
Research Notes 39

4 Describing Domain Entities 111

4.1 On Describing

The purpose of description is to use for example informal text to present an entity (simple,
action, event or behaviour) so that the reader may “picture” (“envisage”), that which is
being described. The text describing the entity is said to be a syntactic quantity. and
the entity is then said to be a semantic quantity: the syntactic text denotes the semantic
quantity. We also say that the syntactic quantity designates, denotes, indicates, specifies, 112

points out, gives a name or title to, or characterises18 the semantic quantity.

4.1.1 Informal Descriptions

In the many examples19 of Sects. 2–3 we have made several references to quite a few domain
entities. We do not claim that we have described these entities.

113

Domain Instances Versus Domains What we can observe are instances of a specific
domain or fragments (perhaps parts) of a specific domain. What we describe are either
abstractions of these instances or abstractions of a set (i.e., a type) of these instance. If 114

someone describes me as an atomic part with the action(s) and event(s) of my behaviour,
then that someone describes an instance of a person, not the domain of all persons, but
in that description it is expected that many fragments of the description is also valid for
either a lot of persons or all persons. We say that these many fragments describe not an
instances but fragments of abstractions of a domain of persons.

115

Non-uniqueness of Domain Descriptions We say ‘a domain’, not ‘the domain’. Two or
more domain describers may not exactly focus on the same entities and their properties.
A domain description is always an abstraction. Something is left out. Not all entities and
not all properties of those entities included may be deemed worthwhile to be included.

A good domain description, to us, is a domain description that covers what most stake
holders can agree on to be relevamt aspects of the domain, that reveals generally unknown
facets of the domain, and that is terse and precise.

116

A Criterion for Description For us, to informally describe an entity ideally means the
following: Let there be given what we can agree on to be an entity, call it e. Let there be
given what is claimed to be a description of that entity. Let a person read and claim to have
understood that description. Now that person is confronted with some phenomenon e′. Either
that phenomenon is the same or it is of the same kind (type) as e or it is not. If e′ is of the
same kind as e then the person must identify it as such, unequivocally. If e′ is not of the same
kind as e then the person must identify it as not being so, likewise unequivocally. 117

18— eight alternative terms for the same idea!
19Examples 5–23

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

40 Towards a Theory of Domain Descriptions

If a description does not satisfy the above then it is not a proper description.
The above “criterion” suffers, seriously, from our not having made precise what we

mean by “same” and “same kind”.
These notes are not the place for a much needed investigation of the “sameness” prob-

lem. It is basically a philosophical question. But we should not overlook the fact that it is
the domain describer and the domain stake holders who, finally, decide on “sameness”.

118

Reason for ‘Description’ Failure There can be three reasons for a description to not be
proper:

1. either all phenomena are entities as described — the description is vacuous;

2. or there are entities which were meant to be of the type or not meant to be of the type
described but which “fall outside”, respectively “fall inside” the description;

3. or the description does not make sense, is “gibberish”, ambiguous, or otherwise.

That is: a proper description, when applied to entities, “divides” their world into two
non-empty and disjoint sets: the set of all entities being described by the description, and
the rest !

119

Failure of Description Language But we have a problem ! One cannot give a precise
definition of exactly the denoting language, that is, of exactly, all and only those informal
texts which designate entities. Firstly, we have not given a sufficiently precise informal
text characterisation of entities, Secondly, natural (cum national) languages, like English,
defy such characterisations. We must do our best with informal language descriptions.

120

Guidance But there is help to be gotten! The whole purpose of Sect.3 was to establish
the pointers, i.e., guidelines, as to what must be described, generally: parts, actions, events
and behaviours, and specifically: whether atomic or composite parts, their attributes, and,
optionally, their mereology, and, for composite parts, their subparts; and, as a starter, the
signatures of actions, events and behaviours. This section will continue the line reviewed
just above and provide further hints, pointers, guidelines.

4.1.2 Formal Descriptions 121

We shall, in addition to the description components20, outlined in Sect. 3 now join the
possibility of improved description precision through the use of formal description. We ar-
gue that formal description, while being used in-separately with precise informal narrative.
improves precision while enabling formal proofs of properties of that which is denoted by
the description.122

20parts, actions, events and behaviours; attributes and possibly unique identifiers of parts, and mereology
of composite (atomic) parts; subparts of composite parts; etc.

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 41

We shall here use the term ‘formal’ in the sense of mathematics. A formal description
language is here defined to have a formal syntax, that is, a set of syntax rules which
define precisely and unambiguously, which texts over the alphabet of the language are
indeed sentences of that language21, a formal semantics, , that is, something which to every
syntactically valid sentence of the language, ascribes a meaning in terms of a mathematical
quantity22, and a proof system, that is, a consistent and relative complete set of axioms
and proof rules using which one can prove properties of descriptions.

We shall “unravel” an example formal description language, FDL, in this section. FDL

has similarities to the RAISE [22] Specification Language, RSL [21], but, as our informal
explanation of the meaning of FDL will show, it is not RSL. The similarities are “purely”
syntactical.

