
68 Towards a Theory of Domain Descriptions

5 Discovering Domain Entities 219

Section 2 briefly characterised, informally and also a bit more formally, what we mean
by a domain. Section 3 informally and systematically characterised the four categories of
entities: parts, actions, events and behaviours. Section 4 more-or-less “repeated” Sect. 3’s
material but by now giving more terse narratives (that is, informal descriptions) and, for
the fist time, also formalisations. Section 4 did not hint at how one discovers domain parts
(i.e., their types), actions, events and behaviours. In this section we try unravel a set of
techniques and tools — so-called ‘discoverers’ and ‘analysers’ — using which the domain
describer (scientist and/or engineer) can more-or-less systematically discover, analyse and
describe a domain, informally and formally.

5.1 Preliminaries 220

Before we present the discoverers and analysers we need establish some concepts.

5.1.1 Part Signatures 221

Let us consider a part p : P . Let p : P , by definition, be the principal part of a domain.
Now we need to identify (i) the type, P, of that part; (ii) the types, S1, . . . , Sm, of its proper
sub-parts (if p is composite); (iii) the type, PI, of its unique identifier; (iv) the possible
types, MI1, . . . , MIn, of its mereology; and (v) the types, A1, . . . , Ao, of its attributes.
We shall name that cluster of type identifications the part signature. We refer to P as
identifying the part signature. Each of the Si (for i : {1..m}) identifies sub-parts and hence
sub-part, i.e., part signatures.222

Example 41 (Net Domain and Sub-domain Part Signatures) The part signature of the
hubs and the links are here chosen to be those of(i) the (root) net type, N, (ii) the (sub-
domain) set of hubs type Hs, (ii) the (sub-domain) set of links type Ls and (v) the type
of net attributes Net name, Net owner, etc. The part signatures Hs and Ls are (ii) Hs =
H-set, H (iii,iv) HI, LI-set (v) Hub Nm, Location, HΣ, HΩ, ... (ii) Ls = L-set, L (iii,iv) LI,
HI-set (v) Link Nm, LΣ, LΩ, LEN, etc. •

5.1.2 Domain Indices 223

By a domain index we mean a list of part type names that identify a sequence of part
signatures. More specifically The domain ∆ has index 〈∆〉. The sub-domains of ∆, with
part types A, B, ..., C, has indices 〈∆,A〉, 〈∆,B〉, . . . , 〈∆,C〉. The sub-domains of sub-
domain with index ℓ and with part types A, B, ..., C has indices ℓ̂〈A〉, ℓ̂〈B〉, . . . , ℓ̂〈C〉.

224

Example 42 (Indices of a Road Pricing Domain) We refer to the the Road-pricing Trans-

port Domain, cf. Example 36 on page 56.

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 69

The sub-domain indices of the road-pricing transport domain, ∆, are: 〈∆〉, 〈∆,N〉,
〈∆,F〉, 〈∆,M〉, 〈∆,N,Vs〉, 〈∆,N,Ls〉, 〈∆,N,H〉, 〈∆,N,L〉 and 〈∆,F,V〉. •

5.1.3 Inherited Domain Signatures 225

Let 〈∆,A,B,C,D〉 be some domain index. Then 〈∆,A,B,C〉 〈∆,A,B〉 〈∆,A〉 〈∆〉 are the
inherited domain indices of 〈∆,A,B,C,D〉.

5.1.4 Domain and Sub-domain Categories 226

By the domain category of the domain indexed by ℓ̂〈D〉 we shall mean the domain signa-
ture of D, and the action, event and behaviour definitions whose signatures involves just
the types given in the domain signature of D or in inherited domain signatures. 227

Example 43 (The Road-pricing Domain Category) The road-pricing domain category
consist of the types N, F and M, the create Net create Fleet and create M actions, and
corresponding Net, Fleet and M behaviours •

228

By a sub-domain category, of index ℓ, we shall mean the sub-domain types of the sub-
domain designated by index ℓ, and the actions, events and behaviours whose signatures
involves just the types of the ℓ indexed sub-domain or of any prefix of ℓ indexed sub-domain
or of the root domain. 229

Example 44 (A Hub Category of a Road-pricing Transport Domain) The ancestor sub-
domain types of the hub sub-domain are: HS, N and ∆. The hub category thus includes
the part (etc.) types H, HI, ..., the insert Hub and the delete Hub actions, perhaps some
saturated hub (and/or other) event(s), but probably no hub behaviour as it would involve
at least the type LI which is not in an ancestor sub-domain of the Hub sub-domain. •

5.1.5 Simple and Compound Indexes 230

By a simple index we mean a domain or a sub-domain index. By a compound index
we mean a set of two or more distinct indices of a domain ∆. Compound indices, cidx :
{ℓi, ℓj, . . . , ℓk}, designate parts, actions, events and behaviours each of whose types and
signatures involve types defined by all of the simple indexes of cidx.

