
DYNAMICS OF RAILWAY NETS

Dines Bjørner

Computer Science and Engineering
Informatics and Mathematical Modelling
Building 322, Richard Petersens Plads

Technical University of Denmark
DK–2800 Kgs.Lyngby, Denmark

E–Mail: db@imm.dtu.dk, URL: www.imm.dtu.dk/˜db

Abstract: From an example formal (ie., computing science based) model of railway
nets, their rail units and the various forms of states of these rail units, we
put forward some suggestions for future research & development that engages
researchers of automatic control and computing science in collaborative work. The
background for our paper is the increasing practice of software engineers engaging
ever more in what used to be considered traditional control engineering tasks —
without, we claim, there being a clear, scientific basis for doing so.

1. THE PROBLEM

The problem to be tackled by this paper is one
of “trying to come to grips” with, or, at least,
identifying some issues of computing science that
“lies close”, it is believed, to issues of control
theory, ie., theory of automation.

1.1 A Dichotomy

Computing Science, the study and knowledge of
how to construct the “things” that can exist inside
computers, is a young science. Also when com-
pared to Control Theory. Control theory, for us
“outsiders”, seems to have more–or–less unani-
mously accepted the central rôle of mathematics
in modeling actual world phenomena. From these
mathematical domain models, control theory then
goes on to identify the problem, ie., derive the
requirements, and from this again, “derive” a so-
lution to the problem — all of this strongly based
on the use of non–trivial mathematics. Computing
science has yet to register that kind of agree-
ment on the indispensability of using mathemat-
ics — perhaps not so much, anymore, amongst

researchers in academia, as among so–called prac-
ticing software engineers.

And software engineers clearly, in almost all cases,
fail to build on proper, commonly agreed up math-

ematical domain models of railways. Computing
science is placed in a tenacious “battle” — un-
known, I dare say, to most computer and com-
puting scientists, let alone to software engineers
— between computer science 1 and software en-
gineering. Todays software engineer rarely uses
profound results, available since decades, in daily
software development. Something unheard of in
other engineering disciplines.

1.2 An Experiment — And Why ?

In this paper we will, not daunted by this sad state
of affairs, nevertheless, take a look at what might
be border–lines, overlapping, or nicely interfaced
(time will show), between computing science and

1 The study and knowledge of the properties of the
“things” that can exist inside computers.

control theory. To do so we perform an experi-
ment. One that is entirely within the realm of to-
days seemingly more advanced software engineer-
ing cum computing science. The experiment aims
at constructing and presentng a model, as “we
normally do it”, of an application domain. That
domain is one in which both software engineers
and control engineers have a long, respectively
very long interest. The domain is that of railway
systems. The objective of the experiment is to
be able to discuss some possible border–lines and
interfaces between control theory and computing
science.

1.3 The Experiment

We limit ourselves, prudently, to just considering
railway nets. Basically as they are laid down,
there, on the ground, through tunnels, on bridges,
etc. And we limit ourselves to consider not so
much the topologies of such nets — that was
done in Bjørner (2000) 2 — but to consider some
state properties of the “smallest” components of
railway nets: The rail units, those “little” things
that — when you buy a “toy” railway for yourself
or your children, then — you buy: Straight and
curved linear rail units, simple two–way switches
and simple cross–overs !

We will look at how we model their behaviour
over time. And we will relate such models to
more general models such as pursued by control
engineers.

1.4 Caveats

But we need to warn the reader, for fear of
“overselling” what we are presenting: We model
railway nets, first “as they are”, later “as we
would wish them to be”. That is: First with all
their possible states, whether desirable or not,
then with those states that lead to safe traffic.
From the point of view taken in that modelling
we do not consider the details of the dynamics of
the actual changing of a switch: We model that
it takes time to switch. Say tσ. But we do not
model the actual dynamic behaviour of the vari-
ous mechanical, electro–mechanical and electronic
devices involved in that switching. So we do not
really model their control ! Eventually we model
that they be controlled; that they be switcched
between specific states — and then leave it to
control engineers to design the switch such that
the torque and momentum of the various electro–
mechanical gadgets be appropriate to secure a safe
switch.

2 The essence of the model of Bjørner (2000) is included
here as appendix A.

1.5 Structure of Paper

The paper is organised as follows: In Section 2 we
present, in several small steps, the model that we
wish to relate to some aspects of control theory.
The latter is done in Section 3. The many small
steps of Section 2 proceed as follows: First, in
Section 2.1 we cover the “statics” of rail units.
In Section 2.2 we cover the main rail unit states
that we decide to model: Section 2.2.1 models the
types, ie., the classes of values that model time
durations — for the various states. Section 2.2.2
models rail unit stable states — those during
which trains may be routed through these units.
Section 2.2.3 models the states that rail units are
in when making simple transitions from stable
states to stable states. And Section 2.2.4 models
the states that are sometimes, perhaps, for most
rail units, very rarely if ever attained — but
in which reconfigurations of rail units may take
place.

In Section 2.3 we model the time–span limited
behaviour of units, seen in isolation; that is: Not
as part of the net. Section 2.3.1 thus “lifts”
from units to timed units. Section 2.3.2 models
operations on timed units. while Section 2.3.3
reviews possible state sequences of timed units.

Finally Section 2.4 “lifts” nets to timed nets:
In Section 2.4.1 we relate timed nets to “their”
timed units. In Section 2.4.4 we briefly review
properties that timed nets are expected to satisfy
when subject to operations on timed units.

Finally, in Section 3, we discuss, on the back-
ground of the “large” example of Section 2, some
possible relations between software and control
engineering.

The formalisation is expressed in the RAISE 3

George et al. (1995) Specification Language: RSL
George et al. (1992) 4 We explain this notation,
through “footnoted” Annotations. Not by explain-
ing the formal language constructs. By by explain-
ing what specific formulas express. In that way the
meaning of the formal language constructs is, so–
to–speak, “smuggled” in.

2. THE RAILWAY NET EXAMPLE

The example thus illustrates the dynamics of rail
nets. Figure 1 on the following page shows an
‘abstracted’ rail net. In our example we shall
disregard the distinctions of stations, lines, tracks,
sidings, and lines ‘connecting’ stations. We shall
just concentrate on the “smallest” parts: The rail
units.

3 RAISE stands for Rigorous Approach to Idustrial Software
Engineering
4 URL: http://www.iist.unu.edu./raise

Line

Platform Linear Unit

SwitchTrack

SidingCrossover

Switchable Crossover

Station

Station

Fig. 1. A “Toy” Railway Net

2.1 The Basis

Rail nets consists of (rail) units. Units have con-
nectors. Units of the net are connected “via” the
connectors. Typically there are straight, ie., linear
units (of two connectors), switches (points) (of
typically three connectors), simple cross–overs (of
four connectors), switchable cross–over (also of
four connectors), etcetera. Some pairs of connec-
tors form paths through the unit.