4.2 A Formal Description Language 123

4.2.1 Observing and Describing Entities

We make the obvious distinction between observing semantic values but expressing syntac-
tic structures. We observe parts, but first express types and then their properties; actions,
but first express their signatures and then their definitions; events, but first express their
signatures and then their definitions; and behaviours, but first express their signatures and
then their definitions.

4.2.2 Observing and Describing Parts 124

In order to describe a part we use such phrases as: a patient (whom we here consider to
be an atomic part)) is characterised by as set of properties a name. a central personal

registration identifier, a gender, a birth date, a birth place, a nationality,

a weight, a height, a insurance policy, a medical record, etcetera; and a transport 125

net (whom we here consider to be a composite part)) is characterised by a set of properties
a structure of, in this case two subparts, ie., a set of hubs and a set of links, and their
mereology. Thus we take the nouns name, central personal registration identifier, gender,
birth date, birth place, nationality, weight, height, insurance policy, medical record, . . . ,
set of hubs, and set of links as type names. The names ‘patient’ and ‘transport net’ are
also domain names. That is, we go from instance of part to the type of all parts “of the 126

same kind”. One must take great care in not confusing the two: type and value). Later
we shall clarify the distinction between type and domain names.

127

Abstract Types By an abstract type we generally mean some further unexplained set
of mathematical quantities. Abstract types are in contrast to concrete types by which

21that is, the alphabet and sentences can be considered mathematical quantities
22a set, a Cartesian, a list, a function, or some such mathematical item which can be characterised by

a number of properties

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

42 Towards a Theory of Domain Descriptions

we mean such mathematical quantities as sets, Cartesians, lists, maps and functions (in
general). Abstract types are also referred to as sorts.

The FDL clause:

type A

defines what we shall here, simplifying, take as a set of values said to be of type A. A is
said to be a type name (here, more specifically, a sort name).

128

Concrete Types Borrowing from RSL, and, in general, discrete mathematics, we introduce
FDL clauses for expressing set, Cartesian, list, map and function types. Let A, B, ..., C be
(type or sort) names which denote some (not necessarily distinct) types, then

A-set, (A × B × ... × C), A∗, Aω, A →m B, A→B, A
∼

→B

are type expressions which denote the following (left-to-right) concrete types: set of
sets of type A values; sets of Cartesian values, (a,b,. . . ,c), over types A, B, . . . , C; set of
finite lists of elements of type A values; set of possibly infinite lists of elements of type A
values; set of maps, that is enumerable functions from type A into type B values; set of
total functions from type A into type B values; respectively set of partial functions from
type A into type B values. Choosing to describe a part as a sort rather than a concrete129

type reflects a principle of abstraction. Modelling a concrete type in terms of, for example,
a map type (A →m B) rather than as type of indexed sets ((A×B)-set) reflects a modelling
technique.

130

Type Definitions Besides the sort type definitions, e.g., type A there are the concrete
type definitions.

Let D be some (unused)type name, then

type D = Type Expression

is a concrete type definition where Type Expression is of either of the forms A-set, A-infset,
(A×B×...×C), A∗, Aω, A →m B, A→B, A

∼

→B and A|B|...|C, where A, B, . . . , C are either
type names or, more generally, other such type expressions and where A|B|...|C expresses
the “union” type of the A. B. . . . , and C types.131

Example 24 (Transport Net Types) Let us exemplify the above by starting a series of
examples all focused on a domain of transport nets.
Figure 9 on the facing page shows a net with eight hubs and seven links.132

To be able — here, in this tect — to refer to fragments (here sub-parts), of what
is shown in Fig. 9, we label the parts with names (Fig. 10); these names stand for the
designated parts. They are not properties of the parts, they are the parts. Also: they are
not the unique indentifiers of the parts.133

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 43

Figure 9: A transport net

ha

hb

hc

hd

he

hf

hj hk

l1

l2
l3

l4

l5

n

obs_Hs(n) = {ha,hb,hc,hd,he,hf,hg,hj,hk}

obs_Ls(n) = {l1,l2,l3,l4,l5,l6,l7,l8,l9}

l6

l7

Figure 10: A transport net

32. We focus on the transport net domain. That domain is “dominated” by the composite
parts of nets, n:N.

32. type N

33. There are two subparts of nets:

a sets, hs:HS, of hubs (seen as one part) and

b sets, ls:LS, of links (also seen as one, but another part).

33a. HS 33b. LS

As part of identifying the composite net type, N, we also identify two observers: obs HS
(observe [set of] hubs) and obs LS (observe [set of] links) That is: 134

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

44 Towards a Theory of Domain Descriptions

33a. obs HS: N → HS 33b. obs LS: N → LS

34. Hubs subparts of HS (‘sets of hubs’), and

35. links are subparts of respectively LS (‘sets of links’),

and are of types

a H, respectively

b L.

type
35a. H
35b. L

135

We may, for convenience, bypassing a step (i.e., Items 33a–33b) instead express:

type
35a. Hs = H-set
35b. Ls = L-set

value
35a. obs Hs: N → H-set
35b. obs Ls: N → L-set

•

136

Type Properties In the following we shall be introducing a number of functions which
analyse parts with respect to respective properties [17, 33, 20]. There are three kinds of
properties of interest to us: the subparts of composite parts, the mereology of composite
parts, and general attributes of parts (apart from their possible subparts and mereology).
Every entity, whether simple, or an action, or an event, or a behaviour, has a unique identi-137

fication. The mere existence, in time and space, endows a part with a unique identification
as follows. No two spatial parts can occupy overlapping space, so some abstract spatial
location is a form of unique identification. We consider the unique identity of a part of
type A, say AI, as a general attribute. We use the attribute values of AI to formulate
mereologies.138

Thus there are three kinds of property analysis functions.

