
invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er

Three License Languages

From Domains to Script Design

Dines Bjørner1,2,∗, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

1 DTU Informatics, DK-2800 Kgs.Lyngby, Denmark;
2 Graduate School of Information Science, Japan Advanced Institute of Science
and Technology, 1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan;
3 Ubiquitous Software Group, Information Technology Research Institute, National
Institute of Advanced Industrial Science and Technology, Akihabara Dai Bldg,
1-18-3 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan

Summary. Classical digital rights license languages [2,11–13,19,21,24–32,35] were
(and are) applied to the electronic “downloading”, payment and rendering (play-
ing) of artistic works (for example music, literature readings and movies). In this
document we generalise such applications languages and we extend the concept of li-
censing to also cover work authorisation (work commitment and promises) in health
care and in public government. The digital works for these two new application
domains are patient medical records and public government documents.

Digital rights licensing for artistic works seeks to safeguard against piracy and to
ensure proper payments for the rights to render these works. Health care and public
government license languages seek to ensure transparent and professional (accu-
rate and timely) health care, respectively ‘good governance’. Proper mathematical
definition of licensing languages seeks to ensure smooth and correct computerised
management of licenses.

We shall motivate and exemplify three license languages, their pragmatics, syn-
tax and informal as well as formal semantics.

1 Introduction

License:

a right or permission granted in accordance with law by a competent authority
to engage in some business or occupation,

to do some act, or to engage in some transaction
which but for such license would be unlawful

Merriam Webster On-line [38]

The concepts of licenses and licensing express relations between actors (li-
censors (the authority) and licensees), simple entities (artistic works, hospital

∗ Corresponding author: bjorner@gmail.com, www.imm.dtu/˜db

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
2 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

patients, public administration and citizen documents) and operations (on
simple entities), and as performed by actors. By issuing a license to a licensee,
a licensor wishes to express and enforce certain permissions and obligations:
which operations on which entities the licensee is allowed (is licensed, is per-
mitted) to perform. In this paper we shall consider three kinds of entities:
(i) digital recordings of artistic and intellectual nature: music, movies, read-
ings (“audio books”), and the like, (ii) patients in a hospital as represented
also by their patient medical records, and (iii) documents related to public
government.

The permissions and obligations issues are, (i) for the owner (agent) of
some intellectual property to be paid (i.e., an obligation) by users when they
perform permitted operations (rendering, copying, editing, sub-licensing) on
their works; (ii) for the patient to be professionally treated — by medical
staff who are basically obliged to try to cure the patient; and (iii) for public
administrators and citizens to enjoy good governance: transparency in law
making (national parliaments and local prefectures and city councils), in law
enforcement (i.e., the daily administration of laws), and law interpretation
(the judiciary) — by agents who are basically obliged to produce certain
documents while being permitted to consult (i.e., read, perhaps copy) other
documents.

1.1 What Kind of Science Is This?

It is experimental computing science: The study and knowledge of how to de-
sign and construct software that is right, i.e., correct, and the right software,
i.e., what the user wants. To study methods for getting the right software is
interesting. To study methods for getting the software right is interesting. Do-
main development helps us getting the right software. Deriving requirements
from domain descriptions likewise. Designing software from such requirements
helps us get the software right. Understanding a domain and then designing
license languages from such an understanding is new. We claim that computer-
supported management of properly designed license languages is a hallmark
of the e-Society.

1.2 What Kind of Contributions?

The experimental nature of the project being reported on is as follows: Pos-
tulate three domains. Describe these informally and formally. Postulate the
possibility of license languages (LLs) that somehow relate to activities of re-
spective domains. Design these – experimentally. Try discover similarities and
differences between the three LLs (LLDRM , LLHHLL, LLPALL). Formalise the
common aspects: CLL. Formalise the three LLs — while trying to “parame-
terise” the CLL to achieve LLDRM , LLHHLL, LLPALL. This investigation is
bound to tell us something, we hope.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 3

2 Pragmatics of The Three License Languages

• By pragmatics we understand the study and practice of the factors that
govern our choice of language in social interaction and the effects of our
choice on others.

In this section we shall rough-sketch-describe pragmatic aspects of the three
domains of (i) production, distribution and consumption of artistic works
(Sect. 2.1), (ii) the hospitalisation of patient, i.e., hospital health care (Sect. 2.2),
and (iii) the handling of law-based document in public government (Sect. 2.3).
The emphasis is on the pragmatics of the terms, i.e., the language used in these
three domains.

2.1 The Performing Arts: Producers and Consumers

The intrinsic simple entities of the performing arts are the artistic works:
drama or opera performances, music performances, readings of poems, short
stories, novels, or jokes, movies, documentaries, newsreels, etc. We shall limit
our span to the scope of electronic renditions of these artistic works: videos,
CDs or other. In this paper we shall not touch upon the technical issues of
“downloading”(whether ”streaming” or copying, or other). That and other
issues will be analysed in [41].

Operations on Digital Works

For a consumer to be able to enjoy these works that consumer must (normally
first) usually “buy a ticket” to their performances. The consumer, i.e., the the-
atre, opera, concert, etc., “goer” (usually) cannot copy the performance (e.g.,
“tape it”), let alone edit such copies of performances. In the context of elec-
tronic, i.e., digital renditions of these performances the above “cannots” take
on a new meaning. The consumer may copy digital recordings, may edit these,
and may further pass on such copies or editions to others. To do so, while
protecting the rights of the producers (owners, performers), the consumer re-
quests permission to have the digital works transferred (“downloaded”) from
the owner/producer to the consumer, so that the consumer can render (“play”)
these works on own rendering devices (CD, DVD, etc., players), possibly can
copy all or parts of them, then possibly can edit all or parts of the copies, and,
finally, possibly can further license these “edited” versions to other consumers
subject to payments to “original” licensor.

Past versus Future

In the past all a consumer of digital works could do was to download and
possibly copy. We would like, in this document, to investigate what it might
entail, with respect to a digital rights license language, to license the consumer
to also (copy,) edit and sub-license such digital works.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
4 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

License Agreement and Obligation

To be able to obtain these permissions the user agrees with the wording of
some license and pays for the rights to operate on the digital works.

The Artistic Electronic Works: Two Assumptions

Two, related assumptions underlie the pragmatics of the electronics of the
artistic works. The first assumption is that the format, the electronic repre-
sentation of the artistic works is proprietary, that is, that the producer still
owns that format. Either the format is publicly known or it is not, that is, it
is somehow “secret”. In either case we “derive” the second assumption (from
the fulfilment of the first). The second assumption is that the consumer is
not allowed to, or cannot operate2 on the works by own means (software, ma-
chines). The second assumption implies that acceptance of a license results
in the consumer receiving software that supports the consumer in performing
all operations on licensed works, their copies and edited versions: rendering,
copying, editing and sub-licensing.

Protection of the Artistic Electronic Works

The issue now is: how to protect the intellectual property (i.e., artistic) and
financial (exploitation) rights of the owners of the possibly rendered, copied
and edited works, both when, and when not further distributed.

