
1

From Domain to Requirements⋆

Dines Bjørner, Professor Emeritus

1 Faculté des Sciences, Bureau 266, LORIA & Université Henri Poincaré Nancy 1, BP 239, F-54506
Vandœuvre lès Nancy, France.⋆⋆

2 Department of Informatics and Mathematical Modelling, The Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark.

3 Fredsvej 11, DK-2840 Holte, Danmark.
E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

Abstract This is a discursive paper. That is, it shows some formulas (but only as examples so that
the reader may be convinced that there is, perhaps, some substance to our claims), no theorems,
no proofs. Instead it postulates. The postulates are, however, firmly rooted, we think, in Vol.3
(‘Domains, Requirements and Software Design’) of the three volume book ‘Software Engineering’
(Springer March 2006) [6, 7, 8].

First we present a summary of essentials of domain engineering, its motivation, and its mod-
elling of abstractions of domains through the modelling of the intrinsics, support technologies,
management and organisation, rules and regulations, scripts, and human behaviour of whichever
domain is being described.

Then we present the essence of two (of three) aspects of requirements: the domain requirements
and the interface requirements prescriptions as they relate to domain descriptions and we survey
the basic operations that ”turn” a domain description into a domain requirements prescription:
projection, instantiation, determination, extension and fitting. An essence of interface require-
ments is also presented: the “merging” of shared entities, operations, events and behaviours of the
domain with those of the machine (i.e., the hardware and software to be designed).

An objective of the paper is to summarise my work in recent years. Another objective is make
a plea for what I consider a more proper approach to software development.

1.1 Introduction

This paper is not a computer science paper — where by computer science, sometimes strangely
referred to even as theoretical computer science, we mean the study and knowledge of the things
that may exist inside computers.

The paper is more of a computing science paper — where by computing science we mean the
study and knowledge of how to construct the things that can exist inside computers.

The borderline between these two disciplines is sharp, but most interesting papers which pur-
ports to be computing science papers also, oftentimes strongly, contains text of computer science
nature.

Some computer science papers present new models of computation and/or analyses and theo-
rems about such models.

This paper presents a model of early stages of software development that is not conventional.
The model is presented in two alternating ways: (i) we present some of the principles and techniques

⋆ Invited paper for the Festschrift of Ugo Montanari on the occasion of his 65th anniversary May 2008.
Edited by Rocco di Nicola et al. To be published by Springer.

⋆⋆ This paper was written with the financial support of Université Henri Poincaré and INRIA during the
author’s two month visit.

2 Dines Bjørner, Professor Emeritus

of that unconventional software development method, and (ii) we present — what in the end, that
is, taken across the paper, amounts to a relatively large example.

One aspect of the non-conventionality of the present paper is its total lack of ‘references to
related work’ by others. Instead we shall solely refer, now, to our own work related to the topic of
the current paper. In those referenced works you should find ‘references to related work’.

The topic pair of domain and of requirements engineering — on which the present paper relies
— is treated in depth in [8, Chaps. 8–24, Pages 193–524 (!)]. Recent papers elaborate on related
(possible) research topics [9], or on software management [10, to appear], or gives more extensive
summaries on domain engineering, one without a leading, extensive example but with a more
proper discussion of domain modelling issues and ‘related work’ [11, to appear], and one with
a considerably larger example [12, to appear (the example appendix, pages 32–97, illustrates a
Container Line Industry domain)].

In summary: the objective of the present paper is to relate domain engineering to require-
ments engineering and to show that one can obtain an altogether different basis for requirements
engineering.

1.2 The Triptych Principle of Software Engineering

We start, unconventionally, by enunciating a principle. The principle expresses how we see software
development as centrally consisting of three “programming-like” phases based on the following
observation: before software can be designed we must understand its requirements, and before
requirements can be prescribed we must understand the application domain. We therefore see
software development proceeding, ideally, in three phases: a first phase of domain engineering, a
second phase of requirements engineering, and a third phase of software design.

The first paragraphs of Sects. 1.3 and 1.4 explain what the objectives of domain engineering
and requirements engineering are. The sections otherwise outline major development stages and
steps of these two phases.

1.3 Domain Engineering

The objective of domain engineering is to create a domain description. A domain description
specifies entities, functions, events and behaviours of the domain such as the domain stakeholders
think they are. A domain description thus (indicatively [46]) expresses what there is. A domain
description expresses no requirements let alone anything about the possibly desired (required)
software.

1.3.1 Stages of Domain Engineering

To develop a proper domain description necessitates a number of development stages: (i) identi-
fication of stakeholders, (ii) domain knowledge acquisition, (iii) business process rough-sketching,
(iv) domain analysis, (v) domain modelling: developing abstractions and verifying properties, (vi)
domain validation and (vii) domain theory building.

Business process (BP) rough-sketching amount to rough, narrative outlines of the set of business
processes as experienced by each of the stakeholder groups. BP engineering is in contrast to BR
re-engineering (BPR) which we shall cover later, but briefly in Sect. 1.4.2.

We shall only cover domain modelling.

1.3.2 First Example of a Domain Description

We exemplify a transportation domain. By transportation we shall mean the movement of vehicles
from hubs to hubs along the links of a net.

1 From Domain to Requirements 3

Rough Sketching — Business Processes

The basic entities of the transportation “business” are the (i) nets with their (ii) hubs and (iii)
links, the (iv) vehicles, and the (v) traffic (of vehicles on the net). The basic functions are those
of (vi) vehicles entering and leaving the net (here simplified to entering and leaving at hubs), (vii)
for vehicles to make movement transitions along the net, and (viii) for inserting and removing links

(and associated hubs) into and from the net. The basic events are those of (ix) the appearance and
disappearance of vehicles, and (x) the breakdown of links. And, finally, the basic behaviours of the
transportation business are those of (xi) vehicle journey through the net and (xii) net development

& maintenance including insertion into and removal from the net of links (and hubs).

Narrative — Entities

By an entity we mean something we can point to, i.e., something manifest, or a concept abstracted
from, such a phenomenon or concept thereof.

Among the many entities of transportation we start with nets, hubs, and links.
A transportation net consists of hubs and links. Hubs and links are different kinds of entities.

Conceptually hubs (links) can be uniquely identified. From a link one can observe the identities
of the two distinct hubs it links. From a hub one can observe the identities of the one or more
distinct links it connects.

Other entities such as vehicles and traffic could as well be described. Please think of these
descriptions of entities as descriptions of the real phenomena and (at least postulated) concepts
of an actual domain.

Formalisation — Entities

type

H, HI, L, LI
N = H-set × L-set

value

obs HI: H→HI, obs LI: L→LI,
obs HIs: L→HI-set,obs LIs: H→LI-set

axiom

∀ (hs,ls):N •

card hs≥2 ∧ card ls≥1 ∧
∀ h:H • h ∈ hs ⇒

∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI() ∧ obs HI(h) ∈ obs HIs(l′) ∧

∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

value

xtr HIs: N → HI-set,xtr LIs: N → LI-set

Narrative — Operations

By an operation (of a domain) we mean a function that applies to entities of the domain and yield
entities of that domain — whether these entities are actual phenomena or concepts of these or of
other phenomena.

Actions (by domain stakeholders) amount to the execution of operations.

4 Dines Bjørner, Professor Emeritus

Among the many operations performed in connection with transportation we illustrate some
on nets. To a net one can join new link in either of three ways: The new link connects two new
hubs — so these must also be joined , or The new link connects a new hub with an existing hub
— so it must also be joined, or The new link connects two existing hubs. In any case we must
either provide the new hubs or identify the existing hubs.

From a net one can remove a link. Three possibilities now exists: The removed link would
leave its two connected hubs isolated unless they are also removed — so they are; The removed
link would leave one of its connected hubs isolated unless it is also removed — so it is; or The
removed link connects two hubs into both of which other links are connected — so all is OK. (Note
our concern for net invariance.) Please think of these descriptions of operations as descriptions of
the real phenomena and (at least postulated) concepts of an actual domain. (Thus they are not
prescriptions of requirements to software let alone specifications of software operations.)

