
in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 1

Opening

From Domains to Requirements

The Triptych Approach to Software Engineering

A 15-18 Day Lecture Series

Dines Bjørner

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering oh-acm-cvr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

2 Dines Bjørner: Domain & Requirements Engineering

Welcome

• These lectures are different !

• In these lectures

– requirements engineering will now have

– a solid basis in domain engineering:

∗ we will focus more than half the course on domain engineeging,

∗ and you will see how requirements can be ”smoothly derived”
from domain models.

• In other words: a new beginning for software engineering providing

– formal foundations and

– strong ability to informally describe domains and requirements.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 3

Aims & Objectives
Aims

•We aim at covering crucial aspects of both domain and requirements
engineering:

– stakeholder identification and liaison;

– domain and requirements acquisition;

– business process engineering and reengineering;

– analysis and terminologisation;

– description and prescription;
√

– verification and validation;

– theory formation; and

– requirements feasibility and satisfiability;

• some lightly, some in more depth (
√

).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering oh-acm-cvr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

4 Dines Bjørner: Domain & Requirements Engineering

Objectives

• Awareness of crucial structure of software engineering

– stakeholders

– acquisition

– business processes

– analysis

– terminology

– description

– prescription

– verification

– validation

– theory formation

– feasibility

– satisfiability

• Ability to describe and prescribe

• Understanding of description facets

– intrinsics

– support technologies

– mgt. & org.

– rules & regulation

– scripts and contracts

– human behaviour

• Understanding of preescription facets

– projection

– instantiation

– determination

– extension

– fitting

– consolidation

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 5

Lecture Overview
Lectures 1–5

1. Summary Slides 13–23

1. Background Slides 24–30

2. What are Domains ? Slides 31–81

2. Motivation for Domain Engineering Slides 82–94

3–4. Abstraction & Modelling Slides 95–164

4. Semiotics Slides 165–252

5. A Specification Ontology Slides 253–354

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering oh-acm-cvr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

6 Dines Bjørner: Domain & Requirements Engineering

Lectures 6–10

Domain Engineering

6. Opening Stages and Intrinsics Slides 355–423

7. Supp.Techns., Mgt. & Org. and Rules & Regs. Slides 424–480

8. Scripts Slides 481–623

9. Human Behaviour and Closing Stages Slides 624–647

10. Opening and Closing DE Stages Slides 648–659

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 7

Lectures 11–15

Requirements Engineering

11. Acquisition and Business Processes Slides 660–712

12. Domain Requirements Slides 713–775

13. Interface Requirements Slides 776–834

14. Machine Requirements Slides 835–897

15. Opening and Closing RE Stages Slides 898–911

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering oh-acm-cvr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

8 Dines Bjørner: Domain & Requirements Engineering

Lectures 16–18

16. Domain Demos Slides ??–??

17. Domain-based Innovation Slides ??–??

18. Conclusion and Acknowledgements Slides 912–919

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 9

Course Project

• Lectures go hand-in-hand with a course project:

– lectures in the mornings,

– project tutoring in the afternoons.

• Project topics (choose one for entire class):

– Airports

– Air Traffic

– Banks

– Commodities Exchanges

– Container Lines

– Distribution Chains

– The Internet

– Logistics

– The Market

– Manufacturing

– (Oil and Gas) Pipelines

– The Web

• Class to work in 3 to 4 three person groups each on a part of the
project topic.

• Each project group to work out, over 4 weeks, a project report.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering oh-acm-cvr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

10 Dines Bjørner: Domain & Requirements Engineering

Course Evaluation
Project

• Project reports to be evaluated separately from exam.

Exam

• A two hour written exam with 24 questions

• evaluated separately from project report.

Consolidated Evaluation

• Possibly a suitably weighted sum of the two evaluations.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 11

Course Material

• Complete lecture support:
Notes: http://www2.imm.dtu.dk/˜db/de+re-p.pdf
Slides: http://www2.imm.dtu.dk/˜db/de+re-s.pdf

• Extensive refs. to Examples:
Search lecturer’s Web page: http://www2.imm.dtu.dk/˜db

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering oh-acm-cvr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

12 Dines Bjørner: Domain & Requirements Engineering

Faculty Seminars

• A number of faculty seminars are offered during the 3-4-5 week stay:

1. Mereologies in Computing Science
http://www2.imm.dtu.dk/˜db/bjorner-hoare75-p.pdf

2. An Emerging Domain Science
A Rôle for Stanis law Leśniewski’s Mereology
and Bertrand Russell’s Philosophy of Logical Atomism
http://www2.imm.dtu.dk/˜db/domain or /landin.pdf

3. Rôle of Domain Engineering in Software Development
Why Current Requirements Engineering is Flawed !

4. IT Security; the ISO Recommendation — an Analysis
http://www2.imm.dtu.dk/˜db/5lectures/it-system-security-ISO.pdf

5. Script and Contract Languages
http://www2.imm.dtu.dk/˜db/5lectures/license-languages.pdf

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Opening

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 0

These Lectures are Different !

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark oh-acm-cvr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

2 Dines Bjørner: Domain & Requirements Engineering

0. Preface

0.1. These Lectures are Different !

• This textbook is different in a number of ways:

1. The Triptych Dogma : The dogma “says”:

– Before software can be designed one must understand the requirements.

– Before requirements can be prescribed one must understand the domain.

This dogma carries the two main parts of the book:

– Part8: Domains and

– Part9: Requirements.

No other ‘Software Engineering’ textbook

– (other than [TheSEBook3]

∗ of the approximately 2400 page [TheSEBook1,TheSEBook2,TheSEBook3])

– propagates this dogma.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 3

0. Preface 1. These Lectures are Different ! 0. 0. 0

2. Domain Engineering :

– This is a new phase of software development.

– It is thoroughly treated in Part 8.

– It is explained and motivated in Parts 2–4.

∗No other ‘Software Engineering’ textbook

· (other than [TheSEBook3])

· covers ‘Domain Engineering’ —

· and the present volume

∗ covers that topic in a novel (read: “improved”) way.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

4 Dines Bjørner: Domain & Requirements Engineering

0. Preface 1. These Lectures are Different ! 0. 0. 0

3. Derivation of Requirements from Domain Models :

– Requirements development is here presented

∗ in a way which differs fundamentally and significantly

∗ from how it has been presented by past textbooks on ‘Software
Requirements Engineering’.

– This novel and simpler approach, as based on careful domain
descriptions, both in narrative and in formal form is thoroughly
treated in Part 9.

∗No other ‘Software Engineering’ textbook

· (other than [TheSEBook3])

∗ covers Requirements Engineering in this novel and logical
way

∗ and the current treatment significantly improves that of
[TheSEBook3].

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 5

0. Preface 1. These Lectures are Different ! 0. 0. 0

4. Proper Conceptualisation (Parts 5–7):

– Software development is a highly intellectual process.

– Among the constituent sets of theories, principles and techniques of software
development are those of

∗ ‘Abstraction & Modelling’,

∗ ‘Semiotics’ and

∗ ‘Specification Ontology’.

– These are treated in separate parts of these lectures.

– No other ‘Software Engineering’ textbook

∗ (other than [TheSEBook1,TheSEBook2,TheSEBook3])

– covers these three concepts,

∗ ‘Abstraction & Modelling’,

∗ ‘Semiotics’ and

∗ ‘Specification Ontology’,

– in this simplified way.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

6 Dines Bjørner: Domain & Requirements Engineering

0. Preface 1. These Lectures are Different ! 0. 0. 0

– We shall very briefly explain these three concepts.

4.1 Abstraction & Modelling Part 5:

– Abstraction relates to

∗ conquering complexity of description through the judicious
use of abstraction,

∗ where abstraction, briefly,

· is the act and result of omitting consideration

· of (what would then be called) details while,

· instead, focusing on

· (what would therefore be called) important aspects.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 7

0. Preface 1. These Lectures are Different ! 0. 0. 0

– Modelling relates to choosing between

∗ (i) property- and model-oriented specification;

∗ (ii) a suitable balance between analogic, analytic and iconic
modelling;

∗ (iii) descriptive and prescriptive modelling

· as for domain modelling,

· respectively requirements modelling;

∗ and (iv) extensional versus intentional models.

– Modelling also has to decide “for which purposes” a model
shall serve:

∗ to gain understanding,
∗ to get inspiration and to inspire,

∗ to present, educate and train,

∗ to assert and predict and

∗ to implement requirements derived
from domain models.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

8 Dines Bjørner: Domain & Requirements Engineering

0. Preface 1. These Lectures are Different ! 0. 0. 0

4.2 Semiotics Part 6:

– Semiotics deal with

∗ the form, i.e., the syntax, in which we express concepts;

∗ the meaning, i.e., the semantics, of what is being expressed;
and

∗ the reason, i.e., the pragmatics, of why we express something
and the chosen form of expression.

– Since all we really ever do

∗ when expressing

· domains,

· requirements and

· software

∗ is to produce textual documents

– it is of utmost importance that we command these three facets
of semiotics.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 9

0. Preface 1. These Lectures are Different ! 0. 0. 0

4.3 Specification Ontology 1 Part 7:

– How do we present descriptions ?

– The technical means of expressing the phenomena and con-
cepts of domains form a meta-ontology.

– And the description itself is an ontology of the domain.

– In Part 7 we advance three “faces” of ontological nature:

∗ (i) the simple entity, operation, event and behaviour approach
to description;

∗ (ii) the mereology of simple entities; and

∗ (iii) the laws of description !

Our treatment of ‘Abstraction & Modelling’, ‘Semiotics’ and ‘Specifi-
cation Ontology’, above are quite novel and constitute, in our opinion,
quite a significant improvement of [TheSEBook3].

1Ontology is the philosophical study of the nature of being, existence or reality in general, as well as of the basic categories of being and their relations. Traditionally listed
as a part of the major branch of philosophy known as metaphysics, ontology deals with questions concerning what entities exist or can be said to exist, and how such entities
can be grouped, related within a hierarchy, and subdivided according to similarities and differences [Wikipedia].

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

10 Dines Bjørner: Domain & Requirements Engineering

0. Preface 1. These Lectures are Different ! 0. 0. 0

5. Examples :

– The book carries more that 140 substantial

– both informal and formal examples.

– Almost half are several pages long.

– No other ‘Software Engineering’ textbook

∗ (not even [TheSEBook1,TheSEBook2,TheSEBook3])

carries so many informal&formal examples,

– examples that are substantial —

– and the present volume ties the many examples more strongly
together.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 11

0. Preface 1. These Lectures are Different ! 0. 0. 0

6. Projects :

– In book Appendix A there is a list of annotated course project
proposals.

– A course — based on this book — is proposed to consist of

∗ both ‘formal’ class lectures — covering this book —
∗ and ‘informal’ tutoring sessions —
· advising students on how to proceed using the book in engineering

· both a domain description

· and a requirements prescription

· for one of the projects listed in book Appendix A.

∗ That appendix will give some hints, to both

· lecturers (course project tutors) and

· students.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

12 Dines Bjørner: Domain & Requirements Engineering

0.Preface 1.These Lectures are Different ! 0. 0. 0

∗ Hints to lecturers on how to use this book in the ‘formal’ class
lectures is given in a separate booklet that is (i.e., will be)
available on the Internet.

– We cannot overemphasise the pedagogical and didactical need
to

∗ both give the ‘formal’ class lectures

∗ and the course project ‘informal’ tutoring sessions:

• “learn by doing”

• “but on a science-based foundation”.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 13

(0. Preface 0.1. These Lectures are Different ! )

0.2. Course Overview

• (Chapter 1) We start by providing a background for this study.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

14 Dines Bjørner: Domain & Requirements Engineering

0.Preface 2.Course Overview 0. 0. 0

• (Chapter 2) We introduce the concepts of domains, that is, potential
or actual application domains for software.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 15

0.Preface 2.Course Overview 0. 0. 0

• (Chapter 3) We then motivate the study of domains where such
studies aim at creating both precise informal and formal descriptions
of domains

• – (and) where formal descriptions are limited to what we can today
mathematically formalise.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

16 Dines Bjørner: Domain & Requirements Engineering

0.Preface 2.Course Overview 0. 0. 0

• (Chapter 4) Abstraction and modelling are keywords in specifications

• and we shall therefore very briefly summarise a few key concepts –

– including property- and model-oriented abstractions.

– We shall also, likewise very briefly, overview a tool for formal ab-
straction:

∗ the main specification language. RSL, of these lectures

∗ and its use in achieving abstractions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 17

0.Preface 2.Course Overview 0. 0. 0

• (Chapter 5) We take a very brief look at issues of semiotics: prag-
matics, semantics and syntax.

– The prime goal of software engineering work is description, pre-
scription and specification,

– that is: producing documents, that is, informal and formal texts.

– Texts have syntax —

– what we write has meaning (i.e., semantics),

– and the reason we wrote it down is motivated, i.e., is pragmatics.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

18 Dines Bjørner: Domain & Requirements Engineering

0.Preface 2.Course Overview 0. 0. 0

• (Chapter 6) What is it that we are

– describing (as for domains),

– prescribing (as for requirements) and

– specifying (as for software designs)?

We shall suggest that the descriptions (etc.) focus on

– entities and behaviours,

– functions and events –

and shall therefore

– briefly summarise these concepts (and likewise briefly exemplify
their abstract modelling)

– before deploying this “specification ontology” in domain and in
requirements engineering.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 19

0.Preface 2.Course Overview 0. 0. 0

• (Chapter 7) Domain engineering is then outlined in terms of its many
stages:

i information document creation,

ii identification of domain stake-holders,

iii business process rough sketching,

iv domain acquisition,

v domain analysis and concept formation,

vi domain terminologisation,

vii domain modelling – the major stage –

viii domain model verification (checking, testing),

ix domain description validation, and

x domain theory creation.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

20 Dines Bjørner: Domain & Requirements Engineering

0.Preface 2.Course Overview 0. 0. 0

Emphasis is put on business process description (Sect. ) and on the
six sub-stages of domain modelling:

– (a) intrinsics,

– (b) support technologies,

– (c) management and organisation,

– (d) rules and regulations,

– (e) scripts and

– (f) human behaviour.

• A final section summarises the opening and closing stages of do-
main engineering: stakeholder identification and liaison, acquisition,
business processes, terminoligisation, respectively verification, model
checking, testing, validation and domain theory issues.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 21

0.Preface 2.Course Overview 0. 0. 0

• (Chapter 8) It is finally outlined, in some detail, how major parts of
requirements can be systematically “derived” from domain descrip-
tions: in three major sub-stages:

– [A] domain requirements,

– [B] interface requirements and

– [C] machine requirements – where our contribution is sôlely placed
in sub-stages [A–B].

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

22 Dines Bjørner: Domain & Requirements Engineering

0.Preface 2.Course Overview 0. 0. 0

In this part it is briefly argued why current requirements engineering
appears to be based on a flawed foundation.

• Emphasis is put on the pivotal steps of domain requirements in which

– (a) business processes are re-engineering;

– (b) domain requirements are projected, instantiated, made more
deterministic, extended and fitted;

– (c) interface requirements are “created” while considering the sim-
ple entities, functions, events and behaviours shared that are (to
be) shared between the domain and the machine; and

– (d) machine requirements are laboriously enumerated and instan-
tiated.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 23

0.Preface 2.Course Overview 0. 0. 0

• A final section summarises the opening and closing stages of require-
ments engineering: stakeholder identification and liaison, acquisition,
business process re-engineering, terminoligisation, respectively verifi-
cation, model checking, testing, validation, satisfiability & feasibility
and requirements theory issues.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-abs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 0

These Lectures are Different !

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 1

Background

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-abs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

24 Dines Bjørner: Domain & Requirements Engineering

1. Background

• This book is written on the background of three more-or-less inde-
pendent lines of

– (a) more than 40 years of speculations, by our community, about,
proposals for, and, obviously, practice of software engineering;

– (b) about 40 years of progress in program verification, and

– (c) of almost 50 years of formal specification of first programming
language semantics, then software designs, then requirements, and
now, finally domains.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-intro Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 25

(1. Background )

• This book is also written on the background of many efforts that
seek to merge these lines — as witnessed in strand (c) above:

– (d) notably there is the effort to express abstractions and their
refinement, for example,

∗ (e) such as these abstractions and refinements, with respect ab-
stract data structures and abstract operations, were (first) facil-
itated in VDM, and,

∗ (g) with respect to process abstractions, such as they were facil-
itated in CSP.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-intro c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

26 Dines Bjørner: Domain & Requirements Engineering

(1. Background )

• Over 30+ years of determined efforts in the areas of

– formal specification languages and

– refinement;

• and of their deployment in many industrial projects,

• this line of research and experimental development has been mani-
fested in at least three notable forms:

– (i) the systematic-to-rigorous development of an Ada compiler us-
ing VDM;

– (ii) the commercialisation of an industry-strength tool set for the
VDM Specification Language, VDM-SL, by the Japanese software
house CSK2; and

– (iii) the publication of my three volume book on SE.

2http://www.csk.com/support e/vdm/index.html

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-intro Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 27

(1. Background )

• All this research and development,

– (1) 35+ years of doing advanced type experimental, explorative
and actually overseeing real, industry-strength commercial soft-
ware developments,

– (2) 30+ years of teaching the underlying approaches, semantics,
formal specification, and refinement in a software engineering set-
ting, and

– (3) putting students on the road to found and direct some eight
software houses (now with some 600 former students) — based on
student MSc and PhD projects — and survive in the business,

•makes me conclude that the basic elements to be included in a proper
software engineering education and to be regularly practised by the
graduating software engineers include the following concepts:

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-intro c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

28 Dines Bjørner: Domain & Requirements Engineering

(1. Background )

– (a) a firm grasp on the simple use of discrete mathematics: sets,
Cartesians, sequences, maps, functions (including the λ-Calculus),
and simple universal algebras;

– (b) a firm grasp on the simple use of mathematical logic;

– (c) a firm grasp on the simple use of abstract and concrete types
and their values, sub-types and derived types (such as found in
several formal specification languages);

– (d) a firm grasp on the simple use of the semiotics concepts of
syntax, semantics and pragmatics, including the formalisation of
syntax and semantics — in various forms: “classical” operational
semantics, denotational semantics, structural operational seman-
tics, etc.;

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-intro Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 29

(1. Background )

– (e) a firm grasp on the simple use of property- as well as model-
oriented abstractions as facilitated by such formal specification
languages as Alloy, B and Event B, RAISE, VDM or Z;

– (f) a firm grasp on the simple use of the diagrammatic speci-
fication approaches provided by finite state automata and
finite state machines (any reasonable textbook on formal
languages and automata theory should do), MSC (message sequence
charts), Petri nets and Statecharts;

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-intro c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

30 Dines Bjørner: Domain & Requirements Engineering

(1. Background )

– (g) a firm grasp on the use some temporal logic approach to
specify time dependent behaviours, DC (duration calculus), ITL
(interval temporal logic), the Pnueli/Manna approach, or TLA+;
and

– (h) a firm grasp on the simple use of CSP (communicating se-
quential processes).

• This book will overview some, we think crucial, aspects of software
engineering on this background. (We shall not cover Items (f–g).)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-intro Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 1

Background

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-intro Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 2

What are Domains ?

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-intro Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 31

2. What are Domains?

2.1. Delineation

Definition 1 – Domain:

• By a domain, or, more precisely an application domain, we shall
understand

– (i) a suitably delineated area of human activity, that is,

– (ii) a universe of discourse, something for which we have what
we will call a domain-specific terminology,

– (iii) such that this domain has reasonably clear interfaces to
other such domains.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

32 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation )

Definition 2 – Domain Description:

• By a domain description we shall understand

– (i) a set of pairs of informal, for ex., English language, and
formal, say mathematical, texts,

– (ii) which are commensurate, that is, the English text “reads”
the formulas, and

– (iii) which describe the simple entities, operations, events and
behaviours of a domain in a reasonably comprehensive man-
ner.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 33

(2. What are Domains? 2.1. Delineation )

2.1.1. Elements, Aims and Objectives of Domain Science(I)

•What will emerge from this book are the contours of ‘domain science’:

– the study and knowledge of domains.

•We shall here start the sketching of these contours.

• In order to better understand what domain engineering is about we
contrast it to physics.

• But first we must make a distinction between the terms ‘phenomenon’
(phenomena) and ‘concept’ (concepts).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

34 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.1. Elements, Aims and Objectives of Domain Science(I) )

Definition 3 – Phenomenon: By a phenomenon we understand

• an observable fact, that is,

– a temporal or spatio/temporal individual (particular, “thing”)

– of sensory experience

– as distinguished from a noumenon3,

– that is a fact of scientific interest susceptible to scientific de-
scription and explanation.

3Noumenon: a posited object or event as it appears in itself independent of perception by the senses.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 35

(2. What are Domains? 2.1. Delineation 2.1.1. Elements, Aims and Objectives of Domain Science(I) )

Definition 4 – Concept: By a concept we understand

• something conceived in the mind,

• a thought,

• an abstract or generic idea generalized from particular instances.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

36 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.1. Elements, Aims and Objectives of Domain Science(I) )

2.1.2. Physics versus Domain Science

2.1.2.1. General

• Physicists study ‘mother nature’:

“Physics (Greek: physis φυσις meaning ‘nature’), a natural science, is
the study of matter and its motion through space-time and all that
derives from these, such as energy and force. More broadly, it is the
general analysis of nature, conducted in order to understand how the
world and universe behave.” [Wikipedia]

• Domain scientists and engineers study ‘domains’:

– “Domains are here seen as predominantly man-made universes,

– that is, as areas of human activity, where the emphasis is on

∗ the structures (entities) conceived and built by humans (the domain
owners, managers, designers, domain enterprise workers, etc.),

∗ and the operations that are initially requested, or triggered, by humans
(the domain users).”

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 37

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

• In physics (as characterised above) the physicists,

– in principle, do not include human actions and behaviour in their
study.4

• In domain science and engineering the scientists and engineers,

– in principle, do include human actions and behaviours in their
study.

4The claimed possibility that humans are the origin, through their use of fossil energy sources, of the depletion of the ozon layer, does not mean that the physicists, in
their model include human actions and behaviour: if physicists do consider humans as the “culprits”, then that still does not enter into their models !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

38 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

• In physics physicists model

– usually continuous state values of the chosen sub-universe, that
is,

– the dynamics of observable or postulated state component values,

– and their principle tools are those of

∗ differential equations,

∗ integral calculi,

∗ statistics, etc.

– Space and time plays a core rôle.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 39

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

• In domain science and engineering the scientists and engineers model

– (i) algebraic5 structures of the chosen sub-universe
∗ (in addition to their usually discrete “state” values and operations),

– (ii) how simple entities are composed,
∗ (not only just their atomic but also composite values),

– (iii) how these structures may expand or retract, that is,

∗ operations on structures, not just on values.

– Space and time normally plays only a secondary rôle.

5Recall that an algebra is

∗ a usually finite set

∗ of possibly infinite classes (i.e., types)

∗ of usually discrete entities

∗ and a usually finite set of operations

∗ whose signature ranges of the entity types.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

40 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

• The tools of domain scientists and engineers are those of

– careful, precise informal (i.e., narrative) natural language and

– likewise careful abstractions

∗ expressed in some formal specification languages

∗ emphasising the algebraic nature of entities and their operations.

– That is, tools that originate with computer and computing scien-
tists.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 41

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

•Why not use the same tools as physicists do?

– Well, they are simply not suited for the problems at hand.

∗ Firstly the states of physics typically vary continuously,

∗ whereas those of domains typically vary in discrete steps.

∗ Secondly the number of state variables of physics do usually not
vary,

∗ whereas those of domain do — whole structures “collapse” or
“expand” (sometimes “wholesale”, sometimes “en detail”).

∗ Thirdly the models of physics, by comparison to those of do-
mains, contain “only a few types” of oftentimes thousands of
state variables — almost all modelled as reals, or vectors, ma-
trices, tensors, etc., of reals,

∗ whereas those of domains contain very many, quite different
types — sometimes atomic, sometimes composite, but rarely
modelled in matrix form.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

42 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

•Models of physics, as already mentioned, express continuous phe-
nomena.

•Models of domains, as also already mentioned, express logic proper-
ties of discrete, algebraic structures.

• For those and several other reasons

– the tools of physicists

– are quite different from

– the tools of domain scientists and engineers.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 43

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

• In theoretical physics there is no real concern for computability.

– Mathematical models themselves provide the answers.

• For domain engineering there is a real concern for computability.

– The mathematical models often serve as a basis for requirements
for software, that is, for computing.

• Hence it was natural that the tools of domain science and engineering
originated with the formal specification languages that were and are
used for specifying software.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

44 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.1. General )

2.1.2.2. Spatial Attributes of Phenomena and Concepts

• Some phenomena (p:P)

• enjoy the meta-linguistic L property, L for Location.

• Let any phenomenon be subject to the meta-linguistic predicate,
has L, and function, obs L:

type
P,C

value
has L: P → Bool

obs L: P
∼→ L, pre obs L(e): has L(e)

axiom
∀ p,p′:P •

has L(p)∧has L(p′) ∧ p 6=p′ ⇒ obs L(p) 6= obs L(p′)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 45

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.2. Spatial Attributes of Phenomena and Concepts )

•We consider L (for Locations) to be an attribute of those phenomena
which satisfy the has L property.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

46 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.2. Spatial Attributes of Phenomena and Concepts )

2.1.2.3. Simple Entities versus Attributes

•We make a distinction between

– simple entities and

– attributes.

• Simple entities are phenomena or concepts

– that may be separable parts of other simple entities;

– that may be composed into other simple entities; and

– that possess one or more attributes.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 47

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.3. Simple Entities versus Attributes )

• Attributes are properties of simple entity phenomena

– that together form

∗ atomic simple entities,

∗ or characterise composite entities apart from their sub-entities;

– that cannot be “removed” from a simple entity possessing such
attributes; and

– that may be modelled as values of simple or composite types.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

48 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.2. Physics versus Domain Science 2.1.2.3. Simple Entities versus Attributes )

2.1.3. Constituent Sciences of Domain Science

2.1.3.1. Knowledge Engineering

“Knowledge engineering is an engineering discipline that in-
volves integrating knowledge into computer systems in order
to solve complex problems normally requiring a high level of
human expertise.” [Wikipedia]

• Knowledge (science and) engineering,

– what humans know and believe,

– promise and commit,

– what is necessary, probable and/or possible,

– is a proper part of domain science —

– but we omit any treatment of this fascinating topic.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 49

(2. What are Domains? 2.1. Delineation 2.1.3. Constituent Sciences of Domain Science 2.1.3.1. Knowledge Engineering )

2.1.3.2. Computer Science

Definition 5 – Computer Science: Computer science

• is the study and knowledge

• about the “things” that may exist inside computers.

2.1.3.3. Computing Science

Definition 6 – Computing Science:

• is the study and knowledge

• how to construct the “things” that may exist inside computers.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

50 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.1. Delineation 2.1.3. Constituent Sciences of Domain Science 2.1.3.3. Computing Science )

2.1.4. Elements, Aims and Objectives of Domain Science (II)

• So

– computing science and

– knowledge (science and) engineering

are both part of domain science.

• Computer science,

– notably with its emphasis on algebraic structures and

– mathematical (modal) logics

– provide some of the foundations for the studies of

∗ computing science and

∗ knowledge (science and) engineering

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 51

(2. What are Domains? 2.1. Delineation 2.1.4. Elements, Aims and Objectives of Domain Science (II) )

2.2. Informal Examples

•We will give several informal examples.

– For each of these examples we shall very briefly mention

∗ observable simple entity, operation, event and behaviour phe-
nomena

∗ as well as concepts.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

52 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.2. Informal Examples )

Example 1 – Air Traffic (I): The domain-specific terminology in-
cludes such entities as:

• aircraft,

• ground, terminal, area and continental control towers and centers,

• air-lanes, etc.

The modelled atomic and composite structures and operations include

• airspace as consisting of air-lanes, airports and various control towers;

• traffic modelled as function from time to aircraft positions in airspace;

• operations of aircraft take-off, guidance and landing;

• events of communication between pilots and control towers;

• et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 53

(2. What are Domains? 2.2. Informal Examples )

Example 2 – Banking: The domain-specific terminology includes
such terms as:

• clients;

• banks

– with demand/deposit accounts with yield and interest rates and
credit limits and

– with open, deposit, withdraw, transfer, statement and close opera-
tions; and

– with mortgage accounts and loan approval, payment installation,
loan defaulting, etc.; and

– bankruptcy, payment due, credit limit exceeded, etc. events; et
cetera;

• et cetera.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

54 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.2. Informal Examples )

Example 3 – Container Line Industry: The domain-specific ter-
minology includes such terms as:

• container,

• container line,

• container vessel (bay, row, stack, etc.),

• container terminal port (quay, crane, stack/stacking, etc.),

• sea lane, etc,

• container stowage,

• et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 55

(2. What are Domains? 2.2. Informal Examples )

Example 4 – Health Care: The domain-specific terminology in-
cludes such terms as:

• citizen cum patient, medical staff,

• hospital, ward, bed,

• operating theatre,

• patient medical journal,

• anamnese6, analysis, diagnostics, treatment, etc.,

• hospitalisation plan,

• et cetera.

6Anamnese: the patients’ history of illness, including the most present.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

56 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.2. Informal Examples )

Example 5 – “The Market”: The domain-specific terminology in-
cludes such terms as:

• consumer, retailer, wholesaler and producer;

•merchandise, order, price, quantity, in-store, back-order, etc.;

• supply chain;

• inquire, order, inspect delivered goods, accept goods, pay;

• failure of delivery, default on payments, etc.;

• et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 57

(2. What are Domains? 2.2. Informal Examples )

Example 6 – Oil Industry: The domain-specific terminology in-
cludes such terms as:

• oil field, pump and platform;

• oil pipeline, pipe, flow pump, valve, etc.;

• oil refinery;

• oil tanker, harbour, etc.