An Artistic Digital Rights License Language

In Sects. 4.1, 5.1, and 5.2 we shall design a suitably flexible digital artistic
works license language and, through its precise informal and formal descrip-
tion provide one set answers to the above issue.

2.2 Hospital Health Care: Patients and Medical Staff

Citizens go to hospitals in order to be treated for some calamity (disease or
other), and by doing so these citizens become patients. At hospitals patients,
in a sense, issue a request to be medically treated with the aim of full or
partial restitution. This request is directed at medical staff, that is, the patient
authorises medical staff to perform a set of actions upon the patient. One could
claim, as we shall, that the patient issues a license.

Hospital Health Care: Patients and Patient Medical Records

So patients and their attendant patient medical records (PMRs) are the main
entities, the “works” of this domain. We shall treat them synonymously: PMRs
as surrogates for patients. Typical actions on patients — and hence on PMRs
— involve admitting patients, interviewing patients, analysing patients, diag-
nosing patients, planning treatment for patients, actually treating patients,
and, under normal circumstance, to finally release patients.

2 render, copy and edit

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 5

Hospital Health Care: Medical Staff

Medical staff may request (‘refer’ to) other medical staff to perform some of
these actions. One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans. We shall call such scripts
for licenses.

Professional Health Care

The issue is now, given that we record these licenses, their being issued and
being honoured, whether the handling of patients at hospitals follow, or does
not follow properly issued licenses.

A Hospital Health Care License Language

In Sects. 4.2, 5.1, and 5.3 we shall design a suitably flexible hospital health
care license language and, through its precise informal and formal description
provide one set answers to the above issue.

2.3 Public Government and the Citizens

The Three Branches of Government

By public government we shall, following Charles de Secondat, baron de Mon-
tesquieu (1689–1755)3, understand a composition of three powers: the law-
making (legislative), the law-enforcing and the law-interpreting parts of public
government. Typically national parliament and local (province and city) coun-
cils are part of law-making government; law-enforcing government is called
the executive (the administration, including the police and state and district
attorneys); and law-interpreting government is called the judiciary (that is,
judiciary system, which includes juries and judges etc.).

Documents

A crucial means of expressing public administration is through documents.4

We shall therefore provide a brief domain analysis of a concept of doc-
uments. (This document domain description also applies to patient medical
records and, by some “light” interpretation, also to artistic works — insofar
as they also are documents.)

Documents are created, edited and read; and documents can be copied,
distributed, the subject of calculations (interpretations) and be shared and
shredded.

3 De l’esprit des lois (The Spirit of the Laws), published 1748
4 Documents are, for the case of public government to be the “equivalent” of artistic

works.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
6 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

Document Attributes

With documents one can associate, as attributes of documents, the actors

who initiate the following operations on documents: create, edit, read, copy,
distribute (and to whom distributed), share, perform calculations and shred.

With these operations on documents, and hence as attributes of docu-
ments one can, again conceptually, associate the location and time of these
operations.

Finally we shall associate with documents the following attributes: (i)
operations: the name of operations that may be performed on the document;
(ii) actors: the name of actors and which operations they may perform
on the document; (iii) time-stamped transactions and locations: a
chronological list of operations actually performed on the document and the
location at which the document was placed at that time; etcetera. Many other
attributes may be associatable. Please recall that we are “in the domain”. This
means that we can indeed talk about the above attributes being observable
from documents. The documents may just be “good, old-fashioned” paper
documents. But someone, some persons, knows, or recalls, or believes in the
validity of such attributes or have stamp-marked or “asctibed” the documents
in such a way that these attributes can be deduced. Appendix ?? (Pages ??–
??, which reflects [3]) presents “the beginnings” of “a theory of documents”
in which these attribute assignments and observations can be done and made.

Actor Attributes and Licenses

With actors (whether agents of public government or citizens) one can asso-
ciate the authority (i.e., the rights) these actors have with respect to perform-
ing actions on documents. We now intend to express these authorisations as

licenses.

Document Tracing

An issue of public government is whether citizens and agents of public gov-
ernment act in accordance with the laws — with actions and laws reflected in
documents such that the action documents enables a trace from the actions
to the laws “governing” these actions.

We shall therefore assume that every document can be traced back to
its law-origin as well as to all the documents any one document-creation or
-editing was based on.

A Public Administration Document License Language

Sects. 4.3, 5.1, and 5.4 we shall design a suitably flexible public government
document license language and, through its precise informal and formal de-
scription provide one set answers to the above issue.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 7

3 Semantic Intents of Licensor and Licensee Actions

In this section we shall briefly analyse some of the common semantics of the
three kinds of license languages that we intend to design.

3.1 Overview

There are two parties to a license: the licensor and the licensee. And there is
a common agreement concerning a shared “item” between them, namely: the
license and the work item: the artistic work, the patient, the document.

The licensor gives the licensee permission, or mandates the licensee to be
obligated to perform certain actions on designated “items”.

The licensee performs, or does not perform permitted and/or obligated
actions

And the licensee may perform actions not permitted or not obligated.
The license shall serve to ensure that only permitted actions are carried

out, and to ensure that all obligated actions are carried out.
Breach of the above, that is, breach of the contracted license may or shall

result in revocation of the license.

3.2 Licenses and Actions

Licenses

Conceptually a licensor o (for owner) may issue a license named ℓ to licensee
u (for user) to perform some actions. The license may syntactically appear as
follows:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

Actions

And, conceptually, the licensee (u) may perform actions which can be ex-
pressed as follows:

ℓ :a(w); ℓ :a′(w); ...; ℓ :a′′(w); ...; ℓ :a′′′(w)

These actions (a, a′, ..., a′′, ..., a′′′) may be in the set {a1,a2,...,an}, mentioned
in the license, or they may not be in that set. In the latter case we have a
breach of license ℓ.

Two Languages

Thus there is the language of licenses and the language of actions.
We advise the reader to take note of the distinction between the permitted

or obligated actions enumerated in a license and the license-name-labelled
actions actually requested by a licensee.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
8 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

3.3 Sub-licensing, Scheme I

A licensee u may wish to delegate some of the work associated with performing
some licensed actions to a colleague (or customer). If, for example the license
originally stated:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

the licensee (u) may wish a colleague u′ to perform a subset of the actions,
for example

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Therefore u would like if the above license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w

instead was formulated as:

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

where

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

Now licensee u can perform the action

ℓ : license actions {a′,a′′,a′′′} to u′

where {a′,a′′,a′′′}⊆{ai,aj,...,ak}.
The above is an action designator. Its practical meaning is that a license

is issued by u:

η(ℓ,u,t): licensor u licenses licensee u′

to perform actions {a′,a′′,a′′′} on work item w

The above license can be easily “assembled” from the action including the
action named license: the context determines who (namely u) is issuing the
license, and who or which is the work item. η is a function which applies to
license name, agent identifications and time and yields unique new license
names.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 9

3.4 Sub-licensing, Scheme II

The subset relation

{ai,aj,...,ak} ⊆ {a1,a2,...,an}

mentioned in the sub-licensing part of license

ℓ : licensor o licenses licensee u
to perform actions {a1,a2,...,an} on work item w
allowing sub-licensing of actions {ai,aj,...,ak}

may be omitted. In fact one could relax the relation completely and allow
any actions {ai,aj,...,ak} whether in {a1,a2,...,an} or not ! That is, the orig-
inal licensor may mandate that a licensee allow a sub-licensee to perform
operations that the licensee is not allowed to perform. Examples are: a li-
censee may break the shrink-wrap around some licensed software package —
an action which may not be performed by the licensor; a medical nurse (i.e.,
a licensee) may perform actions on patients not allowed performed by the
licensor (say, a medical doctor); and a civil servant (say, an archivist) may
copy, distribute or shred documents, actions that may not be allowed by the
licensor (i.e., the manager of that civil servant), while that civil servant (the
archivist) is not allowed to create or read documents.