Example 45 (Compound Indices of the Road-pricing System) We show just one com-
pound index: {〈∆,N,HS,H〉,〈∆,N,LS,L〉}. •

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

70 Towards a Theory of Domain Descriptions

5.1.6 Simple and Compound Domain Categories 231

By a simple domain category we shall mean any ℓ-indexed [sub-]domain category. By the
compound domain category of compound index cidx : {ℓi, ℓj, . . . , ℓk}, we shall mean the set
of types, actions, events and behaviours as induced by compound index cidx, that is, parts,
actions, events and behaviours each of whose types and signatures involve types defined
by all of the simple indexes of cidx. 232

Example 46 (The Compound Domain Category of Hubs and Links) The compound do-
main category designated by {〈∆,N,HS,H〉,〈∆,N,LS,L〉} includes:

type
HIs = HI-set

axiom ∀ his:HIs•cardhis=2
LIs = LI-set
HΣ = (LI×LI)-set
LΣ = (HI×HI)-set
HΩ = HΣ-set
LΩ = LΣ-set

value

mereo L: L → HIs,
mereo H: H → LIs
attr HΣ: H → HΣ
attr LΣ: L → LΣ
attr HΩ: H → HΩ
attr LΩ: L → LΩ

axiom
∀ h:H•attr HΣ(h)⊆attr HΩ(h)
∀ l:L•attr LΣ(l)⊆attr LΩ(l)

•

5.1.7 Examples 233

We repeat some examples, but now “formalised”.

Example 47 (The Root Domain Category) We start at the root, ∆, of the Road Pricing
Domain. See Fig. 13.

∆

< >∆

Figure 13: The 〈∆〉 Root

At the root we ‘discover’ the net, fleet and road pricing monitor. See Fig. 14 on the
facing page.234

235 When observing the very essence of the road pricing domain “at the 〈∆〉 level” one
observes:

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 71

N F M

∆ ∆

∆

New indices: {< ,N>,< ,F>,< ,M>}∆

Figure 14: Exploring the root index 〈∆〉 Index

type
N, F, M

value
obs N: ∆ → N
obs F: ∆ → F
obs M: ∆ → M
attr ...: ∆ → ...

where ... stands for types of road pricing domain attributes.
•

236

Example 48 (The Net Domain Category) We then proceed to explore the domain at
index 〈∆,N〉. See Fig. 15.

F M

Hs Ls ∆ ∆

∆

N

New indices: {< ,N,Hs>,< ,N,Ls>}

Figure 15: Exploring the 〈∆,N〉 Index
237

When observing the very essence of the Net domain, “at the 〈∆, N〉 level” one observes:

type
Hs = H-set
Ls = L-set
H
L
...

value
obs Hs: N → Hs
obs Ls: N → Ls
attr Hs: Hs → ...

attr Ls: Ls → ...

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

72 Towards a Theory of Domain Descriptions

where ... stand for attributes of the Hs and the Ls parts of N.
•

238

Example 49 (The Fleet Domain Category) We then proceed to explore the domain at
index 〈∆,F〉. See Fig. 16.

N

Hs Ls Vs New index: < ,F,Vs>∆

∆

F

Figure 16: Exploring the 〈∆,F〉 Index

239

When observing the very essence of the Fleet domain, “at the 〈∆, F〉 level” one observes:

type
Vs = V-set
V
...

value
obs Vs: F → Vs
attr ... Vs → ...

where ... stand for attributes that we may wish to associate with Fleets of vehicles.
•

240

Example 50 (The Hub Domain Category) We now switch “back” to explore the domain
at index 〈∆,N,Hs〉. See Fig. 17 on the next page.241

When observing the very essence of the Fleet domain, “at the 〈∆, N,Hs,H〉 level” one
observes:

type
HI
...

value
uid HI: H → HI
attr ...: H → ...