Formalisation — Operations

type

NetOp = InsLnk | RemLnk
InsLnk == 2Hs(h1:H,l:L,h2:H)|1H(hi:HI,l:L,h:H)|0H(hi1:HI,l:L,hi2:HI)
RemLnk == RmvL(li:LI)

value

int NetOp: NetOp → N
∼

→ N
pre int NetOp(op)(hs,ls) ≡

case op of

2Hs(h1,l,h2) → {h1,h2}∩ hs={} ∧ l6∈ ls ∧ obs HIs(l)={obs HI(h1),obs HI(h2)} ∧
{obs HI(h1),obs HI(h2)}∩ xtr HIs(hs)={} ∧ obs LIs(h1)={li} ∧ obs LIs(h2)={li},

1H(hi,l,h) → h6∈ hs ∧ obs HI(h)6∈ xtr HIs(hs,ls) ∧
l6∈ ls ∧ obs LI(l)6∈ xtr LIs(hs,ls) ∧ ∃ h′:H•h′ ∈ hs∧obs HI(h′)=hi,

0H(hi1,l,hi2) → l6∈ ls ∧ hi1 6=hi2 ∧ {hi1,hi2}⊆∈ xtr HIs(hs,ls) ∧
∃ h1,h2:H•{h1,h2}∈ hs∧{hi1,hi2}={obs HI(h1),obs HI(h2)},

RmvL(li) → ∃ l:L • l ∈ ls ∧ obs LI(l)=li
end

int NetOp(op)(hs,ls) ≡
case op of

2Hs(h1,l,h2) → (hs ∪ {h1,h2},ls ∪ {l}),
1H(hi,l,h) →

(hs\{xtr H(hi,hs)}∪{h,aLI(xtr H(hi,hs),obs LI(l))},ls ∪ {l}),
0H(hi1,l,hi2) →

let hsδ = {aLI(xtr H(hi1,hs),obs LI(l)),aLI(xtr H(hi2,hs),obs LI(l))} in

(hs\{xtr H(hi1,hs),xtr H(hi2,hs)}∪ hsδ,ls ∪ {l}) end,
RmvL(li) → ...

end

xtr H: HI × H-set
∼

→ H
xtr H(hi,hs) ≡ let h:H • h ∈ hs ∧ obs HI(h)=hi in h end

pre ∃ h:H • h ∈ hs ∧ obs HI(h)=hi

aLI: H × LI → H, sLI: H × LI → H
aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ ...

sLI(h′,li) as h

1 From Domain to Requirements 5

pre li ∈ obs LIs(h′)
post obs LIs(h) = obs LIs(h′)\{li} ∧ ...

The ellipses, . . . , shall indicate that previous properties of h holds for h′.

Narrative — Events

By an event of a domain we shall here mean an instantaneous change of domain state (here, for
example, “the” net state) not directly brought about by some willed action of the domain but
either by “external” forces or implicitly, as an unintended result of a willed action.

Among the “zillions” of events that may occur in transportation we single out just one. A link
of a net ceases to exist as a link.4

In order to model transportation events we — ad hoc — introduce a transportation state notion
of a net paired with some — ad hoc — “conglomerate” of remaining state concepts referred to as
ω : Ω.

Formalisation — Events

type

Link Disruption == LiDi(li:LI)
channel

x:(Link Disruption|...)
value

transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡

...

⌈⌉ let xv = x? in

case xv of

LiDi(li) → (int NetOp(RmvL(li))(hs,ls),line dis(ω))
...

end end

⌈⌉ ...

line dis: Ω → Ω

Narrative — Behaviours

By a behaviour we mean a possibly infinite sequence of zero, one or more actions and events.

We illustrate just one of very many possible transportation behaviours.
A net behaviour is a sequence of zero, one or more executed net operations: the openings

(insertions) of new links (and implied hubs) and the closing (removals) of existing links (and
implied hubs), and occurrences of external events (limited here to link disruptions).

Formalisation — Behaviours

channel

x:...
value

transportation transition: (N × Ω) → in x (N × Ω)

6 Dines Bjørner, Professor Emeritus

transportation transition(n,ω) ≡
...

⌈⌉ let xv = x? in case xv of ... end end

⌈⌉ let op:NetOp • pre IntNetOp(op)(n) in IntNetOp(op)(n) end

...

transportation: (N × Ω) → in x Unit

transportation(n,ω) ≡
let (n′,ω′) = transportation transition(n,ω) in

transportation (n′,ω′) end

1.3.3 Domain Modelling: Describing Facets

In this, a major, methodology section of the current paper we shall focus on principles and tech-
niques domain modelling, that is, developing abstractions and verifying properties. We shall only
cover ‘developing abstractions’.

Domain modelling, as we shall see, entails modelling a number of domain facets.
By a domain facet we mean one amongst a finite set of generic ways of analysing a domain:

a view of the domain, such that the different facets cover conceptually different views, and such
that these views together cover the domain.

These are the facets that we find “span” a domain in a pragmatically sound way: intrin-
sics, support technology, management & organisation, rules & regulations, scripts and human
behaviour: We shall now survey these facets.

Domain Intrinsics

By domain intrinsics we mean those phenomena and concepts of a domain which are basic to any
of the other facets (listed earlier and treated, in some detail, below), with such domain intrinsics
initially covering at least one specific, hence named, stakeholder view.

In the large example of Sect. 1.3.2, we claim that the net, hubs and links were intrinsic phenomena
of the transportation domain; and that the operations of joining and removing links were not: one
can explain transportation without these operations. We will now augment the domain description
of Sect. 1.3.2 with an intrinsic concept, namely that of the states of hubs and links: where these
states indicate desirable directions of flow of movement.

A Transportation Intrinsics — Narrative.

With a hub we can associate a concept of hub state. The pragmatics of a hub state is that it
indicates desirable directions of flow of vehicle movement from (incoming) links to (outgoing)
links. The syntax of indicating a hub state is (therefore) that of a possibly empty set of triples of
two link identifiers and one hub identifier where the link identifiers are those observable from the
identified hub.

With a link we can associate a concept of link state. The pragmatics of a link state is that
it indicates desirable directions of flow of vehicle movement from (incoming, identified) hubs to
(outgoing, identified) hubs along an identified link. The syntax of indicating a link state is (there-
fore) that of a possibly empty set of triples of pairs of identifiers of link connected hub and a link
identifier where the hub identifiers are those observable from the identified link.

1 From Domain to Requirements 7

A Transportation Intrinsics — Formalisation.

type

X = LI×HI×LI [crossings of a hub]
P = HI×LI×HI [paths of a link]
HΣ = X-set [hub states]
LΣ = P-set [link states]

value

obs HΣ: H → HΣ

obs LΣ: L → LΣ

xtr Xs: H → X-set, xtr Ps: L → P-set

xtr Xs(h) ≡ {(li,hi,li′)|li,li′:LI,hi:HI•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
xtr Ps(l) ≡ {(hi,li,hi′)|hi,hi′:HI,li:LI•{hi,hi′}=obs HIs(l)∧li=obs LI(l)}

axiom

∀ n:N,h:H;l:L • h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒
obs HΣ(h)⊆xtr Xs(h) ∧ obs LΣ(l)⊆xtr Ps(l)

Domain Support Technologies

By domain support technologies we mean ways and means of implementing certain observed phe-
nomena or certain conceived concepts.

A Transportation Support Technology Facet — Narrative, 1.

Earlier we claimed that the concept of hub and link states was an intrinsics facet of transport nets.
But we did not describe how hubs or links might change state, yet hub and link state changes
should also be considered intrinsic facets. We there introduce the notions of hub and link state
spaces and hub and link state changing operations. A hub (link) state space is the set of all states
that the hub (link) may be in. A hub (link) state changing operation can be designated by the
hub and a possibly new hub state (the link and a possibly new link state).

A Transportation Support Technology Facet — Formalisation, 1.

type

HΩ = HΣ-set, LΩ = LΣ-set

value

obs HΩ: H → HΩ, obs LΩ: L → LΩ

axiom

∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
value

chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h)=hσ

chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l)=lσ

A Transportation Support Technology Facet — Narrative, 2.

Well, so far we have indicated that there is an operation that can change hub and link states.
But one may debate whether those operations shown are really examples of a support technology.
(That is, one could equally well claim that they remain examples of intrinsic facets.) We may

8 Dines Bjørner, Professor Emeritus

accept that and then ask the question: How to effect the described state changing functions ? In
a simple street crossing a semaphore does not instantaneously change from red to green in one
direction while changing from green to red in the cross direction. Rather there is are intermediate
sequences of green/yellow/red and red/yellow/green states to help avoid vehicle crashes and to
prepare vehicle drivers. Our “solution” is to modify the hub state notion.