Figure 2 shows ‘abstracted’ examples of common
rail units.

Linear Unit Crossover

Swith

Simple

Crossover

Junction,

Switch,

Turnout

Examples of Rail UnitsLegend
rail

connector

units

can be

switched

and their Connectors

Fig. 2. Some Typical Rail Units

type

N, U, C
P = {| (c,c′):(C×C) • c 6=c′ |}

value

obs Us: N → U-set

obs Cs: U → C-set

obs Ps: U → P-set

axiom

∀ n:N,u:U,c,c′:C,p:P •

u ∈ obs Us(n) ⇒
(c,c′) ∈ obs Ps(u) ⇒ {c,c′} ⊆ obs Cs(u)

5 In the following we focus just on units, for
several sections, then on timed units, that is:

5 Annotation: P stand for the type, ie., the value class
of all pairs of different connectors. N, U, and C stand
for the types of nets, units and connectors, respectively.
These latter types (N, U, C) are defined as sorts, hence we
postulate some observers: Of units of a net, of connectors of
a unit, and of paths of a unit. These observers are subject to
certain constraints, ie., are defined through some axioms:
For all nets it must be the case that for all units of such

Functions from time to units. In earlier papers
— related to railway modelling in the style and
for purposes similar to the ones of the current
paper — we have given models of other facets of
railways: Bjørner et al. (1999a) deals with train
scheduling, Bjørner (2000) gives a comprehensive
model of railway nets — and is a good prereq-
uisite for a deeper study of the present paper 6 ,
while Bjørner et al. (2002) outlines metodologi-
cal principles and some techniques for modelling
railway nets, etc. Conference (CD ROM) publica-
tions Bjørner et al. (1999b,c) present larger scope
models of railway systems.

2.2 Stable, Transition and Re–organisation States

A unit is at any one time either in a stable state, or
in a transition state, or in a reconfiguration state.
A rail unit event is one where a rail unit changes
from one kind of state to another: From a stable
state to a transition or a reconfiguration state; or
from a transition or a reconfiguration state to a
stable state. In all: Three kinds of states and four
kinds of events.

We have decided to model “transitions” from
stable states to stable states as not taking place
instantaneously, but having some time duration.
During that time of change we say that the rail
unit is in a transition state.

Reconfiguration states are like transition states,
but, in addition, the rail units changes basic
characteristics.

2.2.1. Time and State Durations Units remain
in stable, transition and reconfiguration states
“for some time” ! We decide to endow each unit
with possibly different minimum stable state, and
maximum transition and reconfiguration state du-
rations: A unit, irrespective of its state, must
remain in any stable state for a minimum duration
of time. A unit, irrespective of its state, at most
remains in any transition state for a maximum
duration of time. A unit, irrespective of its state,
at most remains in any reconfiguration state for
a maximum duration of time. The stable state
minimum duration is (very much) larger than the
maximum re–configuration duration, which again
is (very much) larger than the maximum transi-
tion duration.

type

T /∗ T is some limited, dense time range ∗/
∆ /∗ δ: ∆ is some time duration ∗/

nets, it must be the case that for all paths of such units (of
such nets) the two connectors of the path are connectors
of the unit.
6 The essence of the model of Bjørner (2000) is included
here as appendix A.

s∆ = ∆, t∆ = ∆, r∆ = ∆
value

lo T: U → T
obs ℓ T: U → T
obs s∆: U → s∆,
obs t∆: U → t∆,
obs r∆: U → r∆
≪,<,>,≫: ∆ × ∆ → Bool

≪,<,>,≫: T × T → Bool

+,−: T × ∆ → T
∗: ∆ × Real → ∆ pre δ∗r: r>0

axiom

∀ u:U •

obs s∆(u)≫obs r∆(u)≫obs t∆(u),
∀ 1δ,2δ:∆ •

1δ≪2δ⇒1δ<2δ ∧ 1δ≫2δ⇒1δ>2δ

7

2.2.2. Stable States A stable state (of a unit)
is a possibly empty set of pairs of connectors
of that unit. At any one time, when in a stable
state, a unit is willing to be in any one of a
number of states, its (current) state space. If a
pair of connectors is in some stable state then
that means that a train can move across the unit
in the direction implied by the pairing: from the
first connector to the second connector. A unit in
a stable state has been so for a duration — which
we assume can be observed.

Figure 3 shows two kinds of rail units and the
possible stable states they may ‘occupy’.

The arrows of Figure 3 shall designate possible
(“open”) directions of (allowed, “free”) move-
ment. To be able to compare units, and to say
that a unit at one time, in some state, “is the
same” as a unit, at another time, in another state,
we introduce a “normalisation” function: nor Σ. It
behaves as if it “resets” the current state of a unit
to the empty state, and as if the elapsed time is
“zero” — leaving all else unchanged. 8

7 Annotation: We can observe, lo T, the time when a rail
unit was “first” installed, ie., “started”. We can observe,
obs ℓ T, the time when a rail unit most recently entered a
stable state. (Initial value of this observer function when
applied to a rail unit, u, that has never left the stable
state in which it was first “started” is “its start” time
(lo T(u)).) We can observe respective durations (minimum
stable obs s∆, maximum transition obs t∆, and maximum
reconfigurtion obs r∆ durations) from a(ny) unit, and in
any state. All are total functions. And we can speak of
ordering relations smaller and larger, respectively very
much smaller and very much larger ordering relations —
such that if a duration is very much smaller [larger] then
it is at least strictly smaller [strictly larger], etc. And
we can perform “arithmtic”–like addition, subtraction and
multiplication operations on appropriate time concepts:
Time and durations. Details are given in the formula.
These operations otherwise behave as you would expect
them to.
8 The latter is, however, not formalised. But ought be.

C’ C C’ C C’ C C’C

C C C C

CCCC

C’’ C’’ C’’ C’’

C’’C’’C’’C’’

C’ C’

C’C’C’C’

C’ C’

C

C’

C’’

Open: C to C’ Open: C’ to C Bidirectionally Open

Closed

Closed

States of a Switch Unit

States of a Linear Unit

Fig. 3. Possible Stable States of Linear and Switch
Units

type

PS = P-set

sΣ = PS
value

is sΣ: U → Bool

obs sΣ: U
∼
→ sΣ

obs sΩ: U → sΩ
obs ∆: U → ∆
obs s∆: U → s∆
nor Σ: U → U

axiom

∀ u:U •

is sΣ(u) ⇒
obs sΣ(u) ∈ obs sΩ(u) ∧
obs sΣ(u) ⊆ obs Ps(u) ∧
obs sΣ(nor Σ(u)) = {}

9 Any one particular unit, “as it is ‘laid down’ in
the landscape”, may not be intended to ‘occupy’
all the states made possible by its connectors.
Thus a linear unit in a railway marshalling yard,
especially those “sloping” away, “down” from the
hump, towards the yard itself, are usually pro-
vided with “braking gear” that would be wrecked
if a freight car is forced “up the slop”. We refer
to Figure 4 on the following page — where a
downwards slope is to the right from the hump.

