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Abstract

Road systems1, railway systems2, air traffic systems3, and, for example, container vessel
shipping4, all share underlying abstractions such as transportation nets with hubs (road in-
tersections, train stations, airports and harbours) and links (road segments, train tracks, air
and sea lanes) and their states of being open or closed for certain flows of traffic across hubs
and along links, etc.

In this paper we shall first hint at an abstract formal model for such transportation and
then show how it can be refined into models for road traffic, train traffic and air traffic. Then
we likewise hint at how such, so-called domain models — which reflect only what there is ”out
there”, in reality, before computing and communication — can be rigorously transformed into
requirements for respective traffic monitoring and control systems.

The paper concludes with a discussion of issues of development of the right systems, that is,
the systems that customers (that is, transportation and traffic authorities) expect to receive,
and of systems which are right, that is, are correct.
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1 Introduction

1.1 The Software Engineering Triptych

1.1.1 The Triptych Dogma

Before software (in general: the machines, i.e., systems of computers and communication and of
sensors and actuators etcetera connected to them) can be designed we must understand “the”
requirements. Before requirements, that is, prescriptions for the machine, what it should do, not
how, can be prescribed we must understand the domain.

1.1.2 The Triptych Doctrine Consequences

In consequence we prefer to develop software professionally, that is: First we study an available
— or develop ourselves an as “complete” as possible — description of the domain; then we de-
velop, from such a domain description, the requirements prescription; and from the requirements
prescription we then design the software. In this paper we shall mainly cover the issues of do-
main descriptions and we do so around the presentation of an extensive model of a conceptual
transportation domain.

1.2 Narrative versus Formal Specifications

1.2.1 Three Forms of Specification

By a specification we shall here (a bit narrowly) mean a narrated and a formal description of a
domain, a narrated and a formal prescription of a (set of) requirements, or a narrated and a formal
design (document[ation]) of some software. So the term has three instantiations: description,
prescription and design (document[ation]).

1.2.2 Narration and Formalisation

By a narrative (specification) we shall here mean an informal, English, French, Danish, or the
like, specification; usually it is extensively “peppered” with technical terms. By a formalisation (a
formal specification) we shall here mean a specification which is formulated in a formal specification
language, that is, a language with a formal syntax, a formal semantics, and a proof system, that
is, a set of proof rules. It is not possible to prove that a narrative specification an a supposedly
related formal specification expresses the same !

1.2.3 Motivation for Both Informal and Formal Specifications

Domain as well as requirements stakeholders can not usually read formal specifications. And soft-
ware correctness cannot be meaningfully claimed and ascertained unless the whole development,
from domain via requirements to software is formally expressed.

Domain and requirements stakeholders shall validate the specifications in order to help guaran-
tee that the software is the right software: does what is expected. Domain engineers, Requirements
engineers and Software designers, that is, software engineers shall (ultimately) verify the specifi-
cations and the phases of development from domain descriptions via requirements prescriptions to
software designs in order to help guarantee that the software is correct, i.e., is that the software
is right: has no “bugs”.

Correctness: D,S |= R

1.3 Background Work

To be a professional software engineer therefore requires ability to analyse domains and require-
ments in order to find suitable and pleasing abstractions, a very good command of the informal

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark ISOLA 2007 June 11, 2008,16:33
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language of the narrative in order to concisely, but informally express abstract models, and a very
good command of a number for formal specification languages including (ultimately) their proof
systems in order to succinctly and formally express abstract models and to (eventually) prove
properties of formal specifications and phases, stages and steps of development (refinements).

There are, by now, quite a respectable set of publications covering the field of formal devel-
opment techniques (aka: “formal methods”). To develop formal domain descriptions and require-
ments prescriptions requires not just one, but a set of formal specification languages together with
their abstraction and modelling and verification, model checking and formal testing techniques.
We shall mention a few.

1.3.1 VDM and RAISE

The author’s work, since 1973 has focused on formal techniques for software development: The
design, study, use and propagation of VDM: The Vienna (software) Development Method [22, 23,
33, 32] — in the period 1973 till late 1980s. The design, study, use and propagation of RAISE:
Rigorous Approach to Industrial Software Engineering [35, 37, 12, 13, 14, 34] — in the period late
1980s till at present.

1.3.2 The Software Engineering Book

My most recent book is a three volume book: Software Engineering [12, 13, 14]. Volume 1 of that
book covers Abstraction and Modelling using RSL, the RAISE Specification Language. Volume 2
covers Specification of Systems and Languages additionally using such formal languages as Petri
Nets, Message and Live Sequence Charts, Statecharts and the Duration Calculus. Volume 3 covers
Domain and Requirements Engineering — and brings it all together in Software Design.

1.3.3 Other Specification Approaches

Other specification languages, techniques and tools, that, in addition to VDM and RAISE, cover
the spectrum of domain and requirements specification, refinement and verification, are dealt with
in Alloy [53], ASM [25, 73, 74], B, Event-B [1, 28], CSP [48, 76, 77, 49], DC [82, 83, 39] (Duration
Calculus), Live Sequence Charts [29, 44, 56], Message Sequence Charts [50, 51, 52], Petri nets
[55, 66, 71, 70, 72], Statecharts [40, 41, 43, 45, 42], Temporal Logic of Reactive Systems [59, 60,
65, 67], TLA+ [57, 58, 61, 62] (Temporal Logic of Actions), Z [78, 79, 81, 47, 46]. Techniques
for integrating “different” formal techniques are covered in [2, 38, 26, 24, 75]. The recent book
on Logics of Specification Languages [21] covers ASM, B/event B, CafeObj, CASL, DC, RAISE,
TLA+, VDM and Z.

1.4 Structure of Paper

Section 2 contains an extensive example of a model of a generic domain claimed to represent an
abstraction of the transport domain which includes road, rail, air and sea transport. Section 3
contains a development of this generic transport domain model to show that it indeed does capture
some essence of road transport. The development is formulated as a “derivation” of domain and
interface requirements. Thus we also manage to illustrate how we can develop requirements
prescriptions from domain descriptions. But we could, as well claim that the “derivation of
requirements” is a refinement of a generic domain model into an instantiated domain model. That
is, the (domain to requirements) operations of projection, instantiation, determination, extension
and fitting can, as well, be thought of as domain refinement operations. Finally Sect. 4 contains
an analysis of the generic transport domain model (of Sect. 2) to show that it indeed does capture
some essence also of rail, air and sea transport. In this more discursive section we rely on the more
formal parts of Sect. 3 to hint that the claims for rail and air transport can indeed be rigorously
developed. For sea transport we refer to [17].

June 11, 2008,16:33, ISOLA 2007 c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark
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2 A Generic Model of Transportation

2.1 First Example of a Generic Domain Description

We exemplify a transportation domain. By transportation we shall mean the movement of vehicles
from hubs to hubs along the links of a net.

2.1.1 Rough Sketching — Business Processes

The basic entities of the transportation “business” are the (i) nets with their (ii) hubs and (iii)
links, the (iv) vehicles, and the (v) traffic (of vehicles on the net). The basic functions are those
of (vi) vehicles entering and leaving the net (here simplified to entering and leaving at hubs), (vii)
for vehicles to make movement transitions along the net, and (viii) for inserting and removing links

(and associated hubs) into and from the net. The basic events are those of (ix) the appearance and
disappearance of vehicles, and (x) the breakdown of links. And, finally, the basic behaviours of the
transportation business are those of (xi) vehicle journey through the net and (xii) net development

& maintenance including insertion into and removal from the net of links (and hubs).