A Transportation Support Technology Facet — Formalisation, 2.

type

Colour == red | yellow | green
X = LI×HI×LI×Colour [crossings of a hub]
HΣ = X-set [hub states]

value

obs HΣ: H → HΣ, xtr Xs: H → X-set

xtr Xs(h) ≡ {(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
axiom

∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X • {(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧

li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

A Transportation Support Technology Facet — Narrative, 3.

We consider the colouring, or any such scheme, an aspect of a support technology facet. There
remains, however, a description of how the technology that supports the intermediate sequences
of colour changing hub states.

We can think of each hub being provided with a mapping from pairs of “stable” (that is non-
yellow coloured) hub states (hσi,hσf) to well-ordered sequences of intermediate “un-stable’ (that
is yellow coloured) hub states paired with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′),
. . . , (hσ′···′, tδ′···′)〉 and so that each of these intermediate states can be set, according to the time
interval information,5 before the final hub state (hσf) is set.

A Transportation Support Technology Facet — Formalisation, 3.

type

TI [time interval]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema, chg HΣ: H × HΣ → H, chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′ pre hσ ∈ obs HΩ(h) post obs HΣ(h)=hσ

chg HΣ Seq(h,hσ) ≡ let h′ = sig seq(h)(obs Sema(h,hσ)) in chg HΣ(h′,obs Σ(h)) end

sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else

let (hσ,tδ) = hd sigseq in

let h′ = chg HΣ(h,hσ); wait tδ;
sig seq(h′)(tl sigseq) end end end

1 From Domain to Requirements 9

Domain Management & Organisation

By domain management we mean people (such decisions) (i) who (which) determine, formulate and
thus set standards (cf. rules and regulations, a later lecture topic) concerning strategic, tactical
and operational decisions; (ii) who ensure that these decisions are passed on to (lower) levels
of management, and to “floor” staff; (iii) who make sure that such orders, as they were, are
indeed carried out; (iv) who handle undesirable deviations in the carrying out of these orders cum
decisions; and (v) who “backstop” complaints from lower management levels and from floor staff.

We use the connective ‘&’ (ampersand) in lieu of the connective ‘and’ in order to emphasise
that the joined concepts (A & B) hang so tightly together that it does not make sense to discuss
one without discussing the other.

By domain organisation we mean the structuring of management and non-management staff
levels; the allocation of strategic, tactical and operational concerns to within management and
non-management staff levels; and hence the “lines of command”: who does what and who reports
to whom — administratively and functionally.

A Transportation Management & Organisation Facet — Narrative.

In the previous section on support technology we did not describe who or which “ordered” the
change of hub states. We could claim that this might very well be a task for management.

(We here look aside from such possibilities that the domain being modelled has some further
support technology which advices individual hub controllers as when to change signals and then
into which states. We are interested in finding an example of a management & organisation facet
— and the upcoming one might do!)

So we think of a ‘net hub state management’ for a given net. That management is divided
into a number of ‘sub-net hub state managements’ where the sub-nets form a partitioning of the
whole net. For each sub-net management there are two kinds management interfaces: one to the
overall hub state management, and one for each of interfacing sub-nets. What these managements
do, what traffic state information they monitor, etcetera, you can yourself “dream” up. Our point
is this: We have identified a management organisation.

A Transportation Management & Organisation Facet — Formalisation.

type

HIsLIs = HI-set × LI-set
MgtNet′ = HIsLIs × N
MgtNet = {| mgtnet:MgtNet′ • wf MgtNet(mgtnet)|}
Partitioning′ = HIsLIs-set × N
Partitioning = {| partitioning:Partitioning′ • wf Partitioning(partitioning)|}

value

wf MgtNet: MgtNet′ → Bool

wf MgtNet((his,lis),n) ≡
[The his component contains all the hub ids. of links identified in lis]

wf Partitioning: Partitioning′ → Bool

wf Partitioning(hisliss,n) ≡
∀ (his,lis):HIsLIs • (his,lis) ∈ hisliss ⇒ wf MgtNet((his,lis),n)∧
[no sub−net overlap and together they ′′span′′ n]

Etcetera.

10 Dines Bjørner, Professor Emeritus

Domain Rules & Regulations

Domain Rules.

By a domain rule we mean some text (in the domain) which prescribes how people or equipment
are expected to behave when dispatching their duty, respectively when performing their function.

Domain Regulations.

By a domain regulation we mean some text (in the domain) which prescribes what remedial actions
are to be taken when it is decided that a rule has not been followed according to its intention.

A Transportation Rules & Regulations Facet — Narrative.

The purpose of maintaining an appropriate set of hub (and link) states may very well be to guide
traffic into “smooth sailing” — avoiding traffic accidents etc. But this requires that vehicle drivers
obey the hub states, that is, the signals. So there is undoubtedly a rule that says: Obey traffic
signals.And, in consequence of human nature, overlooking or outright violating signals there is
undoubtedly a regulation that says: Violation of traffic signals is subject to fines and

A Transportation Rules & Regulations Facet — Formalisation.

We shall, regretfully, not show any formalisation of the above mentioned rule and regulation. To
do a proper job at such a formalisation would require that we formalise traffics, say as (a type
of) continuous functions from time to pairs of net and vehicle positions, that we define a number
of auxiliary (traffic monitoring) functions, including such which test whether from one instance
of traffic, say at time t to a “next” instance of time, t′, some one or more vehicles have violated
the rule6, etc. The “etcetera” is ominous: It implies modelling traffic wardens (police trying to
apprehend the “sinner”), ‘etc.’ ! We rough-sketch an incomplete formalisation.

type

T [time]
V [vehicle]
Rel Distance = {| f:Rel • 0<f<1 |}
VPos == VatH(h:H) | VonL(hif:HI,l:L,hit:HI,rel distance:Rel Distance)
Traffic = T → (N × (V →m VPos))

value

violations: Traffic → (T×T) → V-set

Vehicle positions are either at hubs or some fraction f down a link (l) from some hub (hit) towards
the connected hub (hit). Traffic maps time into vehicle positions. We omit a lengthy description
of traffic well-formedness.

Domain Scripts

By a domain script we mean the structured, almost, if not outright, formally expressed, wording
of a rule or a regulation that has legally binding power, that is, which may be contested in a court
of law.

A Transportation Script Facet — Narrative.

Regular buses ply the network according to some time table. We consider a train time table to
be a script. Let us take the following to be a sufficiency narrative description of a train time
table. For every train line, identified by a line number unique to within, say a year of operation,

1 From Domain to Requirements 11

there is a list of train hub visits. A train hub visit informs of the intended arrival and departure
times at identified hubs (i.e., train stations) such that “neighbouring” hub visits, (tai

, hi, tdi
) and

(taj
, hj , tdj

), satisfy the obvious that a train cannot depart before it has arrived, and cannot arrive
at the next, the “neighbouring” station before it has departed from the previous station, in fact,
taj

− tdi
must be commensurate with the distance between the two stations.

A Transportation Script Facet — Formalisation.

type

TLin
HVis = T × HI × T
Journey′ = HVis∗, Journey = {|j:Journey′

•len j≥2|}
TimTbl′ = (TLin →m Journey) × N
TimTbl = {| timtbl:TimTbl′ • wf TimTbl(timtbl) |}

value

wf TimTbl: TimTbl′ → Bool

wf TimTbl(tt,n) ≡
[all hubs designated in tt must be hubs of n]
[and all journeys must be along feasible links of n]
[and with commensurate timing net n constraints]

Domain Human Behaviour

By human behaviour we mean any of a quality spectrum of carrying out assigned work: from (i)
careful, diligent and accurate, via (ii) sloppy dispatch, and (iii) delinquent work, to (iv)
outright criminal pursuit.

Transportation Human Behaviour Facets — Narrative.

We have already exemplified aspects of human behaviour in the context of the transportation
domain, namely vehicle drivers not obeying hub states. Other example can be given: drivers
moving their vehicle along a link in a non-open direction, drivers waving their vehicle off and on
the link, etcetera. Whether rules exists that may prohibit this is, perhaps, irrelevant. In any case
we can “speak” of such driver behaviours — and then we ought formalise them !

