.

I then had wished that Tetsuo had given it to me upon my arrival.
I was, obviously ignorant of its publication some five months earlier.

I have now reread [1] (late January 2010).

I mentioned to Tetsuo that I would try my hand on a formalisation.
A description, both by a narrative, and by related formulas.

What you see here, in Chap. 1, is a first attempt1.

At present (January 28, 2010) Chap. 2 is not written.
I have included some notes, Appendix A.
Their origin goes back to December 1996.

Appendix Sect. A.4 should be of particular relevance to Chaps. 1 and 2.
A few, smaller updates, were added till about 2004.

1Earlier versions of this document will have Chap. 1 being very incomplete.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 3

Contents

1 The Tokyo Stock Exchange 7

1.1 Introduction . 7

1.2 The Problem . 7

1.3 A Domain Description . 8

1.3.1 Market and Limit Offers and Bids . 8

1.3.2 Order Books . 9

1.3.3 Aggregate Offers . 9

1.3.4 The TSE Itayose “Algorithm” . 11

1.3.5 Match Executions . 13

1.3.6 Order Handling . 13

2 The New Tokyo Stock Exchange 15

3 Bibliographical Notes 17

A Some 1996–1999 Models of “Abstracted” Financial Services 19

A.1 Financial Service Industry Business Processes 19

A.1.1 Some Modelling Comments — An Aside 25

A.1.2 Examples Continued . 25

The Context . 26

The State . 27

A Model . 27

A.2 Bank Scripts . 28

A.2.1 Bank Scripts: A Denotational, Ideal Description 28

Bank State . 28

Bank State . 28

State Well-formedness . 29

Syntax of Client Transactions . 29

Semantics of Open Account Transaction 29

Semantics of Close Account Transaction 30

Semantics of Deposit Transaction . 30

Withdraw Transaction . 30

Semantics of Withdraw Transaction 30

Semantics of Open Mortgage Account Transaction 31

Semantics of Close Mortgage Account Transaction 31

Semantics of Loan Payment Transaction 31

A.2.2 Bank Scripts: A Customer Language 32

Open Account Transaction . 32

Close Account Transaction . 32

Deposit Transaction . 33

Withdraw Transaction . 34

Obtain Loan Transaction . 34

Close Loan Transaction . 35

Loan Payment Transaction . 35

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

4 January 28, 2010 Dines Bjørner

A.2.3 Syntax of Bank Script Language . 36

Routine Headers . 36

Example Statements . 37

Example Expressions . 37

Abstract Syntax for Syntactic Types 38

Bank Script Language Syntax . 38

A.2.4 Semantics of Bank Script Language 39

Semantics of Bank Script Language 39

Semantic Types Abstract Syntax . 39

Semantic Functions . 40

A.2.5 A Student Exercise . 45

A.3 Financial Service Industry . 45

A.3.1 Banking . 45

Domain Analysis . 45

Account Analysis: . 45

Account Types: . 45

Contract Rules & Regulations: 46

Transactions: . 46

Immediate & Deferred Transaction Handling: 46

Summary . 47

Abstraction of Immediate and Deferred Transaction Processing 48

Account Temporality: . 48

Summary: . 48

Modelling . 49

Client Transactions: . 50

Insert One Transaction: . 50

Insertion of Arbitrary Number of Transactions: 50

Merge of Jobs: Client Transactions: 50

The Banking Cycle: . 51

Auxiliary Repository Inspection Functions: 51

Merging the Client and the Bank Cycles: 52

A.4 Securities Trading . 53

A.4.1 “What is a Securities Industry ?” . 53

Synopsis . 53

A Stock Exchange “Grand” State . 54

Observers and State Structure . 55

Main State Generator Signatures . 55

A Next State Function . 56

Next State Auxiliary Predicates . 56

Next State Auxiliary Function . 57

Auxiliary Generator Functions . 59

A.4.2 Discussion . 59

B Tetsuo Tamai’s Paper 57

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 5

C Tokyo Stock Exchange arrowhead Announcements 67

C.1 Change of trading rules . 67
C.2 Points to note when placing orders . 71

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

6 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Chapter 1

The Tokyo Stock Exchange

This chapter was begun on January 24. It is being released, first time, January 28.

1.1 Introduction

This chapter shall try describe: narrate and formalise some facets of the (now “old”1) stock
trading system of the TSE: Tokyo Stock Exchange (especially the ‘matching’ aspects).

1.2 The Problem

The reason that I try tackle a description (albeit of the “old” system) is that Prof. Tetsuo
Tamai published a delightful paper [1, IEEE Computer Journal, June 2009 (vol. 42 no. 6)
pp. 58-65)], Social Impact of Information Systems, in which a rather sad story is unfolded:
a human error key input: an offer for selling stocks, although “ridiculous” in its input data
(“sell 610 thousand stocks, each at one (1) Japanese Yen”, whereas one stock at 610,000 JPY
was meant), and although several immediate — within seconds — attempts to cancel this
“order”, could not be cancelled ! This lead to a loss for the selling broker at around 42 Billion
Yen, at today’s exchange rate, 26 Jan. 2010, 469 million US $s !2 Prof. Tetsuo Tamai’s paper
gives a, to me, chilling account of what I judge as an extremely sloppy and irresponsible design
process by TSE and Fujitsu. It also leaves, I think, a strong impression of arrogance on the
part of TSE. This arrogance, I claim, is still there in the documents listed in Footnote 1.

So the problem is a threefold one of

1 We write “old” since, as of January 4, 2010, that ‘old’ stock trading system has been replaced by the
so-called arrowhead system. We refer to the following documents:

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet.html

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet-e.pdf

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet1e.pdf

We have reproduced the “points to note when placing orders” in Appendix Sect. C.2 (Pages 71–74).

• http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet2e.html

We have reproduced the “points to note when placing orders” in Appendix Sect. C.1 (Pages 67–70).

2So far three years of law court case hearing etc., has, on Dec. 4, 2009, resulted in complainant be-
ing awarded 10.7 billion Yen in damages. See http://www.ft.com/cms/s/0/e9d89050-e0d7-11de-9f58-

-00144feab49a.html.

7

8 January 28, 2010 Dines Bjørner

• Proper Requirements: How does one (in this case a stock exchange) prescribe (to
the software developer) what is required by an appropriate hardware/software system
for, as in this case, stock handling: acceptance of buy bids and sell offers, the possible
withdrawal (or cancellation) of such submitted offers, and their matching (i.e., the actual
trade whereby buy bids are marched in an appropriate, clear and transparent manner).

• Correctness of Implementation: Hhow does one make sure that the software/hard-
ware system meets customers’ expectations.

• Proper Explanation to Lay Users: How does one explain, to the individual and
institutional customers of the stock exchange, those offering stocks for sale of bids for
buying stocks – how does one explain – in a clear and transparent manner the applicable
rules governing stock handling.3

I shall only try contribute, in this document, to a solution to the first of these sub-problems.

1.3 A Domain Description

1.3.1 Market and Limit Offers and Bids

1. A market sell offer or buy bid specifies

(a) the unique identification of the stock,

(b) the number of stocks to be sold or bought, and

(c) the unique name of the seller.

2. A limit sell offer or buy bid specifies the same information as a market sell offer or buy
bid (i.e., Items 1a–1c), and

(d) the price at which the identified stock is to be sold or bought.

3. A trade order is either a (mkMkt marked) market order or (mkLim marked) a limit
order.

4. A trading command is either a sell order or a buy bid.

5. The sell orders are made unique by the mkSell “make” function.

6. The buy orders are made unique by the mkBuy “make” function.

type

1 Market = Stock id × Noumber of Stocks × Name of Customer
1a Stock id
1b Number of Stocks = {|n•n:Nat∧n>1|}
1c Name of Customer
2 Limit = Market × Price
2d Price = {|n•n:Nat∧n>1|}

3The rules as explained in the Footnote 1 on the previous page listed documents are far from clear and
transparent: they are full of references to fast computers, overlapping processing, etc., etc.: matters with which
these buying and selling customers should not be concerned — so, at least, thinks this author !

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 9

3 Trade == mkMkt(m:Market) | mkLim(l:Limit)
4 Trading Command = Sell Order | Buy Bid
5 Sell Order == mkSell(t:Trade)
6 Buy Bid == mkBuy(t:Trade)

1.3.2 Order Books

7. We introduce a concept of linear, discrete time.

8. For each stock the stock exchange keeps an order book.

9. An order book for stock sid : SI keeps track of limit buy bids and limit sell offers (for
the identified stock, sid), as well as the market buy bids and sell offers; that is, for each
price

(d) the number stocks, by unique order number, offered for sale at that price, that is,
limit sell orders, and

(e) the number of stocks, by unique order number, bid for buying at that price, that
is, limitbuy bid orders;

(f) if an offer is a market sell offer, then the number of stocks to be sold is recorded,
and if an offer is a market buy bid (also an offer), then the number of stocks to be
bought is recorded,

10. Over time the stock exchange displays a series of full order books.

11. A trade unit is a pair of a unique order number and an amount (a number larger than
0) of stocks.

12. An amount designates a number of one or more stocks.

type

7 T
8 All Stocks Order Book = Stock Id →m Stock Order Book
9 Stock Order Book = (Price →m Orders) × Market Offers
9 Orders:: so:Sell Orders × bo:Buy Bids
9d Sell Orders = On →m Amount
9e Buy Bids = On →m Amount
9f Market Offers :: mkSell(n:Nat) × mkBuy(n:Nat)
10 TSE = T →m All Stocks Order Book
11 TU = On × Amount
12 Amount = {|n•Nat∧n≥1|}

1.3.3 Aggregate Offers

13. We introduce the concepts of aggregate sell and buy orders for a given stock at a given
price (and at a given time).

14. The aggregate sell orders for a given stock at a given price is

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

10 January 28, 2010 Dines Bjørner

(g) the stocks being market sell offered and

(h) the number of stocks being limit offered for sale at that price or lower

15. The aggregate bur bids for a given stock at a given price is

(i) including the stocks being market bid offered and

(j) the number of stocks being limit bid for buying at that price or higher

value

14 aggr sell: All Stocks Order Book × Stock Id × Price → Nat

14 aggr sell(asob,sid,p) ≡
14 let ((sos,),(mkSell(ns),)) = asob(sid) in

14g ns +
14h all sell summation(sos,p) end

15 aggr buy: All Stocks Order Book × Stock Id × Price → Nat

15 aggr buy(asob,sid,p) ≡
15 let ((,bbs),(,mkBuy(nb))) = asob(sid) in

15i nb +
15j nb + all buy summation(bbs,p) end

all sell summation: Sell Orders × Price → Nat

all sell summation(sos,p) ≡
let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′ ≥ p} in accumulate(sos,ps)(0) end

all buy summation: Buy Bids × Price → Nat

all buy summation(bbs,p) ≡
let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′ ≤ p} in accumulate(bbs,ps)(0) end

The auxiliary accumulate function is shared between the all sell summation and the all -
buy summation functions. It sums the amounts of limit stocks in the price range of the
accumulate function argument ps. The auxiliary sum function sums the amounts of limit
stocks — “pealing off” the their unique order numbers.

value

accumulate: (Price →m Orders) × Price-set → Nat → Nat

accumulate(pos,ps)(n) ≡
case ps of {} → n, {p}∪ ps′ → accumulate(pos,ps′)(n+sum(pos(p)){dom pos(p)}) end

sum: (Sell Orders|Buy Bids) → On-set → Nat

sum(ords)(ns) ≡
case ns of {} → 0, {n}∪ ns′ → ords(n)+sum(ords)(ns′) end

To handle the sub limit sells and sub limit buys indicated by Item 17c on the facing page of
the Itayose “algorithm” we need the corresponding sub sell summation and sub buy sum-
mation functions:

value

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 11

sub sell summation: Stock Order Book × Price → Nat

sub sell summation(((sos,),(ns,)),p) ≡ ns +
let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′ > p} in accumulate(sos,ps)(0) end

sub buy summation: Stock Order Book × Price → Nat

sub buy summation(((,bbs),(,nb)),p) ≡ nb +
let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′ < p} in accumulate(bbs,ps)(0) end

1.3.4 The TSE Itayose “Algorithm”

16. The TSE practices the so-called Itayose “algorithm” to decide on opening and closing
prices4. That is, the Itayose “algorithm” determines a single so-called ‘execution’ price,
one that matches sell and buy orders5:

17. The “matching sell and buy orders” rules:

(a) All market orders must be ‘executed’6.