2.2.3. Transition States When a unit is in a
transition state it is making a transition from one
stable state to another.

9 Annotation: A stable state is a set of paths. A stable state
space is a set of stable states. From a unit one can observe,
it is postulated, whether it is in a stable state or not. From
a unit in a stable state one can observe its (current) state,
and one can always — in any state — observe its (current)
state space. A hypothetical function, nor Σ “projects” the
current state and its current duration in that state onto the
“void” state of no (open) paths and the “zero” duration.
Not that the function obs ∆ is total, and is not to be
confused with the likewise total function obs s∆. The latter
yields the minimum duration that a unit must be in any
stable state. The former yields the duration during which
the unit has been in its current state — whether stable,
transition or reconfiguration.

In

Miscellaneous Sidings

Out

Misc.
Misc.

Hump

Fig. 4. A Marshalling Yard

We now make the following crucial modelling deci-
sion: Since we are dealing, throughout, with man–
made phenomena, with entities most of whose
properties we “design into” these physical “gad-
gets” we can assume the following: That we
can observe from the rail units “their intention”:
Namely, in this case, that they are to make a
transition from one, known, stable state to an-
other, known, stable state, and that, at any one
time of observing such a transition, we can also
observe the elapsed time duration since the start
of a transition.

type

tΣ={|(s′σ,s′′σ):(sΣ×sΣ)•s′σ 6=s′′σ|}
tΩ = tΣ-set

value

is tΣ: U → Bool

obs tΣ: U → tΣ
obs tΩ: U → tΩ
obs ∆: U → ∆
obs t∆: U → t∆

axiom

∀ u:U,s′σ,s′′σ:Σ •

is tΣ(u) ⇒ (s′σ,s′′σ) = obs tΣ(u) ⇒
(s′σ,s′′σ) ∈ obs tΩ(u)∧{s′σ,s′′σ}⊆obs sΩ(u)

10 The dynamics of this change will be elaborated
upon later. Suffice it to hint that the change from
a stable state to the “beginning” of a transition
state is an event, likewise is the change from a
transition state to the stable state, and the stable
state of the unit “just” before the transition state
must be the same as the first stable state of the
pair of the transition state, while the stable state
of the unit “just” after the transition state must
be the same as the second stable state of the pair
of the transition state. 11

2.2.4. Reconfiguration States A rail unit may
be subject to reconfiguration: In a net some ex-
isting (ie., “old”) rail units need be “changed” by
allowing “additional”, or dis–allowing “previously

10Annotation: A transition state is a pair of different stable
states. A transition state space is a set of (allowable)
transition states. One can observe whether a unit is in a

transition state or not. From a unit in a transition state
one can observe its transition state. For all units which are
in a transition state it is the case that the transition state
is an allowable transition, and that the before and after
stable states are in the (current) state space of the unit.
11We allow this seeming redundancy of representation in
order to simplify some subsequent formalisations.

valid” paths, hence changing the state space, or
by allowing new kinds of transitions, or both.
Reconfiguration additionally permits new units
to be “connected” to existing units’ “dangling”
connectors.

A rail unit reconfiguration thus changes its state
space — from a past to a future state space, and
therfore also by changing into a future transition
state space, while possibly changing the unit from
one stable state (of the past state space) to
another (of the future state space) — where we
impose the seemingly arbitrary constraint that the
transition state (ie., the pair of before and after
stable states) must be in both the “old” and the
“new” set of transition states.

type

rΣ′ = (sΩ×sΣ×tΩ)×(tΩ×sΣ×sΩ)
rΣ = {| rσ:rΣ′

• wf rΣ(rσ) |}
value

wf rΣ: rΣ′ → Bool

wf rΣ((s′ω,s′σ,t′ω),(t′′ω,s′′σ,s′′ω)) ≡
s′σ ∈ s′ω ∧ s′′σ ∈ s′′ω ∧
(s′σ,s′′σ) ∈ t′ω ∩ t′′ω ∧⋃

s′ω ∪
⋃

s′′ω⊆obs Ps(u) ∧
∀ (saσ,sbσ):tΣ •

(saσ,sbσ) ∈ t′ω ⇒ {saσ,sbσ} ⊆ s′ω ∧
(saσ,sbσ) ∈ t′′ω ⇒ {saσ,sbσ} ⊆ s′′ω

is rΣ: U → Bool

obs rΣ: U
∼
→ rΣ

obs ∆: U → ∆
obs r∆: U → r∆

12 We thus see that a reconfiguration state em-
bodies also a transition state. And thus we inherit
many of the constraints expressed earlier. Now
they are part of the well–formedness of any re-
configuration state. For the other state types sorts
were constrained via the axioms. A number of de-
cisions have been made: We have decided, in this
model, to maintain “redundant” “information”:
The before and after stable state spaces, as well
as transition state spaces. And we have decided to
impose a further “commonality” constraint: The
actual state transition taken (“undergone”) dur-

12Annotation: We observe that a reconfiguration state
consists of a pair of “reversed” triples: The before and after
reconfiguration stable state spaces (listed “outermost”),
the before and after transition state spaces (listed “middle-
–most”), and the before and after stable states (listed
“innermost” — all wrt. the “comma” that separates the
two triples). For a reconfiguration state to be well–formed
the before and after stable states must be in respective
(“old”, resp. “new”) stable state spaces; the transition
state formed by these must be in both the before and in the
after transition state spaces; the set of paths of both the
stable state spaces before and after must be in the paths

of the unit — which thus does not change (!); and for all
before [after] stable states of the transitions must be in
the before [resp. after] stable state spaces. We may have to
remove constraint that the total path set does not change
under reconfiguration: Presently it is a refutable assertion.

ing reconfiguration must be one that was allowed
before, as well as being allowed after, reconfigura-
tion.

2.3 Dynamical Units

A railway net of many units, all timed to the
same clock and time period, can be considered
ideally an programmed, dynamic active system,
less ideally, a dynamic reactive system.

These terms ‘programmed, dynamic active sys-
tem’, respectively ‘dynamic reactive system’ are,
for the realm of computing science and software
engineering, that is: Programming methodology,
described in Jackson (1995).