2.1.2 Narrative — Entities

By an entity we mean something we can point to, i.e., something manifest, or a concept abstracted
from, such a phenomenon or concept thereof.
Among the many entities of transportation we start with nets, hubs, and links.

A transportation net consists of hubs and links. Hubs and links are different kinds of entities.
Conceptually hubs (links) can be uniquely identified. From a link one can observe the identities
of the two distinct hubs it links. From a hub one can observe the identities of the one or more
distinct links it connects.

Other entities such as vehicles and traffic could as well be described. Please think of these
descriptions of entities as descriptions of the real phenomena and (at least postulated) concepts
of an actual domain.

2.1.3 Formalisation — Entities

type

H, HI, L, LI
N = H-set × L-set

value

obs HI: H→HI, obs LI: L→LI,
obs HIs: L→HI-set,obs LIs: H→LI-set

axiom

∀ (hs,ls):N •

card hs≥2 ∧ card ls≥1 ∧
∀ h:H • h ∈ hs ⇒

∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI() ∧ obs HI(h) ∈ obs HIs(l′) ∧

∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • h′ 6=h′′ ∧ {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

value

xtr HIs: N → HI-set,xtr LIs: N → LI-set

2.1.4 Narrative — Operations

By an operation (of a domain) we mean a function that applies to entities of the domain and yield
entities of that domain — whether these entities are actual phenomena or concepts of these or of
other phenomena.

c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark ISOLA 2007 June 11, 2008,16:33
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Actions (by domain stakeholders) amount to the execution of operations.
Among the many operations performed in connection with transportation we illustrate some

on nets. To a net one can join new link in either of three ways: The new link connects two new
hubs — so these must also be joined , or The new link connects a new hub with an existing hub
— so it must also be joined, or The new link connects two existing hubs. In any case we must
either provide the new hubs or identify the existing hubs.

From a net one can remove a link. Three possibilities now exists: The removed link would
leave its two connected hubs isolated unless they are also removed — so they are; The removed
link would leave one of its connected hubs isolated unless it is also removed — so it is; or The
removed link connects two hubs into both of which other links are connected — so all is OK. (Note
our concern for net invariance.) Please think of these descriptions of operations as descriptions of
the real phenomena and (at least postulated) concepts of an actual domain. (Thus they are not
prescriptions of requirements to software let alone specifications of software operations.)

2.1.5 Formalisation — Operations

type

NetOp = InsLnk | RemLnk
InsLnk == 2Hs(h1:H,l:L,h2:H)|1H(hi:HI,l:L,h:H)|0H(hi1:HI,l:L,hi2:HI)
RemLnk == RmvL(li:LI)

value

int NetOp: NetOp → N
∼
→ N

pre int NetOp(op)(hs,ls) ≡
case op of

2Hs(h1,l,h2) → {h1,h2}∩ hs={} ∧ l6∈ ls ∧ obs HIs(l)={obs HI(h1),obs HI(h2)} ∧
{obs HI(h1),obs HI(h2)}∩ xtr HIs(hs)={} ∧ obs LIs(h1)={li} ∧ obs LIs(h2)={li},

1H(hi,l,h) → h6∈ hs ∧ obs HI(h)6∈ xtr HIs(hs,ls) ∧
l6∈ ls ∧ obs LI(l)6∈ xtr LIs(hs,ls) ∧ ∃ h′:H•h′ ∈ hs∧obs HI(h′)=hi,

0H(hi1,l,hi2) → l6∈ ls ∧ hi1 6=hi2 ∧ {hi1,hi2}⊆∈ xtr HIs(hs,ls) ∧
∃ h1,h2:H•{h1,h2}∈ hs∧{hi1,hi2}={obs HI(h1),obs HI(h2)},

RmvL(li) → ∃ l:L • l ∈ ls ∧ obs LI(l)=li
end

int NetOp(op)(hs,ls) ≡
case op of

2Hs(h1,l,h2) → (hs ∪ {h1,h2},ls ∪ {l}),
1H(hi,l,h) →

(hs\{xtr H(hi,hs)}∪{h,aLI(xtr H(hi,hs),obs LI(l))},ls ∪ {l}),
0H(hi1,l,hi2) →

let hsδ = {aLI(xtr H(hi1,hs),obs LI(l)),aLI(xtr H(hi2,hs),obs LI(l))} in

(hs\{xtr H(hi1,hs),xtr H(hi2,hs)}∪ hsδ,ls ∪ {l}) end,
RmvL(li) → ...

end

xtr H: HI × H-set
∼
→ H

xtr H(hi,hs) ≡ let h:H • h ∈ hs ∧ obs HI(h)=hi in h end

pre ∃ h:H • h ∈ hs ∧ obs HI(h)=hi

aLI: H × LI → H, sLI: H × LI → H
aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ ...
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sLI(h′,li) as h
pre li ∈ obs LIs(h′)
post obs LIs(h) = obs LIs(h′)\{li} ∧ ...

The ellipses, . . . , shall indicate that previous properties of h holds for h′.

2.1.6 Narrative — Events

By an event of a domain we shall here mean an instantaneous change of domain state (here, for
example, “the” net state) not directly brought about by some willed action of the domain but
either by “external” forces or implicitly, as an unintended result of a willed action.

Among the “zillions” of events that may occur in transportation we single out just one. A link
of a net ceases to exist as a link.5

In order to model transportation events we — ad hoc — introduce a transportation state notion
of a net paired with some — ad hoc — “conglomerate” of remaining state concepts referred to as
ω : Ω.

2.1.7 Formalisation — Events

type

Link Disruption == LiDi(li:LI)
channel

x:(Link Disruption|...)
value

transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡

...

⌈⌉ let xv = x? in

case xv of

LiDi(li) → (int NetOp(RmvL(li))(hs,ls),line dis(ω))
...

end end

⌈⌉ ...

line dis: Ω → Ω

2.1.8 Narrative — Behaviours

By a behaviour we mean a possibly infinite sequence of zero, one or more actions and events.
We illustrate just one of very many possible transportation behaviours.

A net behaviour is a sequence of zero, one or more executed net operations: the openings
(insertions) of new links (and implied hubs) and the closing (removals) of existing links (and
implied hubs), and occurrences of external events (limited here to link disruptions).

2.1.9 Formalisation — Behaviours

channel

x:...
value

transportation transition: (N × Ω) → in x (N × Ω)
transportation transition(n,ω) ≡

...

5There may be many different causes of such an event: a road link segment, say a bridge or a building next to
the link, collapses; a traffic accident; or other.
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⌈⌉ let xv = x? in case xv of ... end end

⌈⌉ let op:NetOp • pre IntNetOp(op)(n) in IntNetOp(op)(n) end

...

transportation: (N × Ω) → in x Unit

transportation(n,ω) ≡
let (n′,ω′) = transportation transition(n,ω) in

transportation (n′,ω′) end

2.2 Domain Modelling: Describing Facets

In this, a major, methodology section of the current paper we shall focus on principles and tech-
niques domain modelling, that is, developing abstractions and verifying properties. We shall only
cover ‘developing abstractions’.

Domain modelling, as we shall see, entails modelling a number of domain facets.
By a domain facet we mean one amongst a finite set of generic ways of analysing a domain:

a view of the domain, such that the different facets cover conceptually different views, and such
that these views together cover the domain.

These are the facets that we find “span” a domain in a pragmatically sound way: intrin-
sics, support technology, management & organisation, rules & regulations, scripts and human
behaviour: We shall now survey these facets.