where ... stand for LOCation, etc.
•

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 73

F M

Ls

H New index: < ,N,Hs,H>∆

∆

N

Hs

Figure 17: Exploring the 〈∆, N,Hs,H〉 Index

N F M

Hs Ls

H H

New index: < ,N,Ls,L>∆

∆

Figure 18: Exloring the 〈∆, N,Ls,L〉 Index

242

Example 51 (The Link Domain Category) Next we explore the link domain. See Fig. 18.243

When observing the very essence of the Fleet domain, “at the 〈∆, N,Ls,L〉 level” one
observes:

type
LI
...

value
uid LI: L → LI
attr ...: L → ...

where ... stand for LOCation, LENgth, etc.
•

244

Example 52 (The Compound Hub and Link Domain Category) We next explore a com-
pound domain. See Fig. 19 on the next page. 245

When observing the very essence of the Fleet domain, at the {〈∆, N,Hs,H〉, 〈∆, N,Ls,L〉}
level one observes:

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

74 Towards a Theory of Domain Descriptions

F M

Exploring composite index:

∆

N

Hs Ls

H L
{< ,N,Hs,H>,< ,N,Ls,L>}∆∆

Figure 19: Exploring composite index {〈∆, N,Hs,H〉, 〈N,Ls,L〉}

type
HΣ = (LI×LI)-set, HΩ = HΣ-set,
LΣ = (HI×HI)-set, LΩ = LΣ-set

value
attr HΣ: H → HΣ, attr HΩ: H → HΩ
attr LΣ: L → LΣ, attr LΩ: L → LΩ
mereo L: L → HI-set axiom ∀ l:L:card mereo L(l)=2
mereo H: H → LI-set (= LI-set)

remove H: HI → N
∼
→ N

insert L: L → N
∼
→ N

remove L: LI → N
∼
→ N

...

axiom
∀ hσ:HΣ ..., ∀ hω:HΩ ...

∀ lσ:HΣ ..., ∀ lω:HΩ ...

•

5.1.8 Discussion 246

The previous examples (47–52), especially the last one (52), illustrates the complexity of
a domain category; from just observing sub-part types and attributes (as in Examples 47–
49), Example 52 observations grow to intricate mereologies etcetera. The ‘discoverers’
that we shall propose aim at structuring the discovery process by focusing, in turn, on part
sorts, concrete part types, unique identifier types of parts, part mereology, part attributes,
action signatures, event signatures, etc.

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 75

5.2 Proposed Type and Signature ‘Discoverers’ 247

By a ‘domain discoverer’ we shall understand a tool and a set of principles and techniques
for using this tool in the discovery of the entities of a domain.

In this section we shall put forward a set of type and signature discoverers. Each
discoverer is indexed by a simple or a compound domain index. And each discoverer is
dedicated to some aspect of some entities. Together the proposed discoverers should cover
the most salient aspects of domains. Our presentation of type and signature discoverer
does not claim to help analyse “all” of a domain. 248

We need formally define what an index is.

type
Index = Smpl Idx | Cmpd Idx
Smpl Idx = {| 〈∆〉̂idx | idx:Type Name∗ |}
Cmpd Idx′ = Smpl Idx-set
Cmpd Idx = {| sis:Cmpd Idx′

• wf Cmpd Idx(sis) |}
value

wf Cmpd Idx: Cmpd Idx′ → Bool
wf Cmpd Idx(sis) ≡ ∀ si,si′:Smpl Idx • {si,si′}⊆sis ∧ si6=si′

DISCOVERER KIND: Index → Text
DISCOVER KIND(ℓ̂〈t〉) as text

pre: ℓ̂〈t〉 is a valid index beginning with ∆
post: text is some, in our case, RSL text

The idea of the ℓ̂〈t〉 index is that it identifies a sub-domain, t, of ∆ where DISCOVERER- 249

KIND is any of the several different “kinds” of domain forms:

[90 (Page 76)] PART SORTS,

[91 (Page 77)] HAS A CONCRETE TYPE,

[92 (Page 78)] PART TYPES,

[93 (Page 79)] UNIQUE ID,

[96 (Page 79)] MEREOLOGY,

[98 (Page 80)] ATTRIBUTES,

[100 (Page 82)] ACTION SIGNATURES,

[101 (Page 83)] EVENT SIGNATURES and

[103 (Page 84)] BEHAVIOUR SIGNATURES.

In a domain analysis (i.e., discovery) the domain description emerges “bit-by-bit”. Initially
types are discovered and hence texts which define unique identifier types and functions,
mereology types and functions, and attribute types and functions. Then the signatures of
actions, events and behaviours.