Transportation Human Behaviour Facets — Formalisation.

But we decide not to. For the same reason that we skimped proper formalisation of the violation
of the “obey traffic signals” rule. But, by now, you’ve seen enough formulas and you ought trust
that it can be done.

off on link: Traffic → (T×T)
∼

→ (V →m VPos×VPos)

wrong direction: Traffic → T
∼

→ (V →m VPos)

1.3.4 Discussion

We have given a mere glimpse of a domain description. A full description of a reasonably “con-
vincing” domain description will take years to develop and will fill many pages (hundreds, . . . (!)).

12 Dines Bjørner, Professor Emeritus

1.4 Requirements Engineering

The objective of requirements engineering is to create a requirements prescription: A requirements
prescription specifies externally observable properties of entities, functions, events and behaviours
of the machine such as the requirements stakeholders wish them to be. The machine is what is
required: that is, the hardware and software that is to be designed and which are to satisfy the
requirements. A requirements prescription thus (putatively [46]) expresses what there should be. A
requirements prescription expresses nothing about the design of the possibly desired (required)
software. We shall show how a major part of a requirements prescription can be “derived” from
“its” prerequisite domain description.

The Example Requirements

The domain was that of transportation. The requirements is now basically related to the issuance
of tickets upon vehicle entry to a toll road net7 and payment of tickets upon the vehicle leaving
the toll road net both issuance and collection/payment of tickets occurring at toll booths8 which
are hubs somehow linked to the toll road net proper. Add to this that vehicle tickets are sensed
and updated whenever the vehicle crosses an intermediate toll road intersection.

tp1 tp2 tp3 tpntpn−1tpj

l12

l21 l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1
ti1 tinii2 ii3 iij iin−1

Fig. 1.1. A simple, linear toll road net:
tpi: toll plaza i,
ti1, tin: terminal intersection k,
iik: intermediate intersection k, 1<k<n

lxy: tollway link from ix to iy , y=x+1 or y=x-1 and 1≤x<n.

1.4.1 Stages of Requirements Engineering

The following are the stages of requirements engineering: stakeholder identification, business pro-

cess re-engineering , domain requirements development, interface development, machine requirements
development, requirements verification and validation, and requirements satisfiability and feasibil-
ity.

The domain requirements development stage consists of a number of steps: projection, instan-
tiation, determination, extension, and fitting

We shall basically only cover business process re-engineering, domain requirements develop-
ment, and interface development

1.4.2 Business Process Re-engineering

Business process re-engineering (BPR) re-evaluates the intrinsics, support technologies, manage-
ment & organisation, rules & regulations, scripts, and human behaviour facets while possibly
changing some or all of these, that is, possibly rewriting the corresponding parts of the domain
description.

1 From Domain to Requirements 13

Re-engineering Domain Entities

The net is arranged as a linear sequence of two or more (what we shall call) intersection hubs.
Each intersection hub has a single two-way link to (what we shall call) an entry/exit hub (toll
plaza); and each intersection hub has either two or four one-way (what we shall call) tollway links:
the first and the last intersection hub (in the sequence) has two tollway links and all (what we
shall call) intermediate intersections has four tollway links. We introduce a pragmatic notion of
net direction: “up” and “down” the net, “from one end to the other”. This is enough to give a
hint at the re-engineered domain.

Re-engineering Domain Operations

We first briefly sketch the tollgate Operations. Vehicles enter and leave the tollway net only
at entry/exit hubs (toll plazas). Vehicles collect and return their tickets from and to tollgate
ticket issuing, respectively payment machines. Tollgate ticket issuing machines respond to sensor
pressure from “passing” vehicles or by vehicle drivers pressing ticket issuing machine button by
issuing ticket. Tollgate payment machines accept credit cards, bank notes or coins in designated
currencies as payment and returns any change.

We then briefly introduce and sketch an operation performed when vehicles cross intersections:
The vehicle is assume to possess the ticket issued upon entry (in)to the net (at a tollgate). At the
crossing of each intersection, by a vehicle, its ticket is sensed and is updated with the fact that
the vehicle crossed the intersection.

The updated domain description section on support technology will detail the exact workings
of these tollgate and internal intersectrion machines and the domain description section on human
behaviour will likewise explore the man/machine facet.

Re-engineering Domain Events

The intersections are highway-engineered in such a way as to deter vehicle entry into opposite
direction tollway links, yet, one never knows, there might still be (what we shall call ghost)
vehicles, that is vehicles which have somehow defied the best intentions, and are observed moving
along a tollway link in the wrong direction.

Re-engineering Domain Behaviours

The intended behaviour of a vehicle of the tollway is to enter at an entry hub (collecting a ticket
at the toll gate), to move to the associated intersection, to move into, where relevant, either an
upward or a downward tollway link, to proceed (i.e., move) along a sequence of one or more tollway
links via connecting intersections, until turning into an exit link and leaving the net at an exit
hub (toll plaza) while paying the toll.

• • •

This should be enough of a BPR rough sketch for us to meaningfully proceed to requirements
prescription proper.

1.4.3 Domain Requirements Prescription

A domain requirements prescription is that part of the overall requirements prescription which
can be expressed solely using terms from the domain description. Thus to construct the domain
requirements prescription all we need is collaboration with the requirements stakeholders (who,

14 Dines Bjørner, Professor Emeritus

with the requirements engineers, developed the BPR) and the possibly rewritten (resulting) domain
description.

Domain Projection

By domain projection we mean a subset of the domain description, one which leaves out all those
entities, functions, events, and (thus) behaviours that the stakeholders do not wish represented
by the machine.

The resulting document is a partial domain requirements prescription.

Domain Projection — Narrative.

We copy the domain description and call the copy a 0th version domain requirements prescription.
From that document we remove all mention of link insertion and removal functions, to obtain a
1st version domain requirements prescription.9

Domain Projection — Formalisation.

We do not show the resulting formalisation.

Domain Instantiation

By domain instantiation we mean a refinement of the partial domain requirements prescription,
resulting from the projection step, in which the refinements aim at rendering the entities, functions,
events, and (thus) behaviours of the partial domain requirements prescription more concrete, more
specific. Instantiations usually render these concepts less general.

Domain Instantiation — Narrative.

The 1st version domain requirements prescription is now updated with respect to the properties
of the toll way net: We refer to Fig. 1.1 and the preliminary description given in Sect. 1.4.2.
There are three kinds of hubs: tollgate hubs and intersection hubs: terminal intersection hubs
and proper, intermediate intersection hubs. Tollgate hubs have one connecting two way link.
linking the tollgate hub to its associated intersection hub. Terminal intersection hubs have three
connecting links: one, a two way link, to a tollgate hub, one one way link emanating to a next
up (or down) intersection hub, and one one way link incident upon this hub from a next up (or
down) intersection hub. Proper intersection hubs have five connecting links: one, a two way link,
to a tollgate hub, two one way links emanating to next up and down intersection hubs, and two
one way links incident upon this hub from next up and down intersection hub. (Much more need
be narrated.) As a result we obtain a 2nd version domain requirements prescription.

Domain Instantiation — Formalisation, Toll Way Net.

type

TN = ((H × L) × (H × L × L))∗ × H × (L × H) → N′

value

abs N: TN → N′

abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,(,hn)) ≡

1 From Domain to Requirements 15

{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}
tn links: TN → L-set

tn links(hll, ,(ln,)) ≡
{ln} ∪ {tlj,lj,lj′|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))

ti1

l21

l12

l32

l23

tlj’

hj’
ljj’

lj’j lj’’j’

lj’j’’
hj

th1

tl1 tl2

h2

th2

hk

thk

lk
lnk

lkn

thn

ln

hn

lkk−1

lk−1k

hll(1) hll(2)

hll(1),hll(2)

hll(j) hll(j+1)

hll(j),hll(j+1)

hll(len hll)hll(len hll −1)

hll(len h −1),hll(len hll)

thj’

Fig. 1.2. A simple, linear toll road net:
thi: toll plaza i,
h1, hn: terminal intersections,
h2, hj , h

′

j , hk: intermediate intersections, 1<j≤k, k=n-1
lxy, lyx: tollway link from hx to hy and from hy to hx, 1≤x<n.
lx−1x, lxx−1: tollway link from hx−1 to hx and hx to hx−1, 1≤x<n,
dashed links are not in formulas.