• Subpart observer functions, obs B, obs C, . . . , obs D, which apply to composite parts
(say of type A), and yield their constituent subparts, say of type B, C, . . . , D:

obs B: A → B, obs C: A → C, ..., obs D: A → D;

• Mereology functions which apply to composite parts (say of type A), and yields
elements of their mereologies.

Let parts of type B, C, ..., D be in some mereology relation to parts of type A. That
is, there are mereology functions

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 45

mereo Ax: B → AIx, mereo Ay: C → AIy, ..., mereo Az: D → AIz

where Ax, Ay and Az are some distinct identifiers and AIx, AIy and Ayz are some type
expressions over type A, typically

AI, AI-set, (AI×...×AI), etc.
139

• Attribute Functions which apply to parts (say of type A) and yield their attributes
(short of the mereologies) (say of types E, F, ..., G:

attr E: A → E, attr F: A → F, ..., attr G: A → G;

Among the general attribute functions are the unique identification functions, say
attr A.

140

Subpart Type Observers Given a composite sort, named, say, A, and postulating that
its values contains subparts of type B, one can observe these type B subparts of A using
the likewise postulated observer function:

obs B: A → B

If A values also contain subparts of types C, . . . , E, then there also exists the additional
observer functions: obs C, . . . , obs E. We say that the observer functions are postulated.
We postulate them. And we endow them with properties so that they “stand out” from
one another. First examples of properties are given by the observer function signatures:
from type A values observer function obs B yields B values. Further properties may be
expressed through axioms. 141

Example 25 (Subpart Type Observers) From nets we observe

36. sets of hubs and

37. sets of links.

in either of two ways:

value
36. obs HS: N → HS
37. obs LS: N → LS

value
35a. obs Hs: N → H-set
35b. obs Ls: N → L-set

•

142

Unique Identifier Functions All parts have unique identifiers. This is a dogma. We may
never need some (or any) of these unique part identifiers. But they are there nevertheless.

Example 26 (Unique Hub and Link Identifiers) From hubs and links we observe their
unique

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

46 Towards a Theory of Domain Descriptions

38. hub and 39. link

identifier attributes and their ‘observers’:

type
38. HI
39. LI

value
38. uid HI: H → HI
39. uid LI: L → LI

143

Figure 11 shows the labelling of links with unique link identifiers, and of hubs with unique
hub identifiers. It also shows sample unique identifier observer functions.

l1_i

he_i

hc

he

hc_i l4_i

l3_i l5_i
l5

uid_HI(hc) = hc_i

uid_LI(l5) = l5_i

Figure 11: Fragment of a transport net emphasizing unique part identfiers and their ob-
servers

•

144

Mereologies and Their Functions

Example 27 (Transport Net Mereology) To express the mereology of transport nets we
build on the unique identifications of hubs and links.

40. Links connect exactly two distinct hubs, mereo HIs.

41. Hubs are connected to zero, one or more distinct links, mereo LIs.

type
40. HIs = HI-set
axiom
40. ∀ his:HIs•card his=2
type
41. LIs = LI-set
value
40. mereo L: L → HIs
41. mereo H: H → LIs

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 47

l1_i

he_i

hc

he

hc_i l4_i

l3_i l5_i
l5

mereo_LIs(hc) = {l1_i,l3_i,l4_i,l5_i}

mereo_HIs(l5) = {hc_i,he_i}

Figure 12: Fragment of a transport net emphasizing mereology observers

145

Figure 12 illustrates the idea of mereology observer. The above (Items 40–41) form the146

basis for expressing the constraints on how hubs and links are connected.

42. Given a net, its link and hub observers and the derived link and hub identifier ex-
traction functions, the mereology of all nets must satisfy the following:

a All link identifiers observed from hubs must be of links of that net and

b All hub identifiers observed from links must be of hubs of that net.

43. We introduce two auxiliary functions for extracting all hub and link identifiers of a
net.

147

axiom
42. ∀ n:N,
42. let ls=obs LS(n),hs=obs HS(n),
42. lis=xtr LIs(n),his=xtr HIs(n) in
42a. ∀ h:H•h ∈ hs ⇒ mereo H(h)⊆lis ∧
42b. ∀ l:L•l ∈ ls ⇒ mereo L(l)⊆his end
value
43. xtr LIs: N → LI-set, xtr HIs: N → HI-set
43. xtr LIs(n)≡{uid LI(l)|l:L•l ∈ obs LS(n)}
43. xtr HIs(n)≡{uid HI(h)|h:H•h ∈ obs HS(n)}

•

148

General Attributes and Their Functions

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

48 Towards a Theory of Domain Descriptions

Example 28 (Hub States and Hub State Spaces) In addition to the unique identifiers
and the mereology of parts there are the general attributes. An example are the states of
hubs and links where these states indicate the direction of traffic for which the hubs and
links are open. 149

44. With any hub, h, we thus associate

a a hub state, hσ, consisting of a set of pairs of link identifiers (with (lij , lik) in
hσ expressing that traffic is open from link lj to link lk via hub h), and

b a hub state space, hω, consisting of a set of hub states.