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

76 Towards a Theory of Domain Descriptions

You may consider these “piece-wise” texts as being “added” to a (hence) growing
reservoir of (RSL) texts with this reservoir being continually inspected by the domain
analyser.

5.2.1 Analysing Domain Parts 250

The two most important aspects of an algebra are those of its parts and its operations.
Rather than identifying, that is, discovering or analysing individual parts we focus on
discovering their types — initially by defining these as sorts. And rather than focusing on
defining what the operations achieve we concentrate on the signature, i.e., the types of the
operations.251

It (therefore) seems wise to start with the discovery of parts, and hence of their types.
Part types are present in the signatures of all actions, events and behaviours. When observ-
ing part types we also observe a variety of part type analysers: possible unique identities
of parts, the possible mereologies of composite parts, and the types of the attributes of
these parts.

252

Domain Part Sorts and Their Observers Initially we “discover” parts — by deciding
upon their types, in the form, first of sorts, subsequently and possibly in the form of
concrete types.

A Domain Sort Discoverer:253

90. A part type discoverer applies to a simply indexed domain, index, and yields

a a set of type names

b each paired with a part (sort) observer.

value

90. PART SORTS: Index
∼
→ Text

90. PART SORTS(ℓ̂〈T〉):
90a. tns:{T1,T2,...,Tm}:TN-set ×
90b. { obs Tj : T → Tj | Tj :tns}

254

Example 53 (Some Part Sort Discoveries) We apply a concrete version of the above
sort discoverer to the road-pricing transport domain ∆:

PART SORTS(〈∆〉):
type

N, F, M
value

obs N: ∆ → N
obs F: ∆ → F

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 77

obs M: ∆ → M

PART SORTS(〈∆,N〉):
type

Hs, Ls
value

obs Hs: N → Hs
obs Ls: N → Ls

PART SORTS(〈∆,F〉):
type

Vs
value

obs Cs: F → Vs

•

255

Domain Part Types and Their Observers

Do a Sort Have a Concrete Type ? Sometimes we find it expedient to endow a
“discovered” sort with a concrete type expression, that is, “turn” a sort definition into a
concrete type definition.

91. Thus we introduce the “discoverer”:

91 HAS A CONCRETE TYPE: Index → Bool
91 HAS A CONCRETE TYPE(ℓ̂〈t〉):true|false

256

Example 54 (Some Type Definition Discoveries) We exemplify two true expressions:

HAS A CONCRETE TYPE(〈∆,N,Hs〉)
HAS A CONCRETE TYPE(〈∆,N,Ls〉)
∼ HAS A CONCRETE TYPE(〈∆,N,Hs,H〉)
∼ HAS A CONCRETE TYPE(〈∆,N,Ls,L〉)

•

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

78 Towards a Theory of Domain Descriptions

A Domain Part Type Observer: The PART TYPES(ℓ̂〈t〉) invocation yields one or 257

more sort definitions of part types together with their observer functions. The domain
analyser can decide that some parts can be immediately analysed into concrete types.
Thus, together with yielding a type name, the PART TYPES can be expected to yield
also a type definition, that is, a type expression (paired with the type name). Not all type
expressions make sense. We suggest that only some make sense. 258

92. The PART TYPES discoverer applies to a composite type, t, and yields

a a type definition, T = TE,

b together with the sort and/or type definitions of so far undefined type names of
TE.

c The PART TYPES discoverer is not defined if the designated sort is judged to
not warrant a concrete type definition.

92. PART TYPES: Index
∼
→ Text

92. PART TYPES(ℓ̂〈t〉):
92a. type t = te,
92b. T1 or T1 = TE1

92b. T2 or T2 = TE2

92b. ...

92b. Tn or Tn = TEn

92c. pre: HAS A CONCRETE TYPE(ℓ̂〈t〉)

259

Example 55 (Some Part Type Discoveries) We exemplify two discoveries:

PART TYPES(〈∆,N,Hs〉):
type

H
Hs = H-set

PART TYPES(〈∆,N,Ls〉):
type

L
Ls = L-set

PART TYPES(〈∆,F〉):
type

V
Vs = V-set

•

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 79

Concrete Part Types: In Example 55 on the facing page we illustrated one kind of260

concrete part type: sets. Practice shows that sorts often can be analysed into sets. Other
analyses of part sorts are Cartesians, list, and simple maps:

90b. te: tn1 × tn2 × ... × tnm
90b. te: tn∗

90b. te: Token →m tn

where tn’s are part type – usually sort – names some of which may have already been
defined, and where Token is some simple atomic (non-part) type.