2.2.1 Domain Intrinsics

By domain intrinsics we mean those phenomena and concepts of a domain which are basic to any
of the other facets (listed earlier and treated, in some detail, below), with such domain intrinsics
initially covering at least one specific, hence named, stakeholder view.
In the large example of Sect. 2.1, we claim that the net, hubs and links were intrinsic phenomena
of the transportation domain; and that the operations of joining and removing links were not: one
can explain transportation without these operations. We will now augment the domain description
of Sect. 2.1 with an intrinsic concept, namely that of the states of hubs and links: where these
states indicate desirable directions of flow of movement.

A Transportation Intrinsics — Narrative. With a hub we can associate a concept of hub
state. The pragmatics of a hub state is that it indicates desirable directions of flow of vehicle
movement from (incoming) links to (outgoing) links. The syntax of indicating a hub state is
(therefore) that of a possibly empty set of triples of two link identifiers and one hub identifier
where the link identifiers are those observable from the identified hub.

With a link we can associate a concept of link state. The pragmatics of a link state is that
it indicates desirable directions of flow of vehicle movement from (incoming, identified) hubs
to (outgoing, identified) hubs along an identified link. The syntax of indicating a link state is
(therefore) that of a possibly empty set of triples of pairs of identifiers of link connected hub and
a link identifier where the hub identifiers are those observable from the identified link.

A Transportation Intrinsics — Formalisation.

type

X = LI×HI×LI [ crossings of a hub ]
P = HI×LI×HI [ paths of a link ]
HΣ = X-set [ hub states ]
LΣ = P-set [ link states ]

value

obs HΣ: H → HΣ
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obs LΣ: L → LΣ
xtr Xs: H → X-set, xtr Ps: L → P-set

xtr Xs(h) ≡ {(li,hi,li′)|li,li′:LI,hi:HI•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
xtr Ps(l) ≡ {(hi,li,hi′)|hi,hi′:HI,li:LI•{hi,hi′}=obs HIs(l)∧li=obs LI(l)}

axiom

∀ n:N,h:H;l:L • h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒
obs HΣ(h)⊆xtr Xs(h) ∧ obs LΣ(l)⊆xtr Ps(l)

2.2.2 Domain Support Technologies

By domain support technologies we mean ways and means of implementing certain observed phe-
nomena or certain conceived concepts.

A Transportation Support Technology Facet — Narrative, 1. Earlier we claimed that
the concept of hub and link states was an intrinsics facet of transport nets. But we did not describe
how hubs or links might change state, yet hub and link state changes should also be considered
intrinsic facets. We there introduce the notions of hub and link state spaces and hub and link
state changing operations. A hub (link) state space is the set of all states that the hub (link) may
be in. A hub (link) state changing operation can be designated by the hub and a possibly new
hub state (the link and a possibly new link state).

A Transportation Support Technology Facet — Formalisation, 1.

type

HΩ = HΣ-set, LΩ = LΣ-set

value

obs HΩ: H → HΩ, obs LΩ: L → LΩ
axiom

∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)
value

chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ

chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ

A Transportation Support Technology Facet — Narrative, 2. Well, so far we have
indicated that there is an operation that can change hub and link states. But one may debate
whether those operations shown are really examples of a support technology. (That is, one could
equally well claim that they remain examples of intrinsic facets.) We may accept that and then ask
the question: How to effect the described state changing functions ? In a simple street crossing a
semaphore does not instantaneously change from red to green in one direction while changing from
green to red in the cross direction. Rather there is are intermediate sequences of green/yellow/red
and red/yellow/green states to help avoid vehicle crashes and to prepare vehicle drivers. Our
“solution” is to modify the hub state notion.

A Transportation Support Technology Facet — Formalisation, 2.

type

Colour == red | yellow | green
X = LI×HI×LI×Colour [ crossings of a hub ]
HΣ = X-set [ hub states ]
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value

obs HΣ: H → HΣ, xtr Xs: H → X-set

xtr Xs(h) ≡ {(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}
axiom

∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X • {(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧

li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

A Transportation Support Technology Facet — Narrative, 3. We consider the colouring,
or any such scheme, an aspect of a support technology facet. There remains, however, a description
of how the technology that supports the intermediate sequences of colour changing hub states.

We can think of each hub being provided with a mapping from pairs of “stable” (that is non-
yellow coloured) hub states (hσi,hσf ) to well-ordered sequences of intermediate “un-stable’ (that
is yellow coloured) hub states paired with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′),
. . . , (hσ′···′, tδ′···′)〉 and so that each of these intermediate states can be set, according to the time
interval information,6 before the final hub state (hσf ) is set.

A Transportation Support Technology Facet — Formalisation, 3.

type

TI [ time interval ]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema, chg HΣ: H × HΣ → H, chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′ pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ

chg HΣ Seq(h,hσ) ≡
let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else

let (hσ,tδ) = hd sigseq in

let h′ = chg HΣ(h,hσ); wait tδ;
sig seq(h′)(tl sigseq) end end end

2.2.3 Domain Management & Organisation

By domain management we mean people (such decisions) (i) who (which) determine, formulate and
thus set standards (cf. rules and regulations, a later lecture topic) concerning strategic, tactical
and operational decisions; (ii) who ensure that these decisions are passed on to (lower) levels
of management, and to “floor” staff; (iii) who make sure that such orders, as they were, are
indeed carried out; (iv) who handle undesirable deviations in the carrying out of these orders cum
decisions; and (v) who “backstop” complaints from lower management levels and from floor staff.

We use the connective ‘&’ (ampersand) in lieu of the connective ‘and’ in order to emphasise
that the joined concepts (A & B) hang so tightly together that it does not make sense to discuss
one without discussing the other.

By domain organisation we mean the structuring of management and non-management staff
levels; the allocation of strategic, tactical and operational concerns to within management and
non-management staff levels; and hence the “lines of command”: who does what and who reports
to whom — administratively and functionally.

6Hub state hσ′′ is set tδ′ time unites after hub state hσ′ was set.
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A Transportation Management & Organisation Facet — Narrative. In the previous
section on support technology we did not describe who or which “ordered” the change of hub
states. We could claim that this might very well be a task for management.

(We here look aside from such possibilities that the domain being modelled has some further
support technology which advices individual hub controllers as when to change signals and then
into which states. We are interested in finding an example of a management & organisation facet
— and the upcoming one might do!)

So we think of a ‘net hub state management’ for a given net. That management is divided
into a number of ‘sub-net hub state managements’ where the sub-nets form a partitioning of the
whole net. For each sub-net management there are two kinds of management interfaces: one to the
overall hub state management, and one for each of interfacing sub-nets. What these managements
do, what traffic state information they monitor, etcetera, you can yourself “dream” up. Our point
is this: We have identified a management organisation.

A Transportation Management & Organisation Facet — Formalisation.

type

HIsLIs = HI-set × LI-set
MgtNet′ = HIsLIs × N
MgtNet = {| mgtnet:MgtNet′ • wf MgtNet(mgtnet)|}
Partitioning′ = HIsLIs-set × N
Partitioning = {| partitioning:Partitioning′ • wf Partitioning(partitioning)|}

value

wf MgtNet: MgtNet′ → Bool

wf MgtNet((his,lis),n) ≡
[ The his component contains all the hub ids.\ of links identified in lis ]

wf Partitioning: Partitioning′ → Bool

wf Partitioning(hisliss,n) ≡
∀ (his,lis):HIsLIs • (his,lis) ∈ hisliss ⇒ wf MgtNet((his,lis),n)∧
[ no sub−net overlap and together they ′′span′′ n ]

Etcetera.