3.5 Multiple Licenses

Consider the following scenario: A licensee L is performing actions ap, aq, . . . ,
ar, on work item ω, and has licensed L′ to perform actions ai, aj , . . . , ak,
also on work item ω. The action whereby L licenses L′ occurs at some time.
At that time L has performed none or some of the actions ap, aq, . . . , ar (on
work item ω), but maybe not all. What is going to happen? Can L and L′ go
on, in parallel, performing actions on the same work item (ω) ? Our decision
is yes, and they can do so in an interleaved manner, not concurrently but
alternating, i.e., not accessing the same work item simultaneously.

4 Syntax and Informal Semantics

We distinguish between the pragmatics, the semantics and the syntax of lan-
guages. Leading textbooks on (formal) semantics of programming languages
are [15, 20, 33, 36, 39, 40].

We have already covered the concept of pragmatics and we have, in cover-
ing some basic issues of semantics, illustrated their application to some issues
of license language design.

We shall now illustrate the use of syntax and semantics in license language
design.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
10 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

• By syntax we mean (i) the ways in which words are arranged to show mean-
ing (cf. semantics) within and between sentences, and (ii) rules for forming
syntactically correct sentences.

• By semantics we mean the study and knowledge, including specification, of
meaning in language [14].

• By informal semantics we mean a semantics which is expressed in concise
natural language, for example, as here, English.

4.1 A General Artistic License Language

We refer to the abstract syntax formalised below (that is, formulas 0.–8.
[Page 10] and 9.–14. [Page 12]). The work on the specific form of the syn-
tax has been facilitated by the work reported by Xiang JenWen [41].5

The Syntax

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

Licenses

We first present an abstract syntax of the language of licenses, then we an-
notate this abstract syntax, and finally we present an informal semantics of
that language of licenses.

type
0. Ln, Nm, W, S, V
1. L = Ln × Lic
2. Lic == mkLic(licensor:Nm,licensee:Nm,work:W,cmds:Cmd-set)
3. Cmd == Rndr | Copy | Edit | RdMe | SuLi
4. Rndr = mkRndr(vw:(V|′′work′′),sl:S∗)
5. Copy = mkCopy(fvw:(V|′′work′′),sl:S∗,tv:V)
6. Edit = mkEdit(fvw:(V|′′work′′),sl:S∗,tv:V)
7. RdMe = ′′readme′′

8. SuLi = mkSuLi(cs:Cmd-set,work:V)

Syntax Annotations

0: Syntax Sorts: (0.) Licenses are given names, ln:Ln, so are actors (owners,
licensors, and users, licensees), nn:Nm. By w:W we mean a (net) reference to
(a name of) the downloaded possibly segmented artistic work being licensed,
and where segments are named (s:S), that is, s:S is a selector to either a
segment of a downloaded work or to a segment of a copied and or and edited
work.
5 As this work, [41], has yet to be completed the syntax and annotations given here

may change.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 11

License Name and License Body: (1.) Every license (lic:Lic) has a unique
name (ln:Ln). (2.) A license (lic:Lic) contains four parts: the name of the
licensor, the name of the licensee, a reference to (the name of) the work and a
set of command designators (that may be permitted to be performed on the
work).

Commands: (3.) A command is either a render, a copy or an edit or a readme,
or a sub-licensing (sub-license) command.

Render, Copy and Edit: (4.–6.) The render, copy and edit commands are each
“decorated” with an ordered list of selectors (i.e., selector names) and a (work)
variable name. The license command

copy 〈s1,s7,s2〉 v

means that the licensed work, ω, may have its sections s1, s7 and s2 copied,
in that sequence, into a new variable named v, Other copy commands may
specify other sequences. Similarly for render and edit commands.

Read Me: (7.) The ”readme” license command, in a license, ln, referring, by
means of w, to work ω, somehow displays a graphical/textual “image” of in-
formation about ω. We do not here bother to detail what kind of information
may be so displayed. But you may think of the following display informa-
tion names of artistic work, artists, authors, etc., names and details about
licensed commands, a table of fees for performing respective licensed com-
mands, etcetera.

Sub-Licensing: (8.) The license command

license cmd1,cmd2,...,cmdn on work v
mkSuLi({cmd1,cmd2,...,cmdn},v)

means that the licensee is allowed to act as a licensor, to name sub-licensees
(that is, licensees) freely, to select only a (possibly full) subset of the sub-
licensed commands (that are listed) for the sub-licensees to enjoy. The license
need thus not mention the name(s) of the possible sub-licensees. But one
could design a license language, i.e., modify the present one, to reflect such
constraints. The license also does not mention the payment fee component. As
we shall see under licensor actions such a function will eventually be inserted.

Informal Semantics

A license licenses the licensee to render, copy, edit and license (possibly the
results of editing) any selection of downloaded works. In any order — but see
below — and any number of times. For every time any of these operations
take place payment takes place according to the payment function (which can
be inspected by means of the ‘‘readme’’ command). The user can render the
downloaded work and can render copies of the work as well as edited versions
of these. Edited versions are given own names. Editing is always of copied

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
12 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

versions. Copying is either of downloaded or of copied or edited versions. This
does not transpire from the license syntax but is expressed by the licensee,
see below, and can be checked and duly paid for according to the payment
function.

The payment function is considered a partial function of the selections of
the work being licensed.

Please recall that licensed works are proprietary. Either the work format is
known, or it is not supposed to be known, In any case, the rendering, editing,
copying and the license-“assembling” functions (see next section) are part of
the license and the licensed work and are also assumed to be proprietary. Thus
the licensee is not allowed to and may not be able to use own software for
rendering, editing, copying and license assemblage.

Licenses specify sets of permitted actions. Licenses do not normally man-
date specific sequences of actions. Of course, the licensee, assumed to be an
un-cloned human, can only perform one action at a time. So licensed actions
are carried out sequentially. The order is not prescribed, but is decided upon
by the licensee. Of course, some actions must precede other actions. Licensees
must copy before they can edit, and they usually must edit some copied work
before they can sub-license it. But the latter is strictly speaking not necessary.