• more to come

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

58 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.2. Informal Examples )

Example 7 – Public Government: The domain-specific terminol-
ogy includes such terms as:

• citizens, lawmakers, administrators, judges, etc.,

• law-making, law-enforcing (central and local government administra-
tion) and law-judging (“the judiciary”),

• documents: law drafts, laws, public administration templates, forms
and letters, verdicts, etc.,

• document creation, editing, reading, copying, distribution and shred-
ding, etc.

• more to come

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 59

(2. What are Domains? 2.2. Informal Examples )

Example 8 – Railways: The domain-specific terminology includes
such terms as:

• railway net with track units such as linear, simple switches, simple
crossover, crossover switches, signals, etc;

• trains;

• passengers, tickets, reservations;

• timetable and train traffic;

• train schedules, train rostering, train maintenance plan, etc.

• more to come

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

60 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.2. Informal Examples )

Example 9 – Road System: The domain-specific terminology in-
cludes such terms as:

• hubs (intersections) and links (road segments),

• open and close hub and link traversal directions,

• hub semaphores, etc.

• more to come

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 61

(2. What are Domains? 2.2. Informal Examples )

2.3. An Initial Domain Description Example

• Before we delve into pragmatic and methodological issues of domain
engineering we need an example which show the both informal and
formal form in which we express a domain description.

• The example is that of describing a transport net.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

62 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.3. An Initial Domain Description Example )

Example 10 – Transport Net (I):

1. There are hubs and links.

2. There are nets, and a net consists of a set of two or more hubs and
one or more links.

type
1 H, L,
2 N = H-set × L-set

axiom
2 ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 63

2.What are Domains? 3.An Initial Domain Description Example 0. 0. 0

3. There are hub and link identifiers.

4. Each hub (and each link) has an own, unique hub (respectively link)
identifiers (which can be observed from the hub [respectively link]).

type
3 HI, LI

value
4a obs HI: H → HI, obs LI: L → LI

axiom
4b ∀ h,h′:H, l,l′:L • h 6=h′ ⇒

obs HI(h) 6=obs HI(h′) ∧ l6=l′⇒obs LI(l) 6=obs LI(l′)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

64 Dines Bjørner: Domain & Requirements Engineering

2.What are Domains? 3.An Initial Domain Description Example 0. 0. 0

In order to model the physical (i.e., domain) fact that links are delimited by two hubs
and that one or more links emanate from and are, at the same time incident upon a
hub we express the following:

5. From any link of a net one can observe the two hubs to which the link is connected.

(a) We take this ‘observing’ to mean the following: From any link of a net one can
observe the two distinct identifiers of these hubs.

6. From any hub of a net one can observe the one or more links to which are connected
to the hub.

(a) Again: by observing their distinct link identifiers.

7. Extending Item 5: the observed hub identifiers must be identifiers of hubs of the net
to which the link belongs.

8. Extending Item 6: the observed link identifiers must be identifiers of links of the net
to which the hub belongs

We used, above, the concept of ‘identifiers of hubs’ and ‘identifiers of links’ of nets.
We define, below, functions (iohs, iols) which calculate these sets.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 65

2.What are Domains? 3.An Initial Domain Description Example 0. 0. 0

value
5a obs HIs: L → HI-set,
6a obs LIs: H → LI-set,

axiom
5b ∀ l:L • card obs HIs(l)=2 ∧
6b ∀ h:H • card obs LIs(h)≥1 ∧
∀ (hs,ls):N •

5(a)) ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧

6(a)) ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

7 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
8 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

66 Dines Bjørner: Domain & Requirements Engineering

2.What are Domains? 3.An Initial Domain Description Example 0. 0. 0

• In the above extensive example we have focused on just five entities: nets, hubs,
links and their identifiers.

• The nets, hubs and links can be seen as separable phenomena.

• The hub and link identifiers are conceptual models of the fact that hubs and links
are connected

– — so the identifiers are abstract models of ‘connection’,

– or, as we shall later discuss it, the mereology of nets,

– that is, of how nets are composed.

• These identifiers are attributes of entities.

• Links and hubs have been modelled to possess link and hub identifiers.

– A link’s “own” link identifier enables us to refer to the link,

– A link’s two hub identifiers enables us to refer to the connected hubs.

– Similarly for the hub and link identifiers of hubs.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 67

2.What are Domains? 3.An Initial Domain Description Example 0. 0. 0

First we treat the syntax of operation designators (“commands”).

9. To a net one can insert a new link in either of three ways:

(a) Either the link is connected to two existing hubs — and the insert
operation must therefore specify the new link and the identifiers of
two existing hubs;

(b) or the link is connected to one existing hub and to a new hub —
and the insert operation must therefore specify the new link, the
identifier of an existing hub, and a new hub;

(c) or the link is connected to two new hubs — and the insert operation
must therefore specify the new link and two new hubs.

(d) From the inserted link one must be able to observe identifier of
respective hubs.

10. From a net one can remove a link. The removal command specifies a
link identifier.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

68 Dines Bjørner: Domain & Requirements Engineering

2.What are Domains? 3.An Initial Domain Description Example 0. 0. 0

type
9 Insert == Ins(s ins:Ins)
9 Ins = 2xHubs | 1x1nH | 2nHs
9(a)) 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
9(b)) 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
9(c)) 2nHs == 2newH(s h1:H,s l:L,s h2:H)

axiom
9(d)) ∀ 2oldH(hi′,l,hi′′):Ins • hi′ 6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

type
10 Remove == Rmv(s li:LI)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 69

(2. What are Domains? 2.3. An Initial Domain Description Example )

Then we consider the meaning of the Insert operation designators.

11. The insert operation takes an Insert command and a net and yields either a new net
or chaos for the case where the insertion command “is at odds” with, that is, is
not semantically well-formed with respect to the net.

12. We characterise the “is not at odds”, i.e., is semantically well-formed, that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions, op, and
nets, (hs.ls), and yields a truth value if the below relation between the command
arguments and the net is satisfied. Let (hs,ls) be a value of type N.

13. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆s2 l must not be in ls and its identifier must (also) not be observable in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

70 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.3. An Initial Domain Description Example )

14. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable
in hs.

15. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three cases) can be
expressed independent of the insert command category.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 71

(2. What are Domains? 2.3. An Initial Domain Description Example )

value

11 int Insert: Insert → N
∼→ N

12′ pre int Insert: Ins → N → Bool
12′′ pre int Insert(Ins(op))(hs,ls) ≡

⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧
case op of

13) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
14) 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs) ∧ h 6∈ hs ∧ obs HI(h) 6∈ iohs(hs),
15) 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

72 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.3. An Initial Domain Description Example )

16. Given a net, (hs,ls), and given a hub identifier, (hi), which can be
observed from some hub in the net, xtr H(hi)(hs,ls) extracts the hub
with that identifier.

17. Given a net, (hs,ls), and given a link identifier, (li), which can be
observed from some link in the net, xtr L(li)(hs,ls) extracts the hub
with that identifier.

value

16: xtr H: HI → N
∼→ H

16: xtr H(hi)(hs, ) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end
pre hi ∈ iohs(hs)

17: xtr L: HI → N
∼→ H

17: xtr L(li)( ,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end
pre li ∈ iols(ls)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 73

(2. What are Domains? 2.3. An Initial Domain Description Example )

18. When a new link is joined to an existing hub then the observable link
identifiers of that hub must be updated to reflect the link identifier of
the new link.

19. When an existing link is removed from a remaining hub then the ob-
servable link identifiers of that hub must be updated to reflect the
removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼→ H

18: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

19: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

74 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.3. An Initial Domain Description Example )

20. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and
links, has

• the hubs hs joined, ∪, by the set {h′,h′′} and

• the links ls joined by the singleton set of {l}.
21. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs

and links, has

21.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.

21.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′

and the new hub.

21.2 : The set of links augmented by the new link.

22. If the Insert command is of kind 2oldH(hi’,l,hi”) then

22.1–.2 : the two connecting hubs are updated to reflect the new link,

22.3 : and the resulting sets of hubs and links updated.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 75

(2. What are Domains? 2.3. An Initial Domain Description Example )

int Insert(op)(hs,ls) ≡
⋆i case op of
20 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
21 1oldH1newH(hi,l,h) →
21.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in
21.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
22 2oldH(hi′,l,hi′′) →
22.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
22.2 aLI(xtr H(hi′′,hs),obs LI(l))} in
22.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end
⋆j end
⋆k pre pre int Insert(op)(hs,ls)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

76 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.3. An Initial Domain Description Example )

23. The remove command is of the form Rmv(li) for some li.

24. We now sketch the meaning of removing a link:

(a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l,
in the net.

(b) That link connects to two hubs, let us refer to them as h′ and h′.

(c) For each of these two hubs, say h, the following holds wrt. removal of their
connecting link:

i. If l is the only link connected to h then hub h is removed. This may mean that

• either one

• or two hubs

are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect
that it is no longer connected to l.

(d) The resulting net is that of the pair of adjusted set of hubs and links.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-transportnet Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 77

(2. What are Domains? 2.3. An Initial Domain Description Example )

value

23 int Remove: Rmv → N
∼→ N

24 int Remove(Rmv(li))(hs,ls) ≡
24(a)) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in
24(b)) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in
24(c)) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in
24(d)) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end
24(a)) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set
cond rmv(li,h,hs) ≡
24((c))i) if obs HIs(h)={li} then {}
24((c))ii) else {sLI(li,h)} end
pre li ∈ obs HIs(h)

This ends Example 10
August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-transportnet c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

78 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.3. An Initial Domain Description Example )

2.4. Preliminary Summary

• So domain descriptions are both informal and formal descriptions:

• narratives and formalisations of the domain

– as it is;

– no references are to be made to requirements

– let alone to software (being required).

• Domain descriptions can never be normative.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 79

(2. What are Domains? 2.4. Preliminary Summary )

•We should be able to foresee a time, say 10 years from now, ideally,

– where there are a number of text- and reference-book like domain
descriptions for a large variety of domains:

∗ air traffic,

∗ airports,

∗ financial services institutions (banks, brokers, stock and other
commodities [metal, crops, oil, etc.] exchanges, portfolio man-
agement, credit cards, insurance, etc.),

∗ transportation (container lines, airlines, railways, commuter bus
transports, etc.),

∗ assembly manufacturing, gas and oil pipelines, health care, etc.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

80 Dines Bjørner: Domain & Requirements Engineering

(2. What are Domains? 2.4. Preliminary Summary )

• But although these domain descriptions

– should represent quite extensive and detailed models

– they are only indicative.

• Any one software house which specialises in software

– (or, in general IT systems) within one (or more) of these domains
will,

– when doing their requirements engineering tasks

– do so most likely on instantiated, i.e., modified, such domain de-
scriptions.

•We will never be able to describe a domain completely.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 81

(2. What are Domains? 2.4. Preliminary Summary )

2.5. Structure of Lectures

•Motivation for Domain Descriptions

• Abstraction and Modelling

• Six Facets of Domain Descriptions

• Deriving Requirements from Domain Descriptions

• Domain Demos

• Innovation

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-wad c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 2

What are Domains ?

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 3

Motivation for Domain Engineering

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-wad Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

82 Dines Bjørner: Domain & Requirements Engineering

3. Motivation for Domain Descriptions

• There are two basic reasons for creating domain descriptions.

– One is general and is related to the understanding of the world
around and, to some extent, within us;

– the other is in relation to the development of IT systems, notably
software.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 83

(3. Motivation for Domain Descriptions )

3.1. Domain Descriptions of Infrastructure Components

•We use here a term, ‘infrastructure’, that we ought first define.

• according to the World Bank,

– ‘infrastructure’7.

– is an umbrella term for many activities referred to as ‘social
overhead capital’ by some development economists,

– and encompasses activities that share technical and economic
features (such as economies of scale and spill-overs from users
to non-users).8

7Winston Churchill is quoted as having said, in the House of Commons, in 1946: . . . the young Labourite speaker, that we just heard, obviously wishes to impress his

constituency with the fact that he has attended Eton and Oxford when he uses such modern terms as ‘infrastructure’ . . .
8I thank Jan Goossenarts for bringing the text of this paragraph to my attention.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mfdd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

84 Dines Bjørner: Domain & Requirements Engineering

3.Motivation for Domain Descriptions 1.Domain Descriptions of Infrastructure Components 0. 0. 0

•We take a more technical view,

– and see infrastructures as concerned with supporting other systems
or activities.

• A first reason for pursuing the research and experimental engineering
of domain descriptions —

– both informal narratives and formal specifications —

– is to achieve understanding, insight and, eventually, theories of
domains being thus described.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 85

3.Motivation for Domain Descriptions 1.Domain Descriptions of Infrastructure Components 0. 0. 0

• A second reason for domain engineering is

– to create, not necessarily normative models,

– but models which can be instantiated

∗ to fit a current constellation of a number of these institutions

∗ with the aim of studying possible business process re-engineering
proposals,

∗ yes even to generate such proposals,

∗ or with the aim of software development.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mfdd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

86 Dines Bjørner: Domain & Requirements Engineering

3.Motivation for Domain Descriptions 1.Domain Descriptions of Infrastructure Components 0. 0. 0

• A third reason for domain engineering is

– to create (again not necessarily normative) descriptions

– whose narrative parts can be used in company training and in
school education,

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 87

(3. Motivation for Domain Descriptions 3.1. Domain Descriptions of Infrastructure Components )

3.2. Domain Descriptions for Software Development

• The reasons given above are independent of whether one aims at
developing software for a segment of the described domain or not.

• But, a reason for pursuing the research and experimental engineering
of domain descriptions can, nevertheless be

– that one wishes to develop software support for

∗ entities,

∗ operations,

∗ events and

∗ behaviours

and in the

∗ supporting technologies,

∗mgt. and org.,
∗ rules and regulations,

∗ scripts and

∗ human behaviours

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mfdd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

88 Dines Bjørner: Domain & Requirements Engineering

3.Motivation for Domain Descriptions 2.Domain Descriptions for Software Development 0. 0. 0

• So here is the dogma that guides us:

Dogma 1 – The D,S |= R Dogma:

• Before Software can be designed

• we must understand the Requirements,

• and before Requirements can be expressed

• we must understand the Domain.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 89

3.Motivation for Domain Descriptions 2.Domain Descriptions for Software Development 0. 0. 0

• This dogma entails that we decompose software development into
three phases and their attendant stages:

Domain Engineering:

• identification of domain stake-holders,

• domain acquisition,

• rough sketch of business processes,

• domain analysis and concept formation,

• domain ‘terminologisation’,

• the main stages of domain modelling
(intertwined with domain model verification),

• domain validation and

• domain theory formation.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mfdd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

90 Dines Bjørner: Domain & Requirements Engineering

3.Motivation for Domain Descriptions 2.Domain Descriptions for Software Development 0. 0. 0

Requirements Engineering:

• identification of requirements stake-holders,

• requirements acquisition,

• rough sketch of business process re-engineering,

• requirements analysis and concept formation,

• requirements ‘terminologisation’,

• the main stages of requirements modelling
(intertwined with requirements model verification),

• requirements validation,

• requirements feasibility and satisfiability and

• requirements theory formation.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 91

3.Motivation for Domain Descriptions 2.Domain Descriptions for Software Development 0. 0. 0

Software Design: etcetera.

We shall later show how the requirements acquisition stage is basically
a rough sketch version of the the main stages of requirements modelling.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mfdd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

92 Dines Bjørner: Domain & Requirements Engineering

(3. Motivation for Domain Descriptions 3.2. Domain Descriptions for Software Development )

3.3. Discussion

• The dogma as enunciated above is not “dogmatic”.

• Engineers of the classical engineering disciplines are all rather deeply
educated and trained in the domains of their subject: electronic
chip designers are well-versed in plasma physics; aeronautical en-
gineers are well-versed in aerodynamics, and celestial mechanics;
mobile phone antenna designers, whether emitters or receivers, are
well-versed in applying (“massaging” and calculating over) Maxwell’s
equations; et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 93

3.Motivation for Domain Descriptions 3.Discussion 0. 0. 0

• No pharmaceutical company would hire a person into their research
and development of new medical drugs unless that person had a se-
rious, professional education and training in the scientific, i.e., in
the domain disciplines of pharmaceutics. Likewise for structural en-
gineers hired to design suspension or other forms of road and rail
bridges: certainly they must be well-versed in structural engineer-
ing.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mfdd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

94 Dines Bjørner: Domain & Requirements Engineering

3.Motivation for Domain Descriptions 3.Discussion 0. 0. 0

• For a software engineer — to be deployed in the development of soft-
ware for transportation, or for financial service institutions, or for
health care, etc. — to be well-versed in the theories of automata
and formal languages, semantics of programming and specification
languages, operating systems, compilers, database management sys-
tems, etc., is accepted — but what is also needed is an ability to either
read existing or to develop new domain descriptions for the fields of
respectively transportation, financial service institutions, health care,
or similarly.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 3

Motivation for Domain Engineering

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 4

Abstraction & Modelling

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mfdd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 95

4. Abstraction & Modelling

4.1. Abstraction

• Abstraction relates to

– conquering complexity of description through the judicious use of
abstraction,

– where abstraction, briefly, is the act and result of omitting con-
sideration of (what would then be called) details while, instead,
focusing on (what would therefore be called) important aspects.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

96 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction )

4.1.1. From Phenomena to Concepts

• Phenomena are “things” that we can point to.

• They are often referred to as ‘individuals’

– since what is pointed to is a single specimen

– of possibly many “similar” instances of phenomena.

•We can then, when “figuratively pointing to” an individual (a phe-
nomenon),

– either keep “talking about” just that one individual,

– or we can ‘abstract’ to the class of all ‘similar’ phenomena.

•When we do the latter

– then we have abstracted

– from a phenomenon, that is, a specific value,

– to a concept, i.e., to the type of all such values.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 97

(4. Abstraction & Modelling 4.1. Abstraction 4.1.1. From Phenomena to Concepts )

4.1.2. From Narratives to Formalisations

•We describe domains

– both informally, in terms of concise natural language narratives,

– and formally, using one or more formal specification languages.

• The terms of the natural language narrative designate concepts

– nouns typically denoting types and values of simple entities;

– verbs typically denoting operations over entities;

– etcetera.

• These terms are chosen carefully to correspond,

– as far as is reasonable in order to achieve a readable natural lan-
guage text,

– to names of types, values, operations, etc., of the formal specifica-
tion.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

98 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 2.From Narratives to Formalisations 0. 0

• Thus there is, in fact, a “two-way relation”

– between the choice of mathematical abstractions of the formal
specification

– and the terms of the narrative;

– the objective is to bring “an as close as possible” relation between
the narrative and the formalisation.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 99

(4. Abstraction & Modelling 4.1. Abstraction 4.1.2. From Narratives to Formalisations )

4.1.3. Examples of Abstraction

• Example 10 illustrated two forms of abstraction:

– (i) model-oriented abstraction and

– (ii) property-oriented abstraction.

• The model-oriented abstraction of Example 10 is illustrated by the
modelling of nets as pairs of sets of hubs and links, cf. Item 2 on
Slide 62: N = H-set × L-set, as well as by the concrete type syntax
types of link insertion and remove commands and their semantics,
Items 9–24(d) (Slides 67–77).

• The property-oriented abstraction of Example 10 is illustrated by the
sorts and observers relating to hubs and links, cf. Items 1 on Slide 62,
3–8 (Slides 63–65).

• In this section we shall give some small examples of abstractions.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

100 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

Example 11 – Model-oriented Directory:

25. Terminal directory entries are files and files are further undefined.

26. A directory consists of a finite set of uniquely (directory identifier)
distinguished entries.

27. A directory is either a file or is a directory.

type
25. FILE, DId
26. DIR = Did →m Entry
27. Entry = FILE | DIR

• Directories are modelled as maps.

• The specification abstracts from representation of directory identifiers
and files.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 101

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

Example 12 – Networked Social Structures:

• People live in communities.

• People of communities may network with people of distinct other com-
munities.

• And people of such network may network with people of distinct other
networks.

•We formulate this in a narrative and we formalise the narrative.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

102 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

28. People are at the heart of any social structure.

29. A region consists of a finite set of one or more communities and a
finite set of zero, one or more social networks.

30. A community consists of a non-empty, finite set of people.

31. A social network consists of a non-empty, finite set of two or more
people, such that

(a) all people of a network belong to distinct communities of the region,
(i.e., no two people of a net belong to the same community),

(b) and, if they also are members of other networks, then they all belong
to distinct other networks (i.e., no two people of a network belong
to the same other networks),

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 103

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

type
28. P
29. R′ = C-set × N-set, R = {|(cs,ns):R′

•cs6={}|}
30. C′ = P-set, C = {|c:C′

•c6={}|}
31. N′ == mkN(sn:P-set), N = {|mkN(ps):N′

•card ps≥2|}
axiom
∀ (cs,ns):R •

31(a). ∀ n:N • n ∈ ns ⇒
card n = card{c|c:C•c ∈ cs ∧ n ∩ c 6= {}} ∧

31(b). ∃ p:P • p ∈ n ∧
∃ n′:N • n′ ∈ ns ∧ n 6=n′ ∧ p ∈ n′ ⇒
∀ p:P • p ∈ n ⇒
∃ n′′:N • n′′ ∈ ns ∧ n 6=n′′ ∧ p ∈ n′′ ∧
card n′ = card{n′′|n′′:N•n′′ ∈ ns ∧ n′′ ∩ n′ 6= {}}

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

104 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

• Formula line cardn=card{c|c:C•c∈cs∧n∩c 6={}}, the first of the two lines starting
with card, expresses

– that the number of persons in the network

– is the same as the number of the communities to which these persons belong.

• The fact that n∩c 6={} can be proven to be the same as card(n∩c)=1 is left as an
exercise.

• Formula line cardn′=card{n′′|n′′:N•n′′∈ns∧n′′∩ n′6={}}, the second of the two lines
starting with card, expresses

– that the number of persons in the network

– for the case that at least one of the persons in the network is a member of some
other network,

– is the same as the number of the networks to which all other persons of the n
must belong.

• The fact that n′′∩n′6={} can be proven to be the same as card(n′′∩n′)=1 is left as
an exercise.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 105

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

Example 13 – Railway Nets:

•We bring a variant of Example 10.

32. A railway net consists of one or more lines and two or more stations.

type
32. RN, LI, ST

value
32. obs LIs: RN → LI-set
32. obs STs: RN → ST-set

axiom
32. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

106 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

33. A railway net consists of rail units.

type
33. U

value
33. obs Us: RN → U-set

34. A line is a linear sequence of one or more linear rail units.

axiom
34. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 107

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

35. The rail units of a line must be rail units of the railway net of the line.

value
34. obs Us: LI → U-set

axiom
35. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

36. A station is a set of one or more rail units.

value
36. obs Us: ST → U-set

axiom
36. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

108 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

37. The rail units of a station must be rail units of the railway net of the
station.

axiom
37. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ obs Us(s) ⊆ obs Us(n)

38. No two distinct lines and/or stations of a railway net share rail units.

axiom
38. ∀ n:RN,l,l′:LI•{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}
38. ∀ n:RN,l:LI,s:ST•l ∈ obs LIs(n)∧s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)
38. ∀ n:RN,s,s′:ST•{s,s′}⊆obs STs(n)∧s6=s′⇒obs Us(s)∩ obs Us(s′)={}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 109

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

39. A station consists of one or more tracks.

type
39. Tr

value
39. obs Trs: ST → Tr-set

axiom
39. ∀ s:ST•card obs Trs(s)≥1

40. A track is a linear sequence of one or more linear rail units.

axiom
40. ∀ n:RN,s:ST,t:Tr•s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

110 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

41. No two distinct tracks share rail units.

axiom
41. ∀ n:RN,s:ST,t,t′:Tr•s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′⇒obs Us(t)

42. The rail units of a track must be rail units of the station (of that
track).

value
42. obs Us: Tr → U-set

axiom
42. ∀ rn:RN,st:ST,tr:TR •

st ∈ obs STs(rn)∧tr ∈ obs Trs(st)⇒obs Us(tr)⊆obs Us(st)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 111

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

43. A rail unit is either a linear, or is a switch, or a is simple crossover, or
is a switchable crossover, etc., rail unit.

value
43. is Linear: U → Bool
43. is Switch: U → Bool
43. is Simple Crossover: U → Bool
43. is Switchable Crossover: U → Bool

44. A rail unit has one or more connectors.

type
44. K

value
44. obs Ks: U → K-set

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

112 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

45. A linear rail unit has two distinct connectors. A switch (a point)
rail unit has three distinct connectors. Crossover rail units have four
distinct connectors (whether simple or switchable), etc.

axiom
∀ u:U •

is Linear(u) ⇒ card obs Ks(u)=2∧
is Switch(u) ⇒ card obs Ks(u)=3∧
is Simple Crossover(u) ⇒ card obs Ks(u)=4∧
is Switchable Crossover(u) ⇒ card obs Ks(u)=4

46. For every connector there are at most two rail units which have that
connector in common.

axiom
46. ∀ n:RN • ∀ k:K • k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 113

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

47. Every line of a railway net is connected to exactly two distinct stations
of that railway net.

axiom
47. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s6=s′ ⇒
let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in
∃ u,u′,u′′,u′′′:U • u ∈ sus ∧
u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks = obs Ks(u), sks′ = obs Ks(u′),

lks = obs Ks(u′′), lks′ = obs Ks(u′′′) in
∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}

end end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

114 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

48. A linear sequence of (linear) rail units is an acyclic sequence of linear
units such that neighbouring units share connectors.

value
48. lin seq: U-set → Bool

lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗ • len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K • obs Ks(q(i)) ∩ obs Ks(q(i+
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

This ends Example 13

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 115

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

Example 14 – A Telephone Exchange:
We start the informal description by presenting a synopsis and its im-

mediate analysis:

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

116 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

• Synopsis:

– The simple telephone exchange system

– serves to efficiently honour

– requests for conference calls

– amongst any number of subscribers,

– whether immediately connectable,

– whereby they become actual,

– or being queued, i.e., deferred (or pending) for later connection.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 117

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

•Analysis: The concepts of subscribers and calls are central:

– In this example we do not further analyse the concept of subscribers.

– A call is either

∗ an actual call, involving two or more subscribers not involved in
any other actual calls,

∗ or a call is a deferred call, i.e., a requested call that is not actual,
because one or more of the subscribers of the deferred call is
already involved in actual calls.

– We shall presently pursue the concepts of requested, respectively
actual calls, and only indirectly with deferred calls.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

118 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

The structure of the types of interest are first described. We informally
describe first the basis types, then their composition.

• Subscribers: There is a class (S) of further undefined subscribers.

• Connections: There is a class (C) of connections. A connection
involves one subscriber, the ‘caller’, and any number of one or more
other subscribers, the ‘called’.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 119

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

• Exchange: At any time an exchange reflects (i.e., is in a state which records) a
number of requested connections and a number of actual connections

– such that no two actual connections share any subscribers,

– such that all actual connections are also requested connections, and

– such that there are no requested calls that are not actual and share no subscribers
in common with any other actual connection.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

120 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 0

• Requested connections: The set of all requested connections for
a given exchange forms a set of connections.

• Actual connections: The set of all actual connections, for a given
exchange, forms a subset of its requested connections such that no
two actual connections share subscribers.

• In this example we shall also be able to refer to the exchange, later to
be named X, as ‘the state’ (of the telephone exchange system).

We shall later have a great deal more to say about the concept of state.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 121

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.1. • Formalisation of Property-oriented State•

type
S, C, X

value
obs Caller: C→ S
obs Called: C→ S-set
obs Requests: X → C-set
obs Actual: X → C-set

subs: C → S-set
subs(c) ≡ obs Caller(c) ∪ obs Called(c)

subs: C-set→ S-set
subs(cs) ≡ ∪ { subs(c) | c:C • c ∈ cs }

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

122 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 1Formalisation of Property-oriented State

• The overloaded function name subs stands for two different functions.

– One observes (“extracts”) the set of all subscribers said to be en-
gaged in a connection.

– The other likewise observes the set of all subscribers engaged in
any set of connections.

•We shall often find it useful to introduce such auxiliary functions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 123

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 1Formalisation of Property-oriented State

axiom
[ 1 ] ∀ c:C, ∃ s:S •

[ 2 ] s = obs Caller(c)⇒ s 6∈ obs Called(c),

[ 3 ] ∀ x:X •

[ 4 ] let rcs = obs Requests(x),
[ 5 ] acs = obs Actual(x) in
[ 6 ] acs ⊆ rcs ∧
[ 7 ] ∀ c,c′:C • c 6= c′ ∧ {c,c′} ⊆ acs⇒
[ 8 ] obs Caller(c) 6= obs Caller(c′) ∧
[ 9 ] obs Called(c) ∩ obs Called(c′) = {} ∧
[ 10 ] ∼∃ c:C • c ∈ rcs \ acs •

[ 11 ] subs(c) ∩ subs(acs) = {} end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

124 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 1Formalisation of Property-oriented State

• The last two lines above express the efficiency criterion mentioned
earlier.

•We can express a law that holds about the kind of exchanges that
we are describing:

theorem
∀ x:X •

obs Actual(x)={} ≡ obs Requests(x)={}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 125

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 1Formalisation of Property-oriented State

• The law expresses that there cannot be a non-empty set of deferred
calls if there are no actual calls. That is, at least one deferred call
can be established should a situation arise in which a last actual call
is terminated and there is at least one deferred call.

• The law is a theorem that can be proved on the basis of the tele-
phone exchange system axioms and a proof system for sets.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

126 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.2. • Operation Signatures•
The following operations, involving telephone exchanges, can be per-

formed:

•Request: A caller indicates, to the exchange, the set of one or more
other subscribers with which a connection (i.e., a call) is requested.
If the connection can be effected then it is immediately made actual,
else it is deferred and (the connection) will be made actual once all
called subscribers are not engaged in any actual call.

•Caller Hang: A caller, engaged in a requested call, whether actual
or not, can hang up, i.e., terminate, if actual, and then on behalf of
all called subscribers also, or can cancel the requested (but not yet
actual) call.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 127

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 2Operation Signatures

•Called Hang: Any called subscriber engaged in some actual call
can leave that call individually. If that called subscriber is the only
called subscriber (“left in the call”), then the call is terminated, also
on behalf of the caller.