(b) All limit orders to sell/buy at prices lower/higher than the ‘execution price’7 must
be executed.

(c) The following amount of limit orders to sell or buy at the execution prices must
be executed: the entire amount of either all sell or all buy orders, and at least one
‘trading unit’8 from ‘the opposite side of the order book’9.

value

17 match: All Stocks Order Book × Stock Id → Price-set
17 match(asob,sid) as ps
17 pre: sid ∈ dom asob
17 post: ∀ p′:Price • p′ ∈ ps ⇒
17′ ∃ os:On-set •

17a′ market buys(asob(sid))
17b′ + sub limit buys(asob(sid))(p′)
17c′ + all priced buys(asob(sid))(p′)
17a′ = market sells(asob(sid))
17b′ + sub limit sells(asob(sid))(p′)
17c′ + some priced buys(asob(sid))(p′)(os) ∨
17′′ ∃ os:On-set •

17a′′ market buys(asob(sid))
17b′′ + sub limit buys(asob(sid))(p′)
17c′′ + some priced buys(asob(sid))(p′)(os)
17a′′ = market sells(asob(sid))

4 [1, pp 59, col. 1, lines 4-3 from bottom, cf. Page 59]
5 [1, pp 59, col. 2, lines 1–3 and Items 1.–3. after yellow, four line ‘insert’, cf. Page 59] These items 1.–3.

are reproduced as “our” Items 17a–17c.
6To execute an order:
7Execution price:
8Trading unit:
9The opposite side of the order book:

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

12 January 28, 2010 Dines Bjørner

17b′′ + sub limit sells(asob(sid))(p′)
17c′′ + all priced buys(asob(sid))(p′) ∨

The match function calculates a set of prices for each of which a match can be made. The set
may be empty: there is no price which satisfies the match rules (cf. Items 17a–17c below). The
set may be a singleton set: there is a unique price which satisfies match rules Items 17a–17c.
The set may contain more than one price: there is not a unique price which satisfies match
rules Items 17a–17c. The single (′) and the double (′′) quoted (17a–17c) group of lines, in the
match formulas above, correspond to the Itayose “algorithm”s Item 17c ‘opposite sides of the
order book’ description. The existential quantification of a set of order numbers of lines 17′

and 17′′ correspond to that “algorithms” (still Item 17c) point of at least one ‘trading unit’.
It may be that the post condition predicate is only fullfilled for all trading units – so be it.

value

market buys: Stock Order Book → Amount
market buys((,(,mkBuys(nb))),p) ≡ nb

market sells: Stock Order Book → Amount
market sells((,(mkSells(ns),)),p) ≡ ns

sub limit buys: Stock Order Book → Price → Amount
sub limit buys(((,bbs),))(p) ≡ sub buy summation(bbs,p)

sub limit sells: Stock Order Book → Price → Amount
sub limit sells((sos,))(p) ≡ sub sell summation(sos,p)

all priced buys: Stock Order Book → Price → Amount
all priced buys((,bbs),)(p) ≡ sum(bbs(p))

all priced sells: Stock Order Book → Price → Amount
all priced sells((sos,),)(p) ≡ sum(sos(p))

some priced buys: Stock Order Book → Price → On-set → Amount
some priced buys((,bbs),)(p)(os) ≡

let tbs = bbs(p) in if {}6=os∧os⊆dom tbs then sum(tbs)(os) else 0 end end

some priced sells: Stock Order Book → Price → On-set → Amount
some priced sells((sos,),)(p)(os) ≡

let tss = sos(p) in if {}6=os∧os⊆dom tss then sum(tss)(os) else 0 end end

The formalisation of the Itayise “algorithm”, as well as that “algorithm” [itself], does not
guarantee a match where a match “ought” be possible. The “stumbling block” seems to be
the Itayose “algorithm”s Item 17c. There it says: ‘at least one trading unit’. We suggest that a
match could be made in which some of the stocks of a candidate trading unit be matched with
the remaining stocks also being traded, but now with the stock exchange being the buyer and
with the stock exchange immediately “turning around” and posting those remaining stocks
as a TSE marked trading unit for sale.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 13

Much more to come: essentially I have only modelled column 2, rightmost column, Page 59
of [1, Tetsuo Tamai, “TSE”]. Next to be modelled is column 1, leftmost column, Page 60
of [1]. See these same page numbers of the present document !

1.3.5 Match Executions

to come

1.3.6 Order Handling

to come

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

14 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Chapter 2

The New Tokyo Stock Exchange

to come

15

16 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Chapter 3

Bibliographical Notes

Bibliography

[1] T. Tamai. Social Impact of Information System Failures. Computer, IEEE Computer

Society Journal, 42(6):58–65, June 2009.

17

18 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Appendix A

Some 1996–1999 Models of

“Abstracted” Financial Services

A.1 Financial Service Industry Business Processes

Example A.1 Financial Service Industry Business Processes: The main business process
behaviours of a financial service system are the following: (i) clients, (ii) banks, (iii) se-
curities instrument brokers and traders, (iv) portfolio managers, (v) (the, or a, or several)
stock exchange(s), (vi) stock incorporated enterprises and (vii) the financial service industry
“watchdog”. We rough-sketch the behaviour of a number of business processes of the financial
service industry.

(i) Clients engage in a number of business processes: (i.1) they open, deposit into, with-
draw from, obtain statements about, transfer sums between and close demand/deposit, mort-
gage and other accounts; (i.2) they request brokers to buy or sell, or to withdraw buy/sell
orders for securities instruments (bonds, stocks, futures, etc.); and (i.3) they arrange with
portfolio managers to look after their bank and securities instrument assets, and occasionally
they reinstruct portfolio managers in those respects.

(ii) Banks engage with clients, portfolio managers, and brokers and traders in exchanges
related to client transactions with banks, portfolio managers, and brokers and traders, as well
as with these on their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio managers and
the stock exchange(s) in exchanges related to client transactions with brokers and traders,
and, for traders, as well as with the stock exchange(s) on their own behalf, as clients.

(iv) Portfolio managers engage with clients, banks, and brokers and traders in exchanges
related to client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog, with brokers
and traders, and with the stock listed enterprises, reinforcing trading practices, possibly
suspending trading of stocks of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They send reports,
according to law, of possible major acquisitions, business developments, and quarterly and
annual stockholder and other reports.

(vii) The financial industry watchdog engages with banks, portfolio managers, brokers
and traders and with the stock exchanges.

19

20 January 28, 2010 Dines Bjørner

Clients

Banks

B[1] B[2] B[b]

P[1] P[2] P[p]

C[c]

C[2]

C[1]

Brokers
Traders

T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

p
b

/b
p

[1
..p

,1
..b

]:
P

B
|B

P

Portfolio Managers

T
h

e
F

in
an

ce
 In

d
u

st
ry

 "
W

at
ch

d
o

g
"

wb/bw[1..b]:WB|BW

wt/tw[1..t]:WT|TW

wp/pw[1..p]:WP|PW

ws:WS

sw:SW

SE

Exchange
Stock

I[1]I[1] I[2] I[i]

...

...

...

... ...

is/si[1..i]:IS|SI

Figure A.1: A financial behavioural system abstraction

Example A.2 Atomic Component — A Bank Account: When we informally speak of the
phenomena that can be observed in connection with a bank account, we may first bring up
such things as: (i) The balance (or cash, a noun), the credit limit (noun), the interest rate
(noun), the yield (noun); and (ii) the opening (verb) of, the deposit (verb) into, the withdrawal
(verb) from and the closing (verb) of an account. Then we may identify (iii) the events that
trigger the opening, deposit, withdrawal and closing actions. We may thus consider a bank
account — with this structure of (i) values, (ii) actions (predicates, functions, operations),
and (iii) ability to respond to external events (to open, to deposit, etc.) — to be a component,
i.e., a process.

Example A.3 Composite Component — A Bank: Likewise, continuing the above example,
we can speak of a bank as consisting of any number of bank accounts, i.e., as a composite
component of proper constituent bank account components. Other proper constituent com-
ponents are: the customers (who own the accounts), the bank tellers (whether humans or
machines) who services the accounts as instructed by customers, etc.

In the above we have stressed the “internals” of the atomic components. When considering
the composite components we may wish to emphasise the interaction between components.

Example A.4 One-Way Composite Component Interaction: We illustrate a simple one-
way client-to-account deposit. A customer may instruct a bank teller to deposit monies
handed over from the customer to the bank teller into an appropriate account, and we see
an interaction between three “atomic” components: the client(s), the bank teller(s) and the
account(s).
Figure A.2 shows a set of distinct client processes. A client may have one or more accounts
and clients may share accounts. For each distinct account there is an account process. The
bank (i.e., the bank teller) is a process. It is at any one time willing to input a cash-to-account
(a,d) request from any client (c). There are as many channels into (out from) the bank process
as there are distinct clients (resp. accounts).

Using formal notation we can expand on the informal picture of Fig. A.2.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 21

...

Clients Accounts

...

m n

......

Bank

A1

A2

An
C1

C2

Cm

b
a[

1.
.n

]

cb
[1

..m
]

...

...

B

external choices
nondeterministic
m, respectively n,

Figure A.2: A fifth schematic “rendezvous” class

type

Cash, Cash, Cidx, Aidx
channel

{ cb[c]:(Aidx×Cash) | c:Cidx }
{ ba[a]:Cash | a:Aidx }

value

S5: Unit → Unit

S5() ≡ Clients() ‖ B() ‖ Accounts()

Clients: Unit → out { cb[c] | c:Cidx } Unit

Clients() ≡ ‖ { C(c) | c:Cidx }

C: c:Cidx → out cp[c] Unit

C(c) ≡ let (a,d):(Aidx×Cash) = ... in cb[c] ! (a,d) end ; C(c)

type

A Bals = Aindex →m Cash
value

abals: A Bals

Accounts: Unit → in { ba[a] | a:AIndex } Unit

Accounts() ≡ ‖ { A(a,abals(a)) | a:AIndex }

A: a:Aindex × Balance → in ba[a] Unit

A(a,d) ≡ let d′ = ba[a] ? in A(a,d+d′) end

B: Unit → in { cb[c] | c:Cidx } out { ba[a] | a:Aidx } Unit

B() ≡ ⌈⌉⌊⌋ {let (a,d) = cb[c] ? in ba[a] ! d end | c:Cidx} ; B()

We comment on the deposit example. With respect to the use of notation above, there are

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

22 January 28, 2010 Dines Bjørner

Cindex client-to-bank channels, and Aindex bank-to-account channels. The banking system
(S5) consists of a number of concurrent processes: Cindex clients, Aindex accounts and one
bank. From each client process there is one output channel, and into each account process
there is one input channel. Each client and each account process cycles around depositing,
respectively cashing monies. The bank process is nondeterministically willing (⌈⌉⌊⌋) to engage in
a rendezvous with any client process, and passes any such input onto the appropriate account.