45. The relations between

a the link identifiers of the hub,

b the hub states, and

c the hub state spaces

46. must satisfy the following

a wrt. the potential set, hs, which is the “largest possible” hub state for h, one
that allows traffic from any link li incident upon h to any link lj emanent from
h:

b the hub state is any subset of hs, and

c and such hub state is in that hub’s state space.
150

type
44a. HΣ = (LI×LI)-set
44b. HΩ = HΣ-set
value
44a. attr HΣ: H → HΣ
44b. attr HΩ: H → HΩ
axiom
45. ∀ n:N,h:H • h ∈ obs Hs(n) ⇒
41. let hlis = mereo H(h),
44a. hσ = attr HΣ(h),
44b. hω = attr HΩ(h),
43. lis = xtr LIs(n) in
46a. let hs = {(li,lj),(lk,li)|li:LI•li ∈ hlis∧{lj,lk}⊆lis} in
46b. hσ⊆hs ∧
46c. hσ ∈ hω end end

•
151

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 49

Example 29 (Further Atomic Attributes) In addition to the unique link identifier links
also have, for example, lengths, widths, possibly heights, geographic (spatial) locations,
etc.

type
LEN, WID, HEI, LOC, ...

value
attr LEN: L → LEN
+: LEN × LEN → LEN
>: LEN × LEN → Bool
attr WID: L → WID
attr HEI: L → HEI
attr LOC: L → LOC
...

•

4.2.3 Describing Actions 152

Function Names Actions potentially change states. Actions are here considered de-
liberate phenomena in that they are caused by willful applications (by agents within the
domain being described) of functions having a specific, deliberate purpose, i.e., state change
in mind. 153

Example 30 (Transport Net Action Names) Some examples are: create an empty net
(no hubs, no links); insert a (new) hub; insert a (new) link (between a pair of distinct hubs
of the net); delete (existing) hub (having no links into or out from it); and delete (existing)
link.

•

154

Informal Function Descriptions The above examples just listed some actions by their
function names. We did not describe these functions. We now do so, for two of these
functions.

Example 31 (Informal Transport Net Action Descriptions) We detail two informal func-
tion descriptions. The create empty net function

47. applies to nothing and yields a net, n, of no hubs and no links.

The insert link function

48. applies to a net, n, of at least two distinct hubs, as identified, hij , hik, by the function
application arguments, and a new link ℓ not in n, and yields a net, n′. 155

a The inserted link l is to be connected to the two distinct hubs identified by hji

and hki, and these designate hubs of the net.

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

50 Towards a Theory of Domain Descriptions

b l is not in the original net.

c The mereology of l designate hji and hki.

d The state of these identified hubs do not allow any traffic.

e No new hubs are added, hence the set of hub identifiers of the net is unchanged.

f Only one link is added to the net, hence the set of net link identifiers is changed
by only the addition of the l link identifier.

g Let the hubs identified by hji and hki be hj and hk, respectively, before the
insertion,

h and by hj′ and hk′ after the insertion.

i Now the mereology contributions by the two changed hubs reflect only the ad-
dition of link l.

156

We leave the informal descriptions of

49. delete L

50. insert H

51. delete H

to the reader.
•

157

Formal Function Descriptions We observe actions, but describe the functions which
when applied amount to actions. There are two parts to describe a function: (i) the
function signature, a:A→B: a distinct function name, say f, and a function type, A→B, that
is, type of arguments A and type of results B, and (ii) the function definition, f(a,b)≡C(a):
a symbolic function invocation, f(a,b), and a definition body, C(a). C(a) is a clause, i.e.,
an expression in FDL, whose evaluation yields the function value.158

There are other ways than:

value
f: A → B
f(a,b) ≡ C(a)

in which to define a function. For example:

value
f: A → B
f(a) as b

pre P(a)
post Q(a,b)

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 51

159

Example 32 (Formal Transport Net Action Descriptions) The create net function:

value
47. create N: Unit → N
47. create N() as n
47. post obs HS(n)={} ∧ obs LS(n)={}