2.2.4 Domain Rules & Regulations

Domain Rules. By a domain rule we mean some text (in the domain) which prescribes how
people or equipment are expected to behave when dispatching their duty, respectively when per-
forming their function.

Domain Regulations. By a domain regulation we mean some text (in the domain) which pre-
scribes what remedial actions are to be taken when it is decided that a rule has not been followed
according to its intention.

A Transportation Rules & Regulations Facet — Narrative. The purpose of maintaining
an appropriate set of hub (and link) states may very well be to guide traffic into “smooth sailing”
— avoiding traffic accidents etc. But this requires that vehicle drivers obey the hub states, that
is, the signals. So there is undoubtedly a rule that says: Obey traffic signals.And, in consequence
of human nature, overlooking or outright violating signals there is undoubtedly a regulation that
says: Violation of traffic signals is subject to fines and . . . .

A Transportation Rules & Regulations Facet — Formalisation. We shall, regretfully,
not show any formalisation of the above mentioned rule and regulation. To do a proper job
at such a formalisation would require that we formalise traffics, say as (a type of) continuous
functions from time to pairs of net and vehicle positions, that we define a number of auxiliary
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(traffic monitoring) functions, including such which test whether from one instance of traffic, say
at time t to a “next” instance of time, t′, some one or more vehicles have violated the rule7, etc.
The “etcetera” is ominous: It implies modelling traffic wardens (police trying to apprehend the
“sinner”), ‘etc.’ ! We rough-sketch an incomplete formalisation.

type

T [ time ]
V [ vehicle ]
Rel Distance = {| f:Rel • 0<f<1 |}
VPos == VatH(h:H) | VonL(hif:HI,l:L,hit:HI,rel distance:Rel Distance)
Traffic = T → (N × (V →m VPos))

value

violations: Traffic → (T×T) → V-set

Vehicle positions are either at hubs or some fraction f down a link (l) from some hub (hit) towards
the connected hub (hit). Traffic maps time into vehicle positions. We omit a lengthy description
of traffic well-formedness.

2.2.5 Domain Scripts

By a domain script we mean the structured, almost, if not outright, formally expressed, wording
of a rule or a regulation that has legally binding power, that is, which may be contested in a court
of law.

A Transportation Script Facet — Narrative. Regular buses ply the network according to
some time table. We consider a train time table to be a script. Let us take the following to be
a sufficiency narrative description of a train time table. For every train line, identified by a line
number unique to within, say a year of operation, there is a list of train hub visits. A train hub
visit informs of the intended arrival and departure times at identified hubs (i.e., train stations)
such that “neighbouring” hub visits, (tai

, hi, tdi
) and (taj

, hj , tdj
), satisfy the obvious that a train

cannot depart before it has arrived, and cannot arrive at the next, the “neighbouring” station
before it has departed from the previous station, in fact, taj

− tdi
must be commensurate with the

distance between the two stations.

A Transportation Script Facet — Formalisation.

type

TLin
HVis = T × HI × T
Journey′ = HVis∗, Journey = {|j:Journey′

•len j≥2|}
TimTbl′ = (TLin →m Journey) × N
TimTbl = {| timtbl:TimTbl′ • wf TimTbl(timtbl) |}

value

wf TimTbl: TimTbl′ → Bool

wf TimTbl(tt,n) ≡
[ all hubs designated in tt must be hubs of n ]
[ and all journeys must be along feasible links of n ]
[ and with commensurate timing net n constraints ]

7Here the time interval t′ − t could be thought of as long enough to cross a hub, h from link l to link l′ where
the signal at time t (or during the time [t, t′]) does not allow traffic down l′ from l.

June 11, 2008,16:33, ISOLA 2007 c© Dines Bjørner 2008, Fredsvej 11, DK–2840 Holte, Denmark



invisible

D
ra

ft
 N

o.
2,

 J
un

e 
11

, 2
00

8
14 Development of Transportation Systems, June 11, 2008

2.2.6 Domain Human Behaviour

By human behaviour we mean any of a quality spectrum of carrying out assigned work: from (i)
careful, diligent and accurate, via (ii) sloppy dispatch, and (iii) delinquent work, to (iv)
outright criminal pursuit.

Transportation Human Behaviour Facets — Narrative. We have already exemplified
aspects of human behaviour in the context of the transportation domain, namely vehicle drivers
not obeying hub states. Other example can be given: drivers moving their vehicle along a link
in a non-open direction, drivers waving their vehicle off and on the link, etcetera. Whether rules
exists that may prohibit this is, perhaps, irrelevant. In any case we can “speak” of such driver
behaviours — and then we ought formalise them !

Transportation Human Behaviour Facets — Formalisation. But we decide not to. For
the same reason that we skimped proper formalisation of the violation of the “obey traffic signals”
rule. But, by now, you’ve seen enough formulas and you ought trust that it can be done.

off on link: Traffic → (T×T)
∼
→ (V →m VPos×VPos)

wrong direction: Traffic → T
∼
→ (V →m VPos)

2.3 Discussion

We have given a mere glimpse of a domain description. A full description of a reasonably “con-
vincing” domain description will take years to develop and will fill many pages (hundreds, . . . (!)).

3 From Domains to Requirements

The objective of requirements engineering is to create a requirements prescription: A requirements
prescription specifies externally observable properties of entities, functions, events and behaviours
of the machine such as the requirements stakeholders wish them to be. The machine is what is
required: that is, the hardware and software that is to be designed and which are to satisfy the
requirements. A requirements prescription thus (putatively [54]) expresses what there should be.
A requirements prescription expresses nothing about the design of the possibly desired (required)
software. We shall show how a major part of a requirements prescription can be “derived” from
“its” prerequisite domain description.

3.1 The Example Requirements

The domain was that of transportation. The requirements is now basically related to the issuance
of tickets upon vehicle entry to a toll road net8and payment of tickets upon the vehicle leaving
the toll road net both issuance and collection/payment of tickets occurring at toll booths9which
are hubs somehow linked to the toll road net proper. Add to this that vehicle tickets are sensed
and updated whenever the vehicle crosses an intermediate toll road intersection.

3.2 Stages of Requirements Engineering

The following are the stages of requirements engineering: stakeholder identification, business

process re-engineering , domain requirements development, interface development, machine require-
ments development, requirements verification and validation, and requirements satisfiability and
feasibility.

9Toll road: in other forms of English; tollway, turnpike, pike or toll-pike, in French péage.
9Toll plazas, toll stations, or toll gates
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Figure 1: A simple, linear toll road net:
tpi: toll plaza i,
ti1, tin: terminal intersection k,
iik: intermediate intersection k, 1<k<n

lxy: tollway link from ix to iy, y=x+1 or y=x-1 and 1≤x<n.

The domain requirements development stage consists of a number of steps: projection, in-
stantiation, determination, extension, and fitting

We shall basically only cover business process re-engineering, domain requirements develop-
ment, and interface development

3.3 Business Process Re-engineering

Business process re-engineering (BPR) re-evaluates the intrinsics, support technologies, manage-
ment & organisation, rules & regulations, scripts, and human behaviour facets while possibly
changing some or all of these, that is, possibly rewriting the corresponding parts of the domain
description.

3.3.1 Re-engineering Domain Entities

The net is arranged as a linear sequence of two or more (what we shall call) intermediate intersec-
tion hubs. Each intersection hub has a single two-way link to (what we shall call) an entry/exit
hub (a toll plaza); and each intersection hub has either two or four one-way (what we shall call)
tollway links: the first and the last intersection hub (in the sequence) has two tollway links and
all intermediate intersections has four tollway links. We introduce a pragmatic notion of net di-
rection: “up” and “down” the net, “from one end to the other”. This is enough to give a hint at
the re-engineered domain.