Generally speaking, we illustrated a banking system of many clients and many accounts.
We only modelled the deposit behaviour from the client via the bank teller to the account.
We did not model any reverse behaviour, for example, informing the client as to the new
balance of the account. So the two bundles of channels were both one-way channels. We shall
later show an example with two-way channels.

Example A.5 Multiple, Diverse Component Interaction: We illustrate composite compo-
nent interaction. At regular intervals, as instructed by some service scripts associated with
several distinct kinds of accounts, transfers of monies may take place between these. For
example, a regular repayment of a loan may involve the following components, operations
and interactions: An appropriate repayment amount, p, is communicated from client k to the
bank’s script servicing component se (3).1Based on the loan debt and its interest rate (d,ir) (4),
and this repayment (p), a distribution of annuity (a), fee (f) and interest (i) is calculated.2The
loan repayment sum total, p, is subtracted from the balance, b, of the demand/deposit ac-
count, dd a, of the client (5). A loan service fee, f, is added to the (loan service) fee account,
f a, of the bank (7). The interest on the balance of the loan since the last repayment is added
to the interest account, i a, of the bank (8), and the difference, a, (the effective repayment),
between the repayment, p, and the sum of the fee and the interest is subtracted from the
principal, p, of the mortgage account, m a, of the client (6).

In process modelling the above we are stressing the communications. As we shall see, the
above can be formally modelled as below.

type

Monies,Deposit,Loan,
Interest Income,Fee Income = Int,
Interest = Rat

channel

cp,cd,cddp,cm,cf,ci:Monies, cmi:Interest
value

sys: Unit → Unit,
sys() ≡ se() ‖ k() ‖ dd a(b) ‖ m a(p) ‖ f a(f) ‖ i a(i)

k: Unit → out cp,cd Unit

k() ≡
(let p:Nat • /∗ p is some repayment, 1 ∗/ in cp ! p end

⌈⌉
let d:Nat • /∗ d is some deposit, 2 ∗/ in cd ! d end)

; k()

1For references (3–8) we refer to Fig. A.3.
2See line four of the body of the definition of the se process below.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 23

Bank Service: se

Client: k

cd

cp

1

3

7

8

2

4

3

dd_a

Demand

Client

Accounts

Bank

Accounts

Fee: f_a

Interest: i_a

m_a

cddp

cmi

cm

cf

ci

6

7

8

1

2,5

4

6

5

sys() = k() || se() || dd_a() || m_a() || f_a() || i_a()

Mortgage

Deposit

Figure A.3: A loan repayment scenario

se: Unit → in cd,cp,cmi out cddp,cm,cf,ci Unit

se() ≡
((let d = cd ? in cddp ! d end) /∗ 1,2 ∗/

⌈⌉⌊⌋
(let (p,(ir,ℓ)) = (cp ?,cmi ?) in /∗ 3,4 ∗/
let (a,f,iv) = o(p,ℓ,ir) in

(cddp ! (−p) ‖ cm ! a ‖ cf ! f ‖ ci ! iv) end end)) /∗ 5,6,7,8 ∗/
; se()

dd a: Deposit → in cddp Unit

dd a(b) ≡ dd a(b + cddp ?) /∗ 2,5 ∗/

m a: Interest × Loan → out cmi in cm Unit

m a(ir,ℓ) ≡ cmi ! (ir,ℓ) ; m a(ir,ℓ− cm ?) /∗ 4;6 ∗/

f a: Fee Income → in cf Unit

f a(f) ≡ f a(f + cf ?) /∗ 7 ∗/

i a: Interest Income → in ci Unit

i a(i) ≡ i a(i + ci ?) /∗ 8 ∗/

The formulas above express:

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

24 January 28, 2010 Dines Bjørner

• The composite component, a bank, consists of:

⋆ a customer, k, connected to the bank (service), se, via channels cd, cp

⋆ that customer’s demand/deposit account, dd a, connected to the bank (service)
via channels cdb, cddp

⋆ that customer’s mortgage account, m a, connected to the bank (service) via chan-
nel cm

⋆ a bank fees income account, f a, connected to the bank (service) via channel cf

⋆ a bank interest income account, i a, connected to the bank (service) via channel
ci

• The customer demand/deposit account is willing, at any time, to nondeterministically
engage in communication with the service: either accepting (?) a deposit or loan re-
payment (2 or 5), or delivering (!) information about the loan balance and interest rate
(4).

• We model this “externally inflicted” behaviour by (what is called) the external nonde-
terministic choice, ⌈⌉⌊⌋3, operation.

• The service component, in a nondeterministic external choice, ⌈⌉⌊⌋, either accepts a cus-
tomer deposit (cd?) or a mortgage payment (cp?).

• The deposit is communicated (cddp!d) to the demand/deposit account component.

• The fee, interest and annuity payments are communicated in parallel (‖) to each of
the respective accounts: bank fees income (cf!f), bank interest income (ci!i) and client
mortgage (cm!a) account components.

• The customer is unpredictable, may issue either a deposit or a repayment interaction
with the bank.

• We model this “self-inflicted” behaviour by (what is called) the internal nondeterministic
choice, ⌈⌉4, operation.

Characterisation: By a nondeterministic external choice we mean a nondeterministic deci-
sion which is effected, not by actions prescribed by the text in which the ⌈⌉⌊⌋ operator occurs,
but by actions in other processes. That is, speaking operationally, the process honouring the
⌈⌉⌊⌋ operation does so by “listening” to the environment.

Characterisation: By nondeterministic internal choice we mean a nondeterministic decision
that is implied by the text in which the ⌈⌉ operator occurs. Speaking operationally, the decision
is taken locally by the process itself, not as the result of any event in its surroundings.

3See the definition of what is meant by nondeterministic external choice right after this example.
4See the definition of what is meant by nondeterministic internal choice right after this example.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 25

A.1.1 Some Modelling Comments — An Aside

Examples A.4 and A.5 illustrated one-way communication, from clients via the bank to ac-
counts. Example A.4 illustrated bank “multiplexing” between several (m) clients and several
(n) accounts. Example A.5 illustrated a bank with just one client and one pair of client
demand/deposit and mortgage accounts. Needless to say, a more realistic banking system
would combine the above. Also, we have here chosen to model each account as a process. It
is reasonable to model each client as a separate process, in that the collection of all clients can
be seen as a set of independently and concurrently operating components. To model the large
set of all accounts as a similarly large set of seemingly independent and concurrent processes
can perhaps be considered a “trick”: It makes, we believe, the banking system operation more
transparent. In the next — and final — example of this introductory section we augment
the first example with an account balance response being sent back from the account via the
bank to the client.

A.1.2 Examples Continued

...

B

cq[1..n]cp[1..m]C

C

A

A

A

C

1

2

m

1

2

n

Clients Accounts

Bank

cp[j]

cp[j] cq[k]

cq[k]
cp[j]!(a,m)

(a,m,j)=cq[k]?

cq[k]!(j,r)

(a,m)=cp[j]?

Cj Ak

B

Client Account

Bank

(j,r)=cq[k]?

cp[j]!r

r=cp[j]?

cq[k]!(a,m,j)

These "channels"

are really bundles

(i.e., arrays) of such,

as illustrated below:

Figure A.4: Two-way component interaction

Example A.6 Two-Way Component Interaction: The present example “contains” that of
the one-way component interaction of Example A.4. Each of the client, bank and account
process definitions are to be augmented as shown in Fig. A.4 and in the formulas that follow
(cf. Fig. A.2 and the formulas in Example A.4).

type

Cash, Balance, CIndex, AIndex
CtoB = AIndex × Cash,
BtoC = Balance,

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

26 January 28, 2010 Dines Bjørner

BtoA = Cindex × Cash,
AtoB = Cindex × Balance

channel

cb[1..m] CtoB|BtoC, ba[1..n] BtoA|AtoB
value

S6: Unit → Unit

S6() ≡
‖ { C(c) | c:CIndex } ‖ B() ‖
‖ { A(a,b,r) | a:AIndex, b:Balance, r:Response • ... }

C: c:CIndex → out cp[c] Unit

C(c) ≡
let (a,d):(AIndex×Cash) = ... in

cb[c] ! (d,a) end let r = cb[c] ? in C(c) end

B: Unit → in,out {cb[c]|c:CIndex} in,out {ba[a]|a:AIndex} Unit

B() ≡ ⌈⌉⌊⌋ {let (d,a) = cb[c] ? in ba[a] ! (c,d) end | c:Cindex} ⌈⌉⌊⌋
⌈⌉⌊⌋ {let (c,b) = ba[a] ? in bc[c] ! b end | a:Aindex} ; B()

A: a:Aindex × Balance → in,out ba[a] Unit

A(a,b) ≡ let (c,m) = ba[a] ? in ba[a] ! (m+b) ; A(a,m+b) end

We explain the formulas above. Both the C and the A definitions specify pairs of communica-
tions: deposit output followed by a response input, respectively a deposit input followed by a
balance response output. Since many client deposits may occur while account deposit regis-
trations take place, client identity is passed on to the account, which “returns” this identity to
the bank — thus removing a need for the bank to keep track of client-to-account associations.
The bank is thus willing, at any moment, to engage in any deposit and in any response com-
munication from clients, respectively accounts. This is expressed using the nondeterministic
external choice combinator ⌈⌉⌊⌋.

Example A.7 A Bank System Context and State:

The Context

We focus in this example on the demand/deposit aspects of an ordinary bank. The bank
has clients k:K. Clients have one or more numbered accounts c:C. Accounts, a:A, may be
shared between two or more clients. Each account is established and “governed” by an initial
contract, ℓ:L (‘L’ for legal).The account contract specifies a number of parameters: the yield,
by rate (i.e., percentage), y:Y, due the client on positive deposits; the interest, by rate (i.e.,
percentage), i:I, due the bank on negative deposits less than a normal credit limit, n:N; the
period (frequency), f:F, between (of) interest and yield calculations; the number of days,
d:D, between bank statements sent to the client; and personal client information, p:P (name,
address, phone number, etc.).

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 27

The State

Above we focused on the “syntactic” notion of a client/account contract and what it pre-
scribed. We now focus on the “semantic” notion of the client account. The client account a:A
contains the following information: the balance, b:B (of monies in the account, whether debit
or credit, i.e., whether positive or negative), a list of time-stamped transactions “against” the
account: establishment, deposits, withdrawals, transfers, interest/yield calculation, whether
the account is frozen (due to its exceeding the credit limit), or (again) freed (due to restoration
of balance within credit limits), issue of statement, and closing of account. Each transaction
records the transaction type, and if deposit, withdrawal or transfer and the amount involved,
as well as possibly some other information.

A Model

We consider contract information a contextual part of the bank configuration, while the
account part is considered a state part of the bank configuration. We may then model the
bank as follows:

type

K, C, Y, I, N, D, P, B, T
[Bank: Configuration]
Bank = Γ × Σ
[Γ: Context]
Γ = (K →m C-set) × (C →m L)
L == mkL(y:Y,i:I,n:N,f:F,d:D,p:P)
[Σ: State]
Σ = C →m A
A = {free|frozen} × B × (T × Trans)∗

Trans = Est|Dep|Wth|Xfr|Int|Yie|Frz|Fre|Stm|Sha|Clo
Dep == deposit(m:Nat)
Wth == withdraw(m:Nat)
Xfr == toxfer(to:C,m:Nat) | fmxfer(fm:C,m:Nat)
Sha == share(new:C,old:C)

Bank is here the configuration.5 Γ is the context. Σ is the state.