160

The insert link function:

value
48. insert L: (HI × HI) × L → N → N
48. insert L((hij,hik),l)(n) as n′

48a. pre hji6=hki ∧ {hji,hki} ⊆ xtr HIs(n) ∧
48b. ∧ l 6∈ obs LS(n)
48c. ∧ mereo L(l) = {hji,hki}
48d. ∧ attr HΣ(get H(hji))(n)={}=attr HΣ(get H(hki))(n)
48e. post xtr HIs(n) = xtr HIs(n′)
48f. ∧ xtr LIs(n′) = xtr LIs(n) ∪ {uid LI(l)}
48g. ∧ let hj=get H(hij)(n), hk=get H(hik)(n),
48h. hj′=get H(hij)(n′),vhk′=get H(hik)(n′) in
48i. ∧ mereo H(hj′) = mereo H(hj) ∪ {uid LI(l)}
48i. ∧ mereo H(hk′) = mereo H(hk) ∪ {uid LI(l)} end

161

52. From the postulated observer and attribute functions one can define the auxiliary
get function:

value

52. get H: HI → N
∼

→ H
52. get H(hi)(n) ≡
52. let h:H•h ∈ obs HS(n)∧uid HI(h)=hi
52. in h end
52. pre hi ∈ xtr HIs(n)

162

We do not narrate the informal description of “remaining” net actions (cf. Items 49– 51
on the preceding page), just their function signatures and pre-conditions.

49. delete L: LI → N
∼

→ N
49. pre delete L(li): li ∈ xtr LIs(n)

50. insert H: H → N
∼

→ N
50. pre insert H(h): h 6∈ obs HS(n)∧mereo H(h)={}∧mereo Ω(h)={{}}

51. delete H: HI → N
∼

→ N
51. pre delete H(hi): hi ∈ xtr HIs(n)∧mereo H(get H(hi))(n)={}

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

52 Towards a Theory of Domain Descriptions

Given appropriate post-conditions the following theorems must be provable:

theorems:
∀ h:H • pre−conditions are satisfied ⇒ delete H(uid HI(h))(insert H(h)(n))=n
∀ l:L • pre−conditions are satisfied ⇒ delete L(uid LI(l))(insert L(l)(n))=n

•

163

Agents An agent is a behaviour which invokes functions, hence cause actions. So we
simply “equate” agents with behaviours.

4.2.4 Describing Events 164

We observe events. But we describe logical properties characterising classes of “the same
kind” of events.

Deliberate and Inadvertent (Internal and External) Events Events are like actions:
somehow a function was applied either deliberately by an agent outside (that is, external
to) the domain being described, or inadvertently by a behaviour of (that is, internal to)
the domain, but for another purpose than captured by the event.165

Example 33 (A Deliberate [External] Event) We narrate a simple external cause / “in-
ternal” effect example: When one or more bank customers default on their loans and
declare themselves unable to honour these loans then the bank may go bankrupt.

•
166

Example 34 (An Inadvertent [Internal] Action Event) We narrate a simple internal cause
/ “internal” effect example: When a bank customer, the agent, withdraws monies from an
account the balance of that account, if the withdrawal is completed, may go negative, or
may go below the credit limit. In either case we say that, the withdrawal action, as was
intended, succeeded, but that an “exceeded credit limit” event occurred.

•

167

Event Predicates Instead of describing events by directly characterising the deliberate
external, respectively inadvertent internal actions we suggest to describe these events in-
directly, by characterising the logical effects, say, in terms of predicates over before/after
states.168

Example 35 (Formalisation of An External Event) The event is that of a “link segment
disappearance”.

53. Generally we can explain “link segment disappearances”, for example, as follows:

54. A li-identified link, l, between hubs hf and ht (identified in l) is removed.

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 53

55. Two hubs, hf′′ and ht′′, and two links, lf and lt, are inserted — where

a hub values hf and ht (the hubs in the original net) become hub values hf’ and
ht’ in the resulting net, that is, hub values hf and ht have same respective hub
identifiers as hf′ and ht′,

b hubs hf′′ and ht′′ are new,

c links l′ and l′′ are new,

d link lf is inserted between hf′ and hf′′, that is, link lf identifies hubs hf′ and hf′′,
and link lt is inserted between ht′ and ht′′, that is, link lt identifies hubs ht′ and
ht′′, 169

e hub hf′ is, in the resulting net, connected to the links hub hf was connected to
in the original net “minus” link l but “plus” link lf,

f hub ht′ is, in the resulting net, connected to the links it was connected to in the
original net “minus” link l but “plus” link lt,

g hub hf′′ is connected only to link lf
and hub ht′′ is connected only to link lt,

h the state space of hf′ suitably includes all the possibilities of entering link lf 23,

i the state space of ht′ suitably includes all the possibilities of entering link lt24,

j the state spaces of hf′′ and ht′′ both contains just the empty set,

k the states of ht′′ and ht′′ are both the empty set: “dead ends !”,

l the sum of the lengths of links lf and lt is less than the length of link l, and

m all other non-mereology attributes of lf and lt are the same as those of link l.