261

Part Type Analysers There are three kinds of analysers: unique identity analysers, mere-

ology analysers and general attribute analysers. and

Unique Identity Analysers: We associate with every part type T, a unique identity 262

type TI.

93. So, for every part type T we postulate a unique identity analyser function uid TI.

value
93. UNIQUE ID: Index → Text
93. UNIQUE ID(ℓ̂〈T〉):
93. type
93. TI
93. value
93. uid TI: T → TI

Mereology Analysers: We remind the reader of Sects. 3.1.6 on page 32. Given a 263

part, p, of type T , the mereology, MEREOLOGY, of that part is the set of all the unique
identifiers of the other parts to which part p is partship-related as “revealed” by the
mereo TIi functions applied to p.

94. Let types T1, T2, . . . , Tn be the types of all parts of a domain.

95. Let types TI1, TI2, . . . , TIn
29, be the types of the unique identifiers of all parts of

that domain.

96. The mereology analyser MEREOLOGY is a generic function which applies to an
index and yields the set of

a zero,

29We here assume that all parts have unique identifications.

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

80 Towards a Theory of Domain Descriptions

b one or

c more

mereology observers.
264

type
94. T = T1 | T2 | ... | Tn

95. Tidx = TI1 | TI2 | ... | TIn
96. MEREOLOGY: Index → Text
96. MEREOLOGY({ℓî〈Tj〉,...,ℓk̂〈Tl〉}):
96a. either: {}
96b. or: mereo TIx: T → (TIx|TIx-set)
96c. or: { mereo TIx: T → (TIx|TIx-set),
96c. mereo TIy: T → (TIy|TIy-set),
96c. ...,
96c. mereo TIz: T → (TIz|TIz-set) }

where none of TIx, TIy, . . . , TIz are equal to TI and each is some Tidx.

General Attribute Analysers: A general attribute analyser analyses parts beyond265

their unique identities and possible mereologies.

97. Part attributes have names. We consider these names to also abstractly name the
corresponding attribute types, that is, the names function both as attribute names
and sort names. Finally we allow attributes of two or more otherwise distinct part
types to be the same.

98. ATTRIBUTES applies to parts of any part type t and yields

99. the set of attribute observer functions attr at, one for each attribute sort at of t.
266

type
97. AT = AT1 | AT2 | ... | ATn

value
98. ATTRIBUTES: Index → Text
98. ATTRIBUTES(ℓ̂〈T〉):
99. type
99. AT1, AT2, ..., ATm

99. value
99. attr AT1: T → AT1

99. attr AT2: T → AT2

99. ...,
99. attr ATm: T → ATm, m≤n

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 81

267

Example 56 (Example Part Attributes) We exemplify attributes of composite and of
atomic parts:

ATTRIBUTES(〈∆〉):
type

Domain Name, ...

value
attr Name: ∆ → Domain Name
...

where Domain Name could include State Roads or Rail Net. etcetera. 268

ATTRIBUTES(〈∆,N〉):
type

Sub Domain Location, Sub Domain Owner, Kms, ...

value
attr Location: N → Sub Domain Location
attr Owner: N → Sub−Domain Owner
attr Length: N → Kms
...

where Sub Domain Location could include Denmark, Sub Domain Owner could include The

Danish Road Directorate30, respectively BaneDanmark31, etcetera. 269

ATTRIBUTES(〈∆,N,Hs,L〉):
type

LOC, LEN, ...

value
attr LOC: L → LOC
attr LEN: L → LEN
...

ATTRIBUTES({〈∆,N,Hs,L〉.〈∆,N,Hs,H〉}):
type

LΣ = HI-set, LΩ − LΣ-set
HΣ = LI-set, HΩ − HΣ-set

value
attr LΣ: L → LΣ

30http://www.vejdirektoratet.dk/roaddirectorate.asp?page=dept&objno=1024
31http://uk.bane.dk/default eng.asp?artikelID=931

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

82 Towards a Theory of Domain Descriptions

attr LΩ: L → LΩ
attr HΣ: H → HΣ
attr HΩ: H → HΩ

where LOC might reveal some Bezier curve32 representation of the possibly curved three
dimensional location of the link in question, LEN might designate length in meters, LΣ
[HΣ] designates the state of the link [hub], LΩ [HΩ] designates the space of all allowed
states of the link [hub], etcetera.