Actions

type
9. V
10. Act = Ln × (Rndr|Copy|Edit|License)
11. Rndr == mkR(sel:S∗,wrk:(W|V))
12. Copy == mkC(sel:S∗,wrk:(W|V),into:V)
13. Edit == mkE(wrks:V∗,into:V)
14. License == mkL(ln:Ln,licensee:Nm,wrk:V,cmds:Cmd-set,fees:PF)

Annotations and Informal Semantics:

Variables: (9.) By V we mean the name of a variable in the users own storage
into which downloaded works can be copied (now becoming a local work). The
variables are not declared. They become defined when the licensee names them
in a copy command. They can be overwritten. No type system is suggested.

Actions: (10.) Every action of a licensee is tagged by the name of a relevant
license; if the action is not authorised by the named license then it is rejected;
render and copy actions mention a specific sequence of selectors; and if this
sequence is not an allowed (a licensed) one, then the action is rejected. (No-
tice that the license may authorise a specific action, a with different sets of
sequences of selectors — thus allowing for a variety of possibilities as well as
constraints.)

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 13

Render: (11.) The licensee, having now received a license, can render selec-
tions of the licensed work, or of copied and/or edited versions of the licensed
work. No reference is made to the payment function. When rendering, the
semantics is that this function is invoked and duly applied. That is, render
payments are automatically made: subtracted from the licensees account and
forwarded to the licensor.

Copy: (12.) The licensee can copy selections of the licensed work, or of previ-
ously copied and/or edited versions of the licensed work. The licensee identifies
a name for the local storage file where the copy will be kept. No reference is
made to the payment function. When copying, the semantics is that this func-
tion is invoked and duly applied. That is, copy payments are automatically
made: subtracted from the licensees account and forwarded to the licensor.

Edit: (13.) The licensee can edit selections of the licensed work, or of copied
and/or previously edited versions of the licensed work. The licensee identifies
a name for the local storage file where the new edited version will be kept. The
result of editing is a new work. No reference is made to the payment function.
When editing, the semantics is that this function is invoked and duly applied.
That is, edit payments are automatically made: subtracted from the licensees
account and forwarded to the licensor.

(a) Although no reference is made to any edit functions these are made
available to the licensee when invoking the edit command. (b) You may think
of these edit functions being downloaded at the time of downloading the li-
cense. (c) Other than this we need not further specify the editing functions.

Remarks (a,b,c) apply also to the above copying function.

Sub-Licensing: (14.) The licensee can further sub-license copied and/or edited
work. The licensee must give the license being assembled a unique name. And
the licensee must choose to whom to license this work. A sub-license, like does
a license, authorises which actions can be performed, and then with which one
of a set of alternative selection sequences. No payment function is explicitly
mentioned. It is to be semi-automatically derived (from the originally licensed
payment fee function and the licensee’s payment demands) by means of func-
tionalities provided as part of the licensed payment fee function.

The sub-license command information is thus compiled (assembled) into a
license of the form given in (1.–3.) and schematised in the “η(ℓ, u, t):” labelled
command designator on Page 8. The licensee becomes the licensor and the
recipient of the new, the sub-license, become the new licensee. The assemblage
refers to the context of the action. That context knows who, the licensor, is
issuing the sub-license. From the license label of the command it is known
whether the sub-license actions are a subset of those for which sub-licensing
has been permitted.

4.2 A Hospital Health Care License Language

A reading of this section assumes that of having read the previous section.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
14 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

We refer to the abstract syntax formalised below (that is, formulas 0.–7.
Page 15). The work on the specific form of the syntax has been facilitated by
the work reported in [1].6

A Notion of License Execution States

In the context of the Artistic License Language licensees could basically per-
form licensed actions in any sequence and as often as they so desired. There
were, of course, some obvious constraints. Operations (not to be confused with
hospital surgery on patients) on local works could not be done before these
had been created — say by copying. Editing could only be done on local works
and hence required a prior action of, for example, copying a licensed work. In
the context of hospital health care most of the actions can only be performed
if the patient has reached a suitable state in the hospitalisation. We refer to
Fig. 1 for an idealised hospitalisation plan.

Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Fig. 1. An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

6 As this work, [1], has yet to be completed the syntax and annotations given here
may change.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 15

We therefore suggest to join to the licensed commands an indicator which
prescribe the (set of) state(s) of the hospitalisation plan in which the command
action may be performed.

Two or more medical staff may now be licensed to perform different (or
even same!) actions in same or different states. If licensed to perform same
action(s) in same state(s) — well that may be “bad license programming”
if and only if it is bad medical practice! One cannot design a language and
prevent it being misused!

The Syntax

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

Licenses

type
0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(s staff1:Mn,s mandate:ML,s pat:Pn)
3. ML == mkML(s staff2:Mn,s to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt
5. Cmd == mkCmd(s σs:Σ-set,s stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

The above syntax is correct RSL [4–7, 16–18]. But it is decorated! The sub-
types {|boldface keyword|} are inserted for readability.

Syntax: Annotations: (0.) Licenses, medical staff and patients have names.
(1.) Licenses further consist of license bodies (Lic).
(2.) A license body names the licensee (Mn), the patient (Pn), and,
(3.) through the “mandated” licence part (ML), it names the licensor

(Mn) and which set of commands (C) or (o) implicit licenses (L, for a “total”
mnemonic identifier: CoL) the licensor is mandated to issue.

(4.) An explicit command or licensing (CoL) is either a command (Cmd),
or a sub-license (ML) or an alternative (Alt).

(5.) A command (Cmd) is a set-of-states-labelled statement.
(3.) A sub-license (ML) just states the command set that the sub-license

licenses. As for the Artistic License Language the licensee chooses an appro-
priate subset of commands. The context “inherits” the name of the patient.
But the sub-licensee is explicitly mandated in the license!

(6.) An alternative (Alt) is also just a set of commands. The meaning is
that either the licensee choose to perform the designated actions or, as for
ML, but now freely choosing the sub-licensee, the licensee (now new licensor)
chooses to confer actions to other staff.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
16 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

(7.) A statement (Stmt) is either an admit, an interview, a plan analysis,
an analysis, a diagnose, a plan treatment, a treatment, a transfer, or a release
directive. Information given in the patient medical report, for the designated
state, inform medical staff as to the details of analysis, what to base a diagnosis
on, of treatment, etc.

Actions

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

Syntax Annotations: (8.) Each action actually attempted by a medical staff
refers to the license, and hence the patient name.

(9.) Actions are either of an admit, an interview, a plan analysis, an analy-
sis, a diagnose, a plan treatment, a treatment, a transfer, or a release actions.
Each individual action is only allowed in a state σ if the action directive ap-
pears in the named license and the patient (medical record) designated state
set σs.

(10.) Or an action can be a sub-licensing action. Either the sub-licensing
action that the licensee is attempting is explicitly mandated by the license
(4. ML), or is an alternative one thus implicitly mandated (6.). The full sub-
license, as defined in (1.–3. on Page 15) is compiled from contextual informa-
tion.