The banking system so far outlined is primarily a dynamic, programmable system: Most
transactions, when obeyed, change the (account) state σ:Σ. A few (to wit: establish, share)
change the context γ:Γ. Establishment occurs exactly once in the lifetime of an account.
Initially contracts, from which the γ:Γ configuration component is built, are thought of as
specifying only one client. Hence the share transaction, which “joins” new clients to an
account, could as well be thought of as an action: one changing the state, rather than the
context. We have arbitrarily chosen to model it as a context changing “action”! All this to
show that the borderline between context and state is “soft”: It is a matter of choice.

Notice that, although time enters into the banking model, we did not model time flow
explicitly. Here, in the man-made system model, it is considered “outside” the model. We

5But, the bank configuration could, in more realistic situations, include many other components not related
directly to the client/account “business”.

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

28 January 28, 2010 Dines Bjørner

claim that the concepts of context and state enter, in complementary ways, into both phys-
ical systems and man-made systems. Before proceeding with more detailed analysis of the
configuration (cum context ⊕ state) ideas, let us recall that these concepts are pragmatic.

18. No money printing: Financial transactions between financial institutions (transfers of
monies between banks, or to or from insurance companies, stockbrokers, portfolio man-
agers, etc.) do not themselves “generate monies”: The sum total of monies within the
system is unchanged — money is only “moved”.

19. Life is like a sewer, what you put into it is what you get out of it (II): The only
changes in the sum total of monies of a financial system (of banks, insurance companies,
stockbrokers, funds managers, etc.) is when clients residing outside this system deposits
or withdraws funds.

20. Financial services:

The system of banks (including a national or federal, etc., bank), insurance companies,
stockbrokers and traders, stock exchanges, portfolio managers, and the external clients
of these “components” (bank account holders, insurance holders, buyers and sellers of
securities instruments, etc.), as well as the externally observable events within as well
as between these “system” components and between these and their clients, could form
a domain. Some of these events trigger actions, such as: opening an account, depositing
monies, withdrawing monies, transferring monies, buying or selling stocks, etc.

A.2 Bank Scripts

A.2.1 Bank Scripts: A Denotational, Ideal Description

Example A.8 Bank Scripts, I: Without much informal explanation, i.e., narrative, we define
a small bank, small in the sense of offering but a few services. One can open and close
demand/deposit accounts. One can obtain and close mortgage loans, i.e., obtain loans. One
can deposit into and withdraw from demand/deposit accounts. And one can make payments
on the loan. In this example we illustrate informal rough-sketch scripts while also formalising
these scripts.

In the following we first give the formal specification, then a rough-sketch script. You may
prefer to read the pairs, formal specification and rough-sketch script, in the reverse order.

Bank State

Bank State

type

C, A, M
AY′ = Real, AY = {| ay:AY′

• 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′ • wf Bank(β)|}
A Register = C →m A-set

Accounts = A →m Balance

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 29

M Register = C →m M-set

Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

There are clients (c:C), account numbers (a:A), mortgage number (m:M), account yields
(ay:AY), and mortgage interest rates (mi:MI). The bank registers, by client, all accounts
(ρ:A Register) and all mortgages (µ:M Register). To each account number there is a balance
(α:Accounts). To each mortgage number there is a loan (ℓ:Loans). To each loan is attached
the last date that interest was paid on the loan.

State Well-formedness

value

ay:AY, mi:MI

wf Bank: Bank → Bool

wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ
axiom

ai<mi

We assume a fixed yield, ai, on demand/deposit accounts, and a fixed interest, mi, on loans.
A bank is well-formed if all accounts named in the accounts register are indeed accounts, and
all loans named in the mortgage register are indeed mortgages. No accounts and no loans
exist unless they are registered.

Syntax of Client Transactions

type

Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

The client can issue the following commands: Open Account, Close Account, Deposit monies
(p:P), Withdraw monies (p:P), Obtain loans (of size p:P) and Pay installations on loans (by
transferring monies from an account). Loans can be Closed when paid down.

Semantics of Open Account Transaction

value

int Cmd: Cmd → Bank → Bank × Reply

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

30 January 28, 2010 Dines Bjørner

int Cmd(mkOA(c))(ρ,α,µ,ℓ) ≡
let a:A • a 6∈ dom α in

let as = if c ∈ dom ρ then ρ(c) else {} end ∪ {a} in

let ρ′ = ρ † [c7→as],
α′ = α ∪ [a7→0] in

((ρ′,α′,µ,ℓ),a) end end end

When opening an account the new account number is registered and the new account set to
0. The client obtains the account number.

Semantics of Close Account Transaction

int Cmd(mkCA(c,a))(ρ,α,µ,ℓ) ≡
let ρ′ = ρ † [c7→ρ(c)\{a}],

α′ = α \ {a} in

((ρ′,α′,µ,ℓ),α(a)) end

pre c ∈ dom ρ ∧ a ∈ ρ(c)

When closing an account the account number is deregistered, the account is deleted, and its
balance is paid to the client. It is checked that the client is a bona fide client and presents a
bona fide account number. The well-formedness condition on banks secures that if an account
number is registered then there is also an account of that number.

Semantics of Deposit Transaction

int Cmd(mkD(c,a,p))(ρ,α,µ,ℓ) ≡
let α′ = α † [a7→α(a)+p] in

((ρ,α′,µ,ℓ),ok) end

pre c ∈ dom ρ ∧ a ∈ ρ(c)

When depositing into an account that account is increased by the amount deposited. It is
checked that the client is a bona fide client and presents a bona fide account number.

Withdraw Transaction

Withdrawing monies can only occur if the amount is not larger than that deposited in the
named account. Otherwise the amount, p:P, is subtracted from the named account. It is
checked that the client is a bona fide client and presents a bona fide account number.

Semantics of Withdraw Transaction

int Cmd(mkW(c,a,p))(ρ,α,µ,ℓ) ≡
if α(a)≥p

then

let α′ = α † [a7→α(a)−p] in

((ρ,α′,µ,ℓ),p) end

else

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 31

((ρ,α,µ,ℓ),nok)
end

pre c ∈ dom ρ ∧ a ∈ dom α

Semantics of Open Mortgage Account Transaction

int Cmd(mkOM(c,p))(ρ,α,µ,ℓ) ≡
let m:M • m 6∈ dom ℓin
let ms = if c ∈ dom µ then µ(c) else {} end ∪ {m} in

let mu′ = µ † [c7→ms],
α′ = α † [aℓ 7→α(aℓ)−p],
ℓ′ = ℓ ∪ [m 7→p] in

((ρ,α′,µ′,ℓ′),m) end end end

To obtain a loan, p:P, is to open a new mortgage account with that loan (p:P) as its initial
balance. The mortgage number is registered and given to the client. The loan amount,
p, is taken from a specially designated bank capital acount, aℓ. The bank well-formedness
condition should be made to reflect the existence of this account.

Semantics of Close Mortgage Account Transaction

int Cmd(mkCM(c,m))(ρ,α,µ,ℓ) ≡
if ℓ(m) = 0

then

let µ′ = ρ † [c7→µ(c) \ {m}],
ℓ′ = ℓ \ {m} in

((ρ,α,µ′,ℓ′),ok) end

else

((ρ,α,µ,ℓ),nok)
end

pre c ∈ dom µ ∧ m ∈ µ(c)

One can only close a mortgage account if it has been paid down (to 0 balance). If so, the
loan is deregistered, the account removed and the client given an OK. If not paid down the
bank state does not change, but the client is given a NOT OK. It is checked that the client
is a bona fide loan client and presents a bona fide mortgage account number.

Semantics of Loan Payment Transaction

To pay off a loan is to pay the interest on the loan since the last time interest was paid. That
is, interest, i, is calculated on the balance, b, of the loan for the period d′ − d, at the rate of
mi. (We omit defining the interest computation.) The payment, p, is taken from the client’s
demand/deposit account, a; i is paid into a bank (interest earning account) ai and the loan is
diminished with the difference p− i. It is checked that the client is a bona fide loan client and
presents a bona fide mortgage account number. The bank well-formedness condition should
be made to reflect the existence of account ai.

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

32 January 28, 2010 Dines Bjørner

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in

if α(a)≥p
then

let i = interest(mi,b,d′−d),
ℓ′ = ℓ † [m 7→ℓ(m)−(p−i)]
α′ = α † [a7→α(a)−p,ai 7→α(ai)+i] in

((ρ,α′,µ,ℓ′),ok) end

else

((ρ,α′,µ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

This ends the first stage of the development of a script language.

A.2.2 Bank Scripts: A Customer Language

Example A.9 Bank Scripts, II: From each of the informal/formal bank script descriptions
we systematically “derive” a script in a possible bank script language. The derivation, for
example, for how we get from the formal descriptions of the individual transactions to the
scripts in the “formal” bank script language is not formalised. In this example we simply
propose possible scripts in the formal bank script language.

Open Account Transaction

value

int Cmd(mkOA(c))(ρ,α,µ,ℓ) ≡
let a:A • a 6∈ dom α in

let as = if c ∈ dom ρ then ρ(c) else {} end ∪ {a} in

let ρ′ = ρ † [c7→as],
α′ = α ∪ [a7→0] in

((ρ′,α′,µ,ℓ),a) end end end

Derived Bank Script: Open Account Transaction

routine open account(c in ′′
client

′′,a out ′′
account

′′) ≡
do

register c with new account a ;
return account number a to client c

end

Close Account Transaction

int Cmd(mkCA(c,a))(ρ,α,µ,ℓ) ≡
let ρ′ = ρ † [c7→ρ(c)\{a}],

α′ = α \ {a} in

((ρ′,α′,µ,ℓ),α(a)) end

pre c ∈ dom ρ ∧ a ∈ ρ(c)

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 33

Derived Bank Script: Close Account Transaction

routine close account(c in ′′
client

′′,a in ′′
account

′′ out ′′
monies

′′) ≡
do

check that account client c is registered ;
check that account a is registered with client c ;
if

checks fail

then

return NOT OK to client c
else

do

return account balance a to client c ;
delete account a

end

fi

end

Deposit Transaction

int Cmd(mkD(c,a,p))(ρ,α,µ,ℓ) ≡
let α′ = α † [a7→α(a)+p] in

((ρ,α′,µ,ℓ),ok) end

pre c ∈ dom ρ ∧ a ∈ ρ(c)