•

— Attribute Sort Exploration: Once the attribute sorts of a part type have been270

determined there remains to be “discovered” the concrete types of these sorts. We omit
treatment of this point in the present version of these these research notes.

5.2.2 Discovering Action Signatures 271

General We really should discover actions, but actually analyse function definitions. And
we focus, in these research notes, on just “discovering” the function signatures of these
actions. By a function signature, to repeat, we understand a functions name, say fct, and
a function type expression (te), say dte

∼
→rte where dte defines the type of the function’s

definition set and rte defines the type of the function’s image, or range set.

272

Function Signatures Usually Depend on Compound Domains We use the term ‘func-
tions’ to cover actions, events and behaviours.

We shall in general find that the signatures of actions, events and behaviours depend on
types of more than one domain. Hence the schematic index set {ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}
is used in all actions, events and behaviours discoverers.

273

The ACTION SIGNATURES Discoverer

100. The ACTION SIGNATURES meta-function applies to an index set and yields

a a set of action signatures each consisting of an action name and a pair of defi-
nition set and range type expressions where

b the type names that occur in these type expressions are defined by in the do-
mains indexed by the index set.

100 ACTION SIGNATURES: Index
∼
→ Text

100 ACTION SIGNATURES({ℓ1̂〈T1〉,ℓ2̂〈T2〉,...,ℓn̂〈Tn〉}):

100a act fcti: teid

∼
→ teir ,

100a act fctj : tejd

∼
→ tejr

,

32http://en.wikipedia.org/wiki/Bézier curve

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 83

100a ... ,

100a act fctk: tekd

∼
→ tekr

100b where:
100b type names in (te(i|j|...|k)d

) and in (te(i|j|...|k)r
) are

100b type names defined by the indices which are prefixes of
100b ℓm̂〈Tm〉 and where Tm is in some signature act fcti|j|...|k.

5.2.3 Discovering Event Signature 274

Events are from the point of view of signatures very much like actions.

101. The EVENT SIGNATURES meta-function applies to an index set and yields

a a set of action signatures each consisting of an action name and a pair of defi-
nition set and range type expressions where

b the type names that occur in these type expressions are defined either in the
domains indexed by the index set or by the environment (i.e., “outside” the
domain ∆).

275

101 EVENT SIGNATURES: Index
∼
→ Text

101 EVENT SIGNATURES({ℓ1̂〈T1〉,ℓ2̂〈T2〉,...,ℓn̂〈Tn〉}):
101a evt fcti: teid

∼
→ teir ,

101a evt fctj: tejd

∼
→ tejr

,
101a ... ,

101a evt fctk: tekd

∼
→ tekr

101b where:
101b type names of te(i|j|...|k)d

and te(i|j|...|k)r
are type names

101b defined by the indices which are prefixes of ℓm̂〈tm〉
101b and where tm is in some signature act fcti|j|...|k or may
101b refer to types definable only “outside” ∆

5.2.4 Discovering Behaviour Signatures 276

We choose, in these research notes, to model behaviours in CSP33. This means that we
model (synchronisation and) communication between behaviours by means of messages m
of type M, CSP channels (channel ch:M) and CSP

output: ch!e [offer to deliver value of expression e on channel ch], and
input: ch? [offer to accept a value on channel ch].

33Other behaviour modelling languages are Petri Nets, MSCs: Message Sequence Charts, Statechart
etc. We invite the reader to suggest corresponding ‘discovery’ techniques and tools.

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

84 Towards a Theory of Domain Descriptions

We allow for the declaration of single channels as well as of one, two, ..., n dimensional
arrays of channels with indexes ranging over channel index types

type Idx, CIdx, RIdx . . . :
channel ch:M, { ch v[vi]:M′|vi:Idx }, { ch m[ci,ri]:M′′|ci:CIdx,ri:RIdx }, . . .

etcetera. We assume some familiarity with RSL/CSP.277

A behaviour usually involves two or more distinct sub-domains.

Example 57 (The Involved Subdomains of a Vehicle Behaviour) Let us illustrate that
behaviours usually involve two or more distinct sub-domains. A vehicle behaviour, for
example, involves the vehicle subdomain, the hub subdomain (as vehicles pass through
hubs), the link subdomain (as vehicles pass along links) and, for the road pricing system,
also the monitor subdomain. •

278

102. The BEHAVIOUR SIGNATURES is a meta function.

103. It applies to a set of indices and results in a text,

104. The text contains

a a set of zero, one or more message types,

b a set of zero, one or more channel index types,

c a set of zero, one or more channel declarations,

d a set of one or more process signatures with each signature containing a be-
haviour name, an argument type expression, a result type expression, usually
just Unit, and

e an input/output clause which refers to channels over which the signatured be-
haviour may interact with its environment.