Informal Semantics

An informal, rough-sketch semantics (here abbreviated) would state that a
prescribed action is only performed if the patient, cum patient medical record
is in an appropriate state; that the patient is being treated according to the
action performed; and that records of this treatment and its (partially) anal-
ysed outcome is introduced into the patient medical record. The next state
of the patient, cum patient medical record, depends on the outcome of the
treatment7; and hence the patient medical record carries with it, i.e., embod-
ies a, or the, hospitalisation plan in effect for the patient, and a reference to
the current state of the patient.

4.3 A Public Administration License Language

In this appendix we shall assume that the reader has studied, or at least can
refer to Appendix ?? (Pages ??–??, [3]).

We refer to the abstract syntax formalised below (that is, formulas (0.–19.),
Page 17 and formulas (20.–31.), starting Page 19). The work on the specific
form of the syntax has been facilitated by the work reported in [3, 8, 10].8

7 Cf. the diamond-shaped decision boxes in Fig. 1 on page 14.
8 As part this work, [10], has yet to be completed the syntax and annotations given

here may change.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 17

The Syntax: Licenses

The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

The Form of Licenses

type
0. Ln, An, Dn, DCn, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(s license:Ln,s licensor:An,s ops:OpDocs,s licensee:An)
3. Extend == mkE(s licensor:An,s licensee:An,s license:Ln,s with ops:OpDocs)
4. Restrict == mkR(s licensor:An,s licensee:An,s license:Ln,s to ops:OpDocs)
5. Withdraw == mkW(s licensor:An,s licensee:An,s license:Ln)
6a. OpDocs = Op →m (Dn →m DCn)
6b. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

Licensed Operations

type
7. UDI
8. Crea == mkCr(s dn:Dn,s doc class:DCn,s based on:UDI-set)
9. Edit == mkEd(s doc:UDI,s based on:UDI-set)
10. Read == mkRd(s doc:UDI)
11. Copy == mkCp(s doc:UDI)
12. Licn == mkLi(s kind:LiTy)
13. LiTy == grant | extend | restrict | withdraw
14. Shar == mkSh(s doc:UDI,s with:An-set)
15. Rvok == mkRv(s doc:UDI,s from:An-set)
16. Rlea == mkRl(s dn:Dn)
17. Rtur == mkRt(s dn:Dn)
18. Calc == mkCa(s fcts:CFn-set,s docs:UDI-set)
19. Shrd == mkSh(s doc:UDI)

Syntax & Informal Semantics Annotations: Licenses

(0.) The are names of licenses (Ln), actors (An), documents (Dn), document
classes (DCn), calculation functions (Cfn).

(1.) There are four kinds of licenses: granting, extending, restricting and
withdrawing.

(2.) Actors (licensors) grant licenses to other actors (licensees). An ac-
tor is constrained to always grant distinctly named licenses. No two actors
grant identically named licenses.9 A set of operations on named documents
(OpDocs) are granted.

9 This constraint can be enforced by letting the unique actor name be part of the
license name.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
18 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

(3.–5.) Actors who have issued named licenses may extend, restrict or
withdraw the license rights (wrt. operations).

(6a.) To each granted operation there is associated a set of document
names (each of which is associated with a document class name, i.e., a type).

(6b.) There are nine kinds of operation (Op) authorisations.
Some of the next explications also explain parts of some of the correspond-

ing actions (see (20.–32.) Page 19).
(7.) There are unique document identifiers. Several documents may be “of

the same” name, but each created document “of that name” is ascribed a
unique document identifier.

(8.) Creation results in an initially void document which is not necessar-
ily uniquely named (dn:Dn) (but that name is associated with the unique
document identifier created when the document is created):

value
obs Dn: UID → Dn, obs DCn: UID → DCn, obs An: UID → An

The created document is typed by a document class name (dcn:DCn) which,
like the name of the licensee, can also be observed from the unique document
identifier). The created document is possibly based on10 one or more identified
documents (over which the licensee (at least) has reading rights). We can
presently omit consideration of the document class concept. The “based on”
documents are moved11 from licensor to licensee.

(9.) Editing a document may be based on “inspiration” from, that is,
with reference to a number of other documents (over which the licensee (at
least) has reading rights). What this “be based on” means is simply that the
edited document contains those references. (They can therefore be traced.)
The “based on” documents are moved12 from licensor to licensee — if not
already so moved as the result of the specification of other authorised actions.

(10.) Reading a document only changes its “having been read” status (etc.)
— as per Appendix ?? [3]. The read document, if not the result of a copy, is
moved from licensor to licensee — if not already so moved as the result of the
specification of other authorised actions.

(11.) Copying a document increases the document population by exactly
one document. All previously existing documents remain unchanged except
that the document which served as a master for the copy has been so marked.
The copied document is like the master document except that the copied
document is marked to be a copy (etc.) — as per Appendix ?? [3]. The
master document, if not the result of a create or copy, is moved from licensor
to licensee — if not already so moved as the result of the specification of other
authorised actions.
10 “Based on” means that the initially void document contains references to those

(zero, one or more) documents.They can therefore be traced (etc.) — as per [3].
11 A discussion on this choice, of “move”, should weigh this against licensee be able

to remotely access the “based on” document, etc., etc.
12 See Footnote 10.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 19

(12.) A licensee can sub-license certain operations to be performed by other
actors.

(13.) The granting, extending, restricting or withdrawing permissions (a)
cannot name a license (the user has to do that); (b) do not need to refer to
the licensor (the licensee issuing the sub-license); and (c) leaves it open to the
licensor to freely choose a licensee. One could, instead, for example, constrain
the licensor to choose from a certain class of actors. The licensor (the licensee
issuing the sub-license) must choose a unique license name.

(14.) A document can be shared between two or more actors. One of these
is the licensee, the others are implicitly given read authorisations. (One could
think of extending, instead, the licensing actions with a shared attribute.)
The shared document, if not the result of a create and edit or copy, is moved
from licensor to licensee — if not already so moved as the result of the spec-
ification of other authorised actions. Sharing a document does not move nor
copy it.

(15.) Sharing documents can be revoked. That is, the reading rights are
removed.

(16.) The release operation: if a licensor has authorised a licensee to cre-
ate a document (and that document, when created got the unique document
identifier udi:UDI) then that licensee can release the created, and possibly
edited document (by that identification) to the licensor, say, for comments.
The licensor thus obtains the master copy.

(17.) The return operation: if a licensor has authorised a licensee to create
a document (and that document, when created got the unique document iden-
tifier udi:UDI) then that licensee can return the created, and possibly edited
document (by that identification) to the licensor — “for good”! The licensee
relinquishes all control over that document.

(18.) One or more documents can be subjected to any one of a set of
permitted calculation functions. These documents, if not the result of creates
and edits or copies, are moved from licensor to licensee — if not already so
moved as the result of the specification of other authorised actions. Observe
that there can be many calculation permissions, over overlapping documents
and functions.

(19.) A document can be shredded.