Derived Bank Script: Deposit Transaction

routine deposit(c in ′′
client

′′,a in ′′
account

′′,ma in ′′
monies

′′) ≡
do

check that account client c is registered ;
check that account a is registered with client c ;
if

checks fail

then

return NOT OK to client c
else

do

add ma to account a ;
return OK to client c

end

fi

end

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

34 January 28, 2010 Dines Bjørner

Withdraw Transaction

int Cmd(mkW(c,a,p))(ρ,α,µ,ℓ) ≡
if α(a)≥p

then

let α′ = α † [a7→α(a)−p] in

((ρ,α′,µ,ℓ),p) end

else

((ρ,α,µ,ℓ),nok)
end

pre c ∈ dom ρ ∧ a ∈ dom α

Derived Bank Script: Withdraw Transaction

routine withdraw(c in ′′
client

′′,a in ′′
account

′′,
ma in ′′

amount
′′ out ′′

monies
′′) ≡

do

check that account client c is registered ;
check that account a is registered with client c ;
check that account a has ma or more balance;
if

checks fail

then

return NOT OK to client c
else

do

subtract ma from account a ;
return ma to client c

end

fi

end

Obtain Loan Transaction

int Cmd(mkOM(c,p))(ρ,α,µ,ℓ) ≡
let m:M • m 6∈ dom ℓin
let ms = if c ∈ dom µ then µ(c) else {} end ∪ {m} in

let mu′ = µ † [c7→ms],
α′ = α † [aℓ 7→α(aℓ)−p],
ℓ′ = ℓ ∪ [m 7→p] in

((ρ,α′,µ′,ℓ′),m) end end end

Derived Bank Script: Obtain Loan Transaction

routine get loan(c in ′′
client

′′,p in ′′
amount

′′,m out ′′
loan number

′′) ≡
do

register c with loan m amount p;

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 35

subtract p from account bank’s loan capital

return loan number m to client c
end

Close Loan Transaction

int Cmd(mkCM(c,m))(ρ,α,µ,ℓ) ≡
if ℓ(m) = 0

then

let µ′ = ρ † [c7→µ(c)\{m}],
ℓ′ = ℓ \ {m} in

((ρ,α,µ′,ℓ′),ok) end

else

((ρ,α,µ,ℓ),nok)
end

pre c ∈ dom µ ∧ m ∈ µ(c)

Derived Bank Script: Close Loan Transaction

routine close loan(c in ′′
client

′′,m in ′′
loan number

′′) ≡
do

check that loan client c is registered ;
check that loan m is registered with client c ;
check that loan m has 0 balance;
if

checks fail

then

return NOT OK to client c
else

do

close loan m
return OK to client c

end

fi

end

Loan Payment Transaction

int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) ≡
let (b,d) = ℓ(m) in

if α(a)≥p
then

let i = interest(mi,b,d′−d),
ℓ′ = ℓ † [m 7→ℓ(m)−(p−i)]
α′ = α † [a7→α(a)−p,ai 7→α(ai)+i] in

((ρ,α′,µ,ℓ′),ok) end

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

36 January 28, 2010 Dines Bjørner

else

((ρ,α′,µ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

Derived Bank Script: Loan Payment Transaction

routine pay loan(c in ′′
client

′′,m in ′′
loan number

′′,p in ′′
amount

′′) ≡
do

check that loan client c is registered ;
check that loan m is registered with client c ;
check that account a is registered with client c ;
check that account a has p or more balance ;
if

checks fail

then

return NOT OK to client c
else

do

compute interest i for loan m on date d ;
subtract p−i from loan m ;
subtract p from account a ;
add i to account bank’s interest

return OK to client c ;
end

fi

end

This ends the second stage of the development of a script language.

A.2.3 Syntax of Bank Script Language

Example A.10 Bank Scripts, III: We now examine the proposed scripts. Our objective is to
design a syntax for the language of bank scripts. First, we list the statements as they appear
in Example A.9 on page 32, except for the first two statements.

Routine Headers

We first list all routine “headers”:

open account(c in ′′
client

′′,a out ′′
account

′′)
close account(c in ′′

client
′′,a in ′′

account
′′ out ′′

monies
′′)

deposit(c in ′′
client

′′,a in ′′
account

′′,ma in ′′
monies

′′)
withdraw(c in ′′

client
′′,a in ′′

account
′′,ma in ′′

amount
′′ out ′′

monies
′′)

get loan(c in ′′
client

′′,p in ′′
amount

′′,m out ′′
loan number

′′)
close loan(c in ′′

client
′′,m in ′′

loan number
′′)

pay loan(c in ′′
client

′′,m in ′′
loan number

′′,p in ′′
amount

′′)

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 37

We then schematise a routine “header”:

routine name(v1 io ′′
t
′′,v2 io ′′

t2
′′,...,vn io ′′

tn
′′) ≡

where:

io = in | out

and:

ti is any text

Example Statements

do stmt list end

if test expr then stmt else stmt fi

register c with new account a
register c with loan m amount p

add p to account a
subtract p from account a
subtract p−i from loan m
add i to account bank’s interest

subtract p from account bank’s loan capital

add p to account bank’s loan capital

compute interest i for loan m on date d

delete account a
close loan m

return ret expr to client c
check that check expr

The interest variable i is a local variable. The date variable d is an “oracle” (see below), but
will be treated as a local variable.

Example Expressions

test expr:

checks fail

ret expr:

account number a
account balance a

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

38 January 28, 2010 Dines Bjørner

NOT OK
OK
p
loan number m

check expr:

account client c is registered

account a is registered with client c
account a has p or more balance

loan client c is registered

loan m is registered with client c
loan m has 0 balance

Abstract Syntax for Syntactic Types

We analyse the above concrete schemas (i.e., examples). Our aim is to find a reasonably simple
syntax that allows the generation of the scripts of Example A.9. After some experimentation
we settle on the syntax shown next.

Bank Script Language Syntax

type

RN, V, C, A, M, P, I, D

Routine = Header × Clause

Header == mkH(rn:RN,vdm:(V →m (IOL × Text)))
IOL == in | out | local

Clause = DoEnd | IfThEl | Return | RegA | RegL | Check
| Add | Sub | 2Sub | DelA | DelM | ComI | RetE |

DoEnd == mkDE(cl:Clause∗)
IfThEl == mkITE(tex:Test Expr,cl:Clause,cl:Clause)

Return == mkR(rex:Ret Expr,c:V)
RegA == mkRA(c:V,a:V)
RegL == mkRL(c:V,m:V,p:V)
Chk = mkC(cex:Chk Expr)
Add == mkA(p:V,t:(V|BA))
Sub == mkS(p:V,t:(V|BA))
2Sub == mk2S(p:V,i:V,t:(AN|MN|BA))

AN == mkAN(a:V)
MN == mkMN(m:V)
BA == bank i | bank c

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 39

DelA == mkDA(c:V,a:V)
DelM == mkDM(c:V,m:V)
Comp == mkCP(m:V,fn:Fn,argl:(V|D)∗)

Fn == interest | ...

Test Expr = mkTE()

Chk Expr == CisAReg(c:V) | AisReg(a:V,c:V) | AhasP(a:V,p:V)
| CisMReg(c:V) | MisReg(m:V,c:V) | Mhas0(m:V)

RetE == mkAN(a:V)|mkAB(a:V)|ok|nok|mkP(p:V)|mkMN(m:V)

A.2.4 Semantics of Bank Script Language

Example A.11 Bank Scripts, IV:

Semantics of Bank Script Language

We now give semantics to the bank script language of Example A.10 on page 36.

Semantic Types Abstract Syntax

type

V, C, A, M, P, I
type

AY′ = Real, AY = {| ay:AY′ • 0<ay≤10 |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤10 |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′ • wf Bank(β)|}
A Register = C →m A-set

Accounts = A →m Balance
M Register = C →m M-set

Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

Σ = (V →m (C|A|M|P|I))
⋃

(Fn →m FCT)
FCT = (...|Date)∗ → Bank → (P|...)

value

aℓ,ai:A
axiom

∀ (ρ,α,µ,ℓ):B {aℓ,ai} ⊆ dom α

The only difference between the above semantics types and those of Example A.9 is the Σ
state. The purpose of this auxiliary bank state component is to provide (i) a binding between
the (always fixed) formal parameters of the script routines and the actual arguments given by

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

40 January 28, 2010 Dines Bjørner

the bank client or bank clerk when invoking any one of the routines, and (ii) a binding of a
variety of “primitive”, fixed, banking functions, FCT, named Fn, like computing the interest
on loans, etc.

Semantic Functions

channel

k:(C|A|M|P|Text), d:Date

There is, in this simplifying example, one channel, k, between the bank and the client. It
transfers text messages from the bank to the client, and client names (c:C), client account
numbers (a:A), client mortgage numbers (m:M), and amount requests and monies (p:P) from
the client to the bank. There is also a “magic”, a demonic channel, d, which connects the
bank to a date “oracle”.

value

date: Date → out d Unit

date(da) ≡ (d!da ; date(da+∆))

Each routine has a header and a clause. The purpose of the header is to initialise the auxiliary
state component σ to appropriate bindings of formal routine parameters to actual, client-
provided arguments. Once initialised, interpretation of the routine clause can take place.

int Routine: Routine → Bank → out k Bank×Σ
int Routine(hdr,cla)(β) ≡

let σ = initialise(hdr)([]) in

Int Clause(cla)(σ)(true)(β) end

For each formal parameter used in the body, i.e., in the clause, of the routine, there is a formal
parameter definition in the header, and only for such. We have not expressed the syntactic
well-formedness condition — but leave it as an exercise to the reader. And for each such
formal parameter of the header a binding has now to be initially established. Some define
input arguments, some define local variables and the rest define, i.e., name, output results.
For each input argument the meaning of the header therefore specifies that an interaction is
to take place, with the environment, as here designated by channel k, in order to obtain the
actual value of that argument.

initialise: Header → Σ → out,in k Σ
initialise(hdr)(σ) ≡

if hdr = []
then σ
else

let v:V • v ∈ dom hdr in

let (iol,txt) = hdr(v) in

let σ′ =
case iol of

in → k!txt ; σ ∪ [v 7→ k?],

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 41

→ σ ∪ [v 7→ undefined]
end in

initialise(hdr\{v})(σ′)
end end end end

In general, a clause is interpreted in a configuration consisting of three parts: (i) the local,
auxiliary state, σ : Σ, which binds routine formal parameters to their values; (ii) the current
‘check’ state, tf:Check, which records the “sum total”, i.e., the conjunction status of the check
commands so far interpreted, i.e., initially tf = true; and (iii) the proper bank state, β:Bank,
exactly as also defined and used in Example A.9. The result of interpreting a clause is a
configuration: (Σ×Check×Bank).

type

Check = Bool

value

Int Clause: Clause→Σ→Check→Bank→out k,in d (Σ×Check×Bank)

A do ... end clause is interpreted by interpreting each of the clauses within the clauses in
the do ... end clause list, and in their order of appearance. The result of a check clause is
“anded” (conjoined) to the current tf:Check status.

Int Clause(mkDE(cll))(σ)(tf)(β) ≡
if cll = 〈〉

then (σ,tf,β)
else

let (σ′,tf′,β′) = Int Clause(hd cl)(σ)(tf)(β) in

Int Clause(mkDE(tl cll))(σ′)(tf∧tf′)(β′)
end end

if ... then ... else fi clauses only test the current check status (and propagate this status).

Int Clause(mkITE(tex,ccl,acl))(σ)(tf)(β) ≡
if tf

then

Int Clause(ccl)(σ)(true)(β)
else

Int Clause(acl)(σ)(false)(β)
end

Interpretation of a return clause does not change the configuration “state”. It only leads to
an output, to the environment, via channel k, of a return value, and as otherwise directed by
any of the six return expressions (rex).

Int Clause(mkRet(rex))(σ)(tf)(ρ,α,µ,ℓ) ≡
k!(case rex of

mkAN(a)
→ ′′

Your new account number:
′′ σ(a),

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

42 January 28, 2010 Dines Bjørner

mkAB(a)
→ ′′

Your account balance paid out:
′′ α(a),

mkP(p)
→ ′′

Monies withdrawn:
′′ σ(p),

mkMN(m)
→ ′′

Your loan number:
′′ σ(m),

OK
→ ′′

Transaction was successful
′′,

NOK
→ ′′

Transaction was not successful
′′

end);
(σ,true,(ρ,α,µ,ℓ))

Interpretation of a register account clause is as you would expect from Example A.9 —
anything else would “destroy” the whole purpose of having a bank script. That purpose is,
of course, to effect basically the same as the not yet “script-ised” semantics of Example A.9.