279

103. BEHAVIOUR SIGNATURES: Index
∼
→ Text

103. BEHAVIOUR SIGNATURES({ℓ1̂〈T1〉,ℓ2̂〈T2〉,...,ℓn̂〈Tn〉}):
104a. type M = M1 | M 2| ... | Mm, m≥0
104b. I = I1 | I2 | ... | In, n≥0
104c. channel ch,vch[i],{vch[i]:M|i:Ia},{mch[j,k]:M|j:Ib,k:Ic},...
104d. value
104d. bhv1: ate1 → inout1 rte1,
104d. bhv2: ate2 → inout2 rte2,
104d. ... ,
104d. bhvm: atem → inoutm rtem,
104d. where type expressions ateii and rtei for all i involve at least two
104d. types t′i and t′′j of respective indexes ℓî〈ti〉 and ℓĵ〈tj〉
104e. where inouti: in k | out k | in,out k
104e. where k: ch | ch[i] | {ch[i]|i ∈ Ia} | {mch[j,k]:M|i:Ib,j:Ic} | ...

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 85

280

Example 58 (A Vehicle Behaviour Signature Discovery) We refer, for example, to Ex-
amples 36 (Pages 56–61) and 40 (Pages 66–67).

let ih=〈∆.N.LS,H〉,il=〈∆.N.HS,L〉,iv=〈∆,F,V〉,im=〈∆,Monitor〉 in
BEHAVIOUR SIGNATURES({iv,ih,iv,im}) as text

let n:N, hs=obs HS(n), ls=obs LS(n), vs=obs F(PART SORTS)(〈∆〉) in
where text:

type
VL Msg, VH Msg, VM Msg

channel
62a. {vh ch[attr VI(v),attr HI(h)]|v:V,h:H•v ∈ vd∧h ∈ hs}:VH Msg
62b. {vl ch[attr VI(v),attr LI(h)]|v:V,l:L•v ∈ vs∧h ∈ ls}:VL Msg
62c. m ch:VM Msg

value
64. vehicle: VI → V → VP →
83. out,in {vl ch[vi,li]|li:LI•li ∈ xtr LIs(ls)}
83. {vh ch[vi,hi]|hi:HI•hi ∈ xtr HIs(hs)} out m ch,... Unit

end end

•

5.3 What Does Application Mean ? 281

Now what does it actually mean “to apply” a discover function ? We repeat our list of
discoverers.

[90 (Page 76)] PART SORTS,

[91 (Page 77)] HAS A CONCRETE TYPE,

[92 (Page 78)] PART TYPES,

[93 (Page 79)] UNIQUE ID,

[96 (Page 79)] MEREOLOGY,

[98 (Page 80)] ATTRIBUTES,

[100 (Page 82)] ACTION SIGNATURES,

[101 (Page 83)] EVENT SIGNATURES and

[103 (Page 84)] BEHAVIOUR SIGNATURES.

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

86 Towards a Theory of Domain Descriptions

It is the domain engineer cum scientist34 who “issues” the “commands”. The first “formal” 282

domain inquiry is that of PART SORTS(〈∆〉). We refer to Item 90 on page 76, for example as captured
by the formulas, Items 90–90b (Page 86).

For the domain engineer to ‘issue’ one of the ‘discovery commands’ means that that person has (i) pre-
pared his mind to study the domain and is open to impressions, (ii) decided which DISCOVERER KIND
to focus on, and (iii) studied the “rules of engagement” of that command, that is which pre-requisite dis-
coverers must first have been applied, with which index, that is, in which context the command invocation
should be placed, and which results the invocation is generally expected to yield.

5.3.1 PART SORTS 283

Let us review the PART SORTS discoverer:

value

90. PART SORTS: Index
∼

→ Text

90. PART SORTS(ℓ̂〈T〉):
90a. tns:{T1,T2,...,Tm}:TN-set ×
90b. { obs Tj : T → Tj | Tj :tns}

The domain analyser35 has decided to “position” the search at domain index ℓ̂〈T〉 where T = ∆ if ℓ = 〈〉
and where T is some “previously discovered part type.284

From Item 90a the domain analyser is guided (i.e., advised) to analyse the domain “at position ℓ̂〈T〉:
is the domain type T a composite type of one or more subpart types ? If so then decide which they are,
that is: T1,T2,...,Tm, that is, the “generation” of the text type T1,T2,...,Tm, if not then tns={} and no
text is “generated”.