3.3.2 Re-engineering Domain Operations

We first briefly sketch the tollgate Operations. Vehicles enter and leave the tollway net only at
entry/exit hubs (toll plazas). Vehicles collect and return their tickets from and to tollgate ticket
issuing, respectively payment machines. Tollgate ticket issuing machines respond by issuing ticket
as the result of sensor signals from “passing” vehicles or vehicle drivers pressing a button of the
ticket issuing machine. Tollgate payment machines accept credit cards, bank notes or coins in
designated currencies as payment and returns appropriate change.

We then briefly introduce and sketch an operation performed when vehicles cross intersections:
The vehicle is assumed to possess the ticket issued upon entry (in)to the net (at a tollgate). At
the crossing of each intersection, by a vehicle, its ticket is sensed and is updated with the fact that
the vehicle crossed the intersection: time and date.

The updated domain description section on support technology will detail the exact workings
of these tollgate and internal intersection machines; and the updated domain description section
on human behaviour will likewise explore the man/machine facet. Erroneous operations as well
as statistically determined undesirable behaviours of machines and humans need be carefully
described.
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3.3.3 Re-engineering Domain Events

The intersections are highway-engineered in such a way as to deter vehicle entry into opposite
direction tollway links, yet, one never knows, there might still be (what we shall call ghost)
vehicles, that is vehicles which have somehow defied the best intentions, and are observed moving
along a tollway link in the wrong direction.

3.3.4 Re-engineering Domain Behaviours

The intended behaviour of a vehicle of the tollway is to enter at an entry hub (collecting a ticket
at the toll gate), to move to the associated intersection, to move into, where relevant, either an
upward or a downward tollway link, to proceed (i.e., move) along a sequence of one or more tollway
links via connecting intersections, until turning into an exit link and leaving the net at an exit
hub (toll plaza) while paying the toll.

• • •

This should be enough of a BPR rough sketch for us to meaningfully proceed to requirements
prescription proper.

3.4 Domain Requirements Prescription

A domain requirements prescription is that part of the overall requirements prescription which
can be expressed solely using terms from the domain description. Thus to construct the domain
requirements prescription all we need is collaboration with the requirements stakeholders (who,
with the requirements engineers, developed the BPR) and the possibly rewritten (resulting) domain
description.

3.4.1 Domain Projection

By domain projection we mean a subset of the domain description, one which leaves out all those
entities, functions, events, and (thus) behaviours that the stakeholders do not wish represented
by the machine.

The resulting document is a partial domain requirements prescription.

Domain Projection — Narrative. We copy the domain description and call the copy a 0th
version domain requirements prescription. From that document we remove all mention of link
insertion and removal functions, to obtain a 1st version domain requirements prescription.10

Domain Projection — Formalisation. We do not show the resulting formalisation.

3.4.2 Domain Instantiation

By domain instantiation we mean a refinement of the partial domain requirements prescription, re-
sulting from the projection step, in which the refinements aim at rendering the entities, functions,
events, and (thus) behaviours of the partial domain requirements prescription more concrete,
more specific. Instantiations usually render these concepts less general.

Domain Instantiation — Narrative. The 1st version domain requirements prescription is
now updated with respect to the properties of the toll way net: We refer to Fig. 1 and the
preliminary description given in Sect. 3.3.1. There are three kinds of hubs: tollgate hubs and
intersection hubs: terminal intersection hubs and proper, intermediate intersection hubs. Tollgate
hubs have one connecting two-way link. linking the tollgate hub to its associated intersection hub.
Terminal intersection hubs have three connecting links: one, a two way link, to a tollgate hub, one

10Restrictions of the net to the toll road nets hinted at earlier will follow in the next domain requirements steps.
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one-way link emanating to a next up (or down) intersection hub, and one one-way link incident
upon this hub from a next up (or down) intersection hub. Proper intersection hubs have five
connecting links: one, a two-way link, to a tollgate hub, two one-way links emanating to next up
and down intersection hubs, and two one-way links incident upon this hub from next up and down
intersection hub. (Much more need be narrated.) As a result we obtain a 2nd version domain
requirements prescription.

Domain Instantiation — Formalisation, Toll Way Net.

type

TN = ((H × L) × (H × L × L))∗ × H × (L × H) → N′

value

abs N: TN → N′

abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,( ,hn)) ≡

{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′ )):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}
tn links: TN → L-set

tn links(hll, ,(ln, )) ≡
{ln} ∪ {tlj,lj,lj′|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))

ti1

l21

l12

l32

l23

tlj’

hj’
ljj’

lj’j lj’’j’

lj’j’’
hj

th1

tl1 tl2

h2

th2

hk

thk

lk
lnk

lkn

thn

ln

hn

lkk−1

lk−1k

hll(1) hll(2)

hll(1),hll(2)

hll(j) hll(j+1)

hll(j),hll(j+1)

hll(len hll)hll(len hll −1)

hll(len h −1),hll(len hll)

thj’

Figure 2: A simple, linear toll road net:
thi: toll plaza i,
h1, hn: terminal intersections,
h2, hj , h

′
j, hk: intermediate intersections, 1<j≤k, k=n-1

lxy, lyx: tollway link from hx to hy and from hy to hx, 1≤x<n.
lx−1x, lxx−1: tollway link from hx−1 to hx and hx to hx−1, 1≤x<n,
dashed links are not in formulas.

Domain Instantiation — Formalisation, Wellformedness.

type

LnkM == plaza | way
value
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wf TN: TN → Bool

wf TN(tn:(hll,h,(ln,hn))) ≡
wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [ to be defined under Determination ]

value

wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool

wf Toll Ways(hll,h) ≡
∀ j:Nat • {j,j+1}⊆inds hll ⇒

let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),
( ,(hj′, , )) = hll(j+1) in

wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧

let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in

wf Toll Lnk(thk,tlk,hk)(plaza) ∧
wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

value

wf Toll Lnk: (H×L×H) → LnkM → Bool

wf Toll Lnk(h,l,h′)(m) ≡
obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),

(obs HI(h′),obs LI(l),obs HI(h))} ∧
obs Σ(l) = case m of

plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

3.4.3 Domain Determination

By domain determination we mean a refinement of the partial domain requirements prescription,
resulting from the instantiation step, in which the refinements aim at rendering the entities,
functions, events, and (thus) behaviours of the partial domain requirements prescription less
non-determinate, more determinate. Instantiations usually render these concepts less general.

Domain Determination — Narrative. We single out only two ‘determinations’: There is
only one link state: the set of all paths through the link; thus any link state space is the singleton
set of its only link state. Similarly the hub state spaces are the singleton sets of the “current” hub
states which allow these crossings: from terminal link back to terminal link, from terminal link
to emanating tollway link, from incident tollway link to terminal link, and from incident tollway
link to emanating tollway link This, then, is what free- and tollways are all about: no restriction
on link and hub movement. Special provision must be made for expressing the entering from the
outside and leaving toll plazas to the outside.