• is Busy: Any subscriber can inquire as to whether any other sub-
scriber is already engaged in an actual call.

• is Called: Any subscriber can inquire as to the identities of all
those (zero, one or more) callers who has requested a call with the
inquiring subscriber.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

128 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 2Operation Signatures

First the signatures:

value
newX: Unit → X
request: S × S-set→ X → X

caller hang: S → X
∼→ X

called hang: S → X
∼→ X

is busy: S → X→ Bool
is called: S → X→ Bool

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 129

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 2Operation Signatures

• The generator function newX is an auxiliary function.

• It is needed only to make the axioms cover all states of the telephone
exchange system.

• In a sense it generates an empty, that is, an initial state.

• Usually such empty state generator functions are “paired” with a
similar test for empty state observer function.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

130 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 2Operation Signatures

Then we get the axioms:

axiom
∀ x:X • obs Requests(x)={} ≡ x=newX(),
∀ x:X,s,s′:S,ss:S-set •

∼is busy(s,newX()) ∧
s6=s′ ⇒

s ∈ ss ⇒ is busy(s)(request(s′,ss)(x)) ∧
s 6∈ ss ⇒ is busy(s)(request(s′,ss)(x)) ≡ is busy(s)(x),
... etcetera ...

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 131

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 2Operation Signatures

•We leave the axiom incomplete.

• Our job was to illustrate the informal and formal parts of a property-
oriented specification,

• not to do it completely.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

132 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.3. • Model-oriented State•

type
S
C = {| ss | ss:S-set • card ss ≥ 2 |}
R = C-set
A = C-set
X = {| (r,a) | (r,a):R×A • a ⊆ r ∧ ⋂

a = {} |}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 133

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.4. • Efficient States•
• There is a notion of telephone exchange system efficiency,

– a constraint that governs its operation,

– hence the state, at any one time.

• The efficiency criterion says that

– all requested calls that can actually be connected

– are indeed connected:

value

eff X: X
∼→ Bool

eff X(r,a) ≡ ∼∃ a′:A • a ⊂ a′ ∧ (r,a′) ∈ X

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

134 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.5. • Formalisation of Action Types•

type
Cmd = Call | Hang | Busy
Call′ == mk Call(p:S,cs:C)
Call = {| c:Call′ • card cs(c) ≥ 1 }
Hang == mk Hang(s:S)
Busy == mk Busy(s:S)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 135

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.6. • Pre/Post and Direct Operation Definitions•

•We shall, for each operation, define its meaning

– both in terms of pre/post conditions

– and in terms of a direct “abstract data type algorithm”.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

136 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.7. • Multi-party Call•

• A multi-party call involves a (primary, s) caller and one or more
(secondary, ss) callees.

• Enacting such a call makes the desired connection a requested con-
nection.

• If none of the callers are already engaged in an actual connection
then the call can be actualised.

• A multi-party call cannot be made by a caller who has already re-
quested other calls.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 137

4.Abstraction & Modelling 1.Abstraction 3.Examples of Abstraction 0. 7Multi-party Call

value

int Call: Call
∼→ X

∼→ X
int Call(mk Call(p,cs))(r,) as (r′,a′)
pre p 6∈ ⋃

r
post r′ = r ∪ {{p} ∪ cs} ∧ eff X(r′,a′)

int Call(mk Call(p,cs))(r,a) ≡
let r′ = r ∪ {{p} ∪ cs},

a′ = a ∪ if ({{p} ∪ cs} ∩ ⋃
a) = {}

then {{p} ∪ cs} else {} end in
(r′,a′) end
pre p 6∈ ⋃

r

The above pre/post-definition (of int Call) illustrates the power of
this style of definition. No algorithm is specified, instead all the work
is expressed by appealing to the invariant!
August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

138 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.8. • Call Termination•
It takes one person, one subscriber, to terminate a call.

value

int Hang: Hang → X
∼→ X

int Hang(mk Hang(p))(r,a) as (r′,a′)
pre existS c:C • c ∈ a ∧ p ∈ a
post r′ = r \ {c|c:C • c ∈ r ∧ p ∈ c} ∧ eff X(r′,a′)

int Hang(mk Hang(p))(r,a) ≡
let r′ = r \ { c | c:C • c ∈ a ∧ p ∈ c },

a′ = a \ { c | c:C • c ∈ r ∧ p ∈ c } in
let a′′ = a′ ∪ { c | c:C • c ∈ r′ ∧ c

⋂
a′ = {} } in

(r′,a′′) end end
pre existS c:C • c ∈ a ∧ p ∈ a

The two ways of defining the above int Hang function again demonstrate the strong
abstractional feature of defining by means of pre/post-conditions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 139

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.3.0.9. • Subscriber Busy•
A line (that is, a subscriber) is only ‘busy’ if it (the person) is engaged in an actual
call.

value

int Busy: S → X
∼→ Bool

int Busy(mk Busy(p))( ,a) as b
pre true
post if b then p ∈ ⋃

a else p 6∈ ⋃
a end

int Busy(mk Busy(p))( ,a) ≡ p ∈ ⋃
a

Here, perhaps not so surprisingly, we find that the explicit function definition is the
most straightforward. This ends Example 14

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

140 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction 4.1.3. Examples of Abstraction )

4.1.4. Mathematics and Formal Specification Languages

• Using mathematical concepts has shown to be the most powerful way
of expressing abstractions.

• The discrete mathematical concepts of

– sets,

– Cartesians,

– sequences,

– maps and
– functions,

• as well as

– mathematical logic and – algebras

• has served mathematicians well for quite some time

• and will serve professional software engineers well.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 141

4.Abstraction & Modelling 1.Abstraction 4.Mathematics and Formal Specification Languages 0. 0

• Formal specification languages, like

– Alloy,

– Event B,

– RSL,

– VDM,

– Z

– and others,

• embody the above-mentioned mathematical concepts in quite read-
able forms.

• The current book favours the RAISE specification language RSL.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

142 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.1. Abstraction 4.1.4. Mathematics and Formal Specification Languages )

4.2. Modelling

Definition 7 Model:

• A model is the mathematical meaning of

– a description of a domain,

– or a prescription of requirements,

– or a specification of software,

i.e.,

– is the meaning of a specification

– of some universe of discourse

.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 143

4.Abstraction & Modelling 2.Modelling 0. 0. 0

Definition 8 Modelling: Modelling

• is the act (or process) of identifying appropriate phenomena and
concepts

• and of choosing appropriate abstractions

• in order to construct a model (or a set of models)

.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

144 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.2. Modelling )

4.2.1. Property-oriented Modelling

Definition 9 Property-oriented Modelling: By property-oriented
modelling we shall understand a modelling

• which emphasises the properties of what is being modelled,

• through suitable use of abstract types, that is, sorts,

• of postulated observer ( obs ), generator (mk ) and type check-
ing ( is ) functions,

• and axioms over these

.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 145

(4. Abstraction & Modelling 4.2. Modelling 4.2.1. Property-oriented Modelling )

4.2.2. Model-oriented Modelling

Definition 10 Model-oriented Modelling: By abstract, but
model-oriented modelling we shall understand a modelling

• which expresses the properties of what is being modelled,

• through suitable use of mathematical concepts such as

• sets, Cartesians, sequences, maps (finite domain, enumerable
functions), and functions (in the sense of λ-Calculus functions)

.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

146 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.2. Modelling 4.2.2. Model-oriented Modelling )

4.3. Model Attributes

• Specifications achieve their intended purpose by emphasising one or
more attributes.

– Either:

∗ (i.1) analogic,

∗ (i.2) analytic and/or

∗ (i.3) iconic;

– and then either:

∗ (ii.1) descriptive or

∗ (ii.2) prescriptive;

– and finally either:

∗ (iii.1) extensional or

∗ (iii.2) intensional.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 147

4.Abstraction & Modelling 3.Model Attributes 0. 0. 0

• That is, a model may, at the same time (although time has nothing
to do with this aspect of models), be one or more of

– analogic, analytic and iconic;

– expressed either only descriptive, or mostly descriptive (with some
prescriptive aspects), or only prescriptive, or mostly prescriptive
(etc.); and

– expressed either only extensional, or mostly extensional (with some
aspects), or only intensional, or mostly intensional (etc.).

•We may claim that a good model blends the above consciously and
judiciously — including featuring exactly (or primarily) one attribute
from each of the three categorisations.

•We next take a look at these model attributes.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

148 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.3. Model Attributes )

4.3.1. Analogic, Analytics and Iconic Models

Definition 11 Analogic Model:

• An analogic model resembles some other universe than the uni-
verse of discourse purported to be modelled

.

Definition 12 Analytic Model:

• An analytic model is a mathematical specification: It allows anal-
ysis of the universe of discourse being modelled

.

Definition 13 Iconic Model:

• An iconic model is an “image” of the universe of discourse that
is the target of our attention

.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 149

4.Abstraction & Modelling 3.Model Attributes 1.Analogic, Analytics and Iconic Models 0. 0

Example 15 – Analogic, Analytic and Iconic Models: We
lump three kinds of examples into one larger example:

• Analogic models:

– (1) The symbol, on the visual display screen of your computer, of
a trash can.

– (2) A four-pole, electric circuit network of resistors, inductances,
capacitors and current or voltage supplies can be used to analogically
model some aspects of the behaviour of certain mechanical vibration
and/or spring dampening aggregations.

– (3) A tomographic image of, say the brain, with its colour-enhanced
“blots” is an analogic model of a cross section of that brain!

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

150 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 3.Model Attributes 1.Analogic, Analytics and Iconic Models 0. 0

• Analytic models:

– (4) The differential equations whose variables model spatial x, y, z
coordinates and the temporal t dimension, and whose constant,
m, model the mass of a stone, may be an analytic model of the
dynamics of the throwing of such a stone in a vacuum.

– (5) A description, in RSL, involving quantities that purport to model
bank accounts, their balance, time, etc., may be an analytic model
of a banking system — in the real world — provided the model
reflects at least “some of the things that can go wrong” in actual
life.

– (6) A graph with labelled nodes and weighted arcs may be used as
a model of a road net with cities and distances between these, and
can be used for the computation of shortest distances, etc.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 151

4.Abstraction & Modelling 3.Model Attributes 1.Analogic, Analytics and Iconic Models 0. 0

• Iconic models: Typical iconic models are certain advisory or judicially
binding traffic signs:

– (7) The roadside sign showing an Elk;

– (8) the roadside sign showing an automobile (from behind) "underlined"
with two crossing S curves; and

– (9) the roadside sign showing a crossed-out horn.

Observe that a model may possess characteristics of more than one of
the above attributes.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

152 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.3. Model Attributes 4.3.1. Analogic, Analytics and Iconic Models )

4.3.2. Descriptive and Prescriptive Models

Definition 14 Descriptive Model:

• A descriptive model describes something already existing

.

Definition 15 Prescriptive Model:

• A prescriptive model models something as yet to be implemented

.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 153

4.Abstraction & Modelling 3.Model Attributes 2.Descriptive and Prescriptive Models 0. 0

• Thus domain specifications are descriptive,

• while requirements specifications are prescriptive.

• A requirements specification prescribes properties that the intended
software (cum computing system) shall satisfy.

• A software specification prescribes certain kinds of computations.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

154 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 3.Model Attributes 2.Descriptive and Prescriptive Models 0. 0

•We remind the reader that we use the terms model and specification
near synonymously.

– A specification defines a set of zero, one or more, possibly even an
infinity, of models.

– But we use the term the model in connection with a given speci-
fication to stand for the general member of the set of models.

• Hence when we use the term model below, please read specification.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 155

4.Abstraction & Modelling 3.Model Attributes 2.Descriptive and Prescriptive Models 0. 0

Example 16 – Descriptive and Prescriptive Models:

• A descriptive model:

– A railway net consists of two or more distinct stations

– and one or more distinct railway lines.

– A railway line consists of a linear sequence of one or more linear rail
units.

– Any railway line connects exactly two distinct stations.

– A route is a sequence of one or more, and if more, then connected
railway lines.

– Two railway lines are connected if they have the connecting station
in common.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

156 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 3.Model Attributes 2.Descriptive and Prescriptive Models 0. 0

• A prescriptive model:

– The train timetable shall, for each train journey, list all station visits.

– A train timetable station visit shall list

∗ the name of the station visited,

∗ the time of arrival of the train,

∗ the time of departure of the train.

– No train timetable train journey entry lists the same station twice.

– Times of train departures and train arrivals shall be compatible

∗ with reasonable stops at stations

∗ and with the distance between stations visited.

– Two immediately time-consecutive train timetable station visits must
be compatible with the railway net: It shall be possible to route a
train between such consecutive stations.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 157

4.Abstraction & Modelling 3.Model Attributes 2.Descriptive and Prescriptive Models 0. 0

• Notice in the descriptive model the unhedged use of the verbs con-
sists, connects, is and are.

• A description is indicative: It tells what there is.

• Likewise notice in the prescriptive model the use of the (compelling)
verbs shall and must.

• A prescription is putative: It tells what there will be.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

158 Dines Bjørner: Domain & Requirements Engineering

(4. Abstraction & Modelling 4.3. Model Attributes 4.3.2. Descriptive and Prescriptive Models )

4.3.3. Extensional and Intensional Models

Definition 16 Extensional Model:

• An extensional model (black, opaque box) presentation models
something as if observed by someone external to the universe of
discourse

.

Definition 17 Intensional Model:

• An intensional model in logic, correlative words that indicate the
reference of a term or concept. Intension indicates the internal
content of a term or concept that constitutes its formal defini-
tion.

.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 159

4.Abstraction & Modelling 3.Model Attributes 3.Extensional and Intensional Models 0. 0

• Intensional versus extensional meaning: (i) intensional meaning:
consists of the qualities or attributes the term connotes (the at-
tributes of class membership); (ii) extensional meaning: consists of
the qualities or attributes the term denotes (the class members them-
selves).

• Connotation: the suggesting of a meaning by a word apart from the
thing it explicitly names or describes.

•Denotation: a direct specific meaning as distinct from an implied
or associated idea. (glass (or white), transparent box) presentation
models the internal structure of the universe of discourse

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

160 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 3.Model Attributes 3.Extensional and Intensional Models 0. 0

• An extensional model presents, i.e., reflects, the behaviour as seen
from an outside.

• In that sense one may claim, but the claim cannot be justified from
extensionality alone, that an extensional model focuses on properties,
on what the thing that is being modelled offers an outside world, i.e.,
users of that thing.

• If a model is expressed in a property-oriented style, then we can claim
the converse: that the model is extensional!

• An intensional model presents the internal mechanisms of what is
being modelled in a way that may explain why it has the extension
that it might have.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 161

4.Abstraction & Modelling 3.Model Attributes 3.Extensional and Intensional Models 0. 0

Example 17 – Extensional Model Presentations:

• (1) To explain the square root function,
√

n = r, by explaining that
r × r = n ∧ r ≥ 0 is to give an extensional definition, hence model.

• (2) To explain a stack extensionally we may define (a) the stack sorts
for elements and stacks, (b) the signatures of the empty, pop, top and
push functions, and (c) the axioms which relate sorts and operations.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

162 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 3.Model Attributes 3.Extensional and Intensional Models 0. 0

Example 18 – Intensional Model Presentations:

• (1) To explain the square root function,
√

n, by presenting, e.g., the
Newton–Raphson algorithm, is to give an intensional definition, hence
model.

• (2) An intensional model of stacks may model stacks as lists of (ex-
tensionally modelled) elements, and define the (i) empty, (ii) pop, (iii)
top, and (iv) push functions in terms of (i) constructing the empty
list, of (ii) yielding the tail of a list, of (iii) yielding the head element
of a list, and (iv) of concatenating a supplied element to the front of
the list.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 163

(4. Abstraction & Modelling 4.3. Model Attributes 4.3.3. Extensional and Intensional Models )

4.4. Rôles of Models

We pursue modelling for one or more reasons:

• (i) To gain understanding: in the process of modelling we are forced
to come to grips with many issues of the universe of discourse.

• (ii) To get inspiration and to inspire: abstraction often invites such
generalisations that induce, in the writer, or in the reader, desires of
change.

• (iii) To present, educate and train: a model can serve as the basis
for presentations to others for the purposes of awareness, education
or training.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aam c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

164 Dines Bjørner: Domain & Requirements Engineering

4.Abstraction & Modelling 4.Rôles of Models 0. 0. 0

• (iv) To assert and predict: a mathematical, including a formal
model, usually allows abstract interpretation — in the “vernacular”:
calculations, computations — that simulates, estimates or otherwise
expresses potential properties of the universe of discourse.

• (v) To implement: two kinds of implementations can be suggested:

– in business process re-engineering we propose the re-engineeringof
some domain on the basis of a model and

– in computing systems design we base the development of require-
ments on a domain specification and

– we base software design on requirements.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 4

Abstraction & Modelling

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 5

Semiotics

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aam Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 165

5. Semiotics

5.1. An Overview

Definition 18 – Semiotics: Semiotics is the study of and knowl-
edge about the structure of all ‘sign systems’.

•We divide this study (and our knowledge) into three parts:

– syntax,

– semantics and

– pragmatics.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

166 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 1.An Overview 0. 0. 0

Definition 19 – Syntax: Syntax is the study of and knowledge
about how signs (words) can be put together to form correct sen-
tences and of how sentence-signs relate to one another.

•We shall understand signs (words) and sentences in a wide sense.

– Programs in a programing languages and specifications in a formal
specification language

∗ will here be considered to be sentences.

∗ and

· variable and function identifiers (a, ab, id, fct, etc.);

· constants (0, 1, 2, . . . , true, false, chaos, etc.);

· expressions and statements;

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 167

5.Semiotics 1.An Overview 0. 0. 0

· statement and expression symbols (such as

· value operators (+,−, /, ∗,×, 7→, etc.), and

· dom, rng, elems, len, card) etc.;

· type operators (Boolean, integer,

real, char, string, etc.,

· and -set, -infset, ∗, ω, →,
∼→, →m , ×);

· parentheses ((, ), {, }, [, ] etc.);

· comma (,);

· semicolon (;);

· assignment symbols (:=, =, ←);

· definition symbols (≡, ::=)

etc.)

∗ and literals (such as

· begin, end, let, in, cases, of, while, do, type, value,
axiom,

etc.)

will here be considered words.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

168 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 1.An Overview 0. 0. 0

– But also

∗ diagrams, say technical drawings and

∗ actual layout of, for example, buildings and railway tracks,

will be considered sentences, and

∗ the boxes and lines of diagrams,

∗ and the various visual (proper) sub-components of actual phys-
ical phenomena

will be considered words.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 169

5.Semiotics 1.An Overview 0. 0. 0

• That is, we consider phenomena such as

– geographical and geodetic maps;

– buildings, and their “accompanying” architectural and engineering
drawings;

– railway tracks (lines and stations) and their “accompanying” en-
gineering drawings;

– cities and city plans;

– etc.,

as languages.

• GIS and CAD/CAM systems

– thus translate descriptions of such phenomena into database struc-
tures

– and GIS and CAD/CAM system user commands are compiled and
executed as language programs in the context of these databases.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

170 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 1.An Overview 0. 0. 0

•We define syntaxes in terms of either BNF grammars or RSL types.

•We distinguish between syntactic types and semantic types.

• The syntactic types designate sentences and words.

• The semantic types designate meanings (of sentences and words).

Definition 20 – Semantics: Semantics is the study of and knowl-
edge about the meaning of words, sentences, and structures of sen-
tences.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 171

5.Semiotics 1.An Overview 0. 0. 0

• Let

type

SynType, SemType

• designate syntactic, respectively semantic types.

• Then

value

M: SynType → SemType

• presents the signature of a semantic function M.

– It assumes all syntactic inputs to be well-formed.

– If the syntax of SynType is such as to allow ill-formed sentences, then we must define a well-

formedness function:

value

Wf SynType: SynType→ Bool

• and the signature of M must be sharpened:

value

M: SynType
∼→ SemType

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

172 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 1.An Overview 0. 0. 0

Definition 21 – Pragmatics: Pragmatics is the study of and
knowledge about the use of words, sentences and structures of sen-
tences, and of how contexts affect the meanings of words, sentences,
etc.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 173

(5. Semiotics 5.1. An Overview )

5.2. Syntax

•We recall our definition:

– syntax is the study of and knowledge about how signs (words) can
be put together to form correct sentences

– and of how sentence-signs relate to one another.

•We shall divide our presentation of syntax into three parts:

– (i) BNF grammars,

– (ii) concrete type syntax and

– (iii) abstract type syntax.

• These three are just three increasingly more abstract ways of dealing
with syntax.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

174 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 0. 0. 0

– The subject of syntax goes well beyond our software engineering
treatment.

– The computer science topic of formal languages and automata
theory studies far wider consequences of grammars and syntax
than we cover.

– The computing science topic of regular expression recognizers
and context free language parsers likewise goes well beyond our
coverage — and their study is important for the software engineer
to implement efficient software for language handling.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 175

5.Semiotics 2.Syntax 0. 0. 0

– BNF grammars define sets of strings of characters;

– concrete type syntaxes define sets of mathematical structures (num-
bers, Booleans, sets, Cartesians, maps and functions over concrete
type values); and

– abstract type syntaxes define properties of simple phenomena and
concept entities.

•We say that BNF grammars and concrete type syntaxes define simple
phenomena and concept entities in a model-oriented fashion

• whereas abstract type syntaxes define simple phenomena and concept
entities in a property-oriented fashion.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

176 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.2. Syntax )

5.2.1. BNF Grammars

• BNF stands for Backus Naur Form.

• BNF grammars, as we shall see, stand for sets of finite length strings
of characters, including blanks and punctuation marks.

Definition 22 – Character: A character is a symbol that can be
displayed (on paper, on a computer screen, or otherwise).

Example 19 – Characters: Our example is the conventional exam-
ple of characters from an English/American computer keyboard:

• a, A,

• b, B,

• c, C,

• ...,

• z, Z,

• 0, 1,

• 2, 3,

• 4, 5,

• 6, 7,

• 8, 9,

• !, @,

• #, $,

• %, &,

• *, ˜,

• (, ),

• {, },

• [, ],

• -, +,

• ’, ”,

• <, >,

• ., ,,

• :, ;,

• ?, /,

• |, [blank],

• etc.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 177

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Definition 23 – Alphabet: An alphabet is a finite set of characters.

Example 20 – Alphabet: Three examples, Ai,Aj,Ak, of subsets of the above
characters:

• Ai : {a,b,[blank],O,|}
• Aj : {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,[blank]}
• Ak : {0,1,2,3,4,5,6,7,8,9,[blank],a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

178 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Definition 24 – Terminal: By a terminal we understand a se-
quence of one or more characters of some given alphabet.

Example 21 – Terminals:

• a, b, c, 0, 1;

• a, aa, aaa, abc, 0, 1, 00, 01, 001;

• open, deposit, withdraw, close, account, client, number.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 179

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Definition 25 – Non-terminal: By a non-terminal we under-
stand a specially highlighted sequence of one or more characters,
not necessarily from the alphabet of a given set of terminals.

Example 22 – Non-terminals:

•<| Command>|,
•<| Open>|, <| Deposit>|, <| Withdraw>|, <| Close>|
•<| ClientName>|, <| AccountNumber>|,
•<| Cash>|, <| Amount>|

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

180 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Definition 26 – BNF Rules: By a BNF rule we understand a triple:

• (L, ::=, As)

• where L is a non-terminal

• and As is a finite set of zero, one or more alternatives

– where an alternative is a finite sequence of zero, one or more non-terminals
and/or terminals.

• ::= is the definition symbol.

Example 23 – BNF Rules:

• <| Command>| ::= <| Open>| | <| Close>|
• <| Open>| ::= client <| ClientName>| opens account

• <| Withdraw>| ::= client <| ClientName>| withdraws <| Amount>|
from account <| AccountNumber>|

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 181

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Definition 27 – BNF Grammar: By a BNF grammar we under-
stand a quadruple

(N , T ,R,G)

• N is an alphabet of non-terminals,

• T is an alphabet of terminals,

• R is a set of rules,

• G is a non-terminal,

such that

• G is in N ;

• all the left hand sides of rules in R are in N ;

• all the non-terminals of right hand sides of rules in R are dis-
tinct and together form N ; and

• all the terminals of right hand sides of rules in R are in T .

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

182 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Example 24 – BNF Grammar: Banks: The ... (Identifiers,Alphanumerics,Numerals) are not part

of the syntax.

N : {<| Command>|, <| Open>|, <| Deposit>|, <| Withdraw>|, <| Close>|, <| ClientName>|,
<| AccountNumber>|, <| Amount>|}

T : {client,opens account,deposits,into account,withdraws,from account,closes account} . . .

... ∪ Identifiers ∪ Alphanumerics ∪ Numerals

R : <| Command>| ::= <| Open>| | <| Deposit>| | <| Withdraw>| | <| Close>|
<| Open>| ::= client <| ClientName>| opens account

<| Deposit>| ::= client <| ClientName>| deposits <| Amount>| into account <| AccountNumber>|
<| Withdraw>| ::= client <| ClientName>| withdraws <| Amount>| from account <| AccountNumber>|
<| Close>| ::= client <| ClientName>| closes account <| AccountNumber>|
<| ClientName>| ::= ... Identifiers

<| AccountNumber>| ::= ... Alphanumerics

<| Amount>| ::= ... Numerals

G : <| Command>|

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 183

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

• The “... ∪ Identifiers ∪ Alphanumerics ∪ Numerals” which is not
part of the syntax, ought be fully defined by a somewhat longer BNF
grammar.

• The example showed one form of BNF grammars.

• In the below definition of the meaning of BNF grammars we abstract
from the above forms of rules for BNF grammars.

• Examples 26 on Slide 191 and 28 on Slide 209 follow up on this
example of a BNF grammar by presenting

– a concrete type syntax, respectively

– an abstract type syntax

for “supposedly” the same command language.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

184 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Definition 28 – Meaning of a BNF Grammar: The meaning of a BNF
grammar is a language, that is, a possibly infinite set of finite length strings over
the terminal alphabet of the BNF grammar. To properly define this language,
for any BNF grammar we shall proceed, formally, as follows:

• Let N and T denote the alphabets of non-terminals and terminals.

• Let r : (n, {ℓ1, ℓ2, . . . , ℓm}) designate a rule, r, that is: n : N and ℓi : (N |T )∗,
for m ≥ 0, 1 ≤ i ≤ m where (N |T )∗ denotes the possibly infinite set of finite
length strings over non-terminal and terminal characters.

• Let G : (N,T, R, n0) where G names the grammar, N the alphabet of non-
terminals, T the alphabet of terminals, R the finite set of rules (over N and
T ), and n0 a distinguished non-terminal of N .

• G is constrained as follows:

– no two distinct rules, (n, ls) and (n′, ls′) in G have n = n′,

– that is: all left hand side non-terminals are distinct and together they form
N , and

– there is a rule r : (n, {ℓ1, ℓ2, . . . , ℓm}) in R such that n = n0.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 185

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

• Let sîsj denote the concatenation of strings si and sj.

• Let ŝÛs′ be a string over (N |T )∗.
• Let (U, {ℓ1, ℓ2, . . . , ℓi, . . . , ℓm}) be a rule in R.

• Then ŝÛs′ →G ŝℓîs′ means: from ŝÛs′, by means of
rule (U, {ℓ1, ℓ2, . . . , ℓm}) of G, we derive, →G, ŝℓîs′.
• If, in some rule (U, {ℓ1, ℓ2, . . . , ℓi, . . . , ℓm}),m = 0, that is, the

rule is (U, {}), then ŝÛs′ →G ŝs′.
• If sp →G sq, sq →G sr, ..., and sv →G sw, then sp →G

∗ sw

(and thus sp →G
∗ sr, sp →G

∗ sw, etc. — assuming sp →G
∗ sv).

• The meaning of →G is specific to the given Grammar.

• Now the meaning, L(G) is defined as follows:

LG = {s | n0 →G
∗ s ∧ s ∈ T ∗}

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

186 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

• Some BNF grammars are such that LG is empty:

– no derivation,→G, and hence →G
∗,

– results in terminal strings.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 187

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Example 25 – Meaning of a BNF Grammar: First we show a form
of BNF grammar which is more in line with the above definition.

N = {E, C, V, P, I, B},
T = {0, 1, 2, 3, 4, 5, . . . , a, b, c, . . . , z, +,−, ∗, /,

R =

0 { E = C | V | P | I | B,

1 C = 0 | 1 | 2 | 3 | 4 | 5 . . .,

2 V = a | b | c | . . . | z,

3 P = −E,

4 I = E O E,

5 O = + | − | ∗ | /,

6 B = ( E ) }
n0 = E

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

188 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

Then we show a derivation of the expression 5 + (a/3) +−c from E:

E → 0

I → 4

E O E → 0

C O E → 1

5 O E → 5

5 + E → 0

5 + I → 4

5 + E O E → 6

5 + B O E → 4

5 + ( E ) O E → 0

5 + ( I ) O E → 4

5 + ( E O E ) O E → 0

5 + ( V O E ) O E → 2

5 + ( a O E ) O E → 5

5 + ( a / E ) O E → 0

5 + ( a / C ) O E → 1

5 + ( a / 3 ) O E → 5

5 + ( a / 3 ) + E → 0

5 + ( a / 3 ) + P → 3

5 + ( a / 3 ) + −E → 0

5 + ( a / 3 ) + − V → 2

5 + ( a / 3 ) + − c

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 189

5.Semiotics 2.Syntax 1.BNF Grammars 0. 0

• Please disregard that we have, in the above derivation, always replaced
the leftmost non-terminal. That is of no consequence.

• The fact that the BNF grammar is ambiguous,

– that is, allows entirely distinct derivation sequences to

– lead to the same final string

– also should be disregarded.