The Syntax: Actions

type
20. Action = Ln × Clause
21. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
22. Cre == mkCre(dcn:DCn,based on docs:UID-set)
23. Edt == mkEdt(uid:UID,based on docs:UID-set)
24. Rea == mkRea(uid:UID)
25. Cop == mkCop(uid:UID)
26. Lic == mkLic(license:L)

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
20 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

27. Sha == mkSha(uid:UID,with:An-set)
28. Rvk == mkRvk(uid:UID,from:An-set)
29. Rel == mkRel(dn:Dn,uid:UID)
30. Ret == mkRet(dn:Dn,uid:UID)
31. Cal == mkCal(fct:Cfn,over docs:UID-set)
32. Shr == mkShr(uid:UID)

Preliminary Remarks

A clause elaborates to a state change and usually some value. The value
yielded by elaboration of the above create, copy, and calculation clauses are
unique document identifiers. These are chosen by the “system”.

Syntax & Informal Semantics Annotations: Actions

(20.) Actions are tagged by the name of the license with respect to which
their authorisation and document names has to be checked. No action can
be performed by a licensee unless it is so authorised by the named license,
both as concerns the operation (create, edit, read, copy, license, share, revoke,
calculate and shred) and the documents actually named in the action. They
must have been mentioned in the license, or, created or copies of downloaded
(and possibly edited) documents or copies of these — in which cases operations
are inherited.

(22.) A licensee may create documents if so licensed — and obtains all
operation authorisations to this document.

(23.) A licensee may edit “downloaded” (edited and/or copied) or created
documents.

(24.) A licensee may read “downloaded” (edited and/or copied) or created
and edited documents.

(25.) A licensee may (conditionally) copy “downloaded” (edited and/or
copied) or created and edited documents. The licensee decides which name to
give the new document, i.e., the copy. All rights of the master are inherited
to the copy.

(26.) A licensee may issue licenses of the kind permitted. The licensee
decides whether to do so or not. The licensee decides to whom, over which, if
any, documents, and for which operations. The licensee looks after a proper
ordering of licensing commands: first grant, then sequences of zero, one or
more either extensions or restrictions, and finally, perhaps, a withdrawal.

(27.) A “downloaded” (possibly edited or copied) document may (condi-
tionally) be shared with one or more other actors. Sharing, in a digital world,
for example, means that any edits done after the opening of the sharing ses-
sion, can be read by all so-granted other actors.

(28.) Sharing may (conditionally) be revoked, partially or fully, that is,
wrt. original “sharers”.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 21

(29.) A document may be released. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created is now being able to
see the results — and is expected to comment on this document and eventually
to re-license the licensee to further work.

(30.) A document may be returned. It means that the licensor who origi-
nally requested a document (named dn:Dn) to be created is now given back
the full control over this document. The licensee will no longer operate on it.

(31.) A license may (conditionally) apply any of a licensed set of calculation
functions to “downloaded” (edited, copied, etc.) documents, or can (uncondi-
tionally) apply any of a licensed set of calculation functions to created (etc.)
documents. The result of a calculation is a document. The licensee obtains all
operation authorisations to this document (— as for created documents).

(32.) A license may (conditionally) shred a “downloaded” (etc.) document.

4.4 Discussion

Comparisons

We have “designed”, or rather proposed three different kinds of license lan-
guages. In which ways are they “similar”, and in which ways are they “dif-
ferent”? Proper answers to these questions can only be given after we have
formalised these languages. The comparisons can be properly founded on com-
paring the semantic values of these languages.

But before we embark on such formalisations we need some informal com-
parisons so as to guide our formalisations. So we shall attempt such analysis
now with the understanding that it is only a temporary one.

Differences

Work Items: The work items of the artistic license language(s) are essentially
“kept” by the licensor. The work items of the hospital health care license
language(s) are fixed and, for a large set of licenses there is one work item,
the patient which is shared between many licensors and licenses. The work
items of the public administration license language(s) — namely document
— are distributed to or created and copied by licenses and may possibly be
shared.

Operations: The operations of the artistic license language(s) are are essen-
tially “kept” by the licensor. The operations of the hospital health care license
language(s) are are essentially “kept” by the licensees (as reflected in their pro-
fessional training and conduct). The operations of the public administration
license language(s) are essentially “kept” by the licensees (as reflected in their
professional training and conduct).

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
22 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

Permissions and Obligations: Generally we can say that the modalities of
the artistic license language(s) are essentially permissions with payment (as
well as use of licensor functions) being an obligation; that the modalities of
the hospital health care license language(s) are are essentially obligations to
maintain professional standards and the Hippocractic oath; and, as well, that
the modalities of the public administration license language(s) are essentially
obligations to maintain professional and legal standards. We may have more
to say about permissions and obligations later.

5 Formal Semantics

By formal semantics we understand a definition expressed in a formal lan-
guage, that is, a language with a mathematical syntax, a mathematical se-
mantics, and a consistent and relative complete proof system. We shall ini-
tially deploy the CSP [22, 23, 34, 37] Specification Language embedded in a
Landin–like notation of let clauses13. This embedding is expressed, as were
the syntaxes, in the RAISE Specification Language, RSL [4–7,16–18].

5.1 A Model of Common Aspects

Actors: Behaviours and Processes

We see the system as a set of actors. An actor is either a licensor, or a licensee,
or, usually, such as we have envisaged our license languages, both. To each
actor we associate a behaviour — and we model actor behaviours as CSP
processes. So the system is then modelled as a set of concurrent behaviours,
that is, parallel (‖) CSP processes. Actors are uniquely identified (Aid).

System States

With each actor behaviour we associate a state (ω:Ω). “Globally” initial such
state components are modelled as maps from actor identifiers to states. We
shall later analyse these states into major components.

type
Aid, Ω

Ωs = Aid →m Ω

13 — known since the very early 1960’s

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 23

System Processes

Actor processes communicate with one another over channels. There is a set
of actor identifier indexed channels. The channels carry actor name decorated
messages (Aid×M). Potential licensees request licenses. Licensors issue li-
censes in response to requests. Work items are communicated over these chan-
nels. As are payments and reports on use of licensed operations on licensed
work items. So there is a large variery of messages. An actor is either pro-
active, requesting licenses, sending payment or reports, or re-active: respond-
ing to license requests, sending work items. An actor non-deterministically
(⌈⌉) alternates between these activities.

type
M = Lic | Pay | Rpt | ...

channel
{a[i]|i:Aid} (Aid×M)

value
actor: j:Aid × Ω → in,out {a[i]|i:Aid•i6=j} Unit
actor(j)(ω) ≡ let ω′ = pro act(j)(ω)⌈⌉re act(j)(ω) in actor(j)(ω′) end

system: Ωs → Unit
system(ωs) ≡ ‖ {actor(i)(ωs(i))|i:Aid}

Actor Processes

We have identified two kinds of actor processes: (a) pro-active, during which
the actor, by own initiative, (as a prospective licensee) may request a license
from a prospective licensor, or, as an actual licensee, and as the result of per-
forming licensed actions, sends payments or reports (or other) to the licensor;
and (b) re-active, during which the actor, in response to requests (as a li-
censor) sends a requesting actor a license (whereby the requester becomes a
licensee), or “downloads” (access to) requested works or functions. functions.