In this section we shall consider railway nets to be
‘programmed’. That is: It is us, the managers of
railway nets, who control the time–wise behaviour
of the net — to a first approximation. To a second
approximation, when ordering the rail units to
undergo a reconfiguration and/or a transition,
such changes may involve a time duration, such
as modelled above. During those durations the rail
units behave reactively: Over the time period of
the duration they “switch state” in reaction to a
control signal.

Although we shall thus primarily consider railway
nets as programmed, active dynamic systems,
we shall bring a model which appears to model
railway nets as more general dynamic, active
systems. But one should understand these models
appropriately: As reflecting what can be observed
from outside the system of railway nets plus their
control. We shall subsequently review the above
distinctions.

The behaviour of a unit, as seen from outside the
railway net and its control, is that it changes from
being in stable states and making transitions be-
tween these. A state transition is from the stable
state before to the stable state after the transition.
The stable state components of transition states
must be in the current state space. A reconfigura-
tion state transition has its stable states be in the
intersection of, ie., in both, the before and after
stable state spaces. (This constraint has already
been formally expressed.)

2.3.1. Timed Units We now “lift” a unit to be
a timed unit: That is, a function from time, in
some dense interval, to “almost the same” unit !
We assume that we can delimit time intervals so
that each timed unit is described as from some
lower (lo T) time upwards !

type

T /∗ T is some downward bounded, ∗/
/∗ dense time range ∗/

TU = T → U
value

lo T: TU → T
ℓ T: (TU|U) → T

axiom

∀ tu:TU • unique TU(tu)
value

unique TU: TU → Bool

unique TU(tu) ≡
∀ t,t′:T •

{t,t′}⊆D tu ∧
no rΣs(tu)(t,t′)⇒same Us({tu(t),tu(t′)})

no rΣs: TU → (T × T) → Bool

no rΣs(tu)(t,t′) ≡
is sΣ(tu(t)) ∧ is sΣ(tu(t′)) ∧
∼∃ t′′:T • t<t′′<t′ ∧ is rΣ(tu(t′′))

same Us: U-set → Bool

same Us(us) ≡
∀ u,u′:U •

obs sΣ(nor U(u)) = obs sΣ(nor U(u′)) ∧
us ⊆ obs sΩ(u)

assert: ∀ u′′:U•u′′ ∈ us ⇒ us ⊆ obs sΩ(u′′)

13 tu:TUs are continuous functions over their
lower limited, although infinite definition set of
times.

2.3.2. Operations on Timed Units In the fol-
lowing we will abstract from the two operations
that are implied by the transition state, and the
reconfiguration state. That is: We think, now, of
these states as having been brought about by con-
trols, ie., by external events and communication
between an environment and the net (or, as in the
case of timed rail units, between an environment
and respective units).

So an operation on a timed unit is something
that takes place, as some time, say τ , and which
involves an operator. The meaning of the operator
is what we model, not the syntax that is eventu-
ally needed in order to concretely implement the
operation. And that meaning we take to involve
the following entities: A function, φ, which is like a
timed unit, except that its lower time limit is like
“0”. And a time duration, oδ, for the operation.

The idea is now that applying an operation φ at
time τ , means that the timed unit function, tu, is
“extended” by “ glueing” the operation function

13Annotation: The lo T and ℓ T observers yield the lowest
time recorded for the timed unit, respectively the ℓast time
a state change took effect. With the current time we can
always know how much time has elapsed since such a state
change. For any timed unit it is the case it reflects a unique,
a “same” unit. That is: that for all times in the definition
set of the timed unit such that there are no “intervening”

reconfiguration states, it is the case that the units are “the
same”.

φ to tu “chopped” at τ . After the operation has
completed, at time τ+oδ, the unit remains in
the state it was left in by φ at the end of its
completion.

value

lo δ:∆, hi δ:∆
axiom

[lo δ `̀behaves like zero′′]
type

Θ
Φ = Φ∆ → U
/∗ Φ∆ is a continuous ∗/
/∗ relative time interval ∗/

Φ∆ = {loδ..hiδ}
/∗ The above is not proper RSL ∗/

value

obs Φ: Θ → Φ
obs o∆: Θ → {hi δ .. lo δ}
OP: Θ → TU → T → TU
OP(θ)(tu)(τ) ≡

let φ = obs Φ(θ),
oδ = obs o∆(θ) assert: oδ=hi δ−lo δ,
lo t = lo T(tu) in

λ t:T • if t<lo t then chaos

elsif lo t≤t≤τ then tu(t)
elsif τ<t<τ+oδ then φ(t−τ)
elsif t≥τ+oδ then φ(oδ) end end

14 In the above — generalised — formulation
of the effect of operations on timed units we
have abstracted from whether these “stood” for
state transitions or state reconfigurations. We
have alkso made a number of general assumptions.
These we now describe and formalise: The initial
unit of the operation must be compatible with (for
simplicity we here take it to be: the same as) the
unit of the timed unit at the time the operations
is applied.

OP(θ)(tu)(τ) ≡ ...
pre obs Φ(θ)(lo δ) = tu(τ)

One can think of the following constraint being
already “syntactically” expressed in the specifica-
tion of transition and reconfiguration states. We
refer to Section 2.2.3 and Section 2.2.4. These
state change specifications (“redundantly”) spec-
ified the “before” and “after” states, where spec-

14Annotation: We express the new timed unit function as a
function of the old, namely tu, and the operation function,
φ. The “new”, “updated” timed unit behaves as follows:
It is not defined for times earlier than the lowest time for
which tu was defined. It behaves a tu for times between
that lowest time and the present time, τ . For the next
time interval, namely for the duration of the operation,
it behaves as φ, and thereafter it remains stable (“until a
next operation” is applied”). The above is expressed in
the λ–Notation: λt:T•E(args) dentes the function which
when applied to arguments vals behaves as is expressed
by the expression E(args) where vals have been substituted
for args.

ifying the “after”, ie., the final state, would have
sufficed.

We leave it to another occassion to provide a
proper linkage between specifying the syntactics
of the operations and the already specified state
change types.

2.3.3. State Sequences In the previous section
we view timed units as something that changed
only as the result of applying operations to the
(timed) units. In this section we shall revert
to looking at timed units as entities that has
observable behaviour — ie., which can be observed
from a vantage point “outside” the units and the
“control machinery” that effects the operations.