Domain Instantiation — Formalisation, Wellformedness.

type

LnkM == plaza | way
value

wf TN: TN → Bool

wf TN(tn:(hll,h,(ln,hn))) ≡
wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [to be defined under Determination]

value

wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool

wf Toll Ways(hll,h) ≡
∀ j:Nat • {j,j+1}⊆inds hll ⇒

let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),
(,(hj′, ,)) = hll(j+1) in

wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧

let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in

wf Toll Lnk(thk,tlk,hk)(plaza) ∧

16 Dines Bjørner, Professor Emeritus

wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

vqlue
wf Toll Lnk: (H×L×H) → LnkM → Bool

wf Toll Lnk(h,l,h′)(m) ≡
obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),

(obs HI(h′),obs LI(l),obs HI(h))} ∧
obs Σ(l) = case m of

plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

Domain Determination

By domain determination we mean a refinement of the partial domain requirements prescription,
resulting from the instantiation step, in which the refinements aim at rendering the entities,
functions, events, and (thus) behaviours of the partial domain requirements prescription less
non-determinate, more determinate. Instantiations usually render these concepts less general.

Domain Determination — Narrative.

We single out only two ’determinations’: The link state spaces There is only one link state: the set
of all paths through the link, thus any link state space is the singleton set its only link state. The
hub state spaces are the singleton sets of the “current” hub states which allow these crossings: from
terminal link back to terminal link, from terminal link to emanating tollway link, from incident
tollway link to terminal link, and from incident tollway link to emanating tollway link Special
provision must be made for expressing the entering from the outside and leaving toll plazas to the
outside.

Domain Determination — Formalisation.

wf State Spaces: TN → Bool

wf State Spaces(hll,hn,(thn,tln)) ≡
let ((th1,tl1),(h1,l12,l21)) = hll(1),

((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in

wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒

let (,(hj,ljj,lj′j)) = hll(j),((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in

wf Plaza(thj′,tlj′,hj′) ∧ wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end

wf Plaza(th,tl,h) ≡
obs HΣ(th) = { [crossings at toll plazas]

(′′external′′,obs HI(th),obs LI(tl)),(obs LI(tl),obs HI(th),′′external′′),
(obs LI(tl),obs HI(th),obs LI(tl))} ∧

obs HΩ(th) = {obs HΣ(th)} ∧ obs LΩ(tl) = {obs LΣ(tl)}

wf End(h,tl,l,l′) ≡
obs HΣ(h) = {[crossings at 3−link end hubs]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧ obs LΩ(l′) = {obs LΣ(l′)}

1 From Domain to Requirements 17

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[crossings at properly intermediate, 5−link hubs]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧ obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧ obs LΩ(dl) = {obs LΣ(dl)}

Not all determinism issues above have been fully explained. But for now we should — in principle
— be satisfied.

Domain Extension

By domain extension we understand the introduction of domain entities, functions, events and
behaviours that were not feasible in the original domain, but for which, with computing and com-
munication, there is the possibility of feasible implementations, and such that what is introduced
become part of the emerging domain requirements prescription.

Domain Extension — Narrative.

The domain extension is that of the controlled access of vehicles to and departure from the toll road
net: the entry to (and departure from) tollgates from (respectively to) an "an external" net —
which we do not describe; the new entities of tollgates with all their machinery; the user/machine
functions: upon entry: driver pressing entry button, tollgate delivering ticket; upon exit: driver
presenting ticket, tollgate requesting payment, driver providing payment, etc.

One added (extended) domain requirements: as vehicles are allowed to cruise the entire net
payment is a function of the totality of links traversed, possibly multiple times. This requires, in
our case, that tickets be made such as to be sensed somewhat remotely, and that intersections
be equipped with sensors which can record and transmit information about vehicle intersection
crossings. (When exiting the tollgate machine can then access the exiting vehicles sequence of
intersection crossings — based on which a payment fee calculation can be done.)

All this to be described in detail — including all the thinks that can go wrong (in the domain)
and how drivers and tollgates are expected to react.

Domain Extension — Formalisation.

We suggest only some signatures:

type

Mach, Ticket, Cash, Payment, Map TN
value

obs Cash: Mach → Cash, obs Tickets: M → Ticket-set
obs Entry, obs Exit: Ticket → HI, obs Ticket: V → (Ticket|nil)

calculate Payment: (HI×HI) → Map TN → Payment

press Entry: M → M × Ticket [gate up]
press Exit: M × Ticket → M × Payment
payment: M × Payment → M × Cash [gate up]

18 Dines Bjørner, Professor Emeritus

Domain Extension — Formalisation of Support Technology.

This example provides a classical requirements engineering setting for embedded, safety critical,
real-time systems, requiring, ultimately, the techniques and tools of such things as Petri nets,
statecharts, message sequence charts or live sequence charts and temporal logics (DC, TLA+).

Requirements Fitting

The issue of requirements fitting arises when two or more software development projects are based
on what appears to be the same domain. The problem then is to harmonise the two or more
software development projects by harmonising, if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn
, being

considered, and that these pertain to the same domain — and can hence be assumed covered by
a same domain description.

By requirements fitting we mean a harmonisation of n > 1 domain requirements that have
overlapping (common) not always consistent parts and which results in n ‘modified and partial
domain requirements’, and m ‘common domain requirements’ that “fit into” to two or more of the
‘modified and partial domain requirements’.

By a modified and partial domain requirements we mean a domain requirements which is
short of (that is, is missing) some description parts: text and formula. By a common domain
requirements we mean a domain requirements. By the m common domain requirements parts,
cdrs, fitting into the n modified and partial domain requirements we mean that there is for each
modified and partial domain requirements, mapdri, an identified subset of cdrs (could be all of
cdrs), scdrs, such that textually conjoining scdrs to mapdr can be claimed to yield the “original”
dri

.

Requirements Fitting Procedure — A Sketch.

Requirements fitting consists primarily of a pragmatically determined sequence of analytic and
synthetic (‘fitting’) steps. It is first decided which n domain requirements documents to fit. Then
a ‘manual’ analysis is made of the selected, n domain requirements. During this analysis tentative
common domain requirements are identified. It is then decided which m common domain require-
ments to single out. This decision results in a tentative construction of n modified and partial
domain requirements. An analysis is made of the tentative modified and partial and also common
domain requirements. A decision is then made whether to accept the resulting documents or to
iterate the steps above.

Requirements Fitting — Narrative.

We postulate two domain requirements: We have outlined a domain requirements development
for software support for a toll road system. We have earlier hinted at domain operations related
to insertion of new and removal of existing links and hubs. We can therefore postulate that there
are two domain requirements developments, both based on the transport domain: one, drtoll

, for

a toll road computing system monitoring and controlling vehicle flow in and out of toll plazas,
and another, drmaint.

, for a toll link and intersection (i.e., hub) building and maintenance system

monitoring and controlling link and hub quality and for development.
The fitting procedure now identifies the shared of awareness of the net by both drtoll

and

drmaint.
of nets (N), hubs (H) and links (L). We conclude from this that we can single out a

common requirements for software that manages net, hubs and links. Such software requirements
basically amounts to requirements for a database system. A suitable such system, say a relational
database management system, DBrel, may already be available with the customer.

1 From Domain to Requirements 19

In any case, where there before were two requirements (drtoll
, drmaint.

) there are now four:

(i) d′rtoll
, a modification of drtoll

which omits the description parts pertaining to the net; (ii)

d′rmaint.
, a modification of drmaint.

which likewise omits the description parts pertaining to the

net; (iii) drnet
, which contains what was basically omitted in d′rtoll

and d′rmaint.
; and (iv) dr

db:i/f
(for database interface) which prescribes a mapping between type names of drnet

and relation and

attribute names of DBrel.
Much more can and should be said, but this suffices as an example in a software engineering

methodology paper.

Requirements Fitting — Formalisation.

We omit lengthy formalisation.

Domain Requirements Consolidation

After projection, instantiation, determination, extension and fitting, it is time to review, consoli-
date and possibly restructure (including re-specify) the domain requirements prescription before
the next stage of requirements development.