• It is, at most, perhaps, an unfortunate choice of grammar !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

190 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.2. Syntax 5.2.1. BNF Grammars )

5.2.2. Concrete Type Syntax

Definition 29 – Concrete Type Syntax:

• By a concrete type syntax we shall understand

• the definition of a set of mathematical structures

• such as sets, Cartesians, lists, maps and functions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 191

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

Example 26 – A Concrete Type Syntax: Banks:

49. There are clients, c:C, account numbers a:A and money, m:M.

50. A bank record client accounts and account balances.

51. Client accounts map client names to a finite number of zero, one or more account
numbers.

52. Account balances map account numbers into money balances.

53. All client accounts are recorded by the account balances, and the account balances
record only accounts listed by one or more clients.

type
49. C, A, Money
50. Bank = Clients × Accounts
51. Clients = C →m A-set
52. Accounts = A →m Money
axiom
53. ∀ (cs,acs):Bank • ∪ rng cs = dom acs

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

192 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

• The two sentences of Item 53

– (53.1) All client accounts are recorded by the account balances, and

– (53.2) the account balances record all accounts listed by clients.

• correspond to:

axiom
53. ∀ (cs,acs):Bank •

53.1 ∪ rng cs ⊆ dom acs
53.2 dom acs ⊆ ∪ rng cs

• Hence formula line 53.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 193

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

•We then give a concrete type syntax for a bank/client comand lan-
guage first hinted at in Example 24 on Slide 182.

54. To the syntactic types we include client identifications, account num-
bers, money (i.e., cash) and amounts of such.

55. There are open, deposit, withdraw and close commands.

56. Open commands identify the client.

57. Deposit commands identify the client, the account number and the
monies to be deposited.

58. Withdraw commands identify the client, the account number and the
amount of monies to be withdrawn.

59. Close commands identify the client and the account to be closed.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

194 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

54. C, A, Money, Amount
55. Command = Open | Deposit | Withdraw | Close
56. Open == mkO(c:C)
57. Deposit == mkD(c:C,a:A,m:Money)
58. Withdraw == mkW(c:C,a:A,amount:Amount)
59. Close == mkC(c:C,a:A)

• This example will be followed up by Examples 28 on Slide 209 and 29
on Slide 213.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 195

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

Definition 30 – Meaning of Concrete Type Syntax:

•We explain both the syntactic RSL type definitions,

• expressions and

• their meaning. First the syntax.

60. There are two kinds of type definitions:

(a) simple type definitions which have a left hand side type name and
a right hand side type expression (separated by an equal sign: ‘=’),

(b) record type definitions which have a left hand side type name and
a right hand side pair of a record constructor name and a paren-
thesized list of pairs of distinct selector and not necessarily distinct
type names (where the left and the right is separated by a double
equal sign: ‘==’).

61. Type, record constructor and selector names are identifiers.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

196 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

62. A type expression is either

(a) a Boolean (Bool) or

(b) an integer number (Intg) or

(c) a natural number (Nat) or

(d) a real number (Real) type name, or is

(e) a set (A-set) or

(f) a Cartesian (A×B×. . .×C) or

(g) a list (A∗) or

(h) a map (A→m B) or

(i) a partial (A
∼→B) or

(j) a total function (A→B) type expression, or is

(k) a set of (alternative, |) type expressions.

• The below only shows how such type definitions and expressions may
look like when we (otherwise) write them.

• That is, the below type definitions and expressions are not type
definitions and proper type expressions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 197

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

Type Definition Examples:

60(a). TN = TE

60(b). TN == RN(s1:TN1,s2:TN2,...,sn:TNm)

Type Expression Examples:

62. TE =

62(a). Bool

62(b). Int

62(c). Nat

62(d). Real

62(e). TE-set

62(f). TE1×TE2×...×TEm

62(g). TE∗

62(h). TEi →m TEj

62(i). TEi
∼→ TEj

62(j). TEi→ TEj

62(k). TE1 | TE2 | ... | TEm

where: m≥2

• In an concrete type syntax of two or more type definitions

– all left hand side type names are distinct,

– all type names occurring in right hand side record constructor
and type expressions are defined by an abstract or concrete type
syntax, and

– no set (62(e).) or function (62(h).,62(i).) type is defined recur-
sively.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

198 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

• Now to the meaning of a concrete type syntax.

• The meaning of a type name is the meaning of the right hand side

– type expression TE

– or record constructor expression RN(s1:TN1,s2:TN2,...,sn:TNm).

•We shall use a concept of the meanings being “sets” of values.

– The practicing software engineer may consider these “sets” just as
normal set.

– But, for reasons not explained here, but based in a proper defini-
tion of a mathematical semantics for RSL, they are not sets in the
usual sense of mathematics.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 199

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

• The meaning of a type expression depends on its form:

– Bool: the “set” {false,true,chaos};
– Intg: the “set” of all integers: {. . . ,-3,-2,-1,0,1,2,3,. . .};
– Nat: the “set” of all natural numbers {0,1,2,3,. . . };
– Real: the “set” of all real number {m/n | m,n :Nat, n 6= 0};
– TE-set: the “set” of all finite sets of zero, one or more elements,

ei, of TE: {. . . {ei, ej, . . . , ek}. . . };
– TE1×TE2×...×TEm: the “set” of all Cartesians { . . . , (eTE1i

,
eTE2i

, . . . , eTEmn
), . . . };

– TE∗: the “set” of all finite length sequences (or lists) of zero, one
or more elements, ei, of TE: {. . . ,〈ei, ej, . . . , ek〉,. . . };

– TEi→m TEj: the “set” of all finite maps (that is, finite definition
set discrete functions) from elements, eik, of TEi to elements, ejℓ,
of TEj: {. . . ,[. . . ,eik 7→ejℓ,. . . ]. . . };

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

200 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

– TEi
∼→TEj: the “set” of all partial functions from some, but not all

elements, eik, of TEi, to elements, ejℓ, of TEj: λei : TEi • ETEj;
9

– TEi→TEj: the “set” of all total functions from elements eik, of
type TEi, to elements, ejℓ, of TEj: λei • Ej; and

– TE1|TE2|...|TEm: the “set” which is a “union” of the “sets” de-
noted by the TEi for i=1,2,. . . ,m.

• The meaning of a record constructor type definition, Tn == RN(s1:TN1,
s2:TN2, ..., sn:TNm), is the “set” of all records, { . . . , RN(te1,te2,. . . ,tem),
. . . }, where tei is any value of type TEi for all i.

9The expression λe : Ti • ETj
denotes the function which when applied to elements v, of type Ti, yields a value (of type Tj) of expression ETj

where all free occurrences of
e are replaced by v.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 201

5.Semiotics 2.Syntax 2.Concrete Type Syntax 0. 0

•Where the meaning of a BNF grammar is a possibly infinite set of
strings over a terminal alphabet,

• the meaning of a concrete type syntax is a possibly infinite “set” of
mathematical values:

– Booleans, numbers, sets, Cartesians, lists, maps, partial and total
functions,

– where the elements of sets, Cartesians, lists and maps,

– and where the function argument and results values are any of the
values of any of these mathematical values.

• The RSL type constructs also allow infinite sets, TE-infset, and in-
finite length lists, TEω.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

202 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.2. Syntax 5.2.2. Concrete Type Syntax )

5.2.3. Abstract Type Syntax

Definition 31 – Abstract Type Syntax Definition: By an ab-
stract type syntax definition we mean

• a set of one or more sorts, that is, type names,

• a set of one or more observer, of zero, one or more selector and
zero, and one or more constructor (‘make’) function signatures
(function names and argument and result types over these sorts)
and

• a set of axioms which which range over the sorts and defines the
observer, selector and constructor (‘make’) functions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 203

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

Definition 32 – Abstract Type Syntax: By an abstract type
syntax we mean

• a set of sort values of named type

• with observer, selector and constructor (‘make’) functions

• where the sort values and the functions satisfy the axioms.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

204 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

Example 27 – An Abstract Type Syntax: Arithmetic Expressions:

• First we treat the notion of analytic grammar,

• then that of synthetic grammar.

⊕ Analytic Grammars: Observers and Selectors ⊕

• For a “small” language of arithmetic expressions

• we focus just on constants, variables, and infix sum and product
terms:

type
A, Term

value
is term: A → Bool
is const: Term → Bool
is var: Term → Bool

is sum: Term→ Bool
is prod: Term→ Bool
s addend: Term→ Term
s augend: Term → Term
s mplier: Term → Term
s mpcand: Term → Term

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 205

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

axiom
∀ t:Term •

(is const(t) ∧ ∼ (is var(t) ∨ is sum(t) ∨ is prod(t))) ∧
(is var(t) ∧ ∼ (is const(t) ∨ is sum(t) ∨ is prod(t))) ∧
(is sum(t) ∧ ∼ (is const(t) ∨ is var(t) ∨ is prod(t))) ∧
(is prod(t) ∧ ∼ (isc const(t) ∨ isv ar(t) ∨ is sum(t))),
∀ t:A • is term(t) ≡

(is var(t) ∨ is const(t) ∨ is sum(t) ∨ is prod(t)) ∧
(is sum(t) ≡ is term(s addend(t)) ∧ is term(s augend(t))) ∧
(is prod(t) ≡ is term(s mplier(t)) ∧ is term(s mpcand(t)))

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

206 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

• A is a universe of “things”:

– some are terms,

– some are not!

• The terms are restricted, in this example,

– to constants,

– variables,

– two argument sums

– and two argument products.

• How a sum is represented one way or another is immaterial to the above.

– Thus one could think of the following external, written representations:

– a + b,

– +ab,

– (PLUS A B), or

– 7a × 11b.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 207

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

⊕ Synthetic Grammars: Generators ⊕
A synthetic abstract syntax introduces generators of sort values, i.e., as
here, of terms:

value
mk sum: Term × Term → Term
mk prod: Term × Term → Term

axiom
∀ u,v:Term •

is sum(mk sum(u,v)) ∧ is prod(mk prod(u,v)) ∧
s addend(mk sum(u,v)) ≡ u ∧ s augend(mk sum(u,v)) ≡ v ∧
s mplier(mk prod(u,v)) ≡ u ∧ s apcand(mk prod(u,v)) ≡ v ∧
is sum(t) ⇒ mk sum(s addend(t),s augend(t)) ≡ t ∧
is prod(t)⇒ mk prod(s mplier(t),s mpcand(t)) ≡ t

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

208 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

• The previous example illustrated the expression of

– an abstract type syntax for

– a syntactic type of arithmetic expressions.

• The next example illustrates the expression of

– an abstract type syntax for

– a semantic type of banks

– as well as expression of an abstract type syntax

– for a syntactic type of client commands.

• The example “pairs” with Example 26 on Slide 191.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 209

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

Example 28 – An Abstract Type Syntax: Banks:

•We refer (back) to Example 26 on Slide 191.

⊕ Abstract Syntax of Semantic Types ⊕

63. There are banks (BANK) and clients (C), and client have accounts
(A) with amounts (Amount) of money (M).

64. From a bank one can observe its set of clients (by their client iden-
tifications, C),

65. and its set of accounts (by their account numbers, A).

66. From a bank one can observe the account numbers of a client.

67. For every bank client there is at least one account.

68. From a bank one can observe the money of an account of a client.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

210 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

type
63 BANK, C, A, Amount, M
value
64 obs Cs: BANK → C-set
65 obs As: BANK → A-set
66 obs As: BANK × C → A-set

pre obs As(bank,c): c ∈ obs Cs(bank)
axiom
∀ bank:BANK •

67 ∀ c:C • c ∈ obs Cs(bank) ⇒ obs As(bank,c)⊆obs As(bank)
type
68 obs M: BANK × C × A → M

pre obs M(bank,c,a): c ∈ obs Cs(bank)∧a ∈ obs As(bank,c)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 211

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

⊕ Abstract Syntax of Syntactic Types ⊕

69. There are bank transaction commands (Command) and these are
either open (Open), deposit (Deposit), withdraw (Withdraw) or close
(Close) commands.

70. One can observe whether a command is an open, or a deposit, or a
withdraw, or a close command.

71. From any command one can observe the identity of the client issuing
the command.

72. From other that open commands one can observe the number of the
account “against” which the client is directing the transaction.

73. From a deposit command one can observe the cash money being
deposited.

74. From a withdraw command one can observe the amount of cash
money to be withdrawn.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

212 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 3.Abstract Type Syntax 0. 0

type
69 cmd:Command, Open, Deposit, Withdraw, Amount, Close
value
70 is Open, is Deposit, is Withdraw, is Close: Command → Bool
71 obs C: Command → C

72 obs A: Command
∼→ A

pre obs A(cmd): ∼is Open(cmd)

73 obs M: Command
∼→ M

pre obs M(cmd): is Deposit(cmd)

74 obs Amount: Command
∼→ Amount

pre obs Amount(cmd): is Withdraw(cmd)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 213

(5. Semiotics 5.2. Syntax 5.2.3. Abstract Type Syntax )

5.2.4. Abstract Versus Concrete Type Syntax

Example 29 – Comparison: Abstract and Concrete Banks:

• We refer (back) to Examples 26 on Slide 191 and 28 on Slide 209.

• The former presented a concrete type syntax of both semantic and syntactic types
related to banking.

• The latter presented an abstract type syntax of both semantic and syntactic types
related to banking.

• Supposedly the two notion of banks are the same !

• We formulate this as follows:

– The meaning of the model-oriented definition of Example 26

– is a model of the meaning of the property-oriented definition of Example 28.

• The properties expressed by Example 28 are satisfied by the meaning of Example 26.

• Usually a property-oriented definition has many, usually an infinite set of models.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

214 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 2.Syntax 4.Abstract Versus Concrete Type Syntax 0. 0

•We now show three “other” model-oriented definitions of the semantic
types of banks.

type

BANK1=(C→m A-set)×(A→m M)

type

BANK2=A→m (C-set×M)

type

BANK3=(C×A×M)-set

• The first model is that of Example 26 with its invariant as expressed
in Item 53 on Slide 191.

• The second model requires the following invariant

axiom
∀ bank2:BANK2 • ∀ (cs,m):(C-set×M) • (cs,m)∈ rng bank2⇒cs6={}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 215

5.Semiotics 2.Syntax 4.Abstract Versus Concrete Type Syntax 0. 0

• The third model is like a relational database-oriented model.

– Each Cartesian (c,a,m) in any bank3 is like a relation tuple.

– But two different Cartesians with same account number, (c,a,m), (c′,a,m′) must
have same cash balance:

type
BANK3=(C×A×M)-set

axiom
∀ bank3:BANK3 •

∀ (c,a,m),(c′,a′,m′):(C×A×M) •

{(c,a,m),(c′,a′,m′)}⊆bank3 ∧ a=a′ ⇒ m=m′.

• For each of the four models:

– Example 26 and the three above,

– one can define the observer observer functions of Example 28

– and prove its axioms.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

216 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.2. Syntax 5.2.4. Abstract Versus Concrete Type Syntax )

5.3. Semantics

•We recall our definition of semantics:

– semantics is the study of and knowledge about the meaning of
words, sentences, and structures of sentences.

•We consider two forms of semantics definition styles:

– denotational and behavioural.

– Both will be briefly characterised

– and both will be “amply” exemplified.

• There are many (other) semantics definition styles:

– but we shall leave it to other textbooks to fill you in on those,

– and even our presentation of the two “announced” styles need a
deeper treatment than the present software engineering coverage.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 217

(5. Semiotics 5.3. Semantics )

5.3.1. Denotational Semantics

Definition 33 – Denotational Semantics:

• By a denotational semantics we understand a semantics which

• to simple sentences ascribe a mathematical function and

• to composite sentences ascribe a semantics which is a homomor-
phic composition of the meaning of the simpler parts.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

218 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

Example 30 – A Denotational Language Semantics: Banks:

•We continue Example 26.

•We augment the simple sentences of commands with a ‘command’
which is a list of simple commands:

type
Command′ = Command | CmdList
ComdList == mkCL(cl:Command∗)
Response == ok | nokd |nokw | nokc | mkM(m:M)

• The meaning of a command is a bank to bank state change and a
response value.

value

M: Command′ → BANK
∼→ BANK × Response

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 219

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

• The nokd, nokw, and nokc responses “signal” the client that command
arguments were erroneous.

• Opening an account is always possible, but for the other simple com-
mands

– the client must be known by the bank and

– the account must be an account of that client.

• For the withdraw command

– the amount to be withdrawn must be less than or equal to the
account balance.

• The response value serves to record these conditions for a successful
transaction as well as “containing” the “returned” monies in the case
of the withdraw and close commands.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

220 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

value

M: Command′ → BANK
∼→ BANK × Response

M(cmd)(bank) ≡
case cmd of

mkO(c) → Open(c)(bank),
mkD(c,a) → Deposit(c,a)(bank),
mkW(c,m) → Withdraw(c,a,am)(bank),
mkC(c,a) → Close(c,a)(bank),
mkCL(cl) → Compose(cl)(bank)(ok)

end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 221

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

• Next we define the five auxiliary semantic functions, Open, Deposit, Withdraw, Close
and Compose

• The auxiliary functions Open, Deposit, Withdraw and Closefunction definitions show
the denotational principle of ascribing simple functions, in BANK

∼→BANK, to simple
commands.

• The latter, Compose, is defined first.

• It shows the denotational principle of homomorphic composition.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

222 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

value

Compose: Command∗ → BANK
∼→ BANK × Response

Compose(cl)(bank)(r) ≡
if cl=〈〉
then (bank,r)
else let (r′,bank′) = M(hd cl)(bank) in Compose(tl cl)(bank′)(r′) end

end

• The homomorphic composition is that of function composition:

– Compose(tl cl) being applied to the bank part, (bank′), of the
result of M(hd cl)(bank).

– The “continuation” Response argument, r, of Compose is there to
“clean” up, by “removing”, the intermediate response results.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 223

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

value
m0:M
Open: C → BANK → BANK × Response
Open(c)(bank) ≡
let a:A • a 6∈ dom acs in
let cs′ = if c6∈ dom cs then [ c7→{a} ] else [ c7→cs(c)∪{a} ] end,

acs′ = acs ∪ [ a7→m0 ] in
((cs′,acs′),ok) end end

• The lecturer “reads” the function definition.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

224 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

value

Deposit: C × A × M → BANK
∼→ BANK × Response

Deposit(c,a,m)(cs,acs) ≡
if c ∈ dom cs ∧ a ∈ cs(c)
then ((cs,acs†[ a 7→AddM(acs(a),m) ]),ok)
else ((cs,acs),nokd)

end
AddM: M × M → M

• The lecturer “reads” the function definition.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 225

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

• value

Withdraw: C × A × Amount → BANK
∼→ BANK × Response

Withdraw(c,a,am)(cs,acs) ≡
if c ∈ dom cs ∧ a ∈ cs(c) ∧ LessEqM(am,ConvM(acs(a)))
then ((cs,acs†[ a 7→SubM(am,acs(a)) ]),mkM(ConvM(am)))
else ((cs,acs),nokw)

end

SubM: M × M
∼→ M

ConvM: (M → Amount)|(Amount → M)
LessEqM: Amount × Amount → Bool

• The lecturer “reads” the function definition.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

226 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

• value

Close: C × A → BANK
∼→ BANK × (nok|M)

Close(c,a)(cs,acs) ≡
if c ∈ dom cs ∧ a ∈ cs(c)
then let cs′ = cs‖[ c′7→cs(c′)\{a}|c′:C•c′ ∈ dom cs∧a ∈ cs(c′) ],

acs′ = acs\{a} in
((cs′,acs′),acs(a)) end

else ((cs,acs),nokc)
end

• The lecturer “reads” the function definition.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 227

5.Semiotics 3.Semantics 1.Denotational Semantics 0. 0

• The nokd, nokw, and nokc responses could, in a requirements pre-
scriptions be detailed, for example as follows:

– nokd: "client or account deposit arguments were wrong",

– nokw: "client or account deposit arguments were wrong

or amount to be withdrawn was too large", and

– nokc: "client or account deposit arguments were wrong";

• And, of course, even these more informative “diagnostics” can be
sharpened to reflect the conjunction of the if predicates.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

228 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.3. Semantics 5.3.1. Denotational Semantics )

5.3.2. Behavioural Semantics

Definition 34 – Behavioural Semantics: By a behavioural se-
mantics we shall here understand

• a semantics which emphasises

• concurrency properties

• of the language being modelled.

•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 229

5.Semiotics 3.Semantics 2.Behavioural Semantics 0. 0

Example 31 – A Behavioural Semantics: We continue Exam-
ple 30.

75. There are a number of clients, each is considered a distinct cyclic
behaviour

76. indexed by a (well: the) unique Client index.

value
75. client: C ... → Unit

• The Unit designates a “never ending” client behaviour.

• The . . . will now be “filled in”.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

230 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 2.Behavioural Semantics 0. 0

77. Each client communicates with one bank (with communication mod-
elled in terms of channel input/output (c?, c!cmd)).

78. There is one cyclic bank behaviour.

77. channel {ch[ c ]|c:C} Command|Response
75. client: c:C × CΣ → out,in {cb[ c′ ]|c′:C\{c}} Unit
78. bank: BANK → in,out {ch[ c ]|c:C} Unit

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 231

5.Semiotics 3.Semantics 2.Behavioural Semantics 0. 0

79. Client behaviours (over some internal state, cσ [not explained]) alter-
nate

(a) between doing nothing, skip, in relation to the bank, and

(b) arbitrarily issuing, based on some property of its local state,

(c) a client/banking command to the bank

(d) and waiting for a response from the bank —

(e) based on which the client updates its local state and continues.

80. We do not detail the predicate over choice of commands and the local
client state nor the local client state update.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

232 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 2.Behavioural Semantics 0. 0

type
79. CΣ
value
79. client(c,cσ) ≡
79(a). (skip ; client(c,cσ))

⌈⌉
79(b). (let cmd:Command′

• P(cmd,cσ) in
79(c). ch[ c ]!cmd;
79(d). let r = ch[ c ]? in
79(e). client(c,client state update(cmd,r,cσ)) end end)

80. P : Command′ × CΣ → Bool
80. client state update: Command′ × Response × CΣ → CΣ

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 233

5.Semiotics 3.Semantics 2.Behavioural Semantics 0. 0

81. The bank alternates between serving any of its customers.

82. Sooner or later, if ever a client, c, issues a command, cmd, that
command and its origin is received.

83. The command interpretation results in a new bank and a response.

84. The response is communicated to the issuing client.

85. And the bank continues in the possibly new bank state.

value
81. bank(β) ≡
82. let (c,cmd) = ⌈⌉⌊⌋{ch[ c ]?|c:C} in
83. let (β′,r) = M(cmd)(β) in
84. ch[ c ]!r;
85. bank(β′) end end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

234 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.3. Semantics 5.3.2. Behavioural Semantics )

5.3.3. Axiomatic Semantics

Definition 35 – Axiomatic Semantics:

• By an axiomatic semantics we understand

– a pair of abstract type presentations

∗ of syntactic

∗ and semantic types

– and a set of axioms which express the

∗meaning of some syntactic values

∗ in terms of semantic values.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 235

5.Semiotics 3.Semantics 3.Axiomatic Semantics 0. 0

Example 32 – An Axiomatic Semantics: Banks: We continue Example 28.
We now give an axiomatics semantics of the simple commands of Example 28. We start
by recalling semantic and syntactic types and observer functions. First the semantic
types:

type
63 BANK, C, A, Amount, M
value
64 obs Cs: BANK → C-set
65 obs As: BANK → A-set
66 obs As: BANK × C → A-set

pre obs As(bank,c): c ∈ obs Cs(bank)
axiom
∀ bank:BANK •

67 ∀ c:C • c ∈ obs Cs(bank) ⇒ obs As(bank,c)⊆obs As(bank)
type
68 obs M: BANK × C × A → M

pre obs M(bank,c,a): c ∈ obs Cs(bank)∧a ∈ obs As(bank,c)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

236 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 3.Axiomatic Semantics 0. 0

• Then the syntactic types:

type
69 cmd:Command, Open, Deposit, Withdraw, Amount, Close
value
70 is Open, is Deposit, is Withdraw, is Close: Command → Bool
71 obs C: Command → C

72 obs A: Command
∼→ A

pre obs A(cmd): ∼is Open(cmd)

73 obs M: Command
∼→ M

pre obs M(cmd): is Deposit(cmd)

74 obs Amount: Command
∼→ Amount

pre obs Amount(cmd): is Withdraw(cmd)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 237

5.Semiotics 3.Semantics 3.Axiomatic Semantics 0. 0

• The semantic function signatures are:

value
open: Open → BANK → BANK × A
deposit: Deposit → BANK → BANK × (ok|nok)
withdraw: Withdraw → BANK → BANK × (mkM(m:M)|nok)
close: Close → BANK → BANK × (mkM(m:M)|nok)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

238 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 3.Semantics 3.Axiomatic Semantics 0. 0

• We shall illustrate an axiomatic semantics of just Open commands.

value
m0:M

axiom
∀ bank:Bank
∀ op:Open •

let c = obs C(op),
(bank′,a) = open(op)(bank),
cs = obs Cs(bank), cs′ = obs Cs(bank′),
acs = obs As(bank), acs′ = obs As(bank′),
cacs = if c ∈ obs Cs(bank) then obs As(bank,c) else {} end,
cacs′ = obs As(bank′,c) in

cs\{c} = cs′\{c} ∧ c ∈ cs′ ∧ a 6∈ acs ∧ a 6∈ cacs′ ∧
acs′ = acs ∪{a} ∧ cacs′ = cacs ∪{a} ∧ m0=obs M(bank′,c,a) ∧
∀ c′:C • c′ ∈ cs\{c} ⇒ obs As(bank,c′)=obs As(bank′,c′) ∧
∀ a:A • a ∈ obs As(bank,c′) ⇒ obs M(bank,c′,a)=obs M(bank′,c′,a)

end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 239

5.Semiotics 3.Semantics 3.Axiomatic Semantics 0. 0

• The student is encouraged to formulate the axiomatic semantics for
the Deposit, Withdraw and Close commands.

This ends Example 32

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

240 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.3. Semantics 5.3.3. Axiomatic Semantics )

5.4. Pragmatics

•We recall our definition of pragmatics:

– pragmatics is the study of and knowledge about the use of words,
sentences and structures of sentences,

– and of how contexts affect the meanings of words, sentences, etc.

• Recall that we “extended” the notion of sentences and words to in-
clude

– building drawings,

– city plans,

– machine drawings,

– production floor machinery,

– radio circuit diagrams,

– railway track layouts,

– enterprise organisation charts,

– et cetera,

•We think of these two or three dimensional artefacts as designating
systems.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 241

5.Semiotics 4.Pragmatics 0. 0. 0

• Rather than dwelling on how, for example bank clients may use the
client/banking language of command, we shall, in our example we
therefore emphasise

– mostly the pragmatics of both what and how

∗ we choose to domain model (describe) and

∗ requirements prescribe

and

– to some extent also the pragmatics of why these systems are
endowed with certain structurings.

•We shall emphasise

– “the use of words, sentences and structures of sentences,”

– and not say much about

– “how contexts affect the meanings of words, sentences, etc.”

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

242 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 4.Pragmatics 0. 0. 0

Example 33 – Pragmatics: Banks:

• The pragmatics of what we describe of banks

– is determined by the pedagogics of giving as simple, yet as “con-
vincing” examples

– of syntactic and semantic types

– and both denotational (albeit a rather “simplistic example of that)

– without embellishing the example with too many kinds of bank-
ing services (for example, intra-bank account transfers, mortgages,
statement requests, etc.).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 243

5.Semiotics 4.Pragmatics 0. 0. 0

• The pragmatics of how we describe banks

– is determined by the didactics of

– covering both concrete type syntaxes and abstract type syntaxes of
syntactic types, and

– covering both denotational and behavioural semantics definitions.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

244 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 4.Pragmatics 0. 0. 0

• The pragmatics of why we describe banks

– is determined by our wish to convince the student

– that it is not a difficult software engineering task

– to give easy and realistic domain descriptions

– of important, seemingly “large” infrastructure components

– (such as banks).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 245

5.Semiotics 4.Pragmatics 0. 0. 0

• The pragmatics related to “how contexts affect the meanings” includes

– that we do not, in Examples 26, 28, 29, and 30–31,

– describe other financial institutions such as portfolio (wealth and
investment) management, insurance companies, credit card compa-
nies, brokers, trader, commodity and stock exchanges,

– let alone include the modelling of several banks.

– These other institutions and banks form one possible context of our
model and hence our model limits the meaning of client/banking
commands.

– Another possible context is provided by the personal diligent or
casual or delinquent or sloppy, etc., behaviour of client. The human
behaviours are not modelled, but must eventually be modelled (cf.
Sect. ’s Examples 68 on Slide 634 and 69 on Slide 636).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

246 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 4.Pragmatics 0. 0. 0

• Pragmatics is not about empirical aspects of software engineering.

• The pragmatics

– that we refer to, in the above definition,

– is that of staff and users of banks.

• The pragmatics

– that we covered in the example

– is that of the pedagogics and didactics

– of presenting a methodology for software engineering.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 247

5.Semiotics 4.Pragmatics 0. 0. 0

• The aspects of software engineering that we cover,

– namely that of domain and requirements engineering,

– are not empirical sciences, or, more precisely

– the methodologies of domain and requirements engineering

– are not based on studies of the behaviour

– of neither domain nor requirements engineers.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

248 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 4.Pragmatics 0. 0. 0

• The aspects of software engineering that we put forward in these
lectures

– are based on computing science10

– and computing science, like mathematics, upon which it is based,

– is not an empirical science.11

10Software engineering is applied computing science.
11Although some may reasonably claim that Mathematics is what Mathematicians do, that is not, in our opinion, the same as saying: let us therefore study how all those

people who claim they are mathematicians are doing call what they mathematics and let the result of such an empirical study determine what mathematics is!

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 249

5.Semiotics 4.Pragmatics 0. 0. 0

• The pragmatics of the kind of domains

– in the context of the way in which we wish to describe these do-
mains

– and prescribe requirements for computing systems to serve in these
domains

is far from studied.

•We,

– but this is only a personal remark

– and not a scientific conjecture,

• venture to claim that

– perhaps one cannot formalise pragmatics,

∗ that is, that pragmatics is what cannot be formalised.