Int Clause(mkRA(c,a))(σ)(tf)(ρ,α,µ,ℓ) ≡
let av:A • av 6∈ dom α in

let σ′ = σ † [a 7→ av],
as = if c ∈ dom ρ then ρ(c) else {} end,
ρ′ = ρ † [c 7→ as ∪ {av}],
α′ = α ∪ [av 7→ 0] in

(σ′,tf,(ρ′,α′,µ,ℓ))
end end

The same holds for the register loan clause (as for the register account clause).

Int Clause(mkRL(c,m,p))(σ)(tf)(ρ,α,µ,ℓ) ≡
let mv:M • mv 6∈ dom ℓin
let σ′ = σ † [m 7→ mv],

ms = if c ∈ dom µ then µ(c) else {} end,
µ′ = µ † [c 7→ ms ∪ {mv}],
ℓ′ = ℓ ∪ [mv 7→ p] in

(σ′,tf,(ρ,α,µ′,ℓ′))
end end

It can be a bit hard to remember the “meaning” of the mnemonics, so we repeat them here
in another form:

• CisAReg: Client named in c is registered:
σ(c) ∈ dom ρ.

• AisReg: Client named in c has account named in a:
σ(c) ∈ domρ∧σ(σ(a)) ∈ρ(σ(c)).

• AhasP: Account named in a has at least the balance given in p:
α(σ(a))≥σ(p).

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 43

• CisMReg: Client named in c has a mortgage:
σ(c) ∈ dom µ.

• MisReg: Client named in c has mortgage named in m:
σ(c) ∈ domµ∧σ(m) ∈µ(σ(c)).

• Mhas0: Mortgage named in m is paid up fully:
ℓ(σ(m))=0.

Then it should be easier to “decipher” the logics:

Int Clause(mkChk(cex))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ,case cex of

CisAReg(c) → σ(c) ∈ dom ρ,
AisReg(a,c) → σ(c) ∈ domρ∧σ(σ(a)) ∈ρ(σ(c)),
AhasP(a,p) → α(σ(a))≥σ(p),
CisMReg(c) → σ(c) ∈ dom µ,
MisReg(m,c) → σ(c) ∈ domµ∧σ(m) ∈µ(σ(c)),
Mhas0(m) → ℓ(σ(m))=0

end,(ρ,α,µ,ℓ))

There are a number of ways of adding amounts, designated in p, to accounts and mortgages:

• mkAN(a): to account named in a

• mkMN(m): to mortgage named in m

• bank i: to the bank’s own interest account

• bank c: to the bank’s own capital account

Int Clause(mkA(p,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
case t of

mkAN(a) → (σ,true,(ρ,α†[a7→α(σ(a))+σ(p)],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))+σ(p)]))
bank i → (σ,true,(ρ,α†[ai 7→α(ai)+σ(p)],µ,ℓ))
bank c → (σ,true,(ρ,α†[aℓ 7→α(aℓ)+σ(p)],µ,ℓ))

end

The case, as above for adding, also holds for subtraction.

Int Clause(mkS(p,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
case t of

mkAN(a) → (σ,true,(ρ,α†[σ(a)7→α(σ(a))−σ(p)],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))−σ(p)]))
bank i → (σ,true,(ρ,α†[ai 7→α(ai)−σ(p)],µ,ℓ))
bank c → (σ,true,(ρ,α†[aℓ 7→α(aℓ)−σ(p)],µ,ℓ))

end

And it holds as for subtraction, but subtracting two amounts, of values designated in p and i.

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

44 January 28, 2010 Dines Bjørner

Int Clause(mk2S(p,i,t))(σ)(tf)(ρ,α,µ,ℓ) ≡
let pi = σ(p)−σ(i) in

case t of

mkAN(a) → (σ,true,(ρ,α†[σ(a)7→α(σ(a))−pi],µ,ℓ))
mkMN(m) → (σ,true,(ρ,α,µ,ℓ†[σ(m)7→ℓ(σ(m))−pi]))
bank i → (σ,true,(ρ,α†[ai 7→α(ai)−pi],µ,ℓ))
bank c → (σ,true,(ρ,α†[aℓ 7→α(aℓ)−pi],µ,ℓ))

end end

To delete an account is to remove it from both the account register and the accounts.

Int Clause(mkDA(c,a))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ\{a},true,(ρ†[σ(c)7→α(σ(c))\{σ(a)}],α\{σ(a)},µ,))

Similarly, to delete a mortgage is to remove it from both the mortgage register and the
mortgages.

Int Clause(mkDM(c,m))(σ)(tf)(ρ,α,µ,ℓ) ≡
(σ\{m},true,(ρ,α,µ†σ(c)[7→µ(σ(c))\{σ(m)}],ℓ\{β(m)}))

To compute a special function requires a place, i, to put, i.e., to store, the resulting, the
yielded, value. It also requires the name, fn, of the function, and the actual argument list,
aal, i.e., the list of values to be applied to the named function, fct. As an example we illustrate
the “built-in” function of computing the interest on a loan, a mortgage.

Int Clause(mkCP(i,fn,aal))(σ)(tf)(ρ,α,µ,ℓ) ≡
let fct = σ(fn) in

let val = case fn of
′′
interest

′′ →
let 〈m,d〉 = aal in fct(〈µ(σ(m)),d?〉) end

... → ...
end in

(σ†[σ(i)7→val],true,(ρ,α,µ,ℓ)) end end

This ends the last stage of the development of a script language.

Example A.12 Script Reengineering: We refer to Examples A.8–A.11. They illustrated the
description of a perceived bank script language. One that was used, for example, to explain
to bank clients how demand/deposit and mortgage accounts, and hence loans, “worked”.

With the given set of “schematised” and “user-friendly” script commands, such as they
were identified in the referenced examples, only some banking transactions can be described.
Some obvious ones cannot, for example, merge two mortgage accounts, transfer money be-
tween accounts in two different banks, pay monthly and quarterly credit card bills, send and
receive funds from stockbrokers, etc.

A reengineering is therefore called for, one that is really first to be done in the basic
business processes of a bank offering these services to its customers. We leave the rest as an
exercise, cf. Exercise A.13.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 45

A.2.5 A Student Exercise

Example A.13 Financial Service Industry Business Processes: Banking Script Language.
We refer to Example A.12 — and all of the examples referenced initially in Example A.12.
Redefine, as suggested there, the banking script language to allow such transactions as: (i)
merge two mortgage accounts, (ii) transfer money between accounts in two different banks,
(iii) pay monthly and quarterly credit card bills, (iv) send and receive funds from stockbrokers,
etc.

A.3 Financial Service Industry

• We model only two of the players in the financial services market:

⋆ Banks and

⋆ securities (typically stock and bond) exchanges.

• Also: We do not model their interaction, that is, transfers of securities between banks
and stock exchanges.

• Such as was done in earlier examples.

• The models presented now lend themselves to such extensions rather easily.

A.3.1 Banking

Domain Analysis

We start out with a major analysis cum domain narrative!

Account Analysis: We choose a simple, ordinary person oriented banking domain.

(This is in contrast to for example an import/export, or an investment, or a portfolio
bank domain. And it is in contrast to the many other perspectives that one could model:
securities and portfolio management, foreign currency trading, customer development, etc.)

On one hand there are the s, k:K, and on the other hand there is the . (We initially
assume that the is perceived, by the s, as a single, “monolithic thing” — although it may
have a geographically widely distributed net of branch offices.) Each person or other legal
entity, who is a , may have several s.

Each has an identity, c:C, and is an otherwise complex quantity, a:A, whose properties
will be unfolded slowly. A , k:K, may have more than one , but has at least one — otherwise
there would be no need to talk about “a ” (but perhaps about a prospective). (So the ing
domain includes all the accounts and the .) Two or more may share .

Account Types: have : Some are ; and some are ; yet other are (or) ; salary/earnings
, etc. With each we associate a which is set up when the is first established.

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

46 January 28, 2010 Dines Bjørner

Contract Rules & Regulations: The establishes that determine several properties.
Example are The account (in question)(i) s y% , and (ii) has a of ℓ currency units. (iii)

When the is between 0 and the (negative) , then the owed the is j%; (iv) s carry from
the day after ; (v) on a is otherwise calculated as follows: . . . ,6 (vi) the client is sent a of
s every d days (typically every month, or every quarter, or for every d transactions, or some
such arrangement), . . . the lists, in chronological order, all as well as initiated s involving
this and as from (ie. since) the last time a was issued. (vii) s for handling certain (or any)
s could be as follows: ment e, s, i, ing (overdraw) oℓ, t, etc. The , also called the s
(of the), for any specific of , may differ from to , and may change over time.

The are set up when the is ed. Some may be changed by the , and some by the —
giving to the . ing an , its s and an are examples of joint / or just s.

Transactions: Depending on the a number of different kinds of s can be issued “against”,
ie. concerning (primarily) a specifically named, c:C, , a:A.

• s:

can (i) monies into and (ii) monies from a (rather freely — and the may stipulate
so); (iii) can money in a (and the contract may stipulate minimum monthly savings);
(iv) clients can money from their (and the will undoubtedly state frequency and size
limits on such s).

(v) may obtain a large loan whereafter one regularly, as stipulated in the , (vi) repays
the by ing — for example — three kinds of monies: (vi.1) on the (these are monies
that go to a of the), (vi.2) on the (this is a quantity which is deducted from the s’
) and (vi.3) s (again monies that go to some [other]). (vii) And a may produce a ()
of a .

A is a list of summaries of s. The listed s give the and of the s, its nature7, the
amounts involved (and, in cases according to which they were calculated), the resulting
(current) , etc., etc. ! A also lists the “executed against” the but by the . See next.

• Bank Transactions:

The bank regularly performs s “against” several accounts: (viii) calculation of s due
the s (say on demand/deposit and), and (ix) calculation of s due the (say on n and
on loan accounts). The may regularly inform as to the of their : (x) , (xi) s of s
(s, , s), (xii) warnings on overdue payments, information on or s (say of salary) into
(salary) accounts, etc. (xiii) Finally the may the rules & regulations of s, and (xiv)
may transactions on (ie.) an .

Immediate & Deferred Transaction Handling: When a is issued, say at time t, some
of its implications are “immediately”, some are red. Examples are: installation of , and s on
a is expected to immediately lead to the on and s, while a , to be issued by the , namely
for a to be issued, say, some period prior to a quarter later, to that (concerning amounts of
next s), is deferred. Other s are also red in relation to this example. A red will be if the
has not responded — as assumed — to a by providing a . That red will be ed if a proper

6. . . : here follows a detailed (pseudo-algorithmic) explanation on how is calculated.
7, , (al from a), ation of , and s on a (ment), between , including salary and other payment deposits as

well as s on for example s of other , on credit cards, etc.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 47

takes place. The , if eventually , as its time “comes up”, will lead to further s as well as of
rates, etc. s concerning these s and s, etc., are also contained in the .

Thus we see, on one hand, that the is a serious and complex document. In effect its
rule & regulation conditions define a number of named s that are applied when relevant s are
handled (executed). These s, in the domain, are handled either manually, semi-automatically
or (almost fully) automated. The staff (or, in cases, perhaps even s) who handle the manual
parts of these s may and will make mistakes. And the semi or fully automated s may be
incorrect !