Item 90b, and given the domain analyser’s resolution of Item 90a, then directs the “generation” of m

observers obs Tj : T → Tj (for j : {1..m}).

5.3.2 HAS A CONCRETE TYPE 285

Let us review the HAS A CONCRETE TYPE analyser:

91 HAS A CONCRETE TYPE: Index → Bool

91 HAS A CONCRETE TYPE(ℓ̂〈T〉):true|false

Item 91 directs the domain analyser to decide whether the domain type T at “position” ℓ̂〈t〉 should be
given a concrete type definition. It is a decision sôlely at the discretion of the domain analyser whether
domain type T should be given a concrete type definition, and, as we shall see next, which concrete type
it should then be “given”, that is, how it should be “concretely abstractly” modelled.

5.3.3 PART TYPES 286

Let us review the PART TYPES analyser:

92. PART TYPES: Index
∼

→ Text

92. PART TYPES(ℓ̂〈t〉):
92a. type T = TE,

34When we write: domain engineer cum scientist we mean to say that the domain engineer really is
performing a scientific inquiry.

35We use the alternative, synonymous terms: ‘domain engineer’, ‘domain describer’. ‘domain scientist’.

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 87

92b. T1 or T1 = TE1

92b. T2 or T2 = TE2

92b. ...

92b. Tn or Tn = TEn

92c. pre: HAS A CONCRETE TYPE(ℓ̂〈t〉)

287
The domain analyser has decided to “position” the search at domain index ℓ̂〈T〉 where T = ∆ if ℓ = 〈〉
and where T is some “previously discovered part type.

From Item 92 the domain analyser is guided (i.e., advised) to analyse the domain “at position ℓ̂〈T〉:
can a reasonably abstract, yet concrete type definion be given for T ? If so then decide which it should be,
that is, should it be an atomic type a number type, Intg, Rat, Real, a Boolean type, Bool, or a token
type, f.ex. TOKENA token type is a further undefined atomic type — typically used to model identifiers.;
or should it be a composite type either a set type: TE: Ts-set of te: Ts-infset, or a Cartesian type: TE: 288

T1×T2×...Tm, or a list type: TE: T⋆
ℓ or te: Tω

ℓ or a map type: TE: Td →m Tt ? In either case the text type T

= TE, T1 or T1=TE1, T2 or T1=TE2, ..., Tn or Tn=TEn is generated where TE (TEx) is a type expression
whose so far undefined type names T1, T2, ..., Tn must be defined, either as sorts, or a concrete types.

5.3.4 UNIQUE ID 289

Let us review the UNIQUE ID analyser:

value

93. UNIQUE ID: Index → Text

93.a UNIQUE ID(ℓ̂〈T〉):
93.b type

93.c TI
93.d value

93.e uid TI: T → TI

Item 93.a inquires as to the Line 93.b type name Line 93.c of the inquired part type’s unique identifiers
Line 93.d and the function signature value Line 93.e of the observer, uid TI, name, the definition set type
(T, of course) and the range set type (TI — obviously). Thus, the only real “new” “discovery” here is the
name, TI, of the unique identifier type. 290

Etcetera, etcetera.

5.4 Discussion

We have presented a set of discoverers:

[90 (Page 76)] PART SORTS,

[91 (Page 77)] HAS A CONCRETE TYPE,

[92 (Page 78)] PART TYPES,

[93 (Page 79)] UNIQUE ID,

[96 (Page 79)] MEREOLOGY,

[98 (Page 80)] ATTRIBUTES,

[100 (Page 82)] ACTION SIGNATURES,

[101 (Page 83)] EVENT SIGNATURES and

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

88 Towards a Theory of Domain Descriptions

[103 (Page 84)] BEHAVIOUR SIGNATURES.
291

There is much more to be said: About a meta-state component in which is kept the “text” so far generated.
A component from which one can see which indices and hence which type names have so far been “gen-
erated”, and on the basis of which one can perform tests of well-formedness of generated text, etcetera,
etcetera,

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 89

6 Conclusion 292

6.1 General

6.2 What Have We Achieved ? 293

6.3 Other Formal Models 294

6.4 Research Issues 295

6.5 Engineering Issues 296

6.6 Comparable Work 297

6.7 Acknowledgements 298

April 30, 2012: 15:10 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