56. All other links and hubs are unchanged.
170

value
53. link segment disappearance: N × N → Bool
53. link segment disappearance(n,n′) ≡
53. ∃ l:L, hf′′,ht′′:H, lf,lt:L •

54. {l} = obs LS(n) \ \obs LS(n′)
55a. ∧ let hfi=uid HI(hf), hti=uid HI(ht) in
55a. let hf′=get H(hfi)(n′), ht′=get H(hti)(n′) in
55b. {hf′′,ht′′}∩ obs HS(n)={} ∧ {hf′′,ht′′}⊆obs HS(n′)
55c. ∧ {lf,lt}∩ obs LS(n)={} ∧ {lf,lt}⊆obs LS(n′)
55d. ∧ mereo L(l′)={hfi,uid HI(hf′′)} ∧ mereo L(l′′)={hti,uid HI(ht′′)}
55e. ∧ mereo H(hf)=mereo H(hf′)\{uid LI(l)}∪{uid LI(lf)}
55f. ∧ mereo H(ht)=mereo H(ht′)\{uid LI(l)}∪{uid LI(lt)}

23A substitution function replaces all link l identifiers with link lf identifiers.
24A substitution function replaces all link l identifiers with link lt identifiers.

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

54 Towards a Theory of Domain Descriptions

55g. ∧ mereo H(hf′′)={uid LI(lf)} ∧ mereo H(ht′′)={uid LI(lt)}
55h. ∧ attr HΩ(hf′)=subst(uid LI(l),uid LI(lf),attr HΩ(hf))
55i. ∧ attr HΩ(ht′)=subst(uid LI(l),uid LI(lt),attr HΩ(ht))
55j. ∧ attr HΩ(hf′′)={{}} ∧ attr HΩ(ht′′)={{}}
55k. ∧ attr HΣ(hf′′)={} ∧ attr HΣ(ht′′)={}
55l. ∧ attr LEN(lf)+attr LEN(t)<attr LEN(l)
55m. ∧ ∀ X:non mereo attributes(l)•attr X(lf)=attr X(lt)=attr X(l)25

56. ∧ obs HS(n′)\{hf′,hf′′,ht′,ht′′} = obs HS(n)\{hf,ht}
56. ∧ obs LS(n′)\{lf,lt} = obs LS(n)\{l} end end

171

We can express a theorem relating the above to the remove and insert functions.

theorem: link segment disappearance(n,n′) ⇒
let l:L, hf′′,ht′′:H, lf,lt:L • [Lines 54–55, 55a–55m, 56] in
n′ = ins L(lt)(ins L(lf)(ins H(ht′′)(ins H(hf′′)(rem L(uid LI(l))(n)))))
end

•

4.2.5 Describing Behaviours 172

Behaviour Description Languages As for the description of parts, actions and events26

there exists formal ways of describing behaviours as of sequences of actions, events and
behaviours: some are “textual”27: CSP [25], some are “graphical”, for example: MSC

[Message Sequence Charts] [26], Petri Nets [36] and State Charts [24].

Simple Sequential Behaviours: A simple sequential behaviour is a sequence of actions173

and events.

— Snapshot Description of a Simple Sequential Behaviour: Snapshot of a
behaviour, as it unfolds, could be described:

let σ′ = action 1(arg 1)(σ) ⌈⌉ event 1(σ)(σ′) in
let σ′′ = action 1(arg 1)(σ′) ⌈⌉ event 1(σ′)(σ′′) in
...

let σ′′...′ = action 1(arg 1)(σ′...′) ⌈⌉ event 1(̀ sigm′...′a)(σ′′...′) in
σ′′...′ end ... end end

25The predicate in Line 55m on the preceding page is to be explained.
26 Part, action and event description languages were first mentioned in the ‘Abstract’ footnotes 1– 2 on

page 4: Alloy [27], CafeOBJ [18], Casl [13] Event B [1], Maude [30, 12] RAISE/RSL [22, 21], VDM [7, 8, 16]
and Z [38].

27The languages mentioned in Footnote 26 are textual.

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 55

where the internal non-deterministic operator, ⌈⌉, expresses that either its left side or right
operand is chosen. The seemingly recursive equation:

let σ′ = act(arg)(σ) ⌈⌉ event(arg)(σ)(σ′)

expresses a further non-determinism: any σ′ satisfying the equation is a valid next state.
We can name such simple sequential behaviours, for example: P.

Simple Concurrent Behaviours: A simple concurrent behaviour is a set of two or 174

more simple sequential behaviours.
We describe a simple concurrent behaviour by a list of named behaviour descriptions

separated by the parallel behaviour composition operator ‖, for example, P‖Q‖...‖R. A
variant form is ‖{P(i)|i:Index•predicate(i)} which expresses ‘distribution’ of the behaviour
composition operator (‖) over ‘expanded’ terms, that is, P(ij)‖P(ik)‖. . . ‖P(iℓ).

Communicating Behaviours: A communicating behaviour is a behaviour which ex- 175

presses willingness to engage in a (synchronisation and) communication with another com-
municating behaviour or with the environment.

In order to express ‘communication’ (between behaviours) a notion of an output/input
channel is introduced with behaviours allowed ‘access’ to channel (which are therefore
shared). In CSP channels are typed with the type of the values that can be output on a
channel “between” behaviours. In CSP output of a value (say of expression e) onto channel 176

ch is expressed by the statement ch!e whereas input of a value from channel ch is expressed
by the expression ch?.

type
M

channel
ch:M

value
S: Unit → Unit, S() = P() ‖ Q()
P: Unit → out ch Unit, P() ≡ ... ch!e ...