– But this is just a “hunch” !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

250 Dines Bjørner: Domain & Requirements Engineering

(5. Semiotics 5.4. Pragmatics )

5.5. Discussion

•We summarise this lecture on semiotics by first recalling our defini-
tion:

– Semiotics is the study of and knowledge about the structure of all
‘sign systems’.

∗ In accordance with some practice we have divided our presenta-
tion into three parts:

· syntax,

· semantics and

· pragmatics.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 251

5.Semiotics 5.Discussion 0. 0. 0

• BNF grammars were first12 made known (in the late 1950s) in con-
nection with the work on defining the first block structured program-
ming language, Algol 60.

• So BNF grammars were for defining the one-dimensional, i.e., textual
layout of programming languages.

• In Sect. we enlarge the scope of syntax to also embody the definition
of the structure of ‘systems’ (that is, domains) such as mentioned
there (Slide 168).

• The “language” of systems is the possibly infinite set of utterings
that staff and users, i.e., system stake holders express when working
with (or in) the system. We exemplified this only briefly and in terms
of client/banking commands.

12 Dines: Find reference to Don Knuth’s “paper” on ancient Indian’s knowing of “BNF”.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-semiotics c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

252 Dines Bjørner: Domain & Requirements Engineering

5.Semiotics 5.Discussion 0. 0. 0

•We make, in these lectures , a distinction between using syntax def-
initions to define syntactic types versus using syntax definitions to
define semantic types.

more to come

•We encourage students to embark on studies of the (albeit informal)
pragmatics of domains.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 5

Semiotics

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 6

A Specification Ontology

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-semiotics Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 253

6. A Specification Ontology

The point of philosophy is to start with something so simple
as not to seem worth stating,

and to end with something so paradoxical
that no one will believe it.

Bertrand Russell

The Philosophy of Logical Atomism

The Monist13, The Open Court Publ.Co., Chicago, USA

Vol. XXVIII 1918: pp 495-527

Vol. XXIX 1919: pp 32-63, 190-222, 345-380

13See http://www.archive.org/search.php?query=title%3A(the monist) AND creator%3A(Hegeler Institute)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

254 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 0. 0. 0. 0

• The basic approach to description (prescription and specification) is
to describe algebras.

•We take a somewhat “novel” approach to this:

– We describe simple entities and functions (i.e., operations) over
these, as for any algebra;

– and then we focus on behaviours of simple entities as sequences
of function invocations and events, where events are the results of
usually external function invocations.

• In addition we describe (prescribe and specify)

– both informally, by means of precise narratives

– and formally — here in the RAISE specification language RSL.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 255

6.A Specification Ontology 0. 0. 0. 0

Example 34 – Transport Net (II):

• In Example 10 nets, hubs and links are examples of simple entities of
(Pages 62–66).

• (Hub and link identifiers are not simple entities, they are entity at-
tributes.)

• The link insert and delete operations (Slides 66–77) of that example
are examples of operations.

• The situation that a link suddenly “disappears” (a road segment is
covered by a mudslide, or a bridge collapses) are examples of events
(that can be “mimicked” by the remove link operation).

• The sequence of many insert, some remove and a few link disappear-
ances form a behaviour.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

256 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology )

6.1. Russel’s Logical Atomism

6.1.1. Metaphysics and Methodology

• Russell’s metaphysical view can be expressed as follows:

– the world consists of a plurality of independent existing par-
ticulars (phenomena, things, entities, individuals14)

– exhibiting qualities and standing in relations.

• Russell’s methodology for doing philosophy was

– follow a process of analysis,

– whereby one attempts to define or construct

– more complex notions or vocabularies

– in terms of simpler ones.

14We consider the terms ‘particulars’, ‘phenomena’, ‘things’, ‘entities’ and ‘individuals’ to be synonymous.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 257

6.A Specification Ontology 1.Russel’s Logical Atomism 1.Metaphysics and Methodology 0. 0

• Russell’s idea of logical atomism can be expressed as consisting
of

– both

∗ the metaphysics and

∗ the methodology

– as basically outlined above.

•We shall later in this chapter take up Russell’s line of inquiry.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

258 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.1. Russel’s Logical Atomism 6.1.1. Metaphysics and Methodology )

6.1.2. The Particulars [Phenomena - Things - Entities - Individuals]

• So which are the particulars, that is, the phenomena that we are to
describe?

•Well, they are the particulars of the domain.

• How do we describe them?

•Well, we shall now introduce our description ontology.

– By ‘ontology’ is meant
the philosophical study of the nature of being, existence or reality in general,
as well as of the basic categories of being and their relations. Traditionally
listed as a part of the major branch of philosophy known as metaphysics,
ontology deals with questions concerning what entities exist or can be said
to exist, and how such entities can be grouped, related within a hierarchy,
and subdivided according to similarities and differences.15

15http://en.wikipedia.org/wiki/Ontology

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 259

6.A Specification Ontology 1.Russel’s Logical Atomism 2.The Particulars [Phenomena - Things - Entities - Individuals] 0. 0

– We can speak both of

∗ a domain ontology

∗ and a description ontology.

– First, in this section, we shall cover the notion of description on-
tology, or, as we shall generalise it, specification ontology.

• The purpose of having a firm understanding of, hopefully a good
specification ontology is to be better able to produce good domain
ontologies.

• Later in following chapters we shall outline how to construct pleasing
domain ontologies.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

260 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 1.Russel’s Logical Atomism 2.The Particulars [Phenomena - Things - Entities - Individuals] 0. 0

• Our specification (description, prescription) ontology emphasises, as
also mentioned in the above indented and slanted quote,

– the basic categories of being and their relations and

– how such entities can be grouped, related within a hierarchy, and
subdivided according to similarities and differences.

• The basic description categories ,
that is, the grouping, hierarchy, subdivision of means of description
are these:

– simple entities16,

– operations (over entities),

– events (involving entities) and

– behaviours.

16We shall consider all four categories of description items as entities, but single out simple entities as a category of its own.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 261

6.A Specification Ontology 1.Russel’s Logical Atomism 2.The Particulars [Phenomena - Things - Entities - Individuals] 0. 0

•We should here bring a reasoned argument,

– of philosophical nature,

– in order to motivate this subdivision of specification means.

• Instead we postulate this subdivision

– and hope that the reader, after having read this chapter,

– will accept the subdivision.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

262 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.1. Russel’s Logical Atomism 6.1.2. The Particulars [Phenomena - Things - Entities - Individuals] )

6.2. Entities

•We have used and we shall be using the term ‘entity’ extensively in
this book.

• Other, synonymous terms are ‘particular’ and ‘individual’.

Definition 36 – Entity: By an entity we shall understand a phe-
nomenon or a concept which is

• either inert (in which case we shall call it a ‘simple entity’),

• or “like” a function,

• or an event,

• or a behaviour.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 263

(6. A Specification Ontology 6.2. Entities )

6.3. Simple Entities and Behaviours

•We lump two of the description categories: simple entities and be-
haviours in this section.

• The reason is that we wish to highlight a duality:

– simple entities as exhibiting behaviours, and

– behaviours are evolving around simple entities.

• In the vernacular one often refers to a phenomenon using a name that
both covers that phenomenon as a simple entity and as a behaviour.

•Example: A bank as a simple, in this case composite entity with de-
mand/deposit accounts, mortgage accounts, and clients; and a bank
as a behaviour with clients opening and closing accounts, depositing
into and withdrawing from accounts, etc., and with events such a in-
terest rate change, attempts at withdrawing below the credit limits,
etc. 2

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

264 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.3. Simple Entities and Behaviours )

6.3.1. Simple Entities

Definition 37 – Simple Entity:

• By a simple entity we shall here understand

– a phenomenon that we can designate, viz.

– see, touch, hear, smell or taste, or

– measure by some instrument (of physics, incl. chemistry).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 265

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

Example 35 – Simple Entities:

• (i) Air traffic: aircraft, terminal control towers, ground control towers,
regional control centers and continental control centers.

• (ii) Financial service industry: money (cash), securities instruments
(like stocks, bonds, a transacted credit card slip, etc.), banks, brokers,
traders, stock exchanges, commodities exchanges, bank and mortgage
accounts, etc.

• (iii) Health care: citizens and potential patients, medical staff, wards,
beds, medicine and operating theatres.

• (iv) Railway systems: train stations and rail tracks, their constituent
(linear, switch, crossover, etc.) rail units, trains, train wagons, tickets,
passengers, timetables, station and train staff.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

266 Dines Bjørner: Domain & Requirements Engineering

•We model simple entities by stating their types.

type
A, B, C, D, E, F, G. H, J
aT

cT = A × B-set × C∗ × (D→m E) × (F→G) × (H
∼→J)

value
obs A: aT→ A
obs Bs: aT → B-set
obs Dl: aT→ C∗
obs mEF: aT→ D→m E
obs−tfGH: aT→ F→G

obs pfJK: aT → H
∼→J

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 267

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• Our specification language, here RSL, allows us to define

– Cartesian,

– set,

– list,

– map,

– partial function and

– total function

types.

• It also allows us to define sorts and observer functions.

• These possibilities permit us to model composite entities as follows:

– unordered collections of sub-entities as sets,

– ordered collections of sub-entities as lists,

– finite sets of uniquely “marked” sub-entities as maps, and

– infinite or indefinite sets of uniquely “marked” sub-entities as func-
tions, partial or total.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

268 Dines Bjørner: Domain & Requirements Engineering

• A simple entity has properties17.

• A simple entity is

– either continuous

– or is discrete, and then it is

∗ either atomic

∗ or composite.

17We shall refrain from a deeper, more ontological discussion of what is meant by properties. Suffice it here to state that properties are what we can model in terms of
types, values (including functions) and axioms.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 269

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• By an attribute we mean a property of an entity

– a simple entity has properties pi, pj, . . . , pk.

• Typically we express attributes by a pair of

– a type designator: the attribute is of type V , and

– a value: the attribute has value v (of type V , i.e., v : V ).

• A simple entity may have many properties.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

270 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

Example 36 – Attributes:

• A continuous simple entity, like ‘oil’, may have the following attributes:

– class: mineral,

– kind: Brent-crude, amount: 6 barrels,

– price: 45 US $/barrel.

type
Oil, Barrel, Price
Class == mineral|organic
Kind == brent crude|brent sweet light crude|oseberg|ecofisk|forties

value
obs Class: Oil → Class
obs Kind: Oil → Kind
obs No of Barrels: Oil → Nat
obs Price: Oil → Price

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 271

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• An atomic simple entity, like a ‘person’, may have the following at-
tributes:

– gender : male, name: Dines Bjørner,

– age: (“oh well, too old anyway”),

– height: 178cm, weight: (“oh well, too much anyway”).

type
Person, Age, Height
Gender == female|male

value
obs Gender: Person → Gender
obs Age: Person → Age
obs Height: Person → Height

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

272 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• A composite simple entity, like a railway system, may have the following attributes:

– country: Denmark,

– name: DSB,

– electrified: partly,

– owner : independent public enterprise owned by Danish Ministry of Transport.

type
RS, Owner, Name, Owner,
Country == denmark!norway|sweden|...
Electrified == no|partly|yes

value
obs Country: RS → Country
obs Name: RS → Name
obs Electrified: RS → Electrified
obs Owner: RS → Owner

The above informal and formal descriptions are just rough sketches.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 273

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• A simple entity is said to be continuous

– if it can be arbitrarily decomposed into smaller parts

– each of which still remain simple continuous entities

– of the same simple entity kind.

Example 37 – Continuous Entities:

• Examples of continuous entities are:

– oil, i.e., any fluid,

– air, i.e., any gas,

– time period and

– a measure of fabric.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

274 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• A simple entity is said to be discrete if its immediate structure is not
continuous.

– A simple discrete entity may, however, contain continuous sub-
entities.

Example 38 – Discrete Entities: Examples of discrete entities
are:

• persons,

• rail units,

• oil pipes,

• a group of persons,

• a railway line (of one
or more rail units)
and

• an oil pipeline (of
one or more oil
pipes, pumps and
valves).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 275

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• A simple entity is said to be atomic

– if it cannot be meaningfully decomposed into parts

– where these parts have a useful “value” in the context in which
the simple entity is viewed and

– while still remaining an instantiation of that entity.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

276 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

Example 39 – Atomic Entities:

• Thus a ‘physically able person’, which we consider atomic,

– can, from the point of physical ability,

– not be decomposed into meaningful parts: a leg, an arm, a head,
etc.

• Other atomic entities could be a rail unit, an oil pipe, or a hospital
bed.

• The only thing characterising an atomic entity is its attributes.

• A simple entity, c, is said to be composite

– if it can be meaningfully decomposed into sub-entities

– that have separate meaning in the context in which c is viewed.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 277

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

Example 40 – Composite Entities (1):

• A railway net (of a railway system) can be decomposed into

– a set of one or more train lines and

– a set of two or more train stations.

• Lines and stations are themselves composite entities.

type
RS, RN, Line, Station

value
obs RN: RS → RN
obs Lines: RN → Line-set
obs Stations: RN → Station-set

axiom
∀ rs:RS,rn:RN • let rn = obs RN(rs) in
card obs Lines(rn)≥2 ∧ card obs Stations(rn)≥1 end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

278 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

Example 41 – Composite Entities (2):

• An Oil industry whose decomposition include:

– one or more oil fields,

– one or more pipeline systems,

– one or more oil refineries and

– one or more one or more oil product distribution systems.

• Each of these sub-entities are also composite.

type

Oil Industry, Oil Field, Pipeline System, Refinery, Distrib System

value

obs Oil Field: Oil Industry → Oil Field-set

obs Pipeline System: Oil Industry → Pipeline System-set

obs Refineries: Oil Industry → Refinery-set

obs Distrib Systems: Oil Industry → Distrib System-set

axiom

[ all observed sets are non−empty ]

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 279

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• Composite simple entities are thus characterisable by

– their attributes,

– their sub-entities, and

– the mereology of how these sub-entities are put together.

Definition 38 – Mereology:

•Mereology is the theory of parthood relations:

• of the relations of part to whole

• and the relations of part to part within a whole.

We shall exemplify the above in the following, abstract example.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

280 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

Example 42 – Mereology: Parts and Wholes (1):

•We speak of systems as assemblies.

• From an assembly we can immediately observe a set of parts.

• Parts are either assemblies or units.

• For the time being we do not further define what units are.

type
S = A, A, U, P = A | U

value
obs Ps: A → P-set

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 281

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• Parts observed from an assembly are said to be immediately embedded
in that assembly.

"outermost" Assembly

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32

B2

C33

System = Environment

Figure 1: Assemblies and Units “embedded” in an Environment

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

282 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• For the time being we omit any reference to an environment.

• Embeddedness generalises to a transitive relation.

• All parts thus observable from a system are distinct.

• Given obs Ps we can define a function, xtr Ps,

– which applies to an assembly, a, and

– which extracts all parts embedded in a.

• The functions obs Ps and xtr Ps define the meaning of embedded-
ness.

value
xtr Ps: A → P-set
xtr Ps(a) ≡
let ps = obs Ps(a) in ps ∪ ∪{xtr Ps(a′)|a′:A•a′ ∈ ps} end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 283

(6. A Specification Ontology 6.3. Simple Entities and Behaviours 6.3.1. Simple Entities )

• Parts have unique identifiers.

type
AUI

value
obs AUI: P → AUI

axiom
∀ a:A •

let ps = obs Ps(a) in
∀ p′,p′′:P • {p′,p′′}⊆ps ∧ p′6=p′′ ⇒ obs AUI(p′) 6=obs AUI(p′′) ∧
∀ a′,a′′:A • {a′,a′′}⊆ps ∧ a′ 6=a′′ ⇒ xtr Ps(a′)∩ xtr Ps(a′′)={} end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

284 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

•We shall now add to this a rather general notion of parts being other-
wise related.

• That notion is one of connectors.

• Connectors may, and usually do provide for connections — between
parts.

• A connector is an ability be be connected.

• A connection is the actual fulfillment of that ability.

• Connections are relations between two parts.

• Connections “cut across” the “classical”

– parts being part of the (or a) whole and

– parts being related by embeddedness or adjacency.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 285

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32
"outermost" Assembly

K2

B2

C33

K1

System = Environment

Figure 2: Assembly and Unit Connectors: Internal and External

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

286 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• Figure 2 on the preceding slide “repeats” Fig. 1 on Slide 281 but “adds” connectors.

• The idea is that connectors

– allow an assembly to be connected to any embedded part, and

– allow two adjacent parts to be connected.

• In Fig. 2 on the preceding slide

– assembly A is connected, by K2, (without, as we shall later see, interfering with
assembly B1), to part C11;

– the “external world” is connected, by K1 to B1,

– etcetera.

• Thus we make, to begin with, a distinction between

– internal connectors that connect two identified parts, and

– external connectors that connect an identified part with an external world.

• Later we shall discuss more general forms of connectors.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 287

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• From a system we can observe all its connectors.

• From a connector we can observe

– its unique connector identifier and

– the set of part identifiers of the parts that the connector connects,

∗ two if it is an internal connectors,

∗ one if it is an external connector.

• All part identifiers of system connectors identify parts of the system.

• All observable connector identifiers of parts identify connectors of the
system.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

288 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

type
K

value
obs Ks: S → K-set
obs KI: K → KI
obs Is: K → AUI-set
obs KIs: P → KI-set

axiom
∀ k:K • 1≤card obs Is(k)≤2,
∀ s:S,k:K • k ∈ obs Ks(s) ⇒ ∃ p:P • p ∈ xtr Ps(s) ⇒ obs AUI(p) ∈ obs Is(k),
∀ s:S,p:P • ∀ ki:KI • ki ∈ obs KIs(p) ⇒ ∃! k:K • k ∈ obs Ks(s) ∧ ki=obs KI(k)

• This model allows for a rather “free-wheeling” notion of connectors

– one that allows internal connectors to “cut across” embedded and adjacent parts;

– and one that allows external connectors to “penetrate” from an outside to any
embedded part.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 289

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• For Example 44 on Slide 305 we need define an auxiliary function.

– xtr∀KIs(p) applies to a system

– and yields all its connector identifiers.

value
xtr∀KIs: S → KI-set
xtr∀Ks(s) ≡ {obs KI(k)|k:K•k ∈ obs Ks(s)}

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

290 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• This ends our first model of a concept of mereology.

• The parts are those of assemblies and units.

• The relations between parts and the whole are,

– on one hand, those of

∗ embeddedness and

∗ adjacency,

and

– on the other hand, those expressed by connectors: relations

∗ between arbitrary parts and

∗ between arbitrary parts and the exterior.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 291

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• A number of extensions are possible:

– one can add “mobile” parts and “free” connectors, and

– one can further add operations that allow such mobile parts to move
from one assembly to another along routes of connectors.

• Free connectors and mobility assumes static versus dynamic parts and
connectors:

– a free connector is one which allows a mobile part to be connected
to another part, fixed or mobile; and

– the potentiality of a move of a mobile part introduces a further
dimension of dynamics of a mereology.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

292 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

Environment

System =

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32
"outermost" Assembly

External Connectors

K2

B2

K5 Ma

Mc

Mb

Mobile PartFree Connector

C33

K1

Figure 3: Mobile Parts and Free Connectors

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 293

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

•We shall leave the modelling of free connectors and mobile parts to
another time.

• Suffice it now to indicate that the mereology model given so far is
relevant:

– that it applies to a somewhat wide range of application domain
structures, and

– that it thus affords a uniform treatment of proper formal models of
these application domain structures.

This ends Example 42

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

294 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 1.Simple Entities 0. 0

• Summarising we find, for discrete simple entities, that

– atomic entities are characterisable by their attributes (as well as
by the operations that apply to entity arguments); and that

– composite entities are characterisable by their attributes, the sub-
entities from which they are made up and the mereology, i.e., the
part-whole relations between these sub-entities (as well as by the
operations that apply to entity arguments).

• Continuous entities we treat almost as we treat atomic entities

– except that we can speak of, i.e., define, functions that decom-
pose a continuous entity of kind C into an arbitrary number of
continuous entities of the same kind C, and

– vice-versa: compose a continuous entity of kind C from an arbi-
trary number of continuous entities of the same kind C.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 295

(6. A Specification Ontology 6.3. Simple Entities and Behaviours 6.3.1. Simple Entities )

6.3.2. Behaviours

• Behaviours can be

– simple, sequential, and

– behaviours can be highly composite.

• To define behaviours we need notions of states and actions:

– By a domain state we mean any collection of simple entities — so
designated by the domain engineer.

– By a domain action we mean the invocation of an operation which
“changes” the state.18

18Since we shall be expressing our formalisations in a pure, functional language, state changes are expressed by functions whose signature include state entity types both
as arguments and as results.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

296 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

Definition 39 – Behaviours:

• (i) By a behaviour we shall understand either a simple, sequential
behaviour, or a simple parallel (or concurrent) behaviour, or a
communicating behaviour.

• (ii) By a simple, sequential behaviour we shall understand a se-
quence of actions and events (the latter to be defined shortly).

• (iii) By a simple parallel (or concurrent) behaviour we shall under-
stand a set of simple, sequential behaviours.

• (iv) By a communicating behaviour we shall understand a set of
simple parallel behaviours which in addition (to being simple par-
allel behaviours) communicate messages between one-another.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 297

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

•We shall base our formal specification of behaviours on the use of
CSP (Hoare’s Communicating Sequential Processes).

• Other concurrency formalisms can, of course, be used:

– Petri nets,

– Message Sequence Charts (MSCs,

– Statecharts,

– or other.

• Communication, between two behaviours (CSP processes),

– P and Q is in CSP expressed by

– the CSP output

– and input clauses: ch ! e, respectively ch ?

– where ch designates a CSP channel.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

298 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

type
A, B, M

channel
ch:M

value
av:A, bv:B
S = P(av) ‖ Q(bv)
P: A→ out ch Unit
P(a) ≡ ... ch!E(a) ... P(a′)
Q: B→ in ch Unit
Q(b) ≡ ... let v = ch? in ... Q(b′) end

P Q

ch ?

V

ch ! E(a)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 299

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

where a, a′ and b, b′ designate process P, respectively process Q state
values provided to process invocations (with a′ and b′ resulting from
“calculations” not shown in the bodies of the definitions of P and Q.
av and bv are initial entities. S is the overall system behaviour of two
communicating behaviours operating in parallel (‖). M designates the
type of the messages sent over channel ch.

We shall now show a duality between entities and behaviours.

• The background for this duality is the following:

– In everyday parlance we speak of some domain phenomena

– both as being entities

– and as embodying behaviours.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

300 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

Example 43 – Entities and Behaviours:

• A train is the composite entity of one or more engines (i.e., locomo-
tives) and one or more passenger and/or freight cars.

type
Train, Engine, PassCar, FreightCar
Car = PassCar|FreightCar

value
obs Engine: Train → Engine
obs Carl: Train → Car∗

axiom
∀ tr:Train • card obs Carl(tr)>0

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 301

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• A train is also the behaviour whose state include the time dependent
train location and the states of these engines and cars and whose
sequence of actions comprise the arrival and stop of the train at sta-
tions, the unloading and loading of passengers and freight at stations,
the start-up and departure of trains from stations and the continu-
ous movement, initially at accelerated speeds, then constant speed,
finally at decelerating speeds along the rail track between stations —
occasionally allowing for stops at track segment blocking signals. A
train behaviour event could be that a cow presence of the track causes
interrupt of scheduled train behaviour. Et cetera.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

302 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

type

T, Loc,

TrainBehaviour = T →m Train

channel

net channel (is at station|Bool)

value

obs Loc: Train → Loc

train: Train → T → out,in net channel → Unit

train(tr)(t) ≡
if is at Station(obs Loc(tr))

then

let (tr′,t′) = stop train(tr)(t);

let (tr′′,t′′) = load unload passengers and freight(tr′)(t′) in

let (tr′′′,t′′′) = move train(tr′′)(t′′) in

[ assert: ∼is at Station(obs Loc(tr′′′)) ]

train(eσ′′,(el′,pfl′),loc′)(t′) end end end

else

let (tr′,t′) = move train(tr)(t) in train(tr′)(t′) end

end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 303

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• Here we leave undefined a number of auxiliary functions:

value
is at Station: Loc → out,in net channel Bool
stop train: Train → T → Train × T
load unload passengers and freight: Train → T → Train × T
move train: Train → T → Train × T

• The above “model” of a train behaviour is really not of the kind (of models) that
we shall eventually seek.

• The predicate is at Station communicates with the net behaviour (not shown).

• The function load unload passengers and freight communicates with the net be-
haviour (platforms, marshalling yards, etc., not shown).

• It is a rough sketch meant only to illustrate the process behaviour.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

304 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• Example 42 illustrated a very general class of mereologies.

• The next example,

– Example 44

– will show how the duality between entities and behaviours

– can be “drawn” to an ultimate conclusion !

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 305

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

Example 44 – Mereology: Parts and Wholes (2):

• The model of mereology (Slides 280–293) given earlier focused on
the following simple entities

– the assemblies,

– the units and

– the connectors.

• To assemblies and units we associate CSP processes, and

• to connectors we associate CSP channels,

• one-by-one.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

306 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• The connectors form the mereological attributes of the model.

• To each connection we associate a CSP channel,

– it is “anchored” in two parts:

– if a part is a unit then in “its corresponding” unit process, and

– if a part is an assembly then in “its corresponding” assembly process.

• From a system assembly we can extract all connector identifiers.

• They become indexes into an array of channels.

– Each of the connector channel identifiers is mentioned

– in exactly one unit or one assembly process.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 307

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• From a system which is an assembly,

– we can extract all the connector identifiers

– as well as all the internal connector identifiers.

• They become indexes into an array of channels.

– Each of the external connector channels is mentioned in exactly one
unit or one assembly process;

– and each of these internal connection channels is a mentioned in
exactly two unit or assembly processes.

• The xtr∀KIs(s) below was defined in Example 42 (Slide 289).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

308 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

value
s:S
kis:KI-set = xtr∀KIs(s)

type
ChMap = AUI →m KI-set

value
cm:ChMap = [ obs AUI(p) 7→obs KIs(p)|p:P•p ∈ xtr Ps(s) ]

channel
ch[ i|i:KI•i ∈ kis ] MSG

value
system: S → Process
system(s) ≡ assembly(s)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 309

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

value
assembly: a:A→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process
assembly(a) ≡
MA(a)(obs AΣ(a)) ‖
‖ {assembly(a′)|a′:A•a′ ∈ obs Ps(a)} ‖
‖ {unit(u)|u:U•u ∈ obs Ps(a)}

obs AΣ: A → AΣ

MA: a:A→AΣ→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process
MA(a)(aσ) ≡ MA(a)(AF(a)(aσ))

AF : a:A → AΣ → in,out {ch[ em(i) ]|i:KI•i ∈ cm(obs AUI(a))}×AΣ

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

310 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• The unit process

– is defined in terms of the recursive meaning functionMU function

– which requires access to all the same channels as the unit process.

value
unit: u:U → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process
unit(u) ≡ MU(u)(obs UΣ(u))
obs UΣ: U → UΣ

MU : u:U → UΣ → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process
MU(u)(uσ) ≡ MU(u)(UF(u)(uσ))

UF : U → UΣ → in,out {ch[ em(i) ]|i:KI • i ∈ cm(obs AUI(u))} UΣ

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 311

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• The meaning processes

–MU and

–MA
are generic.

– Their sôle purpose is to provide a never ending recursions.

– “In-between” they “makes use” of

∗ assembly, respectively

∗ unit

specific functions

– here symbolised by

∗ AF and

∗ UF .

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

312 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• The assembly function “first” “functions” as a compiler.

• The ‘compiler’ translates an assembly structure into three process ex-
pressions:

– theMA(a)(aσ, aρ) invocation,

– the parallel composition of assembly processes, a′, one for each
sub-assembly of a, and

– the parallel composition of unit processes, one for each unit of as-
sembly a —

– with these three process expressions “being put in parallel”.

– The recursion in assembly ends when a sub-. . . -assembly consists
of no sub-sub-. . . -assemblies.

• Then the compiling task ends and the many generatedMA(a)(aσ, aρ)
andMU(u)(uσ, uρ) process expressions are invoked.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 313

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

•We can refine the meaning of connectors.

– Each connector, so far, was modelled by a CSP channel.

∗ CSP channels serve both as a synchronisation and as a communi-
cation medium.

– We now suggest to model it by a process.

∗ A channel process can be thought of as having four channels and
a buffering process.

∗ Connector, κ:K, may connect parts πi, πj.

∗ The four channels could be thought of as indexed by (κ, πi), (πi, κ), (κ, πj
and (πj, κ).

∗ The process buffer could, depending on parts pi, pj, be either
queues, sets, bags, stacks, or other.

This ends Example 44

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

314 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 3.Simple Entities and Behaviours 2.Behaviours 0. 0

• The duality between simple entities and behaviours

– has the attributes of atomic as well as of composite entities

– become the state in which the entity behaviours evolve.

•Whereas — in principle — the mereology of how sub-entities compose
into entities

– are modelled as in Example 42, namely in terms of sorts, observer
functions and axioms over unique identifiers of simple entities,

– their attributes are usually modelled in a more model-oriented way,
in terms of mathematical sets, Cartesians, sequences and maps.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 315

(6. A Specification Ontology 6.3. Simple Entities and Behaviours 6.3.2. Behaviours )

6.4. Functions and Events

We shall consider events to be special cases of function invocations.
6.4.1. Functions

Definition 40 – Function: By a function we shall understand
something (a functional entity) which when applied to an entity,
which we shall call an argument of the function, yields a result which
is also an entity.

•We shall refer to the application of a function to an argument as an
invocation.

• Functions are characterised by the function signature or just signature
and by their function definition.

•We show a number of function (and process) signatures:

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

316 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 4.Functions and Events 1.Functions 0. 0

type
A, B, M1, M2

channel
chi:MI, cho:MO

The above type definitions and channel declarations are used below:

value
f0: A → B
f1: Unit→ B
f2: Unit→ Unit
f3: A → Unit
f4: A → in chi B

f5: A → in chi out cho B
f6: A → out cho B
f7: A → in chi Unit
f8: A → in chi out cho Unit
f9: A → out cho Unit

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 317

6.A Specification Ontology 4.Functions and Events 1.Functions 0. 0

• f0 designates a (“pure, applicative”) function from A into B.