Any one unit resides in a sequence of “adjacent”
states: (i) For some time in a stable state, ψ, (ii)
then, perhaps for a short time in a transation
state: ψ 7→ ψ′, (iii) then, as (i–ii): for some time
in ψ′, then ψ′ 7→ ψ′′, etc.: (iv) ψ′′, ψ′′ 7→ ψ′′′, ψ′′′,
ψ′′′ 7→ ψ′′′′, etcetera. Maybe after a very long time
compared to the time span from stable state ψ to
stable state ψ′′′′· · ·′, the unit goes into a reconfig-
uration state. Whereupon (i–iv) is repeated, for
a possibly other stable state and transition state
sequence. One constraint that rules state changes
with respect to state transitions (and, of course,
stable states) is expressed below:

axiom

∀ tu:TU •

∀ t:T • t ∈ D tu ⇒
is tΣ(tu(t)) ⇒

is sΣ(tu(t−obs t∆(tu(t)))) ∧
is sΣ(tu(t+obs t∆(tu(t)))) ∧
let (s′σ,s′′σ) = obs tΣ(tu(t)) in

s′σ = obs sΣ(t−obs t∆(tu(t))) ∧
s′′σ = obs sΣ(t+obs t∆(tu(t))) ∧
{s′σ,s′′σ} ⊆ obs Ω(tu(t))
/∗ last property follows ∗/
/∗ from earlier axiom ∗/
end

15 We can formalise a similar constraint for
the dynamic behaviour of units before and after
undergoing, ie., residing in, reconfiguration states.
We will leave that as an exercise.

15Annotation: If, at some time, t, a unit is in a transition
state, then it is in a stable state both before and after that
time by an amount which can be derived from, ie., is the
transition state duration. And the stable states of the time
unit at those times, before and after, are as prescribed by
observing the transition state of the unit at that “some”
time (t). Finally, as formalised before, the two stable states
given as poart of the transition state are indeed in the
unit’s current staable state space.

2.4 Dynamical Nets

Railway nets consists of units — and otherwise
possess many other properties. We now “lift” the
conglomeration of all timed units to one timed
net. This has to be understood as follows: Not only
does the thus timed net consist of timed units but
also of other “things”.

2.4.1. Timed Nets Railway nets consists of
units (and possibly more). A timed net is now
a continuous function from time to nets. From a
timed net (as from units and timed units) we can
observe “its” lowest (its “begin” or “start”) time.

type

N, U, T
TU = T → U
TN = T → N

value

lo T: (U|TU|TN) → T
obs Us: N → U-set

For the purposes of our ensuing discussion we
make the following simplifying, but not substan-
tially limiting assumptions: For a given timed net,
at any time after its “begin” time, it contains the
same units as when first “started”.

assume: TN → T → Bool

assume(tn)(τ) ≡
∀ t:T•lo T(tn)<t≤τ ⇒

nor Us(tn(lo T(tn)))=nor Us(tn(t))

nor Us: N → U-set

nor Us(n) ≡
{ nor U(u) | u:U • u ∈ obs Us(n) }

nor Us: TN → U-set

nor Us(tn) ≡⋃
{nor Us(tn(t))|t:T•lo T(tn)≤t≤τ}

nor Us defines an equivalence class over any set of
“different” units.

2.4.2. Relations between Timed Nets and Timed
Units From a timed net we can “construct” a
set of timed units reflecting the timed behaviour
of all the units of the timed net.

value

TN 2 TUs: TN → TU-set

TN 2 TUs(tn) ≡
{ λ t:T • if t<lo T(tu) then chaos

else capture U(tn)(u)(t) end

| u:U • u ∈ obs Us(tn(lo T(u))) }
pre ∀ t:T • t>lo T(tn) assume(tn)(t)

capture U: TN → U → T → U
capture U(tn)(u)(t) ≡

let n′ = tn(t) in

let us′ = obs Us(n′) in

let u′:U • u′ ∈ us′ ∧ nor U(u′)=nor U(u)
in u′ end end end

16 We can not, alas, define the inverse function:

value

TUs 2 TN: TU-set → TN
conjecture:

∀ tn:TN • ∀ t:T • t>lo T(tn) assume(tn)(t)
⇒ TUs 2 TN(TN 2 TUs(tn)) = tn

The reason is that the net is more than the sum
of all its units. Had we defined a net to just be
the set of all units, then a TUs 2 TN could be
defined which satisfies the conjecture. Why is a
net more than the sum total of all its units ?
The answer to that question can, for example,
be found in Bjørner (2000) 17 : We also wish to
be able to observe, from a net, The delineations
between lines and stations, the embedding, within
stations, of tracks within the units of the stations,
&c.

2.4.3. Selecting Timed Units Given a timed net
and a “prototype” rail unit, that is, a normalised
rail unit, we sometimes have a need to find that
unit in the net, or, rather, to find “its” timed
version:

value

select TU: TN → U
∼
→ TU

select TU(tn)(u) ≡
let tus = TN 2 TUs(tn) in

if ∃ tu:TU •

tu ∈ tus ∧
nor U(tu(lo T(tu)))=nor U(u)
then

let tu:TU •

tu ∈ tus ∧
nor U(tu(lo T(tu)))=nor U(u) in

tu end

else chaos

end end

2.4.4. Operations on Timed Nets We have, in
Section 2.3.2, defined the general idea of opera-
tions on timed units. We now wish to examine
what the meaning of these operations are in the
context of timed nets. Suppose we could say:
Performing an operation on a timed unit of a
timed net only affects that timed unit, and not
any of the other timed units of the timed net,
then performing “that same” operation, somehow

16Annotation: Each timed unit is that function of time
which for times larger than or equal to the net “start”
time, captures the “same” unit in the net. The function
TN 2 TUs constructs from all units of the net their timed
unit.
17See appendix A.

identifying the unit, would have to express the
above, as is done below:

type

Θ
value

OP: Θ → (TN × U) → T → TN
OP: Θ → TU → T → TU

OP(θ)(tn,u)(τ) as tn′

pre

∃ u′:U •

u′ ∈ obs Us(tn(τ))
∧ nor U(u′)=nor U(u)

post

let tu:U = select TU(tn)(u) in

tus = TN 2 TUs(tn),
tus′ = TN 2 TUs(tn′) in

tus\tus′ = tus′\tus = {OP(θ)(tu)(τ)}
∧ ... end

18 The ∧ ... part of the above pre/post charac-
terisation of operations on timed units of a timed
net refers to the fact that the whole is more than

the sum of its parts, that is: There may be aspects
of the net which are affected by an operation, but
not captured ny the individual rail units.

2.5 Discussion of the Model:

A model of certain aspects of a railway net has
been presented. We could have chosen many dif-
ferent ways of formulating this model.

Next we shall discuss two aspects: Why we have
not spoken about the unique identification of
units. And whether the model of time (and tim-
ing) is the right model.