Domain Determination — Formalisation.

wf State Spaces: TN → Bool

wf State Spaces(hll,hn,(thn,tln)) ≡
let ((th1,tl1),(h1,l12,l21)) = hll(1),

((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in

wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒

let (,(hj,ljj,lj′j)) = hll(j),((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in

wf Plaza(thj′,tlj′,hj′) ∧ wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end
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wf Plaza(th,tl,h) ≡
obs HΣ(th) = { [ crossings at toll plazas ]

(′′external′′,obs HI(th),obs LI(tl)),(obs LI(tl),obs HI(th),′′external′′),
(obs LI(tl),obs HI(th),obs LI(tl))} ∧

obs HΩ(th) = {obs HΣ(th)} ∧ obs LΩ(tl) = {obs LΣ(tl)}

wf End(h,tl,l,l′) ≡
obs HΣ(h) = {[ crossings at 3−link end hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧ obs LΩ(l′) = {obs LΣ(l′)}

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[ crossings at properly intermediate, 5−link hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧ obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧ obs LΩ(dl) = {obs LΣ(dl)}

Not all determinism issues above have been fully explained. But for now we should — in principle
— be satisfied.

3.4.4 Domain Extension

By domain extension we understand the introduction of domain entities, functions, events and
behaviours that were not feasible in the original domain, but for which, with computing and com-
munication, there is the possibility of feasible implementations, and such that what is introduced
become part of the emerging domain requirements prescription.

Domain Extension — Narrative. The domain extension is that of the controlled access of
vehicles to and departure from the toll road net: the entry to (and departure from) tollgates from
(respectively to) an "an external" net — which we do not describe; the new entities of tollgates
with all their machinery; the user/machine functions: upon entry: driver pressing entry button,
tollgate delivering ticket; upon exit: driver presenting ticket, tollgate requesting payment, driver
providing payment, etc.

One added (extended) domain requirements: as vehicles are allowed to cruise the entire net
payment is a function of the totality of links traversed, possibly multiple times. This requires, in
our case, that tickets be made such as to be sensed somewhat remotely, and that intersections
be equipped with sensors which can record and transmit information about vehicle intersection
crossings. (When exiting the tollgate machine can then access the exiting vehicles’ sequence of
intersection crossings — based on which a payment fee calculation can be done.)

All this to be described in detail — including all the thinks that can go wrong (in the domain)
and how drivers and tollgates are expected to react.

Domain Extension — Formalisation. We suggest only some signatures:

type

Mch, Tik, Csh, Pmt, Map TN
Gat == open | closed
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value

obs Csh: Mch → Csh, obs Tiks: Mach → Tik-set, obs Gat: Mch → Gat
obs Entry, obs Exit: Tik → HI, obs Tik: V → (Ticket|nil)
obs Journey: Ticket → HI∗

calc Pmtt: HI∗ → Map TN → Pmt

press Entry: Mch → Mch × Ticket [ gate up ]
press Exit: Mch × Ticket → Mch × Payment
payment: Mch × Payment → Mch × Cash [ gate up ]

Domain Extension — Formalisation of Support Technology. This example provides a
classical requirements engineering setting for embedded, safety critical, real-time systems, requir-
ing, ultimately, the techniques and tools of such things as Petri nets, statecharts, message sequence
charts (MSCs) or live sequence charts (LSCs), and temporal logics (ITL, DC, TLA+).

3.4.5 Requirements Fitting

The issue of requirements fitting arises when two or more software development projects are based
on what appears to be the same domain. The problem then is to harmonise the two or more
software development projects by harmonising, if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn
, being

considered, and that these pertain to the same domain — and can hence be assumed covered by
a same domain description.

By requirements fitting we mean a harmonisation of n > 1 domain requirements that have
overlapping (common) not always consistent parts and which results in n ‘modified and partial
domain requirements’, and m ‘common domain requirements’ that “fit into” to two or more of the
‘modified and partial domain requirements’.

By a modified and partial domain requirements we mean a domain requirements which is
short of (that is, is missing) some description parts: text and formula. By a common domain
requirements we mean a domain requirements. By the m common domain requirements parts,
cdrs, fitting into the n modified and partial domain requirements we mean that there is for each
modified and partial domain requirements, mapdri, an identified subset of cdrs (could be all of
cdrs), scdrs, such that textually conjoining scdrs to mapdr can be claimed to yield the “original”
dri

.

Requirements Fitting Procedure — A Sketch. Requirements fitting consists primarily of
a pragmatically determined sequence of analytic and synthetic (‘fitting’) steps. It is first decided
which n domain requirements documents to fit. Then a ‘manual’ analysis is made of the selected, n

domain requirements. During this analysis tentative common domain requirements are identified.
It is then decided which m common domain requirements to single out. This decision results in a
tentative construction of n modified and partial domain requirements. An analysis is made of the
tentative modified and partial and also common domain requirements. A decision is then made
whether to accept the resulting documents or to iterate the steps above.

Requirements Fitting — Narrative. We postulate two domain requirements: We have out-
lined a domain requirements development for software support for a toll road system. We have
earlier hinted at domain operations related to insertion of new and removal of existing links and
hubs. We can therefore postulate that there are two domain requirements developments, both
based on the transport domain: one, drtoll

, for a toll road computing system monitoring and con-

trolling vehicle flow in and out of toll plazas, and another, drmaint.
, for a toll link and intersection
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(i.e., hub) building and maintenance system monitoring and controlling link and hub quality and
for development.

The fitting procedure now identifies the shared net entities by both drtoll
and drmaint.

. That

is: nets (N), hubs (H) and links (L) appear in both drtoll
and drmaint.

. We conclude from this

that we can single out a common requirements for software that manages net, hubs and links.
Such software requirements basically amounts to requirements for a database system. A suitable
such system, say a relational database management system, DBrel, may already be available with
the customer.

In any case, where there before were two requirements (drtoll
, drmaint.

) there are now four:

(i) d′rtoll
, a modification of drtoll

which omits the description parts pertaining to the net; (ii)

d′rmaint.
, a modification of drmaint.

which likewise omits the description parts pertaining to the

net; (iii) drnet
, which contains what was basically omitted in d′rtoll

and d′rmaint.
; and (iv) dr

db:i/f
(for database interface) which prescribes a mapping between type names of drnet

and relation and

attribute names of DBrel.
Much more can and should be said, but this suffices as an example in a software engineering

methodology paper.

Requirements Fitting — Formalisation. We omit lengthy formalisation.

3.4.6 Domain Requirements Consolidation

After projection, instantiation, determination, extension and fitting, it is time to review, consol-
idate and possibly restructure (including re-specify) the domain requirements prescription before
the next stage of requirements development.

3.5 Interface Requirements Prescription

By an interface requirements we mean a requirements prescription which refines and extends the
domain requirements by considering those requirements of the domain requirements whose enti-
ties, operations, events and behaviours are “shared” between the domain and the machine (being
requirements prescribed).

‘Sharing’ means (a) that an entity is represented both in the domain and “inside” the machine,
and that its machine representation must at suitable times reflect its state in the domain; (b)
that an operation which is to be supported by the machine requires a sequence of several “on-
line” interactions between the machine (being requirements prescribed) and the domain, usually
a person or another machine; (c) that an event arises either in the domain, that is, in the
environment of the machine, or in the machine, and need be communicated to the machine,
respectively to the environment; and (d) that a behaviour is manifested both by actions and events
of the domain and by actions and events of the machine.

3.6 Interface Requirements Prescription

So a systematic reading of the domain requirements shall result in an identification of all shared
entities, operations, events and behaviours.

Each such shared phenomenon shall then be individually dealt with: entity sharing shall lead
to interface requirements for data initialisation and refreshment; operation sharing shall lead to
interface requirements for interactive dialogues between the machine and its environment; event

sharing shall lead to interface requirements for how such event are communicated between the
environment of the machine and the machine, both directions; behaviour sharing shall lead to
interface requirements for action and event dialogues between the machine and its environment.

• • •
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We shall now illustrate these domain interface requirements development steps with respect to our
ongoing example.