Q: Unit → in ch Unit, Q() ≡ ... ch? ...

We thus describe a communicating behaviour by allowing one or more clauses: statements
of the kind ch!e and expressions of the kind ch?.

External Non-deterministic Behaviours: A behaviour, P, composed from behaviours 177

Pi,Pj , . . . ,Pk is said to exhibit internal non-determinism if the behaviour is either as is
behaviour Pi, or as is behaviour Pj , . . . , or as is behaviour Pk, and is influenced in being
so by the environment of behaviour P.

We describe such behaviours as follows: P: P i ⌈⌉⌊⌋ P j ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ P k where P i (etcetera)
describes behaviour Pi (etcetera). A variant description of internal non-determinism is
⌈⌉⌊⌋{P(i)|i:Index•predicate(i)}. 178

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

56 Towards a Theory of Domain Descriptions

External influence is, for example, expressed if behaviour descriptions P i (etcetera)
contain either an output (ch!e) or an input (ch?) clause and the environment offers to
accept input, respectively offers output “along” the name channel.

Internal Non-deterministic Behaviours: A behaviour, P, composed (somehow) from179

behaviours Pi,Pj, . . . ,Pk is said to exhibit internal non-determinism if the behaviour is
either as is behaviour Pi, or as is behaviour Pj , . . . , or as is behaviour Pk, and is not
influenced in being so by the environment of behaviour P.

We describe such behaviours as follows: P: P i ⌈⌉ P j ⌈⌉ ... ⌈⌉ P k where P i (etcetera)
describes behaviour Pi (etcetera). A variant description of internal non-determinism is
⌈⌉{P(i)|i:Index•predicate(i)}.180

For internal non-determinism to work for expressions like the above we must assume
that they do not contain such output (ch!e) or an input (ch?) clauses for which the
environment may accept input, respectively offer output.

General Communicating Behaviours: A general communicating behaviour is a set181

of sequences of actions, events and (simple sequential, simple concurrent, communicating
and non-deterministic) behaviours such that at least two separately identifiable behaviours
of a set share at least one channel and contain respective ch!e and ch? clauses.182

Example 36 (A Road Pricing (Transport) System Behaviour) This example is quite ex-
tensive.

57. A road pricing (transport) system, ∆RPS contains

a a net n — as outlined in earlier examples — of hubs and links,

b a fleet f of vehicles and

c a central road pricing monitor m.

58. From ∆RPS we can observe the

a a net, n:N,

b a fleet of vehicles, f:F, and

c a road pricing monitor, m:M.

59. From the net, n:N, we observe

a a set of hubs and

b a set of links

60. From the fleet, f:F, we observe

a a set of vehicles.
183

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 57

type
57. ∆ RPS, N, F, M
value
57a. obs N: ∆ RPS → N
57b. obs F: ∆ RPS → F
57c. obs M: ∆ RPS → M
59a. obs Hs: N → H-set
59b. obs Ls: N → L-set
60a. obs Vs: F → V-set

We need “prepare” some part names:

type
57a. n:N
57b. f:F
57c. m:M

59a. hs:Hs=obs Hs(n)
59b. ls:Ls=obs Ls(n)
60a. vs:Vs=obs VSs(f)

184

61. With the road pricing behaviour we associate separate behaviours,

a one for the net which is seen as the parallel composition of

i. a set of hub behaviours

ii. a set of link behaviours;

b one for the fleet of vehicles which is seen as the parallel composition of

i. a set of vehicle behaviours;

c and a central road pricing monitor behaviour.
185

61. road pricing system: Unit → Unit
61. road pricing system() ≡ net()‖fleet()‖monitor(...)

61a. net() ≡
61(a)i. ‖ {hub(uid HI(h))(h)(vis)|h:H•h ∈ hs} ‖
61(a)ii. ‖ {link(uid LI(l))(l)(vis)|l:L•l ∈ ls}

61b. fleet() ≡
61(b)i. ‖ {vehicle(obs VI(v))(v)(vp)|v:V•v ∈ vs}

61c. monitor(...) ≡ ...

186

The vis arguments of the hub and link behaviours “carry” the identifiers of current vehicles
currently at the hub or on the link. The vp argument of the vehicle behaviour “carries” the
current vehicle position. The (. . .) argument of the monitor behaviour records the history
status of all vehicles on the net. We omit details of how these arguments are initialised. 187

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

58 Towards a Theory of Domain Descriptions

62. We associate channels as follows:

a one for each pair of vehicles and hubs,

b one for each pair of vehicles and links and

c one for monitor (connected to vehicles).