2.5.1. Why no Unique Unit Identification ?
Perhaps most controversially is our tacit decision
not to endow rail units with a unique identifi-
cation. It is indeed true that each rail unit is
unique. It is unique simply by the choice of its
connectors. We never made that explicit. But it
is indeed contained in the model of railway nets
we referred to earlier. See Bjørner (2000) and

18Annotation: The two function signatures are “almost the
same”. The meaning of performing the operation on a
timed net is expressed by a pre/post pair of predicates
relating the before and after states of the timed net(s). The
function is partial since there must exist a unit of some
timed unit, say at the “start” whose normalised form is
that of the argument (ie., the “identifying”) unit. Since we
can assume this, and since the assumption of no new timed
units properly within the time span of the timed net, and
no “old” timed units “disappearing along the way” — since
that assumption still holds — we can find the identified
timed unit. Except for that timed unit all the other timed
units of the before and after nets are unchanged. The only
change is the (operation) “updated” timed unit.

also Appendix A. We could have instead endowed
each unit with a unique identifier, but then we
would have to express a lot of “book–keeping”
constraints to secure that the already existing
uniqueness of rail units was not being interfered
with by the additional “unique” identifier.

2.5.2. Is it the Right Model of Timing ? When
time is involved in a phenomenon, a good ad-
vice, in computing science circles, is usually not
to introduce time explicitly in the model till the
latest possible step of development — if at all !
It is obviously not an advice we have followed.
So: Why not ? For two reasons: The first is,
that we would otherwise have modelled timing
by means of some combination (Yong and George
(1999); Haxthausen and Yong (2000)) of RSL,

as we have used it, George et al. (1992, 1995),
and explicit timing constructs of an extended RSL,
Yong and George (1999), or, Haxthausen and
Yong (2000), of any one, or more, of the Duration

Calculi Chaochen et al. (1992, 1993); Chaochen
and Xiaoshan (1993); Chaochen (1993); Chaochen
and Hansen (2002 (2003). Either approach might
have “complicated” the presentation of the no-
tations — which we have kept as Annotations in
footnotes. So — in anticipation of such a possible
complication — we have “cowardly” refrained.
The other reason for not choosing to also use
the above mentioned blends of RSL and either
explicit RSL extending timing constructs, or one
or more of the Duration Calculi, is that we
wish, in a separate publication to perform those
experiments: Of using exactly such “extensions”,
and then compare the two–three approaches.

In other words: It may not be the right model that
we have presented in the current paper. “Time (!)
will tell !” (Pun intended.)

3. POSSIBLE RELATIONS TO CONTROL
THEORY

The whole purpose of Section 2 has been to
present a model of a domain that is of interest to
both software engineering and control engineer-
ing. We have presented “one side of the coin”, the
computing science facets of the models of such do-
mains. It now remains to put forward, informally,
some ideas that might relate to control theory, and
to suggest that classical ideas of control theory,
or just plain, simple calculus (ie., the differential
and integral calculi) — that ideas from these disci-
plines — might be of use in further extending the
computational models that are encountered when
developing software.

The crucial phenomenon that forces us, so to
speak, to raise the issue of possible relations —

as far as the domain of transport goes — between
computing science and control engineering is that
of our model of traffic:

type

Train, Pos
TF = T → (N × (Train →m Pos))

where T is time, N is the time–varying net, Train

stands for trains, and Pos is the position of trains.
The timed net follows from traffic:

value

timed net: TF → TN
timed net(tf) ≡
λt:T•let (n,tps)=tf(t) in n end

In control engineering we are used to monitor
and control the net and the trains. Here they
are brought together in one model. Something
that can be done by means of the techniques of
computing science, but something that does not
seem to be so easy, as here, to express in usual
control theoretic ways.

For a given train, say of identity tn:Tn, we may
wish to observe its dynamics:

type

Tn
Train
TRAIN = T → (N × Train × Pos)

value

obs Tn: Train → Tn
monitor Train: Tn → TF → TRAIN
monitor Train(tn)(tf) ≡
λt:T•(let (n,tps) = tf(t) in

let (trn,pos) = select(tn)(tps(t)) in

(n,trn,pos) end end)

select: Tn → (Train →m Pos) → (Train × Pos)
select(tn)(tps) ≡

let trn:Train •

trn ∈ dom tps∧obs Tn(trn)=tn in

(trn,tps(trn)) end

We shall end our odyssey here. We have brought
our railway model right up to the physical quanti-
ties that have usually been the province of control
theory and control engineering.

4. CONCLUSION

It is (thus) time to conclude.

4.1 Summary: What has been Achieved ?

We have shown how computing science can model
dynamic systems that — we claim — cannot be
modelled in control theory.

4.2 Speculations: Future Work

It now remains to exploit this possibility. We grant
— ourselves actually having had a proper training
in control theory — that from here on there
arer indeed very many problems of net and train
monitoring and control that we prefer to express
in control theoretic terms, using the conventional
notations of calculus.

Hence we must provide a proper “interface” be-
tween the continuous functions as expressed in
this paper, ie., in RSL, and those of proper control
theory. That has not been done in this paper —
or elsewhere.

What we are suggesting is that of providing, for
RSL formula involving functions like here over
time, such notions as monotonicity, continuity,
linearity, etc. In other words: It would most prob-
ably be useful to introduce such further notions
as differentiablity and integrability.

And from there we go on — along lines as for
example suggested in the fascinating paper by
Willems: Willems (1991).

5. ACKNOWLEDGEMENTS

The author gratefully acknowledges many years
of fruitful railway modelling collaboration with
Søren Prehn and Chris George, before, during,
and after my stay as UN Director of UNU/IIST,
the UN University’s International Institute for
Software Technology, Macau SAR, China (1991–
1997).

He likewise gratefully acknowledges the encour-
agement by Eckehard Schnieder, Technical Uni-
versity of Brunswick, Germany, to submit this
and other papers (Bjørner (2000); Bjørner et al.
(2002)) to similar conferences.

6. BIBLIOGRAPHICAL NOTES

REFERENCES

Dines Bjørner. Formal Software Techniques in Railway
Systems. In Eckehard Schnieder, editor, 9th IFAC Sym-
posium on Control in Transportation Systems, pages 1–
12, Technical University, Braunschweig, Germany, 13–
15 June 2000. VDI/VDE-Gesellschaft Mess– und Au-
tomatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und
Verkehrstechnik.

Dines Bjørner, Chris W. George, and Søren Prehn. Com-
puting Systems for Railways — A Rôle for Domain En-
gineering. Relations to Requirements Engineering and
Software for Control Applications. In Integrated Design
and Process Technology. Editors: Bernd Kraemer and
John C. Petterson, page 26 pages, P.O.Box 1299, Grand
View, Texas 76050-1299, USA, 24–28 June 2002. Society
for Design and Process Science.