3.6.1 Shared Entities

The main shared entities are the net, hence the hubs and the links. As domain entities they
continuously undergo changes with respect to the values of a great number of attributes and
otherwise possess attributes — most of which have not been mentioned so far: length, cadestral
information, namings, wear and tear (where-ever applicable), last/next scheduled maintenance
(where-ever applicable), state and state space, and many others.

We “split” our interface requirements development into two separate steps: the development of
drnet

(the common domain requirements for the shared hubs and links), and the co-development

of dr
db:i/f

(the common domain requirements for the interface between drnet
and DBrel — under

the assumption of an available relational database system DBrel
When planning the common domain requirements for the net, i.e., the hubs and links, we

enlarge our scope of requirements concerns beyond the two so far treated (drtoll
, drmaint.

) in

order to make sure that the shared relational database of nets, their hubs and links, may be
useful beyond those requirements. We then come up with something like hubs and links are to
be represented as tuples of relations; each net will be represented by a pair of relations a hubs
relation and a links relation; each hub and each link may or will be represented by several tuples;
etcetera. In this database modelling effort it must be secured that “standard” operations on nets,
hubs and links can be supported by the chosen relational database system DBrel.

Data Initialisation. As part of drnet
one must prescribe data initialisation, that is provision

for an interactive user interface dialogue with a set of proper display screens, one for establishing
net, hub or link attributes (names) and their types and, for example, two for the input of hub
and link attribute values. Interaction prompts may be prescribed: next input, on-line vetting and
display of evolving net, etc. These and many other aspects may therefore need prescriptions.

Essentially these prescriptions concretise the insert link operation.

Data Refreshment. As part of drnet
one must also prescribe data refreshment: an interactive

user interface dialogue with a set of proper display screens one for updating net, hub or link
attributes (names) and their types and, for example, two for the update of hub and link attribute
values. Interaction prompts may be prescribed: next update, on-line vetting and display of revised
net, etc. These and many other aspects may therefore need prescriptions.

These prescriptions concretise remove and insert link operations.

3.6.2 Shared Operations

The main shared operations are related to the entry of a vehicle into the toll road system and the
exit of a vehicle from the toll road system.

Interactive Operation Execution. As part of drtoll
we must therefore prescribe the varieties

of successful and less successful sequences of interactions between vehicles (or their drivers) and
the toll gate machines.

The prescription of the above necessitates determination of a number of external events, see
below.

(Again, this is an area of embedded, real-time safety-critical system prescription.)

3.6.3 Shared Events

The main shared external events are related to the entry of a vehicle into the toll road system, the
crossing of a vehicle through a toll way hub and the exit of a vehicle from the toll road system.
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As part of drtoll
we must therefore prescribe the varieties of these events, the failure of all

appropriate sensors and the failure of related controllers: gate opener and closer (with sensors and
actuators), ticket “emitter” and “reader” (with sensors and actuators), etcetera.

The prescription of the above necessitates extensive fault analysis.

3.6.4 Shared Behaviours

The main shared behaviours are therefore related to the journey of a vehicle through the toll road
system and the functioning of a toll gate machine during “its lifetime”. Others can be thought of,
but are omitted here.

In consequence of considering, for example, the journey of a vehicle behaviour, we may “add”
some further, extended requirements: (a) requirements for a vehicle statistics “package”; (b)
requirements for tracing supposedly “lost” vehicles; (c) requirements limiting toll road system
access in case of traffic congestion; etcetera.

3.7 Discussion

We have indicated how to “derive” domain and interface requirements from a domain model.
Development of machine requirements, such as performance, dependability, maintenance, plat-
form, documentation and other machine requirements, follow more general guidelines as these
requirements are usually expressible without any specific reference to the domain.

4 Instantiations of Generic Model of Transportation

4.1 Road Transport

In Sect. 3 we have shown how to refine the model of Sect. 2 into a model of a toll road system.
Thus with no changes to the model of Sect. 2 we simply refined that model. The net became a
toll road net between toll plazas with the toll gate ticket issuing and ticket and payment collection
machines. In Sect. 3 furthermore illustrated how to develop requirement prescriptions from domain
descriptions.

4.2 Rail Transport

4.2.1 Rail Nets

The concepts of rail nets, train stations, trains, etc., has to be related to generic nets, sub-nets of
these, vehicles (or convoys of these), etc. We shall basically “equate” the generic nets with rail
nets, provided we can provide suitable, believable, relations between hubs and the special rail units
of switches, crossovers, switchable crossovers, etcetera, that is between hub states and the states
of rail units, and between link segment states and states of linear rail units, between vehicles and
convoys and train cars and trains, etc. We shall do so presently.

For rail transport we thus need to introduce a notion of sub-nets. Out of a net one can “carve
islands” of sub-nets which we shall use to represent train stations. What has not been carved out
is then the net of rail tracks between stations. The hubs of the generic nets become such rail units
as switches, crossovers, and switchable crossovers. The links of the generic nets become linear
sequences of one or more linear rail units. There are notably many hubs within station sub-nets
and thus fewer outside these — as there are notably many links (link segments) outside station
sub-nets and somewhat fewer inside. Figure 3[A] shows four such rail units and Fig. 3[B] shows a
“toy” rail net.
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Figure 3: [A] Rail units. [B] A “toy” rail net

4.2.2 Rail Units

And we need to introduce, based on hubs and links — or rather link segments — a notion of a rail
unit. We shall consider four kinds of rail units: simple linear units with up to four states: closed,
open (only) in one direction, open (only) in the other direction and open in both directions; simple
switches, see Fig. 4, with up to 12 states;

   

   

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Figure 4:

simple crossovers, with 16 states:11, (i) (i) cD1 + cD2, (ii) cD1 + uD2, (iii) cD1 + dD2, (iv) cD1
+ bD2, (v) cD2 + uD1, (vi) cD2 + dD1, (vii) cD2 + bD1, (viii) uD1 + uD2, (ix) uD1 + dD2, (x)
uD1 + bD2, (xi) dD1 + uD2, (xii) dD1 + dD2, (xiii) dD1 + bD2, (xiv) bD1 + uD2, (xv) bD1 + dD2
and (xvi) bD1 + bD2. — some of these states are pretty dangerous; and switchable crossovers
— we leave it to you to figure out how many potential states they may have !

Hubs are switch, crossover and switchable crossover units. Links are sets of linear units, that
is, link segments are linear units, and these can be ordered into appropriate sequences.

4.2.3 Stations

Sub-nets of the net are stations such that any two distinct sub-nets of a net do not overlap but
if the two stations are to be directly connected then it is via a route with at least one (linear ?)
unit. From a sub-net one can observe a sub-net name. No two distinct sub-nets have the same
(station) name. Etcetera.

4.2.4 Discussion

We refrain from formalising the above simple refinements of generic nets to rail nets. More
refinements need to be shown: refinements of vehicles and convoys into railway rolling stock

11D1: diagonal 1, D2: diagonal 2, c: closed, u: open upwards, d: open downwards, b: open both ways.
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(locomotives, passenger wagons and freight cars); refinements of certain states of units into states
of signals; etc., before we can fully claim that the generic model of transportation given earlier
“maps” into railways. But we trust that the reader can be convinced.

4.3 Air Transport

4.3.1 Airports and Air Lanes

We must refine generic transportation nets into air traffic nets. So we need to establish refinements
between air lanes, taxiways, runways, etc. and links, and between airport ramps (or aprons) and
hubs, and between airports and sub-nets of generic nets. Then we can consider air transport (air
traffic) nets as consisting of air lanes and airport nets, with these latter including runway links,
taxiway links, the ramp (apron) hub and the gates (terminal ramp and hub) as well as the hubs
that connect runways and taxiways, taxiways and the apron hub, and the apron hub to gates (the
terminal ramps).