Summary We can summarise the analysis as follows:

• Transactions are initiated by:

⋆ Clients:

⋄ Establishment and closing of accounts

⋄ demand (withdrawal) and deposits of monies

⋄ borrowing and repayment of loans

⋄ transfer of monies into or out of accounts

⋄ request for (instantaneous or regular) statements

⋄ &c.

⋆ and the bank:

⋄ Regular calculation of yield and interest

⋄ regular payment of bills

⋄ regular issue of statements

⋄ reminder of loan repayments

⋄ warning on overdue payments

⋄ annual account reports

⋄ change in (and advice about) account conditions

⋄ &c.

• Transactions are handled by the bank:

⋆ immediately: certain parts of f.ex. als, s, s, etc.

⋆ overnight:8 remaining parts of f.ex. above

⋆ deferred: issue of s and preparation for s, of s, s, and s. etc.

⋆ conditionally:9 issue of s, etc.

• In the domain this handling may be by any combination of human and machine (incl.
computer) labour.

• Support technology is here seen as the various means whereby transactions are pro-
cessed and their effect recorded.

8We will treat overnight transactions as deferred transactions.
9We will treat conditional transactions as deferred transactions.

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

48 January 28, 2010 Dines Bjørner

• Examples of support technology are: The paper forms, including (paper) books, used
during transaction and kept as records; mechanical, electro-mechanical and electronic,
hand-operated calculators; chops (used in authentication on paper forms); typewriters;
computers (and hence data communication equipment).

Abstraction of Immediate and Deferred Transaction Processing

We proceed by first giving — again — a rather lengthy analysis, cum narrative, of transaction
processing related concepts of a bank.

We have a situation where s are either “immediately” handled, or are red. For the domain
we choose to model this seeming “distinction” by obliterating it ! Each is instead red and
affixed the time interval when it should be . If a is issued at time t and if parts or all of it
is to be handled “immediately” then it is red to the time interval (t, t). There is therefore,
as part of the , a of time interval marked transaction requests. The (staff, computers, etc.)
now is expected to repeatedly, ie. at any time t′, inspect the . Any s that remain in the such
that t′ falls in the interval of requests are then to be handled “immediately”. In the model
we assume that the handling time is 0, but that requests that are eligible for “immediate”
handling are chosen non-deterministically. This models the reality of a domain, but perhaps
not a desirable one!

Account Temporality: Time is a crucial concept in banking: s are calculated over time
during which the changes and so do the rates — with no synchronisation between for
example these two. Because of that temporality, we shall — in the domain model — “stack”
all s (initialisations and updates) to the ual s () such that all such s are remembered and with
a time-stamp of their occurrence.

Likewise most other account components will be time-stamped and past component values
kept, likewise time-stamped.

Summary:

We shall subsequently repeat and expand on the above while making it more precise and
while also providing an emerging formal specification of a domain model.

Before we do so we will, however, summarise the above:

• There are s, k:K, and s may have more than one , and s are identified, c:C.

• With each there is a . The lists the , including all the that shall govern the handling
of any “against” the .

• are either client initiated such as , , , , s, etc., or are bank initiated such as interest s,
s, s, issuance of requested regular s, etc.

• are expected handled within a certain time-interval — which may be “now” or later.
For simplicity we treat all as red (till now or later!).

• So there are requests and processing. The latter corresponds to the actual, possibly
piecemeal, handling of requests.

• And there are . This term — which is also a computing science and software engineering
term — has here a purely banking connotation.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 49

• And there are commands. The actual handling of a is decribed by means of a program
in a hypothetical , BaPL. Programs in BaPL are commands, and commands may be
composite and consist of other commands !

• So please keep the five concepts separate: Transaction requests, transaction processing,
statements, routines and commands. Their relations are simple: Transaction requests
lead to the eventual execution of one or more routines, each as described by means of
commands. The excution of transaction request related routines constitute the trans-
action (ie. the transaction processing). One kind of transaction request may be that of
“printing” a client account statement.

We have given a normative overview of the structure and the logic of some base operations
of typical banks.

That is: We have mentioned a number of important bank state components and hinted at
their inter-relation. But we have not detailed what actions actually occur when a transaction
is “executed”: what specific arithmetic is performed on account balances, what specific logic
applies to conditional actions on account components, etc.

We shy away from this as it is normally not a normative property, but highly specialised:
differs from bank to bank, from account to account, etc. These arithmetics and logics are
properties of instantiated banks and accounts. With repect to the latter the arithmetic and
logic transpire from the bank rules & regulations.

Modelling

The essence of the above analysis is the notion of deferred action. The consequence of this
modelling decision is twofold: (i) First we are able to separate the possibly human (inter)action
between clients and tellers, or between clients and ‘automatic teller machines’ (ATMs) from
the actual “backroom” (action) processing; (ii) and then we are able to abstract this latter
considerably wrt. for example the not so abstract model we shall later give of bank accounts.

There are client, k:K, account identifiers, c:C, accounts a:A, and transactions, tr:Trans.
And there is the repository r:R. The repository contains for different time intervals (t,t′)
[where t may be equal to t′] and for different client account identifiers zero, one or more
“deferred” transactions (to be executed).

Each transaction is modelled as a pair: a transaction routine name, rn:Rn, and a list of
arguments (values) to be processed by the routine.

We assume that (for example) client accounts, a:A, contain routine descriptions (scripts).

type

K, C, A
B = ({} →m (K →m C-set))⋃

({} →m (C →m A))⋃
({} →m R)⋃
({conditions} →m (C →m (Rn →m Routine-set)))

R = (T × T) →m Jobs
Jobs = C →m Trans-set
Trans == mk Trans(rn:Rn,vl:VAL∗)
Routine = /∗ BaPL Program ∗/

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

50 January 28, 2010 Dines Bjørner

Client Transactions: A client may issue a transaction, tr:Trans, w.r.t. to an account,
c:C, and at time t:T. Honouring that request for a transaction the banking system defers the
transaction by repositing it for execution in the (instantaneous) time interval (t,t). The client
may already, for some reason or another, have a set of such reposited transactions.

Insert One Transaction:

value

client: C × Trans → T → B → B
client(c,trans)(t)(b) ≡ insert([(t,t) 7→ [c 7→ {trans}]])(b)

We can safely assume that no two identical:

[(t,t) 7→ [c 7→ tsk]]

can be submitted to the bank since time passes for every one client or bank transaction.

Insertion of Arbitrary Number of Transactions: You may wish to skip the next two
function definitions. They show that one can indeed express the insertion and merge of
deferred transactions into the bank repository.

value

insert: R
∼

→ B
∼

→ B
insert(r)(β) ≡

if r = []
then beta
else

let r′ = β(), (t,t′):(T×T) • (t,t′) ∈ dom r in

let r′′ =
if (t,t′) ∈ dom r′

then

let bjobs = r′(t,t′), cjobs = r(t,t′) in

r′ † [(t,t′) 7→ merge(bjobs,cjobs)] end

else

r′ ∪ [(t,t′) 7→ cjobs] end

insert(r \ {(t,t′)})(β † [7→ r′])
end end end

Merge of Jobs: Client Transactions:

value

merge: Jobs × Jobs
∼

→ Jobs
merge(bjobs,cjobs) ≡

if cjobs=[]
then bjobs
else

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 51

let c:C • c ∈ dom cjobs in

let jobs =
if c ∈ dom bjobs

then [c 7→ cjobs(c) ∪ bjobs(c)]
else [c 7→ cjobs(c)] end in

merge(bjobs † jobs,cjobs \ {c}) end end

end

The Banking Cycle: The bank at any time t:T investigates whether a transaction is
(“defer”) scheduled [ie. “deferred” for handling] at, or around, that time. If not, nothing
happens — and the bank is expected to repeat this investigation at the next time click ! If
there is a transaction, tr:Trans, then it is fetched from the repository together with the time
interval (t′,t′′) for which it was scheduled and the identity, c:C, of the client account. (c may
be the identity of an account of the bank itself!)

value

bank: B → T
∼

→ B
bank(β)(t) ≡

if β() = [] then β else

if is ready Task(β)(t)
then

let (((t′,t′′),c,mk Task(rn,al)),β′) = sel rmv Task(β)(t) in

let rout:Routine • rout ∈ ((β′(conditions))(c))(rn) in

let (β′,r) = E(c,rout)(al)(t,t′,t′′)(β′) in

bank(insert(r)(β′′))(t) end end end

else

let t′′′:T • t′′′ = t + ∆τ in bank(β)(t′′′) end

end end

E: C × Routine
∼

→ VAL∗ ∼

→ (T×T×T)
∼

→ B
∼

→ B × R

The expression ∆ τ yields a minimal time step value.

Auxiliary Repository Inspection Functions:

value

is ready Task: B → T
∼

→ Bool

is ready Task(β)(t) ≡
∃ (t′,t′′):T×T • (t′,t′′) ∈ dom β() ∧ t′ ≤ t ∧ t ≤ t′′

sel rmv Task: B → T
∼

→ (((T×T) × C × Task) × B)
sel rmv Task(β)(t) ≡

let r = β() in

let (t′,t′′):T×T • (t′,t′′) ∈ dom r ∧ t′ ≤ t ∧ t ≤ t′′ in
let jobs = r(t′,t′′) in

let c:C • c ∈ dom jobs in

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

52 January 28, 2010 Dines Bjørner

let tasks = jobs(c) in

let task:Task • task ∈ tasks in

let jobs′ = if tasks\{task} = {}
then jobs\{c} else jobs † [c 7→ tasks\{task}] end in

let r′ = if jobs′ = []
then r\{(t′,t′′)} else r † [(t′,t′′) 7→ jobs′] end in

(((t′,t′′),c,task),β † [7→ r′])
end end end end end end end end

• Performing the execution as prescribed by the transaction, tr:Trans, besides a changed
bank — except for “new” deferred transactions — results in zero, one or more new
deferred transactions, trs.

• These are inserted in the bank repository.

• And the bank is expected to “re-cycle”: ie. to search for, ie. select new, pending trans-
actions “at that time”!

• That is: the bank is expected to handle, ie. execute all its deferred transactions before
advancing the clock!

Merging the Client and the Bank Cycles:

• On one hand clients keep coming and going: submitting transactions at irregular, un-
predictable times.

• On the other hand the bank keeps inspecting its repository for “outstanding” tasks.

• These two “processes” intertwine.

• The client step function extends the client function.

• The bank step function “rewrites” the (former) bank function:

value

cycle: B
∼

→ B
cycle(β) ≡ let β′ = client step(β) ⌈⌉ bank step(β) in cycle(β′) end

client step: B
∼

→ B
client step(β) ≡

let (c,tr) = client ch?, t = clock ch? in client(c,tr)(t)(β) end

bank step: B
∼

→ B
bank(β) ≡

if β() = []
then β
else

let t = clock ch? in

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 53

if is ready Task(β)(t)
then

let (((t′,t′′),c,mk Task(rn,al)),β′) = sel rmv Task(β)(t) in

let rout:Routine • rout ∈ ((β′(conditions))(c))(rn) in

let (β′,r) = E(c,rout)(al)(t,t′,t′′)(β′) in

insert(r)(β′′) end end end

else β end

end end

• The cycle function (internal choice) non–deterministically chooses between either a
client step or a bank step.

• The client step inputs a transaction at time t from some client.

• This is modelled by a channel communication.

• Both the client and the bank steps “gets to know what time it is” from the system
clock.

A.4 Securities Trading

A.4.1 “What is a Securities Industry ?”