1.4.4 Interface Requirements Prescription

By an interface requirements we mean a requirements prescription which refines and extends the
domain requirements by considering those requirements of the domain requirements whose enti-
ties, operations, events and behaviours are “shared” between the domain and the machine (being
requirements prescribed).

‘Sharing’ means (a) that an entity is represented both in the domain and “inside” the machine,
and that its machine representation must at suitable times reflect its state in the domain; (b)
that an operation requires a sequence of several “on-line” interactions between the machine (being
requirements prescribed) and the domain, usually a person or another machine; (c) that an event

arises either in the domain, that is, in the environment of the machine, or in the machine, and
need be communicated to the machine, respectively to the environment; and (d) that a behaviour

is manifested both by actions and events of the domain and by actions and events of the machine.

1.4.5 Interface Requirements Prescription

So a systematic reading of the domain requirements shall result in an identification of all shared
entities, operations, events and behaviours.

Each such shared phenomenon shall then be individually dealt with: entity sharing shall lead
to interface requirements for data initialisation and refreshment; operation sharing shall lead to
interface requirements for interactive dialogues between the machine and its environment; event

sharing shall lead to interface requirements for how such event are communicated between the
environment of the machine and the machine. behaviour sharing shall lead to interface requirements
for action and event dialogues between the machine and its environment.

• • •

We shall now illustrate these domain interface requirements development steps with respect to our
ongoing example.

20 Dines Bjørner, Professor Emeritus

Shared Entities

The main shared entites are the net, hence the hubs and the links. As domain entities they
continuously undergo changes with respect to the values of a great number of attributes and
otherwise possess attibutes — most of which have not been mentioned so far: length, cadestral
information, namings, wear and tear (whereever applicable), last/next scheduled maintenance
(whereever applicable), state and state space, and many others.

We “split” our interface requirements development into two separate steps: the development of
drnet

(the common domain requirements for the shared hubs and links), and the co-development

of dr
db:i/f

(the common domain requirements for the interface between drnet
and DBrel — under

the assumption of an available relational database system DBrel
When planning the common domain requirements for the net, i.e., the hubs and links, we

enlarge our scope of requirements concerns beyond the two so far treated (drtoll
, drmaint.

) in

order to make sure that the shared relational database of nets, their hubs and links, may be
useful beyond those requirements. We then come up with something like hubs and links are to
be represented as tuples of relations; each net will be represented by a pair of relations a hubs
relation and a links relation; each hub and each link may or will be represented by several tuples;
etcetera. In this database modelling effort it must be secured that “standard” operations on nets,
hubs and links can be supported by the chosen relational database system DBrel.

Data Initialisation.

As part of drnet
one must prescribe data initialisation, that is provision for an interactive user

interface dialogue with a set of proper display screens, one for establishing net, hub or link at-
tributes (names) and their types and, for example, two for the input of hub and link attribute
values. Interaction prompts may be prescribed: next input, on-line vetting and display of evolving
net, etc. These and many other aspects may therefore need prescriptions.

Essentially these prescriptions concretise the insert link operation.

Data Refreshment.

As part of drnet
one must also prescribe data refreshment: an interactive user interface dialogue

with a set of proper display screens one for updating net, hub or link attributes (names) and their
types and, for example, two for the update of hub and link attribute values. Interaction prompts
may be prescribed: next update, on-line vetting and display of revised net, etc. These and many
other aspects may therefore need prescriptions.

These prescriptions concretise remove and insert link operations.

Shared Operations

The main shared operations are related to the entry of a vehicle into the toll road system and the
exit of a vehicle from the toll road system.

Interactive Operation Execution.

As part of drtoll
we must therefore prescribe the varieties of successfull and less successful sequences

of interactions between vehicles (or their drivers) and the toll gate machines.
The prescription of the above necessitates determination of a number of external events, see

below.
(Again, this is an area of embedded, real-time safety-critical system prescription.)

1 From Domain to Requirements 21

Shared Events

The main shared external events are related to the entry of a vehicle into the toll road system, the
crossing of a vehicle through a toll way hub and the exit of a vehicle from the toll road system.

As part of drtoll
we must therefore prescribe the varieties of these events, the failure of all

appropriate sensors and the failure of related controllers: gate opener and closer (with sensors and
actuators), ticket “emitter” and “reader” (with sensors and actuators), etcetera.

The prescription of the above necessitates extensive fault analysis.

Shared Behaviours

The main shared behaviours are therefore related to the journey of a vehicle throuh the toll road
system and the functioning of a toll gate machine during “its lifetime”. Others can be thought of,
but are omitted here.

In consequence of considering, for example, the journey of a vehicle behaviour, we may “add”
some further, extended requirements: (a) requirements for a vehicle statistics “package”; (b) re-
quirements for tracing supposedly “lost” vehicles; (c) requirements limiting toll road system access
in case of traffic congestion; etcetera.

1.5 Discussion

1.5.1 An ‘Odysey’

Our ‘Odysey’ has ended. A long example has been given.
We have shown that requirements engineering can have an abstraction basis in domain engi-

neering; and we have shown that we do not have to start software development with requirements
engineering, but that we can start software development with domain engineering and then proceed
to a more orderly requirements engineering phase than witnessed today.

1.5.2 Claims of Contribution

What is essentially new here is the claim and its partial validation that one can and probably should
put far more emphasis on domain modelling, the domain modelling concepts, principles and tech-
niques of business process domain intrinsics, domain support technologies, domain management
and organisation, domain rules and regulations, domain scripts and domain human behaviour;
the identification of, and the decomposition of the requirements development process into, do-
main requirements, interface requirements and machine requirements; the domain requirements
“derivation” concepts, principles and techniques of projection, instantiation, determination, ex-
tension and fitting and the identification of structuring of the interfce qround requirements shared
entities, shared operations, shared events and shared behaviours.

1.5.3 Comparison to Other Work

Jackson’s Problem Frame approach [47] cleverly alternates between domain analysis, requirements
development and software design. For more satisfactory comparisons between our domain engi-
neering approach and past practices and writings on domain analysis we refer to [11].

22 Dines Bjørner, Professor Emeritus

1.5.4 A Critique

A major presentation of domain and of requirements engineering is given in [8, Chaps. 8–16 and
17–24]. [11] provides a summary, more complete presentation of domain engineering than the
present paper allows, while [9] discusses a set of research issues for domain engineering. Papers,
like [11, 9], but for requirements engineering, with more a complete presentation, respectively a
discussion of research issues for this new kind of reauirements engineering might be desirable.
The current paper’s Sect. 1.4 provided a slightly revised structuring of the interface requirements
engineering.

Some of the development steps within the domain modelling and likewise within the require-
ments modelling are refinments, and some are extensions. If we ensure that the extensions are
what is known as conservatiove extensions then all theorems of the source of the extension go
through and are also valid in the extension. Although such things are here rather clear much more
should be said here about ensuring conservatiove extensions. We do not since the current paper is
is not aimed at the finer issues of the development but at the domain to requirements “derivation”
issues.

1.6 Acknowledgments

I gratefully acknowledge support from Université Henri Poincaré (UHP), Nancy, and from INRIA
(l’Institut National de Recherche en Informatique et en Automatique) both of France, for my two
month stay at LORIA (Laboratoire Lorrain de Recherche en Informatique et ses Applications),
Nancy, in the fall of 2008. I especially and warmly thank Dominique Méry for hosting me. And I
thank the organsisers of Ugo Montanari’s Festschrift, Pierpaolo Degano, Jose Meseguer and Rocco
De Nicola, for inviting me — thus forcing me to willingly write this paper.

1.7 Bibliographical Notes

Specification languages, techniques and tools, that cover the spectrum of domain and requirements
specification, refinement and verification, are dealt with in Alloy: [45], ASM: [17, 64, 65], B/event B:
[1, 20], CSP [40, 67, 68, 41], DC [72, 73, 31] (Duration Calculus), Live Sequence Charts [21, 36, 49],
Message Sequence Charts [42, 43, 44], RAISE [27, 29, 6, 7, 8, 26] (RSL), Petri nets [48, 59, 62, 61,
63], Statecharts [32, 33, 35, 37, 34], Temporal Logic of Reactive Systems [52, 53, 58, 60], TLA+
[50, 51, 54, 55] (Temporal Logic of Actions), VDM [14, 15, 25, 24], and Z [69, 70, 71, 39, 38].
Techniques for integrating “different” formal techniques are covered in [2, 30, 18, 16, 66]. The
recent book on Logics of Specification Languages [13] covers ASM, B/event B, CafeObj, CASL,
DC, RAISE, TLA+, VDM and Z.