Dines Bjørner, C.W. George, and S. Prehn. Scheduling
and Rescheduling of Trains, chapter 8, pages 157–184.
Industrial Strength Formal Methods in Practice, Eds.:

Michael G. Hinchey and Jonathan P. Bowen. FACIT,
Springer–Verlag, London, England, 1999a.

Dines Bjørner, Søren Prehn, and Chris W. George. Formal
Models of Railway Systems: Domains. Bldg. 344, DK–
2800 Lyngby, Denmark, September 23 1999b. Presented
at the FMERail Workshop on Formal Methods in
Railway Systems, FM’99 World Congress on Formal
Methods, Toulouse, France. Avaliable on CD ROM.

Dines Bjørner, Søren Prehn, and Chris W. George. Formal
Models of Railway Systems: Requirements. Presented at
the FMERail Workshop on Formal Methods in Railway
Systems, FM’99 World Congress on Formal Methods,
Toulouse, France. Avaliable on CD ROM.

Zhou Chaochen. Duration Calculi: An Overview. Pub-
lished in: Formal Methods in Programming and Their

Applications, Conference Proceedings, June 28 – July 2,
1993, Novosibirsk, Russia; (Eds.: D. Bjørner, M. Broy
and I. Pottosin) LNCS 736, Springer-Verlag, 1993, pp
36–59.

Zhou Chaochen and Michael R. Hansen. Duration Calcu-
lus: A formal approach to real–time systems. Mono-
graphs in Theoretical Computer Science. Springer–
Verlag, 2002 (2003).

Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A
Calculus of Durations. Information Proc. Letters, 40
(5), 1992.

Zhou Chaochen and Yu Huiqun. A duration Model for
Railway scheduling. Technical Report 24b, UNU/IIST,
P.O.Box 3058, Macau, May 1994.

Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen.
An Extended Duration Calculus for Real-time Systems.
Published in: Hybrid Systems, LNCS 736, 1993.

Zhou Chaochen and Li Xiaoshan. A Mean Value Dura-
tion Calculus. Published as Chapter 25 in A Classical

Mind, Festschrift for C.A.R. Hoare, Prentice-Hall Inter-
national, 1994, pp 432–451.

Chris George, Peter Haff, Klaus Havelund, Anne Hax-
thausen, Robert Milne, Claus Bendix Nielsen, Søren
Prehn, and Kim Ritter Wagner. The RAISE Specifica-
tion Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

Chris George, Anne Haxthausen, Steven Hughes, Robert
Milne, Søren Prehn, and Jan Storbank Pedersen. The
RAISE Method. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1995.

Anne Haxthausen and Xia Yong. Linking DC together

with TRSL. In Proceedings of 2nd International Con-
ference on Integrated Formal Methods (IFM’2000),
Schloss Dagstuhl, Germany, November 2000, number
1945 in Lecture Notes in Computer Science, pages 25–
44. Springer-Verlag, 2000.

Michael A. Jackson. Software Requirements & Speci-
fications: a lexicon of practice, principles and preju-
dices. ACM Press. Addison-Wesley Publishing Com-
pany, Wokingham, nr. Reading, England; E-mail:
ipc@awpub.add-wes.co.uk, 1995.

J.C. Willems. Paradigms and puzzles in the theory of
dynamical systems. IEEE Trans. on Automatic Control,
36(3):259–294, March 1991.

Xia Yong and Chris W. George. An Operational Semantics
for Timed RAISE. In Jeannette M. Wing, Jim Wood-
cock, and Jim Davies, editors, FM’99 — Formal Meth-
ods, pages 1008–1027. Springer–Verlag, volume 1709 of
LNCS: Lecture Notes in Computer Science, 1999.

Appendix A. A RAILWAY TOPOLOGY MODEL

From Bjørner (2000).

A.1 The Structure

A.1.1. Narrative We introduce the phenomena of rail-
way nets, lines, stations, tracks, (rail) units, and connectors.

(1) A railway net consists of one or more lines and two or
more stations.

(2) A railway net consists of rail units.
(3) A line is a linear sequence of one or more linear rail

units.
(4) The rail units of a line must be rail units of the railway

net of the line.
(5) A station is a set of one or more rail units.
(6) The rail units of a station must be rail units of the

railway net of the station.
(7) No two distinct lines and/or stations of a railway net

share rail units.
(8) A station consists of one or more tracks.
(9) A track is a linear sequence of one or more linear rail

units.
(10) No two distinct tracks share rail units.
(11) The rail units of a track must be rail units of the station

(of that track).
(12) A rail unit is either a linear, or is a switch, or a is simple

crossover, or is a switchable crossover, etc., rail unit.
(13) A rail unit has one or more connectors.
(14) A linear rail unit has two distinct connectors, a switch

rail unit has three distinct connectors, crossover rail
units have four distinct connectors (whether simple or
switchable), etc.

(15) For every connector there are at most two rail units
which have that connector in common.

(16) Every line of a railway net is connected to exactly two,
distinct stations of that railway net.

(17) A linear sequence of (linear) rail units is a non-cyclic
sequence of linear units such that neighbouring units
share connectors.

A.1.2. Formalisation

type

N, L, S, Tr, U, C
value

1. obs Ls: N → L-set,
1. obs Ss: N → S-set
2. obs Us: N → U-set,
3. obs Us: L → U-set

5. obs Us: S → U-set,
8. obs Trs: S → Tr-set
12. is Linear: U → Bool,
12. is Switch: U → Bool

12. is Simple Crossover: U → Bool,
12. is Switchable Crossover: U → Bool

13. obs Cs: U → C-set

17. lin seq: U-set → Bool

lin seq(q) ≡
let us = obs Us(us) in

∀ i:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ c:C •

obs Cs(q(i)) ∩ obs Cs(q(i+1)) = {c} ∧
len q > 1 ⇒

obs Cs(q(i)) ∩ obs Cs(q(len q)) = {}
end

Some formal axioms are now given, not all !

axiom

1. ∀ n:N • card obs Ls(n) ≥ 1,

1. ∀ n:N • card obs Ss(n) ≥ 2,

3. ∀ n:N, l:L • l ∈ obs Ls(n) ⇒ lin seq(l)

4. ∀ n:N, l:L • l ∈ obs Ls(n) ⇒ obs Us(l) ⊆ obs Us(n)

5. ∀ n:N, s:S • s ∈ obs Ss(n) ⇒ card obs Us(s) ≥ 1

6. ∀ n:N, s:S • s ∈ obs Ls(n) ⇒ obs Us(s) ⊆ obs Us(n)