• f1 designates a constant function: takes no argument, i.e., invocation
is expressed by f1(), but yields a (constant) value in B.

• f2 designates a process (i.e., a process function, one that never ter-
minates). Invocation is expressed by f2(),

• f3 designates a process, accepting arguments in A and otherwise never
terminating.

• f4 designates a function, accepting arguments in A and inputs, of
type MI, on channel chi and otherwise terminating yielding a value
of type B.

• f5 designates a function, accepting arguments in A, and inputs, of
type MI, on channel chi, offers outputs, of type MO, on channel cho,
and otherwise terminating yielding a value of type B.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

318 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.4. Functions and Events 6.4.1. Functions )

• f6 designates a function, accepting arguments in A, offers outputs,
of type MO, on channel cho, and otherwise terminating yielding a
value of type B.

• f7 designates a function, accepting arguments in A, and inputs, of
type MI, on channel chi and otherwise never terminating.

• f8 f7 designates a function, accepting arguments in A, inputs, of type
MI, on channel chi, offers outputs, of type MO, on channel cho, and
otherwise never terminating.

• f9 designates a function, accepting arguments in A, offers outputs, of
type MO, on channel cho, and otherwise never terminating.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 319

(6. A Specification Ontology 6.4. Functions and Events 6.4.1. Functions )

• For functions f4–f9 you may replace A by Unit to obtain further
signatures.

• Thus the literal Unit,

– to the left of the → designates that no input is to be provided,

– and to the right of the→ designates a never ending process.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

320 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 4.Functions and Events 1.Functions 0. 0

•We show a number of function signatures exemplifying “Currying”:

type
A, B, C, D

value
f′: A × B × C → D
f′′: A × B → C → D
f′′′: A→ B → C → D

invocation examples:
f′(a,b,c)
f′′(a,b)(c)
f′′′(a)(b)(c)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 321

6.A Specification Ontology 4.Functions and Events 1.Functions 0. 0

We show two forms of function definitions:

type
A, B

value

f: A
∼→ B

f(a) as b
pre P(a)
post Q(a,b)

type
A, B

value

g: A → B [ A
∼→ B ]

g(a) ≡ E(a)
[ pre P(a) ]

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

322 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 4.Functions and Events 1.Functions 0. 0

• f is defined by a pair of pre/post conditions expressed by the pred-
icates P(a) and Q(a,b) respectively.

• The clause ‘as b’ expresses that the result is named b g and allows
Q to refer to the result.

• g is defined by an explicit (“abstract algorithmic”) expression E(a).
• To avoid cluttering E(a) with basically a test on P(a) (should g not

be total on A, that test is brought as a pre condition.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 323

(6. A Specification Ontology 6.4. Functions and Events 6.4.1. Functions )

6.4.2. Events

Definition 41 – Event:

• By an event we shall generally understand a state change that
satisfies a given predicate:

type
Σ

value
eventi: Σ × Σ → Bool

•Given two states: σ, σ′,
• if eventi(σ,σ′) holds

• then we say that event eventi has occurred.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

324 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 4.Functions and Events 2.Events 0. 0

• This definition of an event is much too general.

• Of course, the domain (or requirements or software design) engineer
is the one who decides which events to describe.

• But we shall accept it on formal grounds.

•More pragmatically we shall introduces the notions of

– internal event and

– external event.

•Most actions cause events — and they are all internal events.

• And most of these internal events are (usually) “uninteresting”.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 325

6.A Specification Ontology 4.Functions and Events 2.Events 0. 0

• A few internal events are interesting,

– that is, cause state changes

– “over-and-above” those primarily intended by the action.

Example 45 – Interesting Internal Events: Examples of what we
would term interesting internal events are:

• Banking: A bank changes its interest rates;

• Train Traffic: a train is cancelled, etc.;

• Oil Pipeline: a pipeline runs dry of oil (due, for example, to valve and
pump settings); and

• Health Care: a patient is give a wrong medicine (a form of medical
malpractice).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

326 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 4.Functions and Events 2.Events 0. 0

• External events are events cause by “functions” beyond “our” con-
trol.

• That is, we postulate that some, maybe we could call it “demonic”
function caused an event.

Example 46 – External Events: Examples of external events are:

• Banking: a major debitor defaults on a loan;

• Train Traffic: a train runes off the tracks;

• Oil Pipeline: a pipeline bursts; and

• Health Care: a patient dies.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 327

6.A Specification Ontology 4.Functions and Events 2.Events 0. 0

• Internal events are typically modelled by providing the usual func-
tion, that is, action definitions with a suitable case distinction based
on the eventi predicate.

value
function: A→ Σ → Σ × B
function(a)(σ) ≡
let (σ′,b) = action(a)(σ) in
if eventi(σ,σ′)
then cope with internal event(a)(σ,σ′)
else (σ′,b) end end

action: A → Σ → Σ × B
cope with internal event: A → (Σ×Σ)→ Σ × B

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

328 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 4.Functions and Events 2.Events 0. 0

•We may model external events as inputs on channels that can thus be said to
“originate” in the environments — but for which functions definitions set aside an
alternative choice of accepting such inputs from the environment.

type
A, B, Σ, Event

channel
x ch:Event

value
function: A → Σ → in x ch Σ B
function(a)(σ) ≡

action(a)(σ)
⌈⌉
let event = x ch ? in cope with external event(a)(event)(σ) end

action: A → Σ → Σ × B
cope with external event: A → Event→ Σ → Σ × B

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 329

(6. A Specification Ontology 6.4. Functions and Events 6.4.2. Events )

6.5. On Descriptions

• The discussion of this section amounts to establishing

– a meta-theory of domains,

– that is, a theory of the abstract, conceptual laws of describing
domains

– in contrast to a theory of any one specific domain,

– that is, a theory of the concrete, physical and human laws of the
described domain.

• In our discussion we will rely on understanding specifically referenced
examples.

– This understanding might very well be improved

– as a result of understanding the message of this section.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

330 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions )

6.5.1. What Is It that We Describe ?

•What is it that our descriptions denote ?19

• The answer is: the “things” that the nouns of our description “points
to” are the actual things, “out there”, in the domain.

– The denoted individuals are not “figs of our imagination”20.

– They are ‘real’, ‘actual’, can be pointed to, seen, heard, touched,
smelled, or otherwise measured by physical, including chemical/-
physical apparatus(es) !

• Therefore there can be no “identical” copies.

– If two sensed or measured phenomena are “equal”

– then they are the same phenomenon.

19This question is just another way of expressing the question of the title of this subsection (i.e., Sect. ).
20I apologize to more philosophically inclined readers: ours is not a discourse on ontology in the philosophical sense: What may exists ? etcetera. Our setting is computing

science and software engineering — so we have no qualms about postulating that what I can sense, every person in full control of all her senses can sense and in an identical
way !

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 331

(6. A Specification Ontology 6.5. On Descriptions 6.5.1. What Is It that We Describe ? )

6.5.2. Phenomena Identification

•We have in various examples,

– as from Example 10 on Slide 62

– introduced the abstract concept of unique identifiers:

∗ of hubs and links (Example 10 on Slide 62),

∗ of parts (assemblies and units) (Example 42 on Slide 280),

∗ and in many later examples.

• These unique identifications are, in a sense, a mere technicality.

– We need the unique identifications when we wish to express mere-
ological properties such a

∗ “part of”,

∗ “next to”,

∗ “connected to”,

∗ etcetera.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

332 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 5.On Descriptions 2.Phenomena Identification 0. 0

• Therefore,

– if two sensed or measured and described phenomena are “equal”,

– except for their postulated unique identification,

– then they are still the same phenomenon,

– and there is a problem of description.

•We next turn to such ’problems of description’.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 333

(6. A Specification Ontology 6.5. On Descriptions 6.5.2. Phenomena Identification )

6.5.3. Problems of Description

•We can illustrate a number of ‘problems of description’.

– (i) Unique identifications:

∗ two hubs that are claimed to have distinct hub identifiers,

∗ but have identical values for the attribute of spatial location

∗must be the same hub, i.e., have identical hub identifier;

– (ii) Observability:

∗ if from a hub, we can observe a link,

∗ and, vice versa, from a link we can observe its connected hubs,

∗ and not merely their identifiers, but the ‘real’ phenomena,

∗ then we can argue that

· we can observe, from any hub all hubs and all links,

· and that is counter to our intuition of how we observe.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

334 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.3. Problems of Description )

6.5.4. Observability

• That is: we reject the dogma:

– “The Universe in a Single Atom”21,

– that is, that all can be observed from a single “position”.

• But this rejection begs the issue

– “What Do We Mean by Observability ?”

• In the following we shall treat observability of

– simple entities and their attributes

– on par, that is, not make a distinction.

• Later we shall make a distinction between

– observing simple entities and observing attributes.

21Also the title of a book by HH The 14thDalai Lama: ‘The Universe in a Single Atom’: Reason and Faith

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 335

(6. A Specification Ontology 6.5. On Descriptions 6.5.4. Observability )

6.5.4.1. Simple Observability

• The simple part of an answer to this question,

– and, mind you, it is an answer that is based on our computing science and
software engineering viewpoint,

– concerns that which can be physically observed of any domain phenomenon
“itself”,

– that is, of the phenomenon observed in isolation.

• That part of the answer goes like this:

– of a physically manifested phenomenon

– we can observe all that can be physically sensed:

∗ seen,

∗ heard,

∗ smelled,

∗ tasted, and

∗ touched;

as well as

– measured by physical/chemical apparatus(es).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

336 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.4. Observability 6.5.4.1. Simple Observability )

6.5.4.2. Not-so-Simple, Simple Entity Observability

• The not-so-simple part of an answer

– focuses on simple entities and

– concerns that which can be

∗ physically observed

∗ of the “immediate” mereology

∗ of the simple entity “itself”,

– that is,

∗ of the parts

∗ to which that simple entity

∗ is connected.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 337

6.A Specification Ontology 5.On Descriptions 4.Observability 2.Not-so-Simple, Simple Entity Observability 0

• Here the answer is: One can observe immediate phenomenological and conceptual
connections, that is,

– the simple entity parts that are connected to the entity under review,

∗ and by reference to their identity —

∗ hence the need for the identity concept;

and

– similarly for operations, event and behaviours: which operations

∗ directly invoke other operations,

∗ directly cause events, and, in general,

∗ directly participate in behaviours;

– which events “trigger”

∗ operations,

∗ other events, and, in general,

∗ directly participate in behaviours;

– and which behaviours

∗ synchronise and/or communicate with other behaviours.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

338 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.4. Observability 6.5.4.2. Not-so-Simple, Simple Entity Observability )

6.5.5. On Denoting

• Yes, we do know that Bertrand Russel wrote a famous paper with this title [Rus05].

• But our intention here is less ‘lofty’, and, perhaps not !

•When, above, we write:

– the denoted individuals are not “figs of our imagination” and

– they are ‘real’, ‘actual’, can be pointed to, seen, heard, touched, smelled,
or otherwise measured by physical, including chemical/physical appara-
tus(es),

– then it is our intention that we express.

•We can make that claim as far as the informal narrative description is concerned.

• But when our description is formalised, then what ?

– Our formal description language has a semantics.

– That semantics ascribes to our formalisation some mathematical values, struc-
tures.

– That is, our narrative is of the ‘real thing’,

– and our formalisation is a model of the real thing.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 339

6.A Specification Ontology 5.On Descriptions 5.On Denoting 0. 0

• So there are two notions of ‘denoting’ at play here.

– an informal one: the relation between the narrative description
and the physical (incl. human) phenomena

– and a formal one: the relation between the syntax of our formal
description and its semantics, i.e., ‘the model’.

• The two notions relate, but only informally:

– enumerated lines of the narrative has been “syntactically”,

– that is informally, related to

– “identically” numbered formula lines,

– with the informal claim that

∗ a numbered narrative line

∗ “means” the same as the same-numbered formula line !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

340 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.5. On Denoting )

6.5.6. A Dichotomy

• Example 42 (Slides 280–293), we now claim,

– has the narrative denote classes of real phenomena and

– has the formalisation model the syntax and syntactic well-formedness
of a large class of such real phenomena.

• Later, in Example 44, (Slides 305–313), we now claim,

– has the (the same) narrative (as in Example 42) indicate concep-
tual semantic models of

– with the formalisation explicitly designating classes of such seman-
tics models.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 341

6.A Specification Ontology 5.On Descriptions 6.A Dichotomy 0. 0

• So the transition between the two examples, Example 42 and Exam-
ple 44, signal a reasonably profound “shift”

– from

∗ (informally) designating actual phenomena and

∗ (formally) denoting their algebraic structures,

– to,

∗ informally and formally,

∗ referring to semantic models in terms of behaviours and states.

• There is no dichotomy here, just a shift of abstraction.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

342 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.6. A Dichotomy )

6.5.7. Suppression of Unique Identification

•When comparing, for example, two simple entities

– one is comparing not only their attributes

– but also, when the entities are composite, their sub-entities.

• Concerning unique identifiers of simple entities we have this to say:

– We can decide to either include unique identifiers as an entity
attribute,

– or we can decide that such identifiers form a third kind of observ-
able property of a simple entity

∗ the two others being (“other”) attributes — as we see fit to
define and

∗ the possible sub-entities of composite entities.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 343

6.A Specification Ontology 5.On Descriptions 7.Suppression of Unique Identification 0. 0

• Either way, we need to introduce a meta-linguistic operator22, say

SI : Simple observable entity value → Anonymous simple entity value

• The concept of an anonymous value is also meta-linguistic.

• The anonymous value is basically

– “the same, i.e., “identical” value

– as is the simple entity value (from which, through SI
23, it derives)

– with the single exception that the simple entity value “possesses”

∗ the unique identifier of the observable entity value and

∗ the anonymous entity value does not.

22The operator SI is meta-linguistic with respect to RSL: it is not part of RSL, but applies to RSL values.
23The S stands for “suppress” and the I for the suppressed unique identifier.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

344 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.7. Suppression of Unique Identification )

6.5.8. Laws of Domain Descriptions

6.5.8.1. Preliminaries

•When we wish to distinguish one simple entity phenomenon from
another

• then we say that the two (“the one and the other”) are distinct.

• To be distinct to us means that the two phenomena have distinct,
that is, unique identifiers.

• Being simple entity phenomena, separately observable in the domain,
means that their spatial (positional) properties are distinct.

• That is their anonymous values are distinct.

•Meta-linguistically, that is, going outside the RSL framework24, we
can “formalise” this:

24but staying within a proper mathematical framework — once we have understood the mathematical properties of SI and proper RSL values and ‘anonymous’ values
(which, by the way, are also RSL values)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 345

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 1.Preliminaries 0

type
A [ A models a type of simple entity phenomena ]

I25 [ I models the type of unique A identifiers ]
value

obs I : A → I
axiom
∀ a,a′:A • obs I(a)6=obs I(a′) ⇒ SI(a)6=SI(a′)

25We have here emphasized I , the type name of the type of unique A identifiers. Elsewhere in this book we treat types of unique identifiers of different types of observable
simple entities as “ordinary” RSL types. Perhaps we should have “singled” such unique identifier type names out with a special font ? Well, we’ll leave it as is !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

346 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 1.Preliminaries 0

• The above applies to any kind of observable simple entity phe-
nomenon A.

• It does not necessarily apply to simple entity concepts.

– Example:

∗ Two uniquely identified timetables

∗may have their anonymous values

∗ be the exact same value. 2

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 347

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 1.Preliminaries 0

• Simple entity phenomena, in our ontology,

– are closely tied to space/time “co-ordinates” —

– with no two simple entity phenomena sharing overlapping space.

• Concepts are, in our ontology,

– not so constrained,

– that is, we allow “copies”

– although uniquely named !

• That is, two seemingly distinct concepts

– may be the same

– when “stripped” of their unique names !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

348 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.8. Laws of Domain Descriptions 6.5.8.1. Preliminaries )

6.5.8.2. Some Domain Description Laws

•We shall just bring a few domain description laws here.

• Enough, we hope, to spur further research into ‘laws of description’.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 349

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 2.Some Domain Description Laws 0

Domain Description Law 1 – Unique Identifiers:

• If two observable simple entities have the same unique identifier

• then they are the same simple entity.

• Any domain description must satisfy this law.

• The domain describer must, typically through axioms, secure that
the domain description satisfy this law.

• Thus there is a proof obligation to be dispensed, namely that the
unique identifier law holds of a domain description.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

350 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 2.Some Domain Description Laws 0

Domain Description Law 2 – Unique Phenomena:

• If two observable simple entities have different unique identifiers

• then their values, “stripped” of their unique identifiers are different.

• Any domain description must satisfy this law.

• The domain describer must, typically through axioms, secure that
the domain description satisfy this law.

• Thus there is a proof obligation to be dispensed, namely that the
unique phenomena law holds of a domain description.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 351

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 2.Some Domain Description Laws 0

Domain Description Law 3 – Space Phenomena Consistency:

• Two otherwise unique, and hence distinctly observable phenomena

• can, spatially, not overlap.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

352 Dines Bjørner: Domain & Requirements Engineering

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 2.Some Domain Description Laws 0

•We can express the Space/Time Phenomena Consistency Law

– meta-linguistically,

– yet in a proper mathematical manner:

type
E [ E is the type name of a class of observable simple entity phenomena ]
I [ I is the type name of unique E identifiers ]
L [ L is the type name of E locations ]

value
obs I : E → I
obs L: E → L

axiom
∀ e,e′:E • obs I(e) 6=obs I(e′) ⇒ obs L(e) ⊓ obs L(e′) = ∅

•We can assume that this law always holds for

• otherwise unique, and hence distinctly observable phenomena.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 353

6.A Specification Ontology 5.On Descriptions 8.Laws of Domain Descriptions 2.Some Domain Description Laws 0

Domain Description Law 4 – Space/Time Phenomena Consis-
tency:

• If a simple entity (that has the location property),

• at time t is at location ℓ, and

• at time t′ (larger than t) is at location ℓ′ (different from ℓ),

• then it moves monotonically from ℓ to ℓ′ during the interval (t, t′).

• Specialisations of this law are, for example, that

• if the movement is of two simple entities, like two trains, along a
single rail track and in the same direction,

• then where train si is in front of train sj at time t,

• train sj cannot be in front of train si at time t′ (where t′− t is some
small time interval).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-aso c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

354 Dines Bjørner: Domain & Requirements Engineering

(6. A Specification Ontology 6.5. On Descriptions 6.5.8. Laws of Domain Descriptions 6.5.8.2. Some Domain Description Laws )

6.5.8.3. Discussion

• There are more domain description laws.

• And there are most likely laws that have yet to be “discovered” !

• Any set of laws must be proven consistent.

• And any domain description must be proven to adhere to these (and
“the” other) laws.

•We decided to bring this selection of laws because they are a part of
the emerging ‘domain science’.

• Laws 3 on Slide 351 and 4 on the preceding slide are also mentioned,
in some other form, in [Rus18-19].

• Are these domain description laws laws of the domain or of their
descriptions, that is, are they domain laws ?

•We leave the reader to ponder on this !

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 6

A Specification Ontology

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 7

Domain Engineering: Opening Stages and Intrinsics

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-aso Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 355

7. Domain Engineering

7.1. The Core Stages of Domain Engineering

• The core stages of domain engineering are those of modelling the
following domain facets:

– intrinsics,

– support technologies,

– management and organisation,

– rules and regulations,

– scripts (contracts and licenses) and

– human behaviour

of the domain.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

356 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 1.The Core Stages of Domain Engineering 0. 0. 0

• An important stage of domain engineering is that of

– rough sketching

– the business processes.

• This stage is “sandwiched” in-between the opening stages of

– domain acquisition and

– domain analysis.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 357

7.Domain Engineering 1.The Core Stages of Domain Engineering 0. 0. 0

• The decomposition of these core stages

– into exactly these facet description stages is one of pragmatics.

– Experience has shown that this decomposition into modelling stages
leads to a suitable base for a final model.

• That is, the domain engineers may follow, more-or-less strictly

– the facet stage sequence hinted at above

– but the domain engineers may, very well, in the end,

– present the final domain description

– without clear delineations, in the description, between these facets.

• In other words,

– the decomposition and the principles of each individual facet stage,

– we think, provides a good set of guidelines for the domain engineers

– on how to proceed.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

358 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 1.The Core Stages of Domain Engineering 0. 0. 0

• These core stages are

– preceded by a number of opening stages and

– succeeded by a number of closing stages.

• The opening and closing stages, except for the business process
sketching stage,

– are here considered less germane

– to the proper understanding of the domain concept.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 359

(7. Domain Engineering 7.1. The Core Stages of Domain Engineering )

7.2. Business Processes

• The rough-sketching of business processes

– shall serve as an “easiest”, informal way of starting

– the more systematic domain acquisition process.

Definition 42 – Business Process: By a business process we
understand

• the procedurally describable aspects, of one or more of the ways
in which a business, an enterprise, a factory, etc.,

• conducts its yearly, quarterly, monthly, weekly and daily pro-
cesses, that is, regularly occurring chores.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

360 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 0. 0. 0

• The business processes may include strategic, tactical and oper-
ational management and work-flow planning and decision activ-
ities; and

• the administrative, and where applicable, the marketing, the re-
search and development, the production planning and execution,
the sales and the service (work-flow) activities — to name some.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 361

(7. Domain Engineering 7.2. Business Processes )

7.2.1. General Remarks

• A domain is often known to its stakeholders by the various actions
they play in that domain.

• That is, the domain is known by the various sequences of entities,
functions and events the stakeholders are exposed to, are performing
and are influenced by.

• Such sequences are what we shall here understand as business pro-
cesses.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

362 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 1.General Remarks 0. 0

• In our ongoing example, that of railway systems, informal examples
of business processes are:

– for a potential passenger to plan, buy tickets for, and undergo a
journey.

– For the driver of the locomotive the sequence of undergoing a
briefing of the train journey plan, taking possession of the train,
checking some basic properties of that train, negotiating its start,
driving it down the line, obeying signals and the plan, and, finally
entering the next station, stopping at a platform, and concluding a
trip of the train journey — all that constitutes a business process.

– For a train dispatcher, the monitoring and control of trains and
signals during a work shift constitutes a business process.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 363

7.Domain Engineering 2.Business Processes 1.General Remarks 0. 0

• Describing domain intrinsics focuses on the very essentials of a do-
main.

• It can sometimes be a bit hard for a domain engineer, in collaboration
with stakeholders, to decide which are the domain intrinsics.

• It can often help (the process of identifying the domain intrinsics)
if one alternatively, or hand in hand analyses and describes what is
known as the business processes.

• From a description of business processes one can then analyse which
parts of such a description designate, i.e., are about or relate to,
which facets.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

364 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.2. Business Processes 7.2.1. General Remarks )

7.2.2. Rough Sketching

• Initially the domain engineer proceeds by sketching.

•We use the term rough sketching26 to emphasise that a rough sketch
is just a preparatory document.

• A roughly sketched business process appears easier to make, that is,
gets one started more easily.

• A rough sketch business process does not have to conform to specific
principles about what to describe first,

– whether to first describe phenomena or concepts;

– whether to first describe discrete facts or continuous;

– whether to first describe atomic facts or composite;

– whether to first describe informally or formally;

– etcetera.
26To both say ‘rough’ and ‘sketching’ may, perhaps be saying the same thing twice: sketches usually are rough.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 365

7.Domain Engineering 2.Business Processes 2.Rough Sketching 0. 0

Principle 1 – Describing Domain Business Process Facets:

• As part of understanding any (at least human-made) domain it
is important to delineate and describe its business processes.

• Initially that should preferably be done in the form of rough
sketches.

• These rough sketches should — again initially — focus on iden-
tifiable simple entities, functions, events and behaviours.

• Naturally, being business processes, identification of behaviours
comes first.

• Then be prepared to rework these descriptions as the modelling
of domain facets starts in earnest.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

366 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 2.Rough Sketching 0. 0

• Roughly sketched business processes help the domain engineer in the
more general domain acquisition effort.

– Domain stakeholders can be asked to sketch the business processes
they are part of.

– The domain engineer, interacting with the domain stakeholder can
clarify open points about a sketched business process.

– And the domain engineer can elicit facts about the domain as
inspired by someone else’s sketch.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 367

(7. Domain Engineering 7.2. Business Processes 7.2.2. Rough Sketching )

7.2.3. Examples (I)

Example 47 – A Business Plan Business Process:

• The board of any company instructs its chief executive officer (CEO) to formulate
revised business plans.27

• Briefly, a business plan is a plan for how the company — strategically, tactically and,
to some extent, operationally — wishes to conduct its business: what it strives for,
product-wise, image-wise, market-share-wise, financially, etc.

• The CEO develops a business plan in consultation with executive layers of (i.e., with
strategic) management.

• Strategic management (in-between) discusses the plan (which the CEO wishes to
submit to the Board) with tactical management, etc.

• Once generally agreed upon, the CEO submits the plan to the Board.

27A business plan is not the same as a description of the business’ processes.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

368 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

Example 48 – A Purchase Regulation Business Process:

• In our “example company”, purchase of equipment must adhere to
the following — roughly sketched — process:

• Once the need for acquisition of one or more units of a certain equip-
ment, or a related set of equipment, has been identified,

• the staff most relevant to take responsibility for the use of this equip-
ment issues a purchase inquiry request.

• The purchase inquiry request is sent to the purchasing department.

• The purchasing department investigates the market and reports back
with a purchase inquiry report containing facts about possible equip-
ment choices, prices, and their purchase (i.e., payment), delivery,
service and guarantee conditions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 369

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

• The person who issued the purchase inquiry request may now proceed
to issue a purchase request order, attach the purchase inquiry report
and

• send this to the relevant budget controlling manager for acceptance.

• If purchase is approved then the purchasing department is instructed
to issue, to the chosen supplier, a purchase request order.

• Once the supplier delivers the ordered equipment, the purchasing de-
partment inspects the delivery and issues an equipment inspection
report.

• An invoice from the supplier for the above-mentioned equipment is
only paid if the equipment inspection report recommends to do so.

• Otherwise the delivered equipment is returned to the supplier.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

370 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

Example 49 – A Comprehensive Set of Administrative Busi-
ness Processes:

• The University of California at Irvine (UCI), had their Administrative
and Business Services department suggest, as a learning example, the
description of a number of business processes.

• The “learning” had to do, actually, with business process re-engineering
(BPR).

• So we really should bring the below example into the future section
on BPR!

•We quote from their home Web page:

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 371

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

1. Human Resources:

• “Examine the hiring business process of the University, including the
applicant process.

• Special emphasis should be given to simplifying the process, identi-
fying those parts where there is no value added — i.e., where those
parts of the process which one considers simplifying “away” add no
value.

• Increase speed of response to applicant and units, and reduce pro-
cess costs while achieving high quality.”

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

372 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

2. Renovation:

• “Review the campus’ remodelling and alterations business process,

• and develop recommendations to improve Facilities Management
services to other departments for small projects (under $50,000)
and minor capital projects (up to $250,000).

• Special emphasis should be given to

– simplifying the process;

– identifying those parts where there is no value added to the cus-
tomer’s product;

– to increase speed and flexibility of response;

– and to reduce process costs while achieving high quality.”

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 373

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

3. Procurement:

• “Review the campus procurement business process and develop rec-
ommendations/solutions for process improvement.

• The redesigned process should provide

– “hassle-free” purchasing,

– give a quick response time to the purchaser,

– be economical in terms of all costs,

– be reasonably error-free and

– be compliant with (US) Federal procurement standards.”

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

374 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

4. Travel:

• “Study the travel business process

– from the stage when a staff member identifies the need to travel

– to the time when reimbursement is received.
• Analyze and redesign the process through a six step program based

on the following business process improvement (BPI) principles:
– (i) simplify the process,

– (ii) identify those parts where there is no value added to the customer, increase

– (iii) speed and

– (iv) flexibility of response,

– (v) improve clarity for responsibilities and

– (vi) reduce process costs while meeting customer expectations from travel services.

• The redesign should reflect
– customer needs,

– service,

– economy of operation and

– be in compliance with applicable regulations.”

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 375

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

5. Accounts payable:

• “Redesign the accounts payable business process to meet the fol-
lowing functional objectives (in addition to BPI measures):

– Payment for goods and services must assure that vendors receive
remittance in a timely manner for all goods and services provided
to the company.

– Significantly improve the operation’s ability to serve company cus-
tomers while maintaining financial solvency and adequate internal
controls.”

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

376 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 3.Examples (I) 0. 0

6. Parking:

• “Review how parking permits

– are sold to customers and staff

– with the intent of omitting unnecessary steps and redundant data collection.

• The redesigned process should achieve

– a dramatic reduction in time spent by people standing in line to purchase a
permit, and

– reduce administrative time (and cost) in recording and tracking permit sales.”

• Please observe that the above examples illustrate requests for possible
business process re-engineering —

• but that they also give rough-sketch glimpses of underlying business
processes.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 377

(7. Domain Engineering 7.2. Business Processes 7.2.3. Examples (I) )

7.2.4. Methodology

Definition 43 – Business Process Engineering: By business
process engineering we understand

• the identification of which business processes should be subject
to precise description,

• describing these and securing their general adoption (acceptance)
in the business, and

• enacting these business process descriptions

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

378 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 4.Methodology 0. 0

Principle 2 – Business Processes:

• Human-made universes of discourse

• entail the concept of business processes.

• The principle of business processes states that the description
of business processes is indispensable in any description of a
human-made universe of discourse.

• The principle of business processes also states that describing
these is not sufficient: all facets must be described

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 379

7.Domain Engineering 2.Business Processes 4.Methodology 0. 0

Principle 3 – Describing Domain Business Process Facets:

• As part of understanding any (at least human-made) domain it
is important to delineate and describe its business processes.

• Initially that should preferably be done in the form of rough
sketches.

• These rough sketches should — again initially — focus on iden-
tifiable entities, functions, events and behaviours.