62. channel
62a. {vh ch[uid VI(v),uid HI(h)]|v:V,h:H•v ∈ vd∧h ∈ hs}:VH Msg
62b. {vl ch[uid VI(v),uid LI(h)]|v:V,l:L•v ∈ vs∧h ∈ ls}:VL Msg
62c. mon:VM Msg

We omit detailing the channel message types.188

63. Vehicles are positioned

a either on a link, in direction from one hub to a next, some fraction down that
link,

b or at a hub, in direction from one link to a next where

c the fraction is a real between 0 and 1.

type
63. VP = onL | atH
63a. onL == mk onL(li:LI,fhi:HI,f:FRA,thi:HI)
63b. atH == mk atH(hi:HI,fli:LI,tli:LI)
63c. FRA = Real axiom ∀ fra:FRA•0≤fra≤1

189

64. The vehicle behaviour is modelled as a CSP process which communicates with hubs,
links and the monitor.

65. The vehicle behaviour is a relation over its position.
If on a link, at some position,

a then the vehicle may “remain” at that position,

b chosen so internally non-deterministically,

c or, if the vehicle position is not “infinitesimally” close to the “next” hub,

d then the vehicle will move further on along the link,

e some small fraction δ,

f else the vehicle moves into the next hub in direction of the link named li′

g where li′ is in the set of links connected to that hub —

h while notifying the link, the hub and the monitor of its entering the link and
entering the hub.

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 59

190

value
65e. δ:Real axiom 0<δ ≪ 1vehc6
64. vehicle: VI → V → VP →
64. out,in {vl ch[vi,li]|li:LI•li ∈ xtr LIs(ls)} out m ch Unit
65. vehicle(vi)(v)(vp:mk onL(li,fhi,f,thi)) ≡
65a. vehicle(vi)(v)(vp)
65b. ⌈⌉
65c. if f + δ<1
65d. then vehicle(vi)(v)(mk onL(li,fhi,f+δ,thi))
65e. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in
65g. vh ch[vi,thi]!enterH ‖ vl ch[vi,li]!leaveL ‖ m ch!leaveL enterH(vi,li,thi);
65h. vehicle(vi)(v)(mk atH(thi,li,li′)) end end

191

66. If the vehicle is at a hub,

a then the vehicle may “remain” at that same position,

b chosen so internally non-deterministically,

c or move on to the next link,

d in direction of a next hub,

e while notifying the hub and monitor of leaving the hub and the link and the
monitor of entering the link.

66. vehicle(vi)(v)(vp:mk atH(hi,fli,tli)) ≡
66a. vehicle(vi)(v)(vp)
66b. ⌈⌉
66d. let {hi′,thi}=mereo L(getL(tli)(n)) in assert: hi′=hi
66e. vh ch[vi,hi]!leaveH ‖ vl ch[vi,tli]!enterL ‖ m ch!leaveH enterL(vi,hi,tli);
66c. vehicle(vi)(v)(ml onL(tli,hi,0,thi)) end

192

67. The monitor behaviour records the (dynamic) history of all vehicles on the net:
alternating sequences of hub and link identifiers.

68. The monitor contains a price table which to every link and hub records the fee for
moving along that link or hub.

type
67. VW′ = VI →m (HI|LI)∗

67. VW = {|vw:VW′
•wf VW(vh)|}

68. Fee, PT = (LI|HI) →m Fee

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

60 Towards a Theory of Domain Descriptions

value
67. wf VW(vh) ≡
67. ∀ hll:(HI|LI)∗ • hll ∈ rng vh
67. ∀ i:Nat•{i,i+1}⊆inds hll ⇒
67. is HI(hll(i))∧is LI(hll(i+1))∨is LI(hll(i))∧is HI(hll(i+1))

193

69. The monitor behaviour non-deterministically externally alternates between

a input of messages from vehicles

i. either when entering a link in which case the vehicle history is updated with
that link’s identifier (for that vehicle),

ii. or when entering a hub in which case the vehicle history is updated with
that hub’s identifier (for that vehicle).

b and accepting inquiries and requests relating vehicle histories and fees (desig-
nated by (. . .) below).

194

value
69. monitor: PT → VH → in m ch Unit
69. monitor(pt)(vh) ≡
69a. (case m ch? of
69(a)i. leaveH enterL(vi,hi,li) → monitor(pt)(vh † [vi 7→ vh(vi)̂〈li〉])
69(a)ii. leaveL enterH(vi,li,hi) → monitor(pt)(vh † [vi 7→ vh(vi)̂〈hi〉])
69a. end)
69b. ⌈⌉⌊⌋ (...)

We omit description of other monitor actions (Line 69b).195

70. Link behaviours maintain a state which records the set of vehicles “currently” on the
link.

71. The link behaviour expresses willingness to

a accept messages from vehicles

b entering links in which case the “vehicle vi on link” state has vi added, or

c leaving links in which case the “vehicle vi on link” state has vi removed,

d where these vehicles range over all fleet vehicles.
196

type
70. VIS = VI-set
value
71. link: li:LI → L → VIS → in cl Unitlink1

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark DTU Informatics FM 2012 Tutorial Lecture Notes

Research Notes 61

71. link(li)(l)(vis) ≡
71a. ⌈⌉⌊⌋ {let m = cl vl[vi,li′]? in assert: li′=li
71a. case m of
71b. enterL → link(li)(l)(vis ∪ {vi})
71c. leaveL → link(li)(l)(vis \ {vi})
71d. end | vi:V•v ∈ xtr VIs(vs) end}

We leave it to the reader to suggest a hub behaviour description.
•

April 25, 2012: 15:51 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