In line with our approach, we again ask a question — see the section title line just above!
And we give a synopsis answer.

Synopsis

The securities industry consists of:

• the following components:

⋆ one or more stock exchanges,

⋆ one or more commodities exchanges,

⋆ &c.

⋆ one or more brokers,

⋆ one or more traders,

⋆ &c.

⋆ and associated regulatory agencies,

• together with all their:

⋆ stake-holders,

⋆ states,

⋆ events that may and do occur,

⋆ actions (operations) that change or predicates that inspect these states,

⋆ intra and inter behaviours and

⋆ properties of the above!

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

54 January 28, 2010 Dines Bjørner

A Stock Exchange “Grand” State

• Domain-wise we will just model a simple stock exchange — and from that model “derive”
domain models of simple brokers and traders.

• Technically we model the “grand” state space as a sort, and name a few additional sorts
whose values are observable in states.

• To help your intuition we “suggest” some concrete types for all sorts, but they are only
suggestions.

type

S, O, T, Q, P, R
SE = (Buy × Sell) × ClRm
Buy, Sell = S →m Ofrs
Ofrs = O →m Ofr !
Ofr = (T×T) →m (Q × (lo:P×hi:P) × ...)
ClRm = O →m Clrd | Rmvd
Clrd = S × P × T × Ofrs × Ofrs
Rmvd = S × T × O × Ofr
Market = T → SE

Sell

Buy

.....

.....

many buy

few sell offers

many sell

few buy offers

The ... low - high ... price ranges

for several buy, resp. sell offers

of one particular stock

Figure A.5: A “Snapshot” Stock Exchange View of Current Offers of a Single Stock

• The main (state) components of a stock exchange — reflecting, as it were, ‘the market’
— are the current state of stocks offered

⋆ ie. placed)

⋆ for buying Buy,

⋆ respectively selling Sell,

⋆ and a summary of those cleared (that is bought & sold)

⋆ and those removed.

• The placement of an offer of a stock, s:S, results, r:R, in the offer being marked by a
unique offer identification, o:O.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 55

• The offer otherwise is associated with information about the time interval, (bt,et):T×T,
during which the offer is valid — an offer that has not been cleared during that time
interval is to be removed from buy or sell status, or it can be withdrawn by the placing
broker — the quantity offered and the low to high price range of the offer. (There may
be other information (. . .).)

Observers and State Structure

• Having defined abstract types (ie. sorts) we must now define a number of observers.
Which one we define we find out, successively, as we later sketch signatures of functions
as well as sketching their definition.

• As we do the latter we discover that it would “come in handy” if one had “such and
such an observer”!

• Given the suggested concrete types for the correspondingly named abstract ones we can
also postulate any larger number of observers — most of which it turns out we will
(rather: up to this moment has) not had a need for!

value

obs Buy: SE → Buy, obs Sell: SE → Sell,
obs ClRm: SE → ClRm
obs Ss: (Buy|Sell) → S-set

obs Ofrs: S × (Buy|Sell)
∼

→ Ofrs
obs Q: Ofr → Q
obs Qs: Ofrs → Q
obs lohi: Ofr → P×P
obs TT: Ofr → T×T
obs O: R → O
obs OK: R → {ok|nok}

Main State Generator Signatures

The following three generators seems to be the major ones:

• place: expresses the placement of either a buy or a sell offer, by a broker for a quantity
of stocks to be bought or sold at some price suggested by some guiding price interval
(lo,hi), such that the offer is valid in some time (bt,et) interval.10

value

place: {buy|sell}×B×Q×S×(lo:P×hi:P)×(bt:T×et:T)×... → SE
∼

→ SE × R

10We shall [probably] understand the buy (lo,hi) interval as indicating: buy as low as possible, do not buy
at a pricer higher than hi, but you may buy when it is lo or as soon after it goes below lo. Similarly for sell
(lo,hi): sell as high as possible, do not sell at a pricer lower than lo, but you may sell when it is hi or as soon
after it goes above hi; the place action is expected to return a response which includes giving a unique offer
identification o:O.

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

56 January 28, 2010 Dines Bjørner

• wthdrw: expresses the withdrawal of an offer o:O (by a broker who has the offer identi-
fication).

• next: expresses a state transition — afforded just by inspecting the state and effecting
either of two kinds of state changes or none!

value

wthdrw: O × T → SE
∼

→ SE × R
next: T × SE → SE

A Next State Function

• At any time, but time is a “hidden state” component,

• the stock exchange either clears (fclr) a batch of stocks —

• if some can be cleared (pclr) —

• or removes (frmv) elapsed (prmv) offers,

• or does nothing!

value

next: T × SE → SE
next(t,se) ≡

if pclr(t,se)
then fclr(t,se)
else

if prmv(t,se)
then frmv(t,se)
else se

end end

pclr: T × SE → Bool, fclr: T × SE → SE
prm: T × SE → Bool, frm: T × SE → SE

Next State Auxiliary Predicates

• A batch (bs,ss) of (buy, sell) offered stocks of one specific kind(s) can be cleared if a
price (p) can be arrived at,

• one that satisfies the low to high interval buy, respectively sell criterion —

• and such that the batch quantities of buy, resp. sell offers

• either are equal or their difference is such that the stock exchange is itself willing to
place a buy,

• respectively a sell offer for the difference.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 57

value

pclr(t,se) ≡ ∃ s:S,ss:Ofrs,bs:Ofrs,p:P • aplcr(s,ss,bs,p)(t,se)

apclr: S×Ofrs×Ofrs×P → T×SE → Bool

apclr(s,bs,ss,p)(t,se) ≡
let buy = obs Buy(se), sell = obs Sell(se) in

s ∈ obs Ss(buy) ∩ obs Ss(sell)
∧ bs ⊆ obs Ofrs(s,buy) ∧ ss ⊆ obs Ofrs(s,sell)
∧ buysell(p,bs,ss)(t)
∧ let (bq,sq) = (obs Qs(bs),obs Qs(ss)) in

acceptable difference(bq,sq,s,se) end end

buysell: P×Ofrs×Ofrs → T → Bool

buysell(p,bs,ss)(t) ≡
∀ ofr:Ofr • ofr ∈ bs ⇒

let (lo,hi) = obs lohi(ofr) in p ≤ hi end

let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

∧ ∀ ofr:Ofr • ofr ∈ ss ⇒
let (lo,hi) = obs lohi(ofr) in p ≥ lo end

let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

Next State Auxiliary Function

• We describe the result of a clearing of buy, respectively sell offered stocks by the prop-
erties of the stock exchange before and after the clearing.

• Before the clearing the stock exchange must have suitable batches of buy (bs), re-
spectively sell (ss) offered stocks (of identity s) for which a common price (p) can be
negotiated (apclr).

• After the clearing the stock exchange will “be in a different state”.

• We choose to characterise here this “different state” buy first expressing that the cleared
stocks must be removed as offers (rm Ofrs).

• If the buy batch contained more stocks for offer than the sell batch then the stock
exchange becomes a trader and places a new buy offer in order to make up for the
difference.

• Similarly if there were more sell stocks than buy stocks. A

• t the same time the clearing is recorded (updClRm).

fclr(t,se) as se′

pre pclr(t,se)
post

let s:S,bs:Ofrs,ss:Ofrs,p:P•apclr(s,ss,bs,p)(t,se) in

let (bq,sq) = (obs Qs(bs),obs Qs(ss)),

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

58 January 28, 2010 Dines Bjørner

buy = obs Buy(se), sell = obs Sell(se) in

let buy′ = rm Ofrs(s,bs,buy), sell′ = rm Ofrs(s,ss,sell) in

obs Buy(se′) = if bq > sq
then updbs(buy′,s,bq−sq,tt buy(s,bq−sq)(t,se))
else buy′ end ∧

obs Sell(se′) = if bq < sq
then updss(sell′,s,sq−bq,tt sell(s,bq−sq)(t,se))
else sell′ end ∧

let clrm = obs ClRm(se) in

obs ClRm(se′) = updClRm(s,p,t,bs,ss,clrm) end

end end end

Many comments can be attached to the above predicate for clearability, respectively the
clearing function:

• First we must recall that we are trying to model the domain.

• That is: we can not present too concrete a model of stock exchanges, neither what
concerns its components, nor what concerns its actions.

• The condition, ie. the predicate for clearable batches of buy and sell stocks must nec-
essarily be loosely defined — as many such batches can be found, and as the “final
clinch”, ie. the selection of exactly which batches are cleared and their (common) prices
is a matter for “negotiation on the floor”.

• We express this looseness in several ways:

⋆ the batches are any subsets of those which could be cleared such that any possible
difference in their two batch quantites is acceptable for the stock exchange itself
to take the risk of obtaining a now guaranteed price (and if not, to take the loss
— or profit!);

⋆ the batch price should satisfy the lower/upper bound (buysell) criterion, and it is
again loosely specified;

⋆ and finally: Which stock (s) is selected, and that only exactly one stock is selected,
again expresses some looseness, but does not prevent another stock (s 6=s′) from
being selected in a next “transition”.

• There is no guarantee that the stock s buy and sell batches bs and ss and at the price
p for which the clearable condition pclr holds, is also exactly the ones chosen — by
apclr — for clearing (fclr), but that only could be said to reflect the “fickleness” of the
“market”!

• Time was not a parameter in the clearing part of the next function.

• It is assumed that whatever the time is all stocks offered have valid time intervals that
“surround” this time, ie. the current time is in their intervals.

• Then we must recall that we are modelling a number of stake-holder perspectives:

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 59

⋆ buyers and sellers of stocks,

⋆ their brokers and traders,

⋆ the stock exchange and the securities commission.

• In the present model there is no clear expression, for example in the form of distinct
formulas (distinct functions or lines) that reflect the concerns of precisely one subset of
these stake-holders as contrasted with other formulas which then reflect the concerns of
a therefrom distinct other subset of stake-holders.

• Now we have, at least, some overall “feel” for the domain of a stock exchange.

• We can now rewrite the formulas so as to reflect distinct sets of stake-holder concerns.
We presently leave that as an exercise!

Auxiliary Generator Functions

value

rm Ofrs: S × Ofrs × (Buy|Sell)
∼

→ (Buy|Sell)
rm Ofrs(s,os,busl) as busl′

pre s ∈ obs Ss(busl) ∧ subseteq(os,obs Ofrs(s,busl))
post if s ∈ obs Ss(busl) then ∼∃ ... else ... end

A.4.2 Discussion

• We have detailed two “narrow” aspects of a financial industry: How banks may choose
to process client (and own) transactions, and how securities are traded.

• The former model is chosen so as to reflect all possibilities as they may occur in the
domain, ie. in actual situations.

• The latter model is sufficiently “loose” to allow a widest range of interpretations, yet it
is also sufficiently precise in that it casts light on key aspects of securities trading.

• In this section of the talk we have not shown, as we did in several other sections, how
the two infrastructure stake–holders: Banks and securities traders interact.

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

60 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Appendix B

Tetsuo Tamai’s Paper

For private, limited circulation only, I take the liberty of enclosing Tetsuo Tamai’s IEEE
Computer Journal paper.

57

58 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 59

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

60 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 61

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

62 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 63

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

64 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 65

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

66 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Appendix C

Tokyo Stock Exchange arrowhead

Announcements

C.1 Change of trading rules

67

68 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 69

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

70 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 71

C.2 Points to note when placing orders

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

72 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 73

January 28, 2010, 00:00, A Financial Services Industry c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark

74 January 28, 2010 Dines Bjørner

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