• Naturally, being business processes, identification of behaviours
comes first.

• Then be prepared to rework these descriptions as other facets are
being described in depth

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

380 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 4.Methodology 0. 0

Technique 1 – Business Processes: The basic technique of de-
scribing a human-made universe of discourse involves:

• identification and description of a suitably comprehensive set of
behaviours: the behaviours of interest and the environment;

• identification and description, for each behaviour, of the entities
characteristic of this behaviour;

• identification and description, for each entity, of the functions
that apply to entities, or from which entities are yielded;

• identification and description, for each behaviour, of the events
that it shares — either with other specifically identified behaviours
of interest, or with a further, abstract, environment

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 381

7.Domain Engineering 2.Business Processes 4.Methodology 0. 0

Tool 1 – Business Processes: Further techniques and the basic
tools for describing business processes include:

• RSL/CSP definition of processes,

– where one suitably defines their input/output signatures,

– associated channel names and types,

– and their process definition bodies;

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

382 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 4.Methodology 0. 0

• Petri nets;

•message and live sequence charts for the definition of interaction
between behaviours;

• statecharts for the definition of highly complex, typically inter-
woven behaviours;

• and the usual, full complement of RSL’s type, function value,
and axiom constructs and their abstract techniques for modelling
entities and functions

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 383

(7. Domain Engineering 7.2. Business Processes 7.2.4. Methodology )

7.2.5. Examples (II)

•We rough-sketch a number of examples.

• In each example we start, according to the principles and techniques
enunciated above, with

– identifying behaviours, events, and hence

– channels and the

– type of entities communicated over channels, i.e. participating in
events.

• Hence we shall emphasise, in these examples, the behaviour, or pro-
cess diagrams.

•We leave it to other examples to present other aspects, so that their
totality yields the principles, the techniques and the tools of domain
description.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

384 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

Example 50 – Air Traffic Business Processes:

• The main business process behaviours of an air traffic system are the
following:

– the aircraft,

– the ground control towers,

– the terminal control towers,

– the area control centres and

– the continental control centres

• (Fig. 4 on next to slide).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 385

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control
Center

ControlControl
Center

Control Control
Continental

CenterCenter

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

This right 1/2 is a "mirror image" of left 1/2 of figure

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Figure 4: An air traffic behavioural system abstraction

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

386 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

•We describe each of these behaviours separately:

– Aircraft

∗ get permission from ground control towers to depart;

∗ proceed to fly according to a flight plan (an entity);

∗ keep in contact with area control centres along the route,

∗ (upon approach) contacting terminal control towers from which
they, simplifying, get permission to land; and

∗ upon touchdown, changing over from terminal control tower to
ground control tower guidance.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 387

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

– The ground control towers,

∗ on one hand, take over monitoring and control of landing aircraft
from terminal control towers;

∗ and, on the other hand, hand over monitoring and control of
departing aircraft to area control centres.

∗ Ground control towers, on behalf of a requesting aircraft, negoti-
ate with destination ground control tower and (simplifying) with
continental control centres when a departing aircraft can actually
start in order to satisfy certain “slot” rules and regulations (as
one business process).

∗ Ground control towers, on behalf of the associated airport, as-
sign gates to landing aircraft, and guide them from the spot of
touchdown to that gate, etc. (as another business process).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

388 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

– The terminal control towers

∗ play their major rôle in handling aircraft approaching airports with
intention to land.

∗ They may direct these to temporarily wait in a holding area.

∗ They — eventually — guide the aircraft down, usually “stringing”
them into an ordered landing queue.

∗ In doing this the terminal control towers take over the monitoring
and control of landing aircraft from regional control centres,

∗ and pass their monitoring and control on to the ground control
towers.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 389

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

– The area control centres handle aircraft flying over their territory:

∗ taking over their monitoring and control

· either from ground control towers,

· or from neighbouring area control centres.

∗ Area control centres shall help ensure smooth flight,

· that aircraft are allotted to appropriate air corridors, if and when
needed (as one business process),

· and are otherwise kept informed of “neighbouring” aircraft and
weather conditions en route (other business processes).

∗ Area control centres hand over aircraft

· either to terminal control towers (as yet another business pro-
cess),

· or to neighbouring area control centres (as yet another business
process).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

390 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

– The continental control centres

∗monitor and control, in collaboration with

· regional and ground control centres,

∗ overall traffic in an area comprising several regional control centres
(as a major business process),

∗ and can thus monitor and control whether contracted (landing)
slot allocations and schedules can be honoured,

∗ and, if not, reschedule these (landing) slots (as another major
business process).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 391

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

• From the above rough sketches of behaviours the domain engineer
then goes on to describe

– types of messages (i.e., entities) between behaviours,

– types of entities specific to the behaviours, and

– the functions that apply to or yield those entities.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

392 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

Example 51 – Freight Logistics Business Processes:

S[1]

S[2]

S[s]

T[1] T[2] T[t]

R[1]

R[2]

R[r]

C[c]C[2]C[1]H[h]H[2]H[1] ... ...

......

...
...

...
...

F[1] F[2] F[f]

th/ht[1..t,1..h]:TH|HT

hc/ch[1..h,1..c]:HC|CH

sf
/fs

[1
..s

,1
..f

]:S
F

|F
S

fh
/h

f[1
..f

,1
..h

]:F
G

|H
F

tc
/c

t[1
..t

,1
..c

]:T
C

|C
T

fr/rf[1..f,1..r]:FR|RF

sr/rs[1..s,1..r]:SR|RS

ft/tf[1..f,1..t]:FT|TF

Logistics Firms Transport Companies

Hubs

Senders Receivers

Conveyors

Figure 5: A freight logistics behavioural system abstraction

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 393

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

• The main business process behaviours of a freight logistics system are
the following:

– the senders of freight,

– the logistics firms which plan and coordinate freight transport,

– the transport companies on whose conveyors freight is being trans-
ported,

– the hubs between which freight conveyors “ply their trade”,

– the conveyors themselves and

– the receivers of freight

• A detailed description for each of the freight logistics business process
behaviours listed above should now follow.

•We leave this as an exercise to the reader to complete.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

394 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

Example 52 – Harbour Business Processes:

• The main business process behaviours of a harbour system are the
following:

– the ships who seek harbour to unload and load cargo at a harbour
quay,

– the harbour-master who allocates and schedules ships to quays,

– the quays at which ships berth and unload and load cargo (to and
from a container area) and

– the container area which temporarily stores (“houses”) containers.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 395

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

...

...

......

...

...

... ...

Harbour Master

Quay
Q1

Quay
Q2

Quay
Qq

Ship
S1

Ship

Ship
Ss

C
on

ta
in

er
 A

re
a

qh/hq[2]:QH|HQ

sh/hs[s’]:SH|HS

Ss’
sq/qs[s’,2]:SQ|QS

Figure 6: A harbour behavioural system abstraction

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

396 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

• There may be other parts of a harbour:

– a holding area for ships

∗ to wait before being allowed to properly enter the harbour and be
berthed at a buoy or a quay,

∗ or for ships to rest before proceeding; as well as

– buoys at which ships may be anchored while

∗ unloading and loading.

•We shall assume that the reader can properly complete an appropriate,
realistic harbour domain.

• A detailed description for each of the harbour business process be-
haviours listed above should now follow.

•We leave this as an exercise to the reader to complete.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 397

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

Example 53 – Financial Service Industry Business Processes:

• The main business process behaviours of a financial service system are
the following:

– clients,

– banks,

– securities instrument brokers and traders,

– portfolio managers,

– (the, or a, or several) stock exchange(s),

– stock incorporated enterprises and

– the financial service industry “watchdog”.

•We rough-sketch the behaviour of a number of business processes of
the financial service industry.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

398 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

Clients

Banks

B[1] B[2] B[b]

P[1] P[2] P[p]

C[c]

C[2]

C[1]

Brokers
Traders

T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

pb
/b

p[
1.

.p
,1

..b
]:P

B
|B

P

Portfolio Managers

T
he

 F
in

an
ce

 In
du

st
ry

 "
W

at
ch

do
g"

wb/bw[1..b]:WB|BW

wt/tw[1..t]:WT|TW

wp/pw[1..p]:WP|PW

ws:WS

sw:SW

SE

Exchange
Stock

I[1]I[1] I[2] I[i]

...

...

...

... ...

is/si[1..i]:IS|SI

Figure 7: A financial behavioural system abstraction

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 399

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

– Clients engage in a number of business processes:

∗ they open, deposit into, withdraw from, obtain statements about,
transfer sums between and close demand/deposit, mortgage and
other accounts;

∗ they request brokers to buy or sell, or to withdraw buy/sell orders
for securities instruments (bonds, stocks, futures, etc.); and

∗ they arrange with portfolio managers to look after their bank
and securities instrument assets, and occasionally they re-instruct
portfolio managers in those respects.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

400 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

– Banks engage with clients, portfolio managers, and brokers and
traders in exchanges related to client transactions with banks, port-
folio managers, and brokers and traders, as well as with these on
their own behalf, as clients.

– Securities instrument brokers and traders engage with clients, port-
folio managers and the stock exchange(s) in exchanges related to
client transactions with brokers and traders, and, for traders, as well
as with the stock exchange(s) on their own behalf, as clients.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 401

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

– Portfolio managers engage with clients, banks, and brokers and
traders in exchanges related to client portfolios.

– Stock exchanges engage with the financial service industry watch-
dog, with brokers and traders, and with the stock listed enterprises,
reinforcing trading practices, possibly suspending trading of stocks
of enterprises, etc.

– Stock incorporated enterprises engage with the stock exchange:
They send reports, according to law, of possible major acquisitions,
business developments, and quarterly and annual stockholder and
other reports.

– The financial industry watchdog engages with banks, portfolio man-
agers, brokers and traders and with the stock exchanges.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

402 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

Example 54 – Railway and Train Business Processes:

• This example emphasises the simple entities that enable specific busi-
ness processes.

– The net of lines and stations, cf. Fig. 8 on following slide[A], made
up from simple units, cf. Fig. 8 on next to slide[B], enable train
traffic.

– And train traffic gives rise to a number of business processes:

∗ train journies (say, according to a timetable);

∗ the selling of train tickets including reservation of seats;

∗ the controlling of signals such that trains can move in and out of
stations and along tracks between stations;

∗ track and train maintenance;

∗ staff rostering;

∗ et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 403

7.Domain Engineering 2.Business Processes 5.Examples (II) 0. 0

[A] Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Turnout / PointTrack / Line / Segment
/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

[B]

Figure 8: [A] A “model” railway net. An Assembly of four Assemblies:
Two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 8[B].
There were 66 connections at last count and three “dangling” connectors

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

404 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.2. Business Processes 7.2.5. Examples (II) )

7.2.6. Discussion

•We shall take up the concept of business processes in in a later lec-
ture where we introduce the important topic of ‘business process
re-engineering’.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 405

(7. Domain Engineering 7.2. Business Processes 7.2.6. Discussion )

7.3. Domain Intrinsics

Definition 44 – Domain Intrinsics: By domain intrinsics we
shall understand the very basics upon which a domain is based,
the very essence of that domain, the simple entities, operations,
events and behaviours without which none of the other facets of the
domain can be described.

The choice as to which simple entities, operations, events and be-
haviours “belong” to intrinsics is a pragmatic choice. It is taken, by
the domain engineers, based on those persons’ choice of abstraction
and modelling techniques and tools. It is a choice that requires quite
some experience, quite some years of training, including studying other
persons’ domain descriptions of similar or other domains.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

406 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

Example 55 – An Oil Pipeline System:
Statics of Pipelines

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Connector

Units

Figure 9: An oil pipeline system with 23 units (19 pipes) and 26 connectors

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 407

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

86. From an oil pipeline system, cf. Fig. 9 on previous slide, one can
observe units and connectors.

87. Units are either pipe, or (flow, not extraction) pump, or valve, or join
or fork units.

88. Units and connectors have unique identifiers.

89. From a connector one can observe the ordered pair of the identity of
two (actual or pseudo) from-, respectively to-units that the connector
connects.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

408 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

type
86 OPLS, U, K
value
86 obs Us: OPLS → U-set, obs Ks: OPLS → K-set
87 is PiU, is PuU, is VaU, is JoU, is FoU: U → Bool [ mutually exclusive
type
88 UI, KI
value
88 obs UI: U → UI, obs KI: K → KI
axiom [ uniqueness of identifiers ]
88 ∀ opls:OPLS,u,u′:U,k,k′:K •

{u,u′}⊆obs Us(opls)∧{k,k′}⊆obs Ks(opls)∧u 6=u′∧k 6=k′⇒
obs UI(u) 6=obs UI(u′)∧obs KI(u) 6=obs KI(u′)

value
89 obs UIp: K → (UI|{nil}) × (UI|{nil})
c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 409

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

90. From a unit one can observe the identity of the connectors that provide
input to, respectively that provide output from that unit — the two
sets of identities are disjoint.

91. From a pipe, pump and valve units we can observe one input and one
output connector identifier. From join units we can observe one output
and two or more input connector identifiers, and from a fork unit the
“reverse”: one input and two or more output connector identifiers.

92. Given an oil pipeline system and a connector of that system, the ob-
servable ordered pair of actual identities of from- and to-units indeed
do identify distinct units of that oil pipeline system.

93. No two connectors connect the same pair of units.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

410 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

value
90 obs iKIs, obs oKIs: U → KI-set
axiom
90 ∀ u:U • obs iKIs(u) ∩ obs oKIs(u) = {}
91 ∀ u:U •

is PiU(u)∨is VaU(u)∨is PuU(u) ⇒ card obs iKIs(u)=1=card obs oKIs(u) ∧
is JoU(u) ⇒ card obs iKIs(u)≥2 ∧ card obs oKIs(u)=1 ∧
is FoU(u) ⇒ card obs oKIs(u)≥2 ∧ card obs iKIs(u)=1

92 ∀ opls:OPLS,k:K: k ∈ obs Ks(opls) ⇒
let (fui,tui) = obs UIp(k) in
fui6=nil ⇒ exist!u:U •

u ∈ obs Us(opls)∧fui=obs UI(u)∧obs KI(k)∈ obs oKIs(u) ∧
tui6=nil ⇒ exist!u:U •

u ∈ obs Us(opls)∧tui=obs UI(u)∧obs KI(k)∈ obs iKIs(u) end
93 ∀ ols:OPLS,k,k′:K • {k,k′}⊆obs Ks(opls)∧k 6=k′⇒

let ((fui,tui),(fui′,tui′)) = (obs UIp(k),obs UIp(k′)) in
nil6=fui∧fui=fui′⇒tui6=tui′∧ nil6=tui∧tui=tui′⇒fui6=fui′ end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 411

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

94. An oil pipeline system thus has a set of input units, a set of output
units and a set of routes from input to output units.

95. It follows from the above definitions that two two sets are non-empty.

value
94 iUs,oUs: OPLS → U-set
94 iUs(opls) ≡
{u|u:U•u ∈ obs Us(opls)∧

let ikis = obs iKIs(u) in
∼∃ u′:U•u′isin obs Us(opls)∧ikis ∩ obs oKIs(u′) 6={} end}

94 oUs(opls) ≡
{u|u:U•u ∈ obs Us(opls)∧

let okis = obs oKIs(u) in
∼∃ u′:U•u′isin obs Us(opls)∧okis ∩ obs iKIs(u′) 6={} end}

lemma:
95 ∀ opls:OPLS • iUs(opls) 6= {} ∧ oUs(opls) 6= {}
August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

412 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

96. We introduce the concept of a route being a special sequence of units.

97. Basis Clause: A unit, u, provides a route, < u >, of the oil pipeline
system.

98. Inductive Clause: If r and r′ are routes of the oil pipeline system

(a) and the last unit, u of r, has an output connector identifier

(b) which is an output connector identifier of the first unit, u′ of r′,
then their concatenation is a route of the oil pipeline system.

99. Extremal Clause: Only such sequences of units are routes if that
follows from a finite set of applications of clauses 97 and 98.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 413

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

type
96 R′ = U∗

96 R = {| r:R′
• wfR(r) |}

value
96 wfR: R′ → Bool
96 wfR(r) ≡

case r of
97 〈u〉 → true,
98 r′̂r′′ → wfR(r′) ∧ wfR(r′′)
98(a)-98(b) ∧ obs oKIs(len r′)∩ obs iKIS(hd r′′)6={}

end
96 routes: U-set → R-set
96 routes(us) ≡
97 let urs = {〈u〉|u:U•u ∈ us} in
97 let rs = urs ∪
98 {r′̂r′′|r′,r′′:R•{r′,r′′}⊆rs ∧
98(a)-98(b) obs oKIs(len r′) = obs iKIs(hd r′′)}
99 rs end end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

414 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

100. An oil pipeline system is well-formed, if — in addition to the earlier
mentioned constraints —

(a) there is a route from any input unit to some output unit,

(b) there is a route leading to any output unit from some input unit
and

(c) the system of units and connectors “hang together”, that is, there
is not a partition of these such that the sum of their routes equals
the routes of the whole.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 415

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

axiom
100 ∀ opls:OPLS •

100(a) ∀ iu:U • iu ∈ obs iUs(opls) ⇒
100(a) ∃ ou:U • ou ∈ obs oUs(opls) ∧
100(a) ∃ r:R • r ∈ routes(opls) ∧
100(a) hd r = iu ∧ r(len r) = ou ∧
100(b) ∀ ou:U • ou ∈ obs oUs(opls) ⇒
100(b) ∃ iu:U • iu ∈ obs iUs(opls) ∧
100(b) ∃ r:R • r ∈ routes(opls) ∧
100(b) hd r = iu ∧ r(len r) = ou ∧
100(c) ∼∃ us,us′:U-set • us⊂obs Us(opls) ∧ us′⊂obs Us(opls)
100(c) ∧ us ∩ us′ = {} ∧ us ∪ us′ = obs Us(opls)
100(c) ⇒ routes(us)∪ rotes(us′)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

416 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

Dynamics of Pipelines

101. There is oil, o : O, and there is oil flow, f : F . We do not bother
how oil volume is measured, but all oil is measured with the same
measuring unit. Oil flow is measured by that measuring unit per some
time units (for example, barrels per second).

102. One can observe the oil contained in oil pipeline units.

103. One can observe the oil flowing into and out of connectors of oil
pipeline units.

104. Units leak oil.

105. The sum of the oil flowing into a unit minus its leak equals the sum
of the oil flowing out of the unit.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 417

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

type
101 O, F
value
102 obs O: U → O
103 obs ioFs: U → (KI→m F)×(KI→m F)
104 obs Leak: U → F
axiom
103 ∀ u:U •

let (ikis,okis) = (obs iKIs(u),obs iKIs(u)), (iflow,oflow) = obs ioFs(u) in
dom iflow = ikis ∧ dom oflow = okis end

105 ∀ u:U • in F(u) − obs Leak(u) = out F(u)
value

in F,out F: KI→m F → F
in F(fm),out F(fm) ≡ case fm of [ ]→f0,[ ki7→f ]∪ fm′→f⊕in F(fm′) end

⊕: F × F → F
f0:F

f0 is our way of designating the ‘zero’ flow, and ⊕ is our way of adding two flows.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

418 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

106. Valve units can be in either of two states: closed or open.

107. Valves, when closed, also leak – in addition to “the usual” leak of
units.

108. Pump units can be in either of two states: pumping or not pumping.

109. If a valve unit is closed then the flows into and out from the unit are
characterised by two leak flows.

110. If a pump unit is not pumping then the flows into and out from the
unit are characterised to be the same minus the leak of the pump unit.

111. If a pump unit is pumping then the flows into and out from the unit
a characterised to still be the same minus the leak of the pump unit.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 419

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

value
106 is open: U → Bool
107 obs Valve Leak: U → F
108 is pumping: U → Bool
axiom
109 ∀ u:U • is VaU(u) ∧ ∼is open(u) ⇒

in F(u) = obs Leak(u) ∧ out F(u) = obs Valve Leak(u)
110-111 ∀ u:U • is PuU(u) ⇒ in F(u) − obs Leak(u) = out F(u)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

420 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

112. One can speak of the total leak of an oil pipeline system.

113. And one can speak of the total flow of oil into and the total flow of
oil out from an oil pipeline system.

114. And, consequently one can conjecture a ‘law’ of oil pipeline systems:
“what flows in is either lost to leaks or flows out”.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 421

7.Domain Engineering 3.Domain Intrinsics 0. 0. 0

value
112 total Leak: U-set → F
112 total Leak(us) ≡ case us of {}→f0,{u}∪ us′→obs Leak(u) ∪ total Leak(us′) end
113 total in F, total out F: OPLS → F
113 total in F(opls) ≡ tot in F(obs iUs(opls))
113 total out F(opls) ≡ tot out F(obs oUs(opls))
113 tot io F: U-set → F
113 tot in F(us) ≡ case us of {}→f0,{u}∪ us′→in F(u) ∪ tot in F(us′) end
113 tot out F(us) ≡ case us of {}→f0,{u}∪ us′→out F(u) ∪ tot out F(us′) end
lemma:
114 ∀ opls:OPLS • total in F(opls) − total Leak(obs Us(opls) = total in F(opls)

This ends Example 55

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

422 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.3. Domain Intrinsics )

7.3.1. Principles

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 423

(7. Domain Engineering 7.3. Domain Intrinsics 7.3.1. Principles )

7.3.2. Discussion

•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-1 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 7

Domain Engineering: Opening and Intrinsics

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 8

Domain Engineering: Support Techns., Mgt. & Org. and Rules & Regs.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-1 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

424 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.3. Domain Intrinsics 7.3.2. Discussion )

7.4. Domain Support Technologies

Definition 45 – Domain Support Technology:

• By domain support technology

• we mean a human or man-made technological device

• for the support of entities and behaviours, operations and events
of the domain —

• with such a support thus enabling the existence of such phenom-
ena and concepts in the domain.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 425

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

Example 56 – Railway Switch Support Technology: In “ye
olde” days a railway switch (point machine [British], turn-out [US En-
glish], aguielette [French], sporskifte [Danish], weiche [German])

• was operated by a human, a railroad staff member;

• later, when quality of steel wires and pullers improved, the switch
position could be controlled from the station cabin house;

• further on, in time, such mechanical gear was replaced by electro-
mechanical gears,

• and, most recently, the monitoring and control of groups of switched
could be (interlock) done with electronics interfacing to the electro-
mechanics.

Usually, as hinted at in Example 56, several technologies may co-exist.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

426 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

Example 57 – Air Traffic (II):

• By air traffic we mean

– the time and position continuous movement of aircraft in and out
of airports and in airspace,

– that is,

∗ for every time point there is a set of aircraft

∗ in airspace

∗ each with their (not necessarily) distinct positions

– where an aircraft position is some triple of

∗ latitude (φ),

∗ longitude (λ) and

∗ (true, indicated, height, pressure, or density) altitude (above sea
level, above the terrain over which aircraft flying, etc.).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 427

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

type
Time, Aircraft, Position
cAirTraffic = Time → (Aircraft →m Position)

• How do we know the position of aircraft at any one time ?

• That is, can we record the continuous movement ?

– In the above model time is assumed to be a linear, dense point set.

– But can we record, measure, that ?

• The answer is: no we cannot !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

428 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

•We, on the ground, can observe with our eyes, with binoculars, and
with the aid of some radar (support) technology.

• The aircraft pilots can record altitude with a pressure altimeter (an
aneroid barometer), and LORAN or a Global Navigation Satellite

System (together with an aircraft chronometer) for determination of
latitude and longitude.

• In any case, whether human or physical instrument-aided observation,
one cannot record continuously.

• Instead any human or instrument awareness of movement is time and
position discretised.

type
Time, Aircraft, Position
cAirTraffic = Time →m (Aircraft →m Position)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 429

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

• The difference between continuous and discretised air traffic,

• that is, between dAirTraffic and cAirTraffic,

• is the discretisation of Time.

• The way we get from cAirTraffic to dAirTraffic is by applying some
SupportTechnology:

value
SupportTechnology: cAirTraffic → dAirTraffic

illustration:
axiom
∀ cmvnt:cAirTraffic •

∃ dmvnt:dAirTraffic • dmvnt=SupportTechnology(cmvnt)

This ends Example 57

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

430 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

Example 58 – Street Intersection Signalling:

• In this example of a support technology

– we shall illustrate an abstraction

– of the kind of semaphore signalling

– one encounters at road intersections, that is, hubs.

• The example is indeed an abstraction:

– we do not model the actual “machinery”

∗ of road sensors,

∗ hub-side monitoring & control boxes, and

∗ the actuators of the green/yellow/red semaphore lamps.

– But, eventually, one has to,

– all of it,

– as part of domain modelling.

• To model signalling we need to model hub and link states.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-sis Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 431

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

• We claim that the concept of hub and link states is an intrinsics facet of transport
nets.

• We now introduce the notions of

– hub and link states and state spaces and

– hub and link state changing operations.

• A hub (link) state is the set of all traversals that the hub (link) allows.

– A hub traversal is a triple of identifiers:

∗ of the link from where the hub traversal starts,

∗ of the hub being traversed, and

∗ of the link to where the hub traversal ends.

– A link traversal is a triple of identifiers:

∗ of the hub from where the link traversal starts,

∗ of the link being traversed, and

∗ of the hub to where the link traversal ends.

– A hub (link) state space is the set of all states that the hub (link) may be in.

– A hub (link) state changing operation can be designated by

∗ the hub and a possibly new hub state (the link and a possibly new link state).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-sis c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

432 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

type

LΣ′ = L Trav-set

L Trav = (HI × LI × HI)

LΣ = {| lnkσ:LΣ′ • syn wf LΣ{lnkσ} |}
value

syn wf LΣ: LΣ′ → Bool

syn wf LΣ(lnkσ) ≡
∀ (hi′,li,hi′′),(hi′′′,li′,hi′′′′):L Trav • ⇒

({(hi′,li,hi′′),(hi′′′,li′,hi′′′′)} ∈ lnkσ ⇒ li = li′ ∧
hi′6=hi′′ ∧ hi′′′ 6=hi′′′′ ∧ {hi′,hi′′} = {hi′′′,hi′′′′})

type

HΣ′ = H Trav-set

H Trav = (LI × HI × LI)

HΣ = {| hubσ:HΣ′ • wf HΣ{hubσ} |}
value

syn wf HΣ: HΣ′ → Bool

syn wf HΣ(hubσ) ≡
∀ (li′,hi,li′′),(li′′′,hi′,li′′′′):H Trav •

{(li′,hi,li′′),(li′′′,hi′,li′′′′)}⊆hubσ ⇒ hi = hi′

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-sis Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 433

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

• The above well-formedness only checks syntactic well-formedness,

– that is well-formedness when only considering the traversal desig-
nator,

– not when considering the “underlying” net.

• Semantic well-formedness takes into account

– that link identifiers designate existing links and

– that hub identifiers designate existing hub.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-sis c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

434 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

value

sem wf LΣ: LΣ → N → Bool

sem wf HΣ: HΣ → N → Bool

sem wf LΣ(lnkσ)(ls,hs) ≡ lnkσ 6={}⇒
∀ (hi,li,hi′): LΣ • (hi,li,hi′) ∈ lnkσ ⇒
∃ h,h′:H • {h,h′}⊆hs ∧ obs HI(h)=hi ∧ obs HI(h′)=hi′

∃ l:L • l ∈ ls ∧ obs LI(l)=li

pre syn wf LΣ(lnkσ)

sem wf HΣ(hubσ)(ls,hs) ≡ hubσ 6={}⇒
∀ (li,hi,li′): HΣ • (li,hi,li′) ∈ hubσ ⇒
∃ l,l′:L • {l,l′}⊆ls ∧ obs LI(l)=li ∧ obs LI(l′)=li′

∃ h:H • h ∈ hs ∧ obs HI(l)=hi

pre syn wf HΣ(hubσ)

xtr LIs: HΣ → LI-set

xtr LIs(hubσ) ≡ {li,li′|(li,hi,li′):H Trav • (li,hi,li′) ∈ hubσ}
xtr HI: HΣ → HI

xtr HI(hubσ) ≡ let (li,hi,li′):H Trav • (li,hi,li′) ∈ hubσ in hi end

pre: hubσ 6={}
xtr LI: LΣ → LI

xtr LIs(lnkσ) ≡ let (hi,li,hi′):L Trav • (hi,li,hi′) ∈ hubσ in li end

pre: lnkσ 6={}
c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-sis Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 435

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

xtr HIs: LΣ → HI-set
xtr HIs(lnkσ) as his
pre: lnkσ 6={}
post his={hi,hi′|(hi,li,hi′):L Trav • (hi,li,hi′) ∈ hubσ}∧ card his=2

type
HΩ = HΣ-set, LΩ = LΣ-set

value
obs HΩ: H → HΩ, obs LΩ: L → LΩ

axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

value
chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-sis c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

436 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

•Well, so far we have indicated that there is an operation that can
change hub and link states.

• But one may debate whether those operations shown are really exam-
ples of a support technology. (That is, one could equally well claim
that they remain examples of intrinsic facets.)

•We may accept that and then ask the question:

– How to effect the described state changing functions ?

– In a simple street crossing a semaphore does not instantaneously
change from red to green in one direction while changing from green
to red in the cross direction.

– Rather there is are intermediate sequences of, for example, not nec-
essarily synchronised green/yellow/red and red/yellow/green states
to help avoid vehicle crashes and to prepare vehicle drivers.

• Our “solution” is to modify the hub state notion.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-sis Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 437

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

type
Colour == red | yellow | green
X = LI×HI×LI×Colour [ crossings of a hub ]
HΣ = X-set [ hub states ]

value
obs HΣ: H → HΣ, xtr Xs: H → X-set
xtr Xs(h) ≡
{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}

axiom
∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-sis c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

438 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

•We consider the colouring, or any such scheme, an aspect of a support
technology facet.

• There remains, however, a description of how the technology that
supports the intermediate sequences of colour changing hub states.