The Pro-active Actor Behaviour: In the pro-active behaviour an actor, (1.),
at will, i.e., (2.) non-deterministically internal choice (⌈⌉), decides to either
request a license (rl) or to perform some action (op). In the former case the
actor inquires (4., l iq) an own state to find out from which licensor (k), and
which kind of license requirements (l rq) is to be requested. This licensor and
these requirements are duly noted in the state (ω′). After (5.) sending the
request the actor continues being an actor in the duly noted state (ω′). In the
latter case (6., op) there may be many “next” actions to do. The actor inquires
(a iq) an own state (ω) to find out which action (op i) is “next”. The actor
then (7.) performs (act) the designated operation. It is here, for simplification
assumed that all operation completions imply a “completion” message (m: a
payment, a report, or other) to the operation licensing actor (k). So such a
message is sent (8.) and the operation-updated local state (ω′) is yielded —
whereby the pro-active actor “resumes” being an actor as from that state.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
24 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

type
M = Lic | Pay | Rpt | ...

channel
{a[i]|i:Aid} (Aid×M)

value
pro act: j:Aid → Ω → in,out {a[i]|i:Aid•j6=i} Ω

1. pro act(j)(ω) ≡
2. let what to do = rl ⌈⌉ op in
3. case what to do of
4. rl → let (k,l rq,ω′)=iq l Ω(ω) in
5. a(k)!(j,l rq);ω′ end
6. op → let op i=iq a Ω(ω) in
7. let (k,m,ω′)=act(op i)(ω) in
8. a(k)!(j,m) ; ω′ end end

end end

The Re-active Actor Behaviour: In the re-active behaviour an actor (9., j),
is willing to engage in communication with other actors. This is formalised
by a non-deterministic external choice (10., ⌈⌉⌊⌋) between either of a set ({...})
of (zero, or more) other actors (k:Aid\{j}) who are trying to contact the re-
active actor. The communicated message (k,m) reveals the identity (k) of the
requesting, i.e., the pro-active actor,14 The message, m, reveals what action
(act(m)(ω)) the re-active actor is requested to perform. The actor does so
(11.). This results in a reply message m′ and a state change (ω′). The reply
message (a(k)!(j,m′)) is sent (12.) to the requesting actor (k); and the re-
active actor (j) yields the requested action-updated state (ω′) — whereby the
re-active actor “resumes” being an actor as from that state.

type
M = Lic | Pay | Rpt | ...

channel
{a[i]|i:Aid} (Aid×M)

value
re act: j:Aid → Ω → in,out {a[i]|i:Aid•j6=i} Ω

9. re act(j)(ω)≡
10. let (k,m)=⌈⌉⌊⌋{a(k)?|k:Aid} in
11. let (m′,ω′)=act(m)(ω) in
12. a(k)!(j,m′);ω′ end end

14 Do not get confused by the two k’s on either side of the let clause. The left k is
yielded by the (input) communication a(k)?. The defining scope of the right side
k, as in a(k), is just the right-hand side of the left clause.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 25

Functions

We first list (and “read”) the signatures of the two auxiliary (iq l Ω, iq a Ω)
and one elaboration (act) function assumed in the definition of the pro- and re-
active actor processes. After that we discuss the former and suggest definitions
of the latter.

Auxiliary Function Signatures

The inquire license function (iq l Ω) inspects the actor’s state to (“eureka”)
determine which most desirable licensor (k:Aid) offers which one kind of de-
sired license requirements (License Requirements). The inquire action func-
tion (iq a Ω) inspects the actor’s state to (somewhat “eureka”) determine
which action is “next” to be performed. That action is being designated (Ac-
tion Designator).

type
License Requirements,Action Designation

value
iq l Ω: Ω → Aid × License Requirements × Ω

iq a Ω: Ω → Action Designator

By ‘eureka’15 is meant that the inquiry is internal non-deterministic, that is,
is not influenced by an outside, could have any one of very many outcomes,
and can thus only be rather loosely defined.

Elaboration Function Signature

The action performing function (act) “finds” the designated operation in the
current state, applies it in the current state, and yields (“read” backwards) a
possibly new state (ω : Ω), a message (m:M) to be sent to the licensor (k:Aid)
who authorised the operation and may need or which to have a payment, a
report, or some such thing “back”!

type
Action Designation

value
act: Action Designation → Ω → Aid × M × Ω

Discussion of Auxiliary Functions

The auxiliary functions are usually not computable functions. The actors are
not robots. And it is not necessary to further define these functions beyond
stating their signatures as they are usually performed by human actors. The
signature of the inquire license function expresses a possible change to the

15 “Eureka” used to express triumph on a discovery, heuristics

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
26 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

inquired state. One would think of the inquiring actor somehow noting down,
remembering, as it were, which inquiries were attempted or had been made.
The signature of the inquire actions function does not express such a state
change. But it could be expressed as well.

Schema Definitions of Elaboration Functions

5.2 A Model of The General Artistic License Language

A Licensor/Licensee State

Auxiliary Functions

Elaboration Functions

5.3 A Model of The Hospital Health Care License Language

A Patient [Medical Record] State

A Medical Staff State

Auxiliary Functions

Elaboration Functions

5.4 A Model of The Public Administration License Language

A Public Administrator State

Auxiliary Functions

Elaboration Functions

5.5 Discussion

6 Conclusion

It is too early — in the development of this report — to conclude!

6.1 Summary: What Have We Achieved?

Or rather, at this early, incomplete stage, what do we wish to achieve? In
a first round we wish to achieve the following: an understanding of different
kinds of license languages; an understanding of obligations and permissions
(yet to be “designed” more explicitly into the three languages; a formalisation
of both common aspects of the license systems (as a “vastly” distributed set
of very many actors acting on even more licenses “competing” for resources,
etc.), as well as of each individual language.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 27

6.2 Open Issues

An Open Issue: Rôle of Modal Logics

Temporal logic Deontic logic (permission and obligation) Logic of knowledge
and belief etc.

Another Open Issue: Fair Use

Fair use: ... etc.

6.3 Acknowledgements

The second author wishes to express that it has been an interesting experience
to work with his three co-author JAIST “students”: Mr. Yasuhito Arimoto,
MSc student, Miss Chen Xiaoyi, PhD student, and Dr. Xiang Jianwen, Post-
doc.

7 Bibliographical Notes

References

1. Yasuhito Arimoto and Dines Bjørner. Hospital Healthcare: A Domain Analysis
and a License Language. Technical note, JAIST, School of Information Science,
1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292, Summer 2006.

2. Alapan Arnab and Andrew Hutchison. Fairer Usage Contracts for DRM. In Pro-
ceedings of the Fifth ACM Workshop on Digital Rights Management (DRM’05),
pages 65–74, Alexandria, Virginia, USA, Nov 2005.

3. Dines Bjørner. Documents: A Domain Analysis. Technical note, JAIST, School
of Information Science, 1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan
923-1292, Summer 2006.

4. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006.

5. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006. Chapters 12–14 are primarily authored by Christian Krog Madsen.

6. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and
Software Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

7. Dines Bjørner. Software Engineering, Vol. I: The Triptych Approach, Vol. II:
A Model Development. To be submitted to Springer for evaluation, expected
published 2009. This book is the basis for guest lectures at Techn. Univ. of Graz,
Politecnico di Milano, University of the Saarland (Germany), etc., 2008–2009.

8. Dines Bjørner and XiaoYi Chen. Public Government: A Domain Analysis. Tech-
nical note, JAIST, School of Information Science, 1-1, Asahidai, Tatsunokuchi,
Nomi, Ishikawa, Japan 923-1292, Summer 2006.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
28 Dines Bjørner1,2,, Arimoto Yasuhito2, Chen Xiaoyi2 and Xiang Jianwen2,3

9. Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages
— see [?, ?, ?, ?, ?, ?, ?, ?, 16]. EATCS Monograph in Theoretical Computer
Science. Springer, Heidelberg, Germany, 2008.

10. XiaoYi Chen and Dines Bjørner. Public Government: A Domain Analysis and
a License Language. Technical note, JAIST, School of Information Science, 1-1,
Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292, Summer 2006.

11. C. N. Chong, R. J. Corin, J. M. Doumen, S. Etalle, P. H. Hartel, Y. W. Law, and
A. Tokmakoff. LicenseScript: a logical language for digital rights management.
Annals of telecommunications special issue on Information systems security,
2006.

12. C. N. Chong, S. Etalle, and P. H. Hartel. Comparing Logic-based and XML-
based Rights Expression Languages. In Confederated Int. Workshops: On The
Move to Meaningful Internet Systems (OTM), number 2889 in LNCS, pages
779–792, Catania, Sicily, Italy, 2003. Springer.

13. Cheun Ngen Chong, Ricardo Corin, and Sandro Etalle. LicenseScript: A novel
digital rights languages and its semantics. In Proc. of the Third International
Conference WEB Delivering of Music (WEDELMUSIC’03), pages 122–129.
IEEE Computer Society Press, 2003.

14. David Crystal. The Cambridge Encyclopedia of Language. Cambridge University
Press, 1987, 1988.

15. J.W. de Bakker. Control Flow Semantics. The MIT Press, Cambridge, Mass.,
USA, 1995.

16. Chris George and Anne E. Haxthausen. Logics of Specification Languages,
chapter The Logic of the RAISE Specification Language, pages 349–399 in [9].
Springer, 2008.

17. Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen,
Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner.
The RAISE Specification Language. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead, England, 1992.

18. Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne,
Søren Prehn, and Jan Storbank Pedersen. The RAISE Method. The BCS
Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

19. Carl A. Gunter, Stephen T. Weeks, and Andrew K. Wright. Models and Lan-
guages for Digtial Rights. In Proc. of the 34th Annual Hawaii International
Conference on System Sciences (HICSS-34), pages 4034–4038, Maui, Hawaii,
USA, January 2001. IEEE Computer Society Press.

20. C.A. Gunther. Semantics of Programming Languages. The MIT Press, Cam-
bridge, Mass., USA, 1992.

21. Joseph Y. Halpern and Vicky Weissman. A Formal Foundation for XrML. In
Proc. of the 17th IEEE Computer Security Foundations Workshop (CSFW’04),
2004.

22. Tony Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International, 1985.

23. Tony Hoare. Communicating Sequential Processes. Published electronically:
http://www.usingcsp.com/cspbook.pdf, 2004. Second edition of [22]. See also
http://www.usingcsp.com/.

24. Markus Holzer, Stefan Katzenbeisser, and Christian Schallhart. Towards a For-
mal Semantics for ODRL. In Proc. of the First International ODRL Workshop,
Vienna, Austria, April 2004.

invisible
D

ra
ft

, S
at

ur
da

y
Ju

ne
 1

4,
 2

00
8:

 D
in

es
 B

jo
rn

er
Three License Languages 29

25. R.H. Koenen, J. Lacy, M. Mackay, and S. Mitchell. The long march to inter-
operable digital rights management. Proceedings of the IEEE, 92(6):883–897,
June 2004.

26. IPR Systems Pty Ltd. Open Digital Rights Language (ODRL). http://odrl.net,
2001.

27. Gordon E. Lyon. Information Technology: A Quick-Reference List of Organiza-
tions and Standards for Digital Rights Management. NIST Special Publication
500-241, National Institute of Standards and Technology, Technology Adminis-
tration, U.S. Department of Commerce, Oct 2002.

28. S. Michiels, K. Verslype, W. Joosen, and B. De Decker. Towards a Software
Architecture for DRM. In Proceedings of the Fifth ACM Workshop on Digital
Rights Management (DRM’05), pages 65–74, Alexandria, Virginia, USA, Nov
2005.

29. D. Mulligan and A. Burstein. Implementing copyright limitations in rights
expression languages. In Proc. of 2002 ACM Workshop on Digital Rights Man-
agement, volume 2696 of Lecture Notes in Computer Science, pages 137–154.
Springer-Verlag, 2002.

30. Deirdre K. Mulligan, John Han, and Aaron J. Burstein. How DRM-Based
Content Delivery Systems Disrupt Expectations of “Personal Use”. In Proc.
of The 3rd International Workshop on Digital Rights Management, pages 77–
89, Washington DC, USA, Oct 2003. ACM.

31. Riccardo Pucella and Vicky Weissman. A Logic for Reasoning about Digital
Rights. In Proc. of the 15th IEEE Computer Security Foundations Workshop
(CSFW’02), pages 282–294. IEEE Computer Society Press, 2002.

32. Riccardo Pucella and Vicky Weissman. A Formal Foundation for ODRL. In
Proc. of the Workshop on Issues in the Theory of Security (WIST’04), 2004.

33. John C. Reynolds. The Semantics of Programming Languages. Cambridge
University Press, 1999.

34. A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Se-
ries in Computer Science. Prentice-Hall, 1997. Now available on the net:
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.

35. Pamela Samuelson. Digital rights management {and, or, vs.} the law. Commu-
nications of ACM, 46(4):41–45, Apr 2003.

36. David A. Schmidt. Denotational Semantics: a Methodology for Language De-
velopment. Allyn & Bacon, 1986.

37. Steve Schneider. Concurrent and Real-time Systems — The CSP Approach.
Worldwide Series in Computer Science. John Wiley & Sons, Ltd., Baffins Lane,
Chichester, West Sussex PO19 1UD, England, January 2000.

38. Staff of Merriam Webster. Online Dictionary: http://www.m-w.com/home.htm,
2004. Merriam–Webster, Inc., 47 Federal Street, P.O. Box 281, Springfield, MA
01102, USA.

39. Robert Tennent. The Semantics of Programming Languages. Prentice–Hall Intl.,
1997.

40. G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,
Cambridge, Mass., USA, 1993.

41. JianWen Xiang and Dines Bjørner. The Electronic Media Industry: A Domain
Analysis and a License Language. Technical note, JAIST, School of Information
Science, 1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292, Summer
2006.

invisible
Draft, Saturday June 14, 2008: Dines Bjorner

invisible
Draft, Saturday June 14, 2008: Dines Bjorner

T
h
ree

L
icen

se
L
an

g
u
ag

es
3
1