Add to the above that air-based holding areas can be considered refinements of hubs, and the
reader should be convinced that generic transportation nets refine into air traffic nets.

The ground-based air traffic links and hubs are fixed, i.e., changes only as a consequence of
removing and inserting links. The air-based holding area hubs are usually pretty stable. The set
of air-based links, i.e., the air lanes, however, vary dynamically. You may consider for the sake of
argument, that there is, from any airport an air lane to any other airport, no matter how long the
distance is. But one must consider two things in this respect: that these air lanes overlap in their
occupancy of air space, and that an air flight may change from one air lane to another that is, from
one link to another — during any flight. This possibility of vehicles “jumping” across links was
not considered for generic transportation so we must “go back” and “repair” our generic model.
The simplest way to “repair” the generic model is to not repair it, but to consider any air lane
from any airport to — as we mandated above — any other airport not as a single link but as an
indefinite, modelled formally as an infinite, set of air lanes: a “stem” (master) air lane “decorated”
(augmented, interspersed) with hubs which additionally connect to links to all “nearest” airports
should the aircraft pilot decide to divert a flight originally planned for — and “presently” cruising
the stem air lane.

We have retained our desire to refine the air traffic net from the generic transportation net at
the no-cost of a great number of maintenance and operations cost-free air-based links and hubs.

4.3.2 Link and Hub States and Their Control

The states and state spaces of links and hubs need be refined into the monitoring and control of
air traffic on the ground as well as in the air. Not into requirements for ATC but as descriptions
of how it is now, today.

Today the air traffic monitoring and control domain is handled that is, the setting of link
and hub states by something along the following (schematised) line: ground control (GCs) and
terminal control towers (TCTs), and area (regional) (ACCs)and continental control centers
(CCCs). See Fig. 5.

Ground control (GC) handle airport net traffic (surface movement) handed over to them from
TCTs, clears scheduled flights for departure with (remote) TCTs at respective destinations, often
via CCCs, and hands over such flights once ready at runways to local TCTs.

Terminal control towers (TCTs), that is, local and air controls handle incoming flights handed
over to them from ACCs, possibly assigning to or releasing them from holding areas, guiding them
into landing, while handing them over to GCs. The TCTs also guide departing aircraft (handed
over to them from GCs) onto runways and into the air while handing them over to ACCs. There
might be an occasional need for consulting CCCs.
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Figure 5: An idealised diagramming of air traffic control tower and centre relations to aircraft.
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Figure 6: [A] Ground control and [B] terminal control tower ATC.

Approach control centers (ARCs), also referred to as terminal control centers, handle incoming
and transit flights handed to them from other ACCs (with handling means: monitoring and
possibly “controlling”, i.e., guiding them); possibly handing them (transit flights) over to other
ACCs, or handing them (incoming flights) over to TCTs.
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Figure 7: [C] Approach and [D] continental control center ATC.

Continental control centers (CCCs) usually handle requests specific intercontinental flights by
coordinating GC, TCT and ACC actions. CCCs usually allocates and schedules continental flights,
not on a per flight basis, but on a by volume of traffic basis.

It is thus we see that the monitoring and control of traffic implicit in the changing of link
and hub states in the generic transportation model is being significantly detailed in the air traffic
model.

There are no visible link and hub states as was not assumed in the generic transportation
model, there are dialogues between ATC staff and with aircraft pilots. There is no a-priori set link
and hub state spaces as was perhaps indicated in the in the generic transportation model. These
state spaces evolve over time and with ATC staff and aircraft pilot experience.
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4.3.3 Discussion — A Summary

We have sketched how to “re-interpret” generic transportation nets, that is, we have shown how
to refine these into air traffic nets consisting of sub-nets of airport nets and an air lane net12.
Airport nets have runway, taxiway and gate ramps connected (sometimes via “seamless” hubs) to
air lanes and taxiways, to runways and the amorphous and large apron hub, respectively to the
apron hub and the gate ramp. Air lane nets have an indefinite number of air lane link segments
and holding area and an indefinite number of link segment-connecting hubs.

Air transportation has an elaborate “constellation” of vehicle, link and hub state and state
space monitoring and control, organised and managed according to internationally set conventions.

But, despite all this, we think that the generic transportation model can be nicely refined into
a model for current ATC which can serve as a basis for requirements for far more advanced ATC
that we see today.

4.4 Sea Transport

We, perhaps somewhat surprisingly, leave it as an exercise, for the reader to sketch the refinement
of the generic transportation model into one for — for example — container line shipping.

Such a rather complete model is given in [17].

4.5 Discussion

In Sect. 3 we have shown how to instantiate the generic transportation model of Sect. 2 to
one for road transport. Sections 4.2, 4.3 and 4.4 indicated how to similarly instantiate the
generic transportation model to models of rail, air and sea transport respectively. Where Sect. 3
strongly hinted at formalising the refinement, Sects. 4.2, 4.3 and 4.4 did not contain any for-
malisations. They could, of course, be provided, but the reader should be convinced, “proof
by authority”, that it can be done. We thus refer to a number of papers on railway specifi-
cations [20, 80, 69, 7, 8, 9, 10, 68, 11], to a paper and an MSc report on air traffic [6] and
http://www.imm.dtu.dk/˜db/airtraffic.pdf, as well as to an emerging paper containing an exten-
sive example of a domain description for sea transport [17].

5 Conclusion

We set out to claim that, for certain domains, and the example here was the transportation domain,
one can first develop a generic domain model, and then instantiate (refine) this generic model in
several “directions”, as here: road transport, rail transport, air transport and ship transport. We
conclude now that we have achieved that claim.

5.1 What Have We Not Shown ?

Among, undoubtedly the most crucial aspects of software development — at least to the audience
of this conference13 — are the methodology and example of those facets of the domain, typically
the supporting technologies which eventually lead to embedded systems depending on real-time
properties and requiring safety. There are many other aspects that have not been shown,
but which, when shown, do show the feasibility of this approach for professional, industry-scale
software developments: the use of varieties of “co-operating, commensurate” formal techniques
for full scale developments. Needless to say, most such available techniques can be and many have
been integrated into the kind of formal techniques shown in this paper.

12The air lane net, as we have seen, is like a “soup” of links and hubs floating in a liquid of air space.
13ISOLA 2007: Workshop On Leveraging Applications of Formal Methods, Verification and Validation. Special

Workshop Theme: Formal Methods in Avionics, Space and Transport; Poitiers, France, December 12-14 2007
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5.2 Problems to Be Solved

Of course there is much more work to do: on the engineering side the work is to further develop such
generic and instantiated models before they can properly serve as the basis for serious requirements
engineering, and on the science side the work is to further develop the methodology: principles,
techniques and tools for the systematic, or rigorous, or even formal development of provably correct
transportation systems.

5.3 A Very-large Scale Systems Development Method

We have shown how we tackle the development of very large scale systems, systems that consists
of hundreds of separably describable sub-systems, several scores of different job-profile staff, and
of dozens of different kinds of interfaces to an external world. We have shown how to do it by
domain engineering, requirements engineering, and, but not shown, software, etc., design. The
simple fact is: to do systems development you must first describe their domain. There are no
shortcuts !

6 Acknowledgments

I gratefully acknowledge support from Université Henri Poincaré (UHP), Nancy, and from INRIA
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7 Bibliographical Notes
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