7. ∀ n:N, l,l′:L •

{l,l′} ⊆ obs Ls(n) ∧ l 6=l′

⇒ obs Us(l) ∩ obs Us(l′) = {}

7. ∀ n:N, l:L, s:S •

l ∈ obs Ls(n) ∧ s ∈ obs Ss(n)
⇒ obs Us(l) ∩ obs Us(s) = {}

7. ∀ n:N, s,s′:S •

{s,s′} ⊆ obs Ss(n) ∧ s6=s′

⇒ obs Us(s) ∩ obs Us(s′) = {}

8. ∀ s:S • card obs Trs(s) ≥ 1

9. ∀ n:N, s:S, t:T •

s ∈ obs Ss(n) ∧ t ∈ obs Trs(s) ⇒ lin seq(t)

10. ∀ n:N, s:S, t,t′;T •

s ∈ obs Ss(n) ∧ {t,t′} ⊆ obs Trs(s) ∧ t 6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}

15. ∀ n:N • ∀ c:C •

c ∈ ∪ { obs Cs(u) | u:U • u ∈ obs Us(n) }
⇒ card{ u | u:U •

u ∈ obs Us(n) ∧ c ∈ obs Cs(u) } ≤ 2

16. ∀ n:N,l:L • l ∈ obs Ls(n) ⇒
∃ s,s′:S • {s,s′} ⊆ obs Ss(n) ∧ s6=s′ ⇒

let sus = obs Us(s),
sus′ = obs Us(s′),
lus = obs Us(l) in

∃ u:U • u ∈ sus, u′:U •

u′ ∈ sus′, u′′,u′′′:U • {u′′,u′′′} ⊆ lus •

let scs = obs Cs(u), scs′ = obs Cs(u′),
lcs = obs Cs(u′′), lcs′ = obs Cs(u′′′) in

∃ ! c,c′:C •

c 6=c′ ∧ scs ∩ lcs={c} ∧ scs′ ∩ lcs′={c′}
end end

A.2 The Dynamics

A.2.1. Narrative We introduce defined concepts such
as paths through rail units, state of rail units, rail unit state
spaces, routes through a railway network, open and closed
routes, trains on the railway net, and train movement on the
railway net.

(18) A path, p : P , is a pair of connectors, (c, c′),
(19) which are distinct,
(20) and of some unit. 19

(21) A state, σ : Σ, of a unit is the set of all open paths of
that unit (at the time observed). 20

(22) A unit may, over its operational life, attain any of a
(possibly small) number of different states ω, Ω.

(23) A route is a sequence of pairs of units and paths —
(24) such that the path of a unit/path pair is a possible path

of some state of the unit, and such that “neighbouring”
connectors are identical.

(25) An open route is a route such that all its paths are open.
(26) A train is modelled as a route.
(27) Train movement is modelled as a discrete function (ie.,

a map) from time to routes
(28) such that for any two adjacent times the two correspond-

ing routes differ by at most one of the following:
(a) a unit path pair has been deleted (removed) from

one end of the route;
(b) a unit path pair has been deleted (removed) from

the other end of the route;
(c) a unit path pair has been added (joined) from one

end of the route;
(d) a unit path pair has been added (joined) from the

other end of the route;
(e) a unit path pair has been added (joined) from one

end of the route, and another unit path par has
been deleted (removed) from the other end of the
route;

(f) a unit path pair has been added (joined) from the
other of the route, and another unit path par has
been deleted (removed) from the one end of the
route;

19A path of a unit designate that a train may move across
the unit in the direction from c to c′. We say that the unit
is open in the direction of the path.
20The state may be empty: the unit is closed.

(g) or there has been no changes with respect to the
route (yet the train may have moved);

(29) and such that the new route is a well–formed route.

We shall arbitrarily think of “one end” as the “left end”, and
“the other end”, hence, as the “right end” — where ‘left’, in a
model where elements of a list is indexed from 1 to its length,
means the index 1 position, and ‘right’ means the last index
position of the list.

A.2.2. Formalisation

type

18. P′ = C × C
19. P = {| (c,c′):P′

• c 6=c′ |}
21. Σ = P-set

22. Ω = Σ-set

23. R′ = (U × P)∗

24. R ={| r:R′
• wf R(r) |}

26. Trn = R
27. Mov′ = T →m Trn
28. Mov = {| m:Mov′ • wf Mov(m) |}
21. obs Σ: U → Σ
22. obs Ω: U → Ω

axiom

∀ u:U •

let ω = obs Ω(u),
σ = obs Σ(u) in

σ ∈ ω ∧ 20.
let cs = obs Cs(u) in

∀ (c,c′):P • (c,c′) ∈ ∪ ω

⇒ {c,c′} ⊆ obs Cs(u)
end end

24. wf R: R′ → Bool

wf R(r) ≡
len r > 0 ∧
∀ i:Nat • i ∈ inds r

let (u,(c,c′)) = r(i) in

(c,c′) ∈
⋃

obs Ω(u) ∧ i+1 ∈ inds r

⇒ let (,(c′′,)) = r(i+1) in c′ = c′′

end end

25. open R: R → Bool

open R(r) ≡
∀ (u,p):U×P • (u,p) ∈ elems r ∧ p ∈ obs Σ(u)

27. wf Mov: Mov → Bool

wf Mov(m) ≡ card dom m ≥ 2 ∧
∀ t,t′:T • t,t′ ∈ dom m ∧ t < t′

∧ adjacent(t,t′) ⇒
let (r,r′) = (m(t),m(t′))

(u,p):U×P • p ∈

⋃
obs Ω(u) in

28a. (l d(r,r′,(u,p)) ∨ 28b. r d(r,r′,(u,p)) ∨
28c. l a(r,r′,(u,p)) ∨ 28d. r a(r,r′,(u,p)) ∨
28e. l d r a(r,r′,(u,p)) ∨ 28f. r d l a(r,r′,(u,p))∨
28g. r=r′) ∧ wf R(r′)

end

The last line’s route well–formedness ensures that the type of
Move is maintained.

value

adjacent: T × T → Bool

adjacent(t,t′) ≡ ∼∃ t′′:T • t′′ ∈ dom m ∧ t < t′′ < t′

l d,r d,l a,r a,l d r a,r d l a: R × R × P → Bool

l d(r,r′,(u,p)) ≡ r′ = tl r pre len r>1
r d(r,r′,(u,p)) ≡ r′ = fst(r) pre len r>1
l a(r,r′,(u,p)) ≡ r′ = 〈(u,p)〉 r̂
r a(r,r′,(u,p)) ≡ r′ = r̂〈(u,p)〉
l d r a(r,r′,(u,p)) ≡ r′ = tl r̂〈(u,p)〉
r d l a(r,r′,(u,p)) ≡ r′ = 〈(u,p)〉 f̂st(r)

fst: R
∼

→ R′

fst(r) ≡ 〈 r(i) | i in 〈1..len r−1〉 〉

If r as argument to fst is of length 1 then the result is not a
well–formed route, but is in R′.