References

1. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, England, 1996.

2. Keijiro Araki, Andy Galloway, and Kenji Taguchi, editors. IFM 1999: Integrated Formal Methods,
volume 1945 of Lecture Notes in Computer Science, York, UK, June 1999. Springer. Proceedings of
1st Intl. Conf. on IFM.

3. Dines Bjørner. Programming in the Meta-Language: A Tutorial. In Dines Bjørner and Cliff B. Jones,
editors, The Vienna Development Method: The Meta-Language, [14], LNCS, pages 24–217. Springer–
Verlag, 1978.

4. Dines Bjørner. Software Abstraction Principles: Tutorial Examples of an Operating System Command
Language Specification and a PL/I-like On-Condition Language Definition. In Dines Bjørner and
Cliff B. Jones, editors, The Vienna Development Method: The Meta-Language, [14], LNCS, pages
337–374. Springer–Verlag, 1978.

1 From Domain to Requirements 23

5. Dines Bjørner. The Vienna Development Method: Software Abstraction and Program Synthesis. In
Mathematical Studies of Information Processing, volume 75 of LNCS. Springer–Verlag, 1979. Pro-
ceedings of Conference at Research Institute for Mathematical Sciences (RIMS), University of Kyoto,
August 1978.

6. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical Com-
puter Science, the EATCS Series. Springer, 2006.

7. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts in Theo-
retical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are primarily authored
by Christian Krog Madsen.

8. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006.

9. Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In
ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages
1–17, Heidelberg, September 2007. Springer.

10. Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32,
2008. (This is a new journal, published by Taylor & Francis, New York and London, edited by Philip
Laplante).

11. Dines Bjørner. Domain Engineering. In BCS FACS Seminars, Lecture Notes in Computer Science,
the BCS FAC Series (eds. Paul Boca and Jonathan Bowen), pages 1–42, London, UK, 2008. Springer.
To appear.

12. Dines Bjørner. Domain Engineering. In The 2007 Lipari PhD Summer School, volume ???? of Lecture
Notes in Computer Science (eds. E. Börger and A. Ferro), pages 1–102, Heidelberg, Germany, 2008.
Springer. To appear.

13. Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages — see [65, 20, 23,
56, 31, 26, 55, 24, 38]. EATCS Monograph in Theoretical Computer Science. Springer, Heidelberg,
Germany, 2008.

14. Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of LNCS. Springer–Verlag, 1978. This was the first monograph on Meta-IV. [3, 4, 5].

15. Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-
Hall, 1982.

16. Eerke A. Boiten, John Derrick, and Graeme Smith, editors. IFM 2004: Integrated Formal Meth-
ods, volume 2999 of Lecture Notes in Computer Science, London, England, April 4-7 2004. Springer.
Proceedings of 4th Intl. Conf. on IFM. ISBN 3-540-21377-5.

17. E. Börger and R. Stärk. Abstract State Machines. A Method for High-Level System Design and
Analysis. Springe, 2003. ISBN 3-540-00702-4.

18. Michael J. Butler, Luigia Petre, and Kaisa Sere, editors. IFM 2002: Integrated Formal Methods, volume
2335 of Lecture Notes in Computer Science, Turku, Finland, May 15-18 2002. Springer. Proceedings
of 3rd Intl. Conf. on IFM. ISBN 3-540-43703-7.

19. Dominique Cansell and Dominique Méry. Logical Foundations of the B Method. Computing and
Informatics, 22(1–2), 2003. This paper is one of a series: [64, 22, 57, 28, 54, 39] appearing in a double
issue of the same journal: Logics of Specification Languages — edited by Dines Bjørner.

20. Dominique Cansell and Dominique Méry. Logics of Specification Languages, chapter The event-B
Modelling Method: Concepts and Case Studies, pages in [13], 47–152. Springer, 2008.

21. Werner Damm and David Harel. LSCs: Breathing life into Message Sequence Charts. Formal Methods
in System Design, 19:45–80, 2001. Early version appeared as Weizmann Institute Tech. Report CS98-
09, April 1998. An abridged version appeared in Proc. 3rd IFIP Int. Conf. on Formal Methods for
Open Object-based Distributed Systems (FMOODS’99), Kluwer, 1999, pp. 293–312.

22. Ražvan Diaconescu, Kokichi Futatsugi, and Kazuhiro Ogata. CafeOBJ: Logical Foundations and
Methodology. Computing and Informatics, 22(1–2), 2003. This paper is one of a series: [64, 19, 57, 28,
54, 39] appearing in a double issue of the same journal: Logics of Specification Languages — edited
by Dines Bjørner.

23. Răzvan Diaconescu. Logics of Specification Languages, chapter A Methodological Guide to the
CafeOBJ Logic, pages in [13], 153–240. Springer, 2008.

24. John S. Fitzgerald. Logics of Specification Languages, chapter The Typed Logic of Partial Functions
and the Vienna Development Method, pages in [13], 453–487. Springer, 2008.

25. John S. Fitzgerald and Peter Gorm Larsen. Developing Software using VDM-SL. Cambridge University
Press, The Edinburgh Building, Cambridge CB2 1RU, England, 1997.

26. Chris George and Anne E. Haxthausen. Logics of Specification Languages, chapter The Logic of the
RAISE Specification Language, pages in [13], 349–399. Springer, 2008.

24 Dines Bjørner, Professor Emeritus

27. Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne,
Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language.
The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

28. Chris W. George and Anne E. Haxthausen. The Logic of the RAISE Specification Language. Com-
puting and Informatics, 22(1–2), 2003. This paper is one of a series: [64, 19, 22, 57, 54, 39] appearing
in a double issue of the same journal: Logics of Specification Languages — edited by Dines Bjørner.

29. Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and
Jan Storbank Pedersen. The RAISE Method. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1995.

30. Wolfgang Grieskamp, Thomas Santen, and Bill Stoddart, editors. IFM 2000: Integrated Formal Meth-
ods, volume of Lecture Notes in Computer Science, Schloss Dagstuhl, Germany, November 1-3 2000.
Springer. Proceedings of 2nd Intl. Conf. on IFM.

31. Michael R. Hansen. Logics of Specification Languages, chapter Duration Calculus, pages in [13], 299–
347. Springer, 2008.

32. David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274, 1987.

33. David Harel. On visual formalisms. Communications of the ACM, 33(5), 514–530 1988.
34. David Harel and Eran Gery. Executable object modeling with Statecharts. IEEE Computer, 30(7):31–

42, 1997.
35. David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi Sherman, Aharon

Shtull-Trauring, and Mark B. Trakhtenbrot. STATEMATE: A working environment for the develop-
ment of complex reactive systems. Software Engineering, 16(4):403–414, 1990.

36. David Harel and Rami Marelly. Come, Let’s Play – Scenario-Based Programming Using LSCs and
the Play-Engine. Springer-Verlag, 2003.

37. David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts. ACM Transactions
on Software Engineering and Methodology (TOSEM), 5(4):293–333, 1996.

38. Martin C. Henson, Moshe Deutsch, and Steve Reeves. Logics of Specification Languages, chapter Z
Logic and Its Applications, pages in [13], 489–596. Springer, 2008.

39. Martin C. Henson, Steve Reeves, and Jonathan P. Bowen. Z Logic and its Consequences. Computing
and Informatics, 22(1–2), 2003. This paper is one of a series: [64, 19, 22, 57, 28, 54] appearing in a
double issue of the same journal: Logics of Specification Languages — edited by Dines Bjørner.

40. Tony Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science. Prentice-
Hall International, 1985.

41. Tony Hoare. Communicating Sequential Processes. Published electronically: http://www.usingcsp.-
com/cspbook.pdf, 2004. Second edition of [40]. See also http://www.usingcsp.com/.

42. ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992.
43. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1996.
44. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), 1999.
45. Daniel Jackson. Software Abstractions Logic, Language, and Analysis. The MIT Press, Cambridge,

Mass., USA, April 2006. ISBN 0-262-10114-9.
46. Michael A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and

prejudices. ACM Press. Addison-Wesley Publishing Company, Wokingham, nr. Reading, England;
E-mail: ipc@awpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv + 228 pages.

47. Michael A. Jackson. Problem Frames — Analyzing and Structuring Software Development Problems.
ACM Press, Pearson Education. Addison–Wesley, Edinburgh Gate, Harlow CM20 2JE, England, 2001.

48. Kurt Jensen. Coloured Petri Nets, volume 1: Basic Concepts (234 pages + xii), Vol. 2: Analysis
Methods (174 pages + x), Vol. 3: Practical Use (265 pages + xi) of EATCS Monographs in Theoretical
Computer Science. Springer–Verlag, Heidelberg, 1985, revised and corrected second version: 1997.

49. Jochen Klose and Hartmut Wittke. An automata based interpretation of Live Sequence Charts. In
T. Margaria and W. Yi, editors, TACAS 2001, LNCS 2031, pages 512–527. Springer-Verlag, 2001.

50. Leslie Lamport. The Temporal Logic of Actions. Transactions on Programming Languages and
Systems, 16(3):872–923, 1995.

51. Leslie Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA, 2002.
52. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems: Specifications. Addison

Wesley, 1991.
53. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive Systems: Safety. Addison Wesley,

1995.
54. Stephan Merz. On the Logic of TLA+. Computing and Informatics, 22(1–2), 2003. This paper is

one of a series: [64, 19, 22, 57, 28, 39] appearing in a double issue of the same journal: Logics of

Specification Languages — edited by Dines Bjørner.

1 From Domain to Requirements 25

55. Stephan Merz. Logics of Specification Languages, chapter The Specification Language TLA+, pages
in [13], 401–451. Springer, 2008.

56. T. Mossakowski, A. Haxthausen, D. Sannella, and A. Tarlecki. Logics of Specification Languages,
chapter Casl – the Common Algebraic Specification Language, pages in [13], 241–298. Springer,
2008.

57. Till Mossakowski, Anne E. Haxthausen, Don Sanella, and Andzrej Tarlecki. CASL — The Common
Algebraic Specification Language: Semantics and Proof Theory. Computing and Informatics, 22(1–2),
2003. This paper is one of a series: [64, 19, 22, 28, 54, 39] appearing in a double issue of the same
journal: Logics of Specification Languages — edited by Dines Bjørner.

58. Ben C. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, Cambridge,
England, 1986.

59. Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik,
Schriften des IIM Nr. 2, 1962.

60. Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, IEEE CS FoCS, pages 46–57. Providence, Rhode Island, IEEE CS,
1977. .

61. Wolfang Reisig. A Primer in Petri Net Design. Springer Verlag, March 1992. 120 pages.
62. Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical Com-

puter Science. Springer Verlag, May 1985.
63. Wolfgang Reisig. Elements of Distributed Algorithms: Modelling and Analysis with Petri Nets. Springer

Verlag, December 1998. xi + 302 pages.
64. Wolfgang Reisig. The Expressive Power of Abstract State Machines. Computing and Informatics,

22(1–2), 2003. This paper is one of a series: [19, 22, 57, 28, 54, 39] appearing in a double issue of the
same journal: Logics of Specification Languages — edited by Dines Bjørner.

65. Wolfgang Reisig. Logics of Specification Languages, chapter Abstract State Machines for the Class-
room, pages in [13], 15–46. Springer, 2008.

66. Judi M.T. Romijn, Graeme P. Smith, and Jaco C. van de Pol, editors. IFM 2005: Integrated Formal
Methods, volume 3771 of Lecture Notes in Computer Science, Eindhoven, The Netherlands, December
2005. Springer. Proceedings of 5th Intl. Conf. on IFM. ISBN 3-540-30492-4.

67. A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Series in Computer Science.
Prentice-Hall, 1997.

68. Steve Schneider. Concurrent and Real-time Systems — The CSP Approach. Worldwide Series in
Computer Science. John Wiley & Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD,
England, January 2000.

69. J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics, volume 3 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, January 1988.

70. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer
Science, 2nd edition, 1992.

71. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice Hall
International Series in Computer Science, 1996.

72. Chao Chen Zhou and Michael R. Hansen. Duration Calculus: A Formal Approach to Real–time
Systems. Monographs in Theoretical Computer Science. An EATCS Series. Springer–Verlag, 2004.

73. Chao Chen Zhou, Charles Anthony Richar Hoare, and Anders P. Ravn. A Calculus of Durations.
Information Proc. Letters, 40(5), 1992.

A Laudatio: Ugo 65 Years

To come

Contents

1 From Domain to Requirements

Dines Bjørner, Professor Emeritus . 1
Abstract . 1

1.1 Introduction . 1
1.2 The Triptych Principle of Software Engineering . 2
1.3 Domain Engineering . 2

1.3.1 Stages of Domain Engineering . 2
1.3.2 First Example of a Domain Description . 2

Rough Sketching — Business Processes . 3
Narrative — Entities . 3
Formalisation — Entities . 3
Narrative — Operations . 3
Formalisation — Operations . 4
Narrative — Events . 5
Formalisation — Events . 5
Narrative — Behaviours . 5
Formalisation — Behaviours . 5

1.3.3 Domain Modelling: Describing Facets . 6
Domain Intrinsics . 6

A Transportation Intrinsics — Narrative. 6
A Transportation Intrinsics — Formalisation. 7

Domain Support Technologies . 7
A Transportation Support Technology Facet — Narrative, 1. 7
A Transportation Support Technology Facet — Formalisation, 1. 7
A Transportation Support Technology Facet — Narrative, 2. 7
A Transportation Support Technology Facet — Formalisation, 2. 8
A Transportation Support Technology Facet — Narrative, 3. 8
A Transportation Support Technology Facet — Formalisation, 3. 8

Domain Management & Organisation . 9
A Transportation Management & Organisation Facet — Narrative. 9
A Transportation Management & Organisation Facet — Formalisation. 9

Domain Rules & Regulations . 10
Domain Rules. 10
Domain Regulations. 10
A Transportation Rules & Regulations Facet — Narrative. 10
A Transportation Rules & Regulations Facet — Formalisation. 10

Domain Scripts . 10
A Transportation Script Facet — Narrative. 10
A Transportation Script Facet — Formalisation. 11

28 Contents

Domain Human Behaviour . 11
Transportation Human Behaviour Facets — Narrative. 11
Transportation Human Behaviour Facets — Formalisation. 11

1.3.4 Discussion . 11
1.4 Requirements Engineering . 12

The Example Requirements . 12
1.4.1 Stages of Requirements Engineering . 12
1.4.2 Business Process Re-engineering . 12

Re-engineering Domain Entities . 13
Re-engineering Domain Operations . 13
Re-engineering Domain Events . 13
Re-engineering Domain Behaviours . 13

1.4.3 Domain Requirements Prescription . 13
Domain Projection . 14

Domain Projection — Narrative. 14
Domain Projection — Formalisation. 14

Domain Instantiation . 14
Domain Instantiation — Narrative. 14
Domain Instantiation — Formalisation, Toll Way Net. 14
Domain Instantiation — Formalisation, Wellformedness. 15

Domain Determination . 16
Domain Determination — Narrative. 16
Domain Determination — Formalisation. 16

Domain Extension . 17
Domain Extension — Narrative. 17
Domain Extension — Formalisation. 17
Domain Extension — Formalisation of Support Technology. 18

Requirements Fitting . 18
Requirements Fitting Procedure — A Sketch. 18
Requirements Fitting — Narrative. 18
Requirements Fitting — Formalisation. 19

Domain Requirements Consolidation . 19
1.4.4 Interface Requirements Prescription . 19
1.4.5 Interface Requirements Prescription . 19

Shared Entities . 20
Data Initialisation. 20
Data Refreshment. 20

Shared Operations . 20
Interactive Operation Execution. 20

Shared Events . 21
Shared Behaviours . 21

1.5 Discussion . 21
1.5.1 An ‘Odysey’ . 21
1.5.2 Claims of Contribution . 21
1.5.3 Comparison to Other Work . 21
1.5.4 A Critique . 22

1.6 Acknowledgments . 22
1.7 Bibliographical Notes . 22
References . 22
A Laudatio: Ugo 65 Years . 25