•We can think of each hub being provided with a mapping from pairs
of “stable” (that is non-yellow coloured) hub states (hσi,hσf) to well-
ordered sequences of intermediate “un-stable’ (that is yellow coloured)
hub states

– paired with some time interval information

– 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉
– and so that each of these intermediate states can be set,

– according to the time interval information,28

– before the final hub state (hσf) is set.

28Hub state hσ
′′ is set tδ

′ time unites after hub state hσ
′ was set.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-sis Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 439

7.Domain Engineering 4.Domain Support Technologies 0. 0. 0

type

TI [ time interval ]

Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling

value

obs Sema: H → Sema,

chg HΣ: H × HΣ → H,

chg HΣ Seq: H × HΣ → H

chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ

chg HΣ Seq(h,hσ) ≡
let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H

sig seq(h)(sigseq) ≡
if sigseq=〈〉 then h else

let (hσ,tδ) = hd sigseq in let h′ = chg HΣ(h,hσ);

wait tδ;

sig seq(h′)(tl sigseq) end end end

This ends Example 58

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

440 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.4. Domain Support Technologies )

7.4.1. A Formal Characterisation of a Class of Support Technologies

•We have presented an abstraction of the physical phenomenon of a
road intersection semaphore.

• That abstraction has to be further concretised.

– The electronic, electro-mechanical or other

– and the data communication

– monitoring of incoming street traffic

– and the semaphore control box control

– of when to start and end semaphore switching,

– etcetera, must all be detailed.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 441

7.Domain Engineering 4.Domain Support Technologies 1.A Formal Characterisation of a Class of Support Technologies 0. 0

Schema 1 – A Support Technology Evaluation Scheme:

• Let the support technology be one for observing and recording the
movement of cars along roads, trains along rail tracks, aircraft in
airspace (along air-lanes), or “some such thing”.

•We can evaluate the quality of “some such” support technology by
interpreting the following specification pattern:

• Let is close be a predicate which holds if two positions are close to
one-another.

• Proximity is a fuzzy notion, so let the is close predicate be “tunable”,
i.e., by set to “any degree” of closeness.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

442 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 1.A Formal Characterisation of a Class of Support Technologies 0. 0

type
Vehicle, Position
continuous Movement = Time → (Vehicle →m Position)
discrete Movement = Time →m (Vehicle →m Position)

value
obs and record Mvmt: continuous Movement → discrete Movement
is close: Position × Position → Bool
quality Support Technology: is close → Bool
quality Support Technology(is close) ≡
∀ cmvt:continuous Movement •

let dmvt = obs and record Mvmt(cvmt) in
dom dvmt ⊆ DOMAIN cvmt ∧
∀ t:Time • t ∈ dom dvmt
∀ v:Vehicle • v ∈ dom dvmt(t) ⇒ is close(((cvmt)(t))(v),((dvmt)(t))(v)) end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 443

7.Domain Engineering 4.Domain Support Technologies 1.A Formal Characterisation of a Class of Support Technologies 0. 0

• The above scheme can be interpreted as follows:

– For any given sub-domain of movement, be it road traffic, train
traffic, air traffic or other, there is a set of technologies that enable
observation and recording of such traffic.

– For a given such technology and a given such traffic, that is, a traffic
along a specific route, the predicate is close has to be “instanti-
ated”, i.e., “tuned”.

– Then, to test whether the technology delivers an acceptable obser-
vation and recording, that is, is of a necessary and sufficient quality,
a laboratory experiment — usually quite a resource (equipment,
cost and time) consuming affair — has to be carried out before
accepting acquisition and installation of that technology for that
route.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

444 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 4.Domain Support Technologies 1.A Formal Characterisation of a Class of Support Technologies 0. 0

– The experiment ideally compares the actual traffic to that observed
and recorded by the contemplated technology.

– But the actual traffic “does not exist in any recorded form”.

– Hence a “highest possible” movement recording (reference) sup-
port technology must first be (experimentally) developed and made
available.

– We then say that whatever that reference technology represents is
the actual, but discretised movement.

– It is that reference movement which is now compared — using
is close — to the discretised movement recorded by the support
technology being tested.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 445

(7. Domain Engineering 7.4. Domain Support Technologies 7.4.1. A Formal Characterisation of a Class of Support Technologies )

7.4.2. Discussion

• For more detailed modelling of specific support technologies, includ-
ing more concrete models of movement sensors and recorders and
of street intersection signals, one will undoubtedly need use other
formalisms than the ones mainly used in this paper, for example:

– MSCs and LSCs,

– Petri nets,

– SCs,

– DC,

– TLA+,

– STeP,

– etcetera

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

446 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.4. Domain Support Technologies 7.4.2. Discussion )

7.4.3. Principles

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 447

(7. Domain Engineering 7.4. Domain Support Technologies 7.4.3. Principles )

7.5. Domain Management and Organisation

• The term management usually conjures an image of an institution of

– owners,

– two or three layers of
(hierarchical or matrix)
stratified management,

– workers, and of

– clients.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

448 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

•Management is about resources and resources come in many shapes
and forms:

– manifest equipment, buildings, land,

– services and/or production goods,

– financial assets (liquid cash, bonds, stocks, etc.),

– staff (personnel),

– customer allegiance, and

– goodwill29.

29Goodwill: the favor or advantage that a business has acquired especially through its brands and its good reputation

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 449

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

•Management decisions as to the monitoring and controlling of re-
sources are often, for pragmatic reasons, classified as

– strategic,

– tactical and

– operational

monitor and control decisions and actions.

• The borderlines between

– strategic and tactical, and between

– tactical and operational

monitor and control decisions and actions

• is set by pragmatic concerns, that is, are hard to characterise pre-
cisely.

• But we shall try anyway.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

450 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

Definition 46 – Strategy: By strategy we shall understand

• the science and art

• of formulating the goals of an enterprise

• and of employing the

– political,

– economic,

– psychological, and

– institutional

resources of that enterprise

• to achieve those goals.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 451

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

Definition 47 – Tactics: By tactics we shall understand

• the art or skill

• of employing available resources

• to accomplish strategic goals.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

452 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

•We introduce three kinds of entities to model an essence of strategic,
tactical and operational management.

– Let RES (for resources) designate an indexed set of resources;

– let ENV (for environment) designate a binding of resource names
to resource locations and some of their more static properties —
such a schedules, and

– let Σ (for state) designate the association of resource locations to
the more dynamic properties (attributes) of resources,

– then we might be able to delineate the three major kinds of actions:

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 453

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

type
A, B, C, RES, ENV, Σ

value
strategic action: A → RES→ ENV→ Σ → RES
tactical action: B → RES→ ENV→ Σ → ENV
operational action: C → RES → ENV→ Σ → Σ

• A, B and C

– are “inputs” chosen by management

– to reflect strategic or tactical decisions.

• Sometimes tactical actions also change the state:

type
tactical action: B → RES→ ENV→ Σ → Σ × ENV

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

454 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

• A strategic action, strategic action(a)(res)(ρ)(σ) as res′, in principle
does not change the environment and state but sets up a new set of
resources, res′, for which “future” business is transacted.

• A tactical action, tactical action(a)(res)(ρ)(σ) as ρ′, changes the
environment — typically the scheduling and allocation components
of environments.

• Operational actions, operational action(a)(res)(ρ)(σ) as σ′, changes
the state.

The above strategy/tactics/operations “abstraction” is an idealised
“story”.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 455

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

Definition 48 – Resource Monitoring:

• By the monitoring of resources we mean the regular keeping track
of these resources:

– their current value,

– state-of-quality,

– location,

– usage, etc. —

including changes in these (i.e., trends).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

456 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

Definition 49 – Resource Control:

• By the controlling of resources we mean the

– acquisition (usually as the result of converting one resources
into another),

– regular scheduling and allocation

– and final disposal (sale, renewal or “letting go”)

of these resources.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 457

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

Definition 50 – Management: By management we mean

• the strategic,

• tactical and

• operational

•monitoring and

• controlling of resources

.

Definition 51 – Organisation: By organisation we mean

• the stratification

• (arranging into graded classes)

• of management and enterprise actions.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

458 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

Example 59 – Management and Organisation:

•We can claim that

– the set of models of the description given in Example 42

– includes that of enterprise management and organisation.

– We refer to Fig. 10 on next to slide.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mao Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 459

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

... ... ......

...

......

...
... ... ...

A

Bx By

Ca Cb Cc

Dp Dq Dr Ds Dv Dw

A

Bx By

Ca Cb

Dp

Dq

Dr

Ds

Cc

Dv

Dw

...

...

... ... ...

...

Figure 10: Conventional hierarchical organigram and its mereology diagram

• The small, quadratic round-corner boxes of Fig. 10

• can be thought of as designating staff or other (atomic) resources.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mao c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

460 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

•We will now define a number of strategic/tactical operations on the
organisation of an enterprise.

• For simplicity, bit without any loss of generality, we assume a notion
of void parts, that is parts with no connections and, if assemblies, then
with no sub-parts.

• The operations to be defined can be considered ‘primitive’ only in the
sense that more realistic operations on non-void parts can be defined
in terms of these primitive operations.

• Given this interpretation we can now postulate a number of manage-
ment operations (over a given system s).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mao Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 461

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

115. Assign a new, void resource p, to a given assembly (i.e., division or
department) identified by i.

116. Move a given, void resource identified by i, from an assembly identified
by fi to another assembly identified by tj.

117. Delete a given, void resource identified by i.

•We ignore, for the time, the issue of connectors.

• In order to model these operations we need first introduce some con-
cepts:

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mao c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

462 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

118. Given a system, s, and a part, p, of that system,

119. the sequence 〈π1, π2, ..., πn−1, π〉
120. is the sequence of part identifiers such that π1 is that of the assembly

that s is,

121. that is, is the 1st level part that embraces p, πn

122. is the identifier of p, and ıi, for 1<i<n,

123. is the i’th level part embracing p.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mao Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 463

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

value
void P: P → Bool
void P(p) ≡ obs KIs(p)={} ∧ is A(p) ⇒ obs Ps(p)={}

type
Path = AUI∗

value

gen Path: P → A
∼→ Path

gen Path(p)(a) ≡
〈obs AUI(a)〉̂
if p=a then 〈〉
else let a′:A • a′ ∈ obs Ps(a)∧p ∈ xtr Ps(a′) in gen Path(p)(a′) end end
pre: p ∈ {a} ∪ xtr Ps(a)

gen all Paths: A → Path-set
gen all Paths(a) ≡ {gen Path(p)(a)|p:P•p ∈ xtr Ps(a)}

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mao c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

464 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

124. Assigning a new, void part, p, to a system, s, results in a new system,
s′. p is in this new system. Let the path to p be πℓ. Let the set of
all paths of s be pths. Then the set of all paths of s′ is pths∪ {πℓ}.
Thus it follows that the set, ps′, of all parts of s′, is p together with
the set, ps, of all parts of s : ps′ = ps ∪ {p}.

125. Moving a given, void part, p, of a system, s, results in a new system s′.
Let the path to p in s be πℓ, and let the path to p in s′ be πℓ′. Then
the set of paths of the two systems relate as follows: pths \ {πℓ} =
pths′ \ {πℓ′} and ps′ = ps ∪ {p}.

126. Deleting a given, void part, p, from a system, s, results in a new
system, s′. The new system has exactly one less path than the set of
all paths of s. And we have: pths\{πℓ} = pths′ and ps′ = ps\{p}.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mao Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 465

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

semantic types
S, A, U, P=A|U

value

get P: S → (AI|UI)
∼→ P

get P(s)(i) ≡ let p:P • p ∈ xtr Ps(s)∧obs AUI(p)=i in p end
pre ∃ p:P • p ∈ xtr Ps(s)∧obs AUI(p)=i

syntactic types
MgtOp = AP | MP | DP | MA | CA
AP == AsgP(pt:P,ai:AI)
MP == MovP(ai:AI,fai:AI,tai:AI)
DP == DelP(ai:AI)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mao c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

466 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

value

int MgtOp: MgtOp
∼→ S

∼→ S

int MgtOp(AsgP(p,i))(s) as s′

pre void P(p) ∧ obs AUI(p)6∈ xtr AUIs(s)
post obs Ps(s) ∪ {u} = obs Ps(s′) ∧ obs Ks(s)=obs Ks(s′) ∧

gen all Paths(s)∪{gen Path(p)(s′)}=gen all Paths(s′)

int MgtOp(MovP(i,fi,ti))(s) as s′

pre void P(get P(s)(i)) ∧ i6=fi∧i6=ti∧fi 6=ti∧{i,fi,ti}⊆xtr AUIs(s)
post obs Ps(s) = obs Ps(s′) ∧ obs Ks(s)=obs Ks(s′) ∧

gen all Paths(s)\{gen Path(p)(s)} = gen all Paths(s′)\{gen Path(p)(s′)}

int MgtOp(DelP(i))(s) as s′

pre void P(get P(s)(i)) ∧ i ∈ xtr AUIs(s)
post obs Ps(s′) = obs Ps(s)\{get P(s)(i)} ∧ obs Ks(s)=obs Ks(s′) ∧

gen all Paths(s′)=gen all Paths(s)\{gen Path(p)(s)}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mao Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 467

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

• Similar connector operations can be postulated (narrated and formalised):

127. Insert a new (internal or external) connector, k, in a system s between parts i
and j, or just emanating from (incident upon) part i;

128. Move a given connector’s connections from parts {i, j} to parts {i, k}, {ℓ, k}
or {k, j}; and

129. Delete a given connector.

These operations would have to suitably update connected parts’ connector identifier
attributes.

• The hierarchical organigram of Fig. 10 on Slide 459 portrays one organisation form.

• So-called matrix-organisations, cf. Fig. 11 on the following slide are likewise modelled
by the mereology concept introduced in Examples 42 and 44.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-mao c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

468 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 5.Domain Management and Organisation 0. 0. 0

...

...

...

...

...
...

...

...

...

A
B C11

C21 E2i2

E2in

E1i1 E1i2 E1im

Ga Gb Gc

Gd

Ge Gf

F

E2i1
B2

B1

Figure 11: Conventional matrix organigram; mereology diagram is hinted at.

• We see, in Fig. 11, the use of connectors to underscore the two hierarchies: the
strategic and tactical (B1 and B2 ) and the matrix-sharing of production and service
facilities (F, Ga, . . . , Gf ).

This ends Example 59

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-mao Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 469

(7. Domain Engineering 7.5. Domain Management and Organisation )

7.5.1. Principles

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

470 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.5. Domain Management and Organisation 7.5.1. Principles )

7.5.2. Discussion

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 471

(7. Domain Engineering 7.5. Domain Management and Organisation 7.5.2. Discussion )

7.6. Domain Rules and Regulations

Definition 52 – Domain Rule: By a domain rule we understand

• a text which prescribes how humans and/or technology are ex-
pected to behave, respectively function.

• A domain rule text thus denotes a predicate over states,

– the state before, σβ, and the state after, σα,

a human or a technology action.

• If the predicate is satisfied, then the rule has been adhered to,
i.e., the rule has not been “broken”.

• The ‘after’ state, σα,

• following a rule that has been broken in some ‘before’ state

• will be referred to as a ‘rule-braking state’.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

472 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 6.Domain Rules and Regulations 0. 0. 0

Definition 53 – Domain Regulation: By a domain regulation
we understand

• a text which prescribes [remedial] actions to be taken in case a
domain rule has been “broken”.

• A domain regulation text thus denotes an action, i.e., a state-
to-state transformation,

• one that transforms a ‘rule-braking state’ σα into a (new ‘after’)
state, σoκ,

• in which the rule now appears to not have been broken.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 473

7.Domain Engineering 6.Domain Rules and Regulations 0. 0. 0

Example 60 – Trains Entering and/or Leaving Stations: For
some train stations there is the rule that

• no two trains may enter and/or leave that station

• within any (sliding “window”) n minute interval —

• where n typically is 2.

• If train engine men disregard this rule

– they may be subject to disciplinary action —

– as determined by some subsequent audit —

– and the train may be otherwise diverted through actions from the
train station cabin tower.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

474 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 6.Domain Rules and Regulations 0. 0. 0

Example 61 – Rail Track Train Blocking:

• Usually rail tracks,

– that is, longer sequences of linear rail units

– connecting two train stations

• are composed of two or more blocks (also sequences of linear rail units).

• The train blocking rule for trains moving along such rail tracks (obviously in the
same direction) is that

– there must always be an empty block

– between any two ‘neighbouring’ trains.

– (We may consider the connecting stations to serve the rôle of such blocks.)

• Again, if the rule is broken by some train engine man,

– then that person

– may be subject to disciplinary action —

– as determined by some subsequent audit — et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 475

(7. Domain Engineering 7.6. Domain Rules and Regulations )

7.6.1. A Formal Characterisation of Rules and Regulations

Schema 2 – A Rules and Regulations Specification Pattern:

• Let Σ designate the state space of a domain;

• let Rule designate the syntax category of rules;

• let RULE designate the semantic type of rules, that is, the denotation
of Rules: predicates over pairs of (before and after) states;

• let Stimulus designate the syntax category of stimuli that cause ac-
tions, hence state changes,

• that is, let STIMULUS finally designate the semantic type of Stimuli.

• valid stimulus is now a predicate which “tests” whether a given stim-
ulus and a given rule in a given state, σ, leads to a not-been-broken
state.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

476 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 6.Domain Rules and Regulations 1.A Formal Characterisation of Rules and Regulations 0. 0

type
Rule, Stimulus, Σ
RULE = Σ × Σ → Bool
STIMULUS = Σ → Σ

value
Mrule: Rule → RULE
Mstimulus: Stimulus → STIMULUS
Valid stimulus: Stimulus → Rule → Σ → Bool
Valid stimulus(stimulus)(rule)(σ) ≡

((Mrule)(rule))(σ,(Mstimulus(stimulus))(σ))

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 477

7.Domain Engineering 6.Domain Rules and Regulations 1.A Formal Characterisation of Rules and Regulations 0. 0

• Let Rule and Regulation designate the syntax category of pairs of
rules and related regulations;

• let Regulation designate the semantic type of regulations, that is,
the denotation of Regulations: state transformers from broken to ok

states.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

478 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 6.Domain Rules and Regulations 1.A Formal Characterisation of Rules and Regulations 0. 0

type
Regulation
Rule and Regulation = Rule × Regulation
REGULATION = Σ → Σ

value
Mregulation: Regulation → REGULATION

axiom
∀ (rule syntax,regulation syntax):Rule and Regulation, stimulus:Stimulus, σ
∼Valid stimulus(stimulus)(rule syntax)(σ) ⇒
∃ σ′:Σ •

(Mregulation(regulation syntax))(σ)=σ′
∧ (Mrule(rule syntax))(σ,σ′)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 479

(7. Domain Engineering 7.6. Domain Rules and Regulations 7.6.1. A Formal Characterisation of Rules and Regulations )

7.6.2. Principles

• Rules and regulations are best treated by separately describinging

– their pragmatics,

– their semantics, and

– their syntax

— the latter two were hinted at in Sect. .

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-2 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

480 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.6. Domain Rules and Regulations 7.6.2. Principles )

7.6.3. Discussion

•Many more examples could be given, and also formalised.

•We leave that to the next section, Sect. .

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 8

Domain Engineering: Support Techns., Mgt. &Org. and Rules & Regs.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 9

Domain Engineering: Scripts

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-2 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 481

(7. Domain Engineering 7.6. Domain Rules and Regulations 7.6.3. Discussion )

7.7. Domain Scripts, Licenses and Contracts

Definition 54 – Script: By a domain script we shall understand

• a structured text

• which can be interpreted as a set of rules (“in disguise”).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-3 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

482 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Example 62 – Timetables:

•We shall view timetables as scripts.

• In on the present and next slides (482–499) we shall

– first narrate and formalise the syntax, including the well-formedness
of timetable scripts,

– then we consider the pragmatics of timetable scripts,

∗ including the bus routes prescribed by these journey descriptions
and

∗ timetables marked with the status of its currently active routes,
and

– finally we consider the semantics of timetable, that is, the traffic
they denote.

• In Example. 65 on contracts for bus traffic, we shall assume the
timetable scripts of this part of the lecture on scripts.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 483

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Figure 12: Some bus timetables: Italy, India and Norway

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

484 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ The Syntax of Timetable Scripts ⊕

130. Time is a concept covered earlier. Bus lines and bus rides have unique names (across any set of

time tables). Hub and link identifiers, HI, LI, were treated from the very beginning.

131. A TimeTable associates to Bus Line Identifiers a set of Journies.

132. Journies are designated by a pair of a BusRoute and a set of BusRides.

133. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more intermediate Bus Stops

and a destination Bus Stop.

134. A set of BusRides associates, to each of a number of Bus Identifiers a Bus Schedule.

135. A Bus Schedule a triple of the initial departure Time, a list of zero, one or more intermediate bus

stop Times and a destination arrival Time.

136. A Bus Stop (i.e., its position) is a Fraction of the distance along a link (identified by a Link Identifier)

from an identified hub to an identified hub.

137. A Fraction is a Real properly between 0 and 1.

138. The Journies must be well formed in the context of some net.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 485

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

type
130. T, BLId, BId
131. TT = BLId →m Journies
132. Journies′ = BusRoute × BusRides
133. BusRoute = BusStop × BusStop∗ × BusStop
134. BusRides = BId →m BusSched
135. BusSched = T × T∗ × T
136. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
137. Frac = {|r:Real•0<r<1|}
138. Journies = {|j:Journies′

•∃ n:N • wf Journies(j)(n)|}

• The free n in ∃ n:N • wf Journies(j)(n) is the net given in the license.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

486 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Well-formedness of Journies ⊕

139. A set of journies is well-formed

140. if the bus stops are all different,

141. if a defined notion of a bus line is embedded in some line of the net,
and

142. if all defined bus trips (see below) of a bus line are commensurable.

value
139. wf Journies: Journies→ N → Bool
139. wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡
140. diff bus stops(bs1,bsl,bsn) ∧
141. is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
142. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 487

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

143. The bus stops of a journey are all different

144. if the number of elements in the list of these equals the length of the
list.

value
143. diff bus stops: BusStop × BusStop∗ × BusStop→ Bool
143. diff bus stops(bs1,bsl,bsn) ≡
144. card elems 〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

488 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

•We shall refer to the (concatenated) list (〈bs1〉̂bsl̂〈bsn〉 = len
〈bs1〉̂bsl̂〈bsn〉) of all bus stops as the bus line.

145. To explain that a bus line is embedded in a line of the net

146. let us introduce the notion of all lines of the net, lns,

147. and the notion of projecting the bus line on link sector descriptors.

148. For a bus line to be embedded in a net then means that there exists
a line, ln, in the net, such that a compressed version of the projected
bus line is amongst the set of projections of that line on link sector
descriptors.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 489

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

value
145. is net embedded bus line: BusStop∗ → N → Bool
145. is net embedded bus line(bsl)(hs,ls)
146. let lns = lines(hs,ls),
147. cbln = compress(proj on links(bsl)(elems bsl)) in
148. ∃ ln:Line • ln ∈ lns ∧ cbln ∈ projs on links(ln) end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

490 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

149. Projecting a list (∗) of BusStop descriptors (mkBS(hi,li,f,hi′)) onto a
list of Sector Descriptors ((hi,li,hi′))

150. we recursively unravel the list from the front:

151. if there is no front, that is, if the whole list is empty, then we get the
empty list of sector descriptors,

152. else we obtain a first sector descriptor followed by those of the re-
maining bus stop descriptors.

value
149. proj on links: BusStop∗ → SectDescr∗
149. proj on links(bsl) ≡
150. case bsl of
151. 〈〉 → 〈〉,
152. 〈mkBS(hi,li,f,hi′)〉̂bsl′ → 〈(hi,li,hi′)〉̂proj on links(bsl′)
152. end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 491

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

153. By compression of an argument sector descriptor list we mean a result sector
descriptor list with no duplicates.

154. The compress function, as a technicality, is expressed over a diminishing argument
list and a diminishing argument set of sector descriptors.

155. We express the function recursively.

156. If the argument sector descriptor list an empty result sector descriptor list is
yielded;

157. else

158. if the front argument sector descriptor has not yet been inserted in the result sector
descriptor list it is inserted else an empty list is “inserted”

159. in front of the compression of the rest of the argument sector descriptor list.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

492 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

153. compress: SectDescr∗ → SectDescr-set→ SectDescr∗
154. compress(sdl)(sds) ≡
155. case sdl of
156. 〈〉 → 〈〉,
157. 〈sd〉̂sdl′ →
158. (if sd ∈ sds then 〈sd〉 else 〈〉 end)
159. ̂compress(sdl′)(sds\{sd}) end

• In the last recursion iteration (line 159.)

– the continuation argument sds\{sd}
– can be shown to be empty: {}.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 493

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

160. We recapitulate the definition of lines as sequences of sector descrip-
tions.

161. Projections of a line generate a set of lists of sector descriptors.

162. Each list in such a set is some arbitrary, but ordered selection of
sector descriptions.

type
160. Line′ = (HI×LI×HI)∗ axiom ... type Line = ...
value
161. projs on links: Line→ Line′-set
161. projs on links(ln) ≡
162. {〈isl(i)|i:〈1..len isl〉〉|isx:Nat-set•isx⊆inds ln∧isl=sort(isx)}

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

494 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

163. sorting a set of natural numbers into an ordered list, isl, of these is
expressed by a post-condition relation between the argument, isx,
and the result, isl.

164. The result list of (arbitrary) indices must contain all the members of
the argument set;

165. and “earlier”elements of the list must precede, in value, those of
“later” elements of the list.

value
163. sort: Nat-set → Nat∗
163. sort(isx) as isl
164. post card isx = lsn isl ∧ isx = elems isl ∧
165. ∀ i:Nat • {i,i+1}⊆inds isl⇒ isl(i)<isl(i+1)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 495

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

166. The bus trips of a bus schedule are commensurable with the list of
bus stop descriptions if the following holds:

167. All the intermediate bus stop times must equal in number that of
the bus stop list.

168. We then express, by case distinction, the reality (i.e., existence) and
timeliness of the bus stop descriptors and their corresponding time
descriptors – and as follows.

169. If the list of intermediate bus stops is empty, then there is only the
bus stops of origin and destination, and they must be exist and must
fit time-wise.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

496 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

170. If the list of intermediate bus stops is just a singleton list, then the
bus stop of origin and the singleton intermediate bus stop must exist
and must fit time-wise. And likewise for the bus stop of destination
and the the singleton intermediate bus stop.

171. If the list is more than a singleton list, then the first bus stop of this
list must exist and must fit time-wise with the bus stop of origin.

172. As for Item 171 but now with respect to last, resp. destination bus
stop.

173. And, finally, for each pair of adjacent bus stops in the list of inter-
mediate bus stops

174. they must exist and fit time-wise.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 497

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

value
166. commensurable bus trips: Journies→ N → Bool
166. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)
167. ∀ (t1,til,tn):BusSched•(t1,til,tn)∈ rng js∧len til=len bsl∧
168. case len til of
169. 0→ real and fit((t1,t2),(bs1,bs2))(hs,ls),
170. 1→ real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧fit((til(1),t2),(bsl(1),bsn))(hs,ls),
171. → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧
172. real and fit((til(len til),t2),(bsl(len bsl),bsn))(hs,ls)∧
173. ∀ i:Nat•{i,i+1}⊆inds til ⇒
174. real and fit((til(i),til(i+1)),(bsl(i),bsl(i+1)))(hs,ls) end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

498 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

175. A pair of (adjacent) bus stops exists and a pair of times, that is the time interval
between them, fit with the bus stops if the following conditions hold:

176. All the hub identifiers of bus stops must be those of net hubs (i.e., exists, are real).

177. There exists links, l, l′, for the identified bus stop links, li, li′,

178. such that these links connect the identified bus stop hubs.

179. Finally the time interval between the adjacent bus stops must approximate fit the
distance between the bus stops

180. The distance between two bus stops is a loose concept as there may be many
routes, short or long, between them.

181. So we leave it as an exercise to the student to change/augment the description, in
order to be able to ascertain a plausible measure of distance.

182. The approximate fit between a time interval and a distance must build on some
notion of average bus velocity, etc., etc.

183. So we leave also this as an exercise to the student to complete.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-timetable Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 499

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

175. real and fit: (T×T)×(BusStop×BusStop)→ N → Bool
175. real and fit((t,t′),(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′)))(hs,ls) ≡
176. {hi,hi′,hi′′,hi′′′}⊆his(hs)∧
177. ∃ l,l′:L•{l,l′}⊆ls∧(obs LI(l)=li∧obs(l′)=li′)∧
178. obs HIs(l)={hi,hi′}∧obs HIs(l′)={hi′′,hi′′′}∧
179. afit(t′−t)(distance(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′))(hs,ls))

180. distance: BusStop × BusStop → N → Distance
181. distance(bs1,bs2)(n) ≡ ... [ left as an exercise ! ] ...

182. afit: TI → Distance→ Bool
183. [ time interval fits distance between bus stops ]

This ends Example 62

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-timetable c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

500 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Definition 55 – Licenses: By a domain license we shall under-
stand

• a right or permission granted in accordance with law

• by a competent authority

– to engage in some business or occupation,

– to do some act,

– or to engage in some transaction

• which

– but for such license

• would be unlawful Merriam Webster On-line.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-3 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 501

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Definition 56 – Contract: By a domain contract we shall un-
derstand

• very much the same thing as a license:

• a binding agreement between two or more persons or parties —

• one which is legally enforceable.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-3 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

502 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• The concepts of licenses and licensing express relations between

– actors (licensors (the authority) and licensees),

– simple entities (artistic works, hospital patients, public adminis-
tration and citizen documents) and

– operations (on simple entities), and as performed by actors.

• By issuing a license to a licensee, a licensor wishes to express and
enforce certain permissions and obligations:

– which operations

– on which entities

– the licensee is allowed (is licensed, is permitted) to perform.

• As such a license denotes a possibly infinite set of allowable be-
haviours.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-3 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 503

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

•We shall consider four kinds of entities:

– (i) digital recordings of artistic and intellectual nature:

∗music, movies, readings (“audio books”), and the like,

– (ii) patients in a hospital:

∗ as represented also by their patient medical records,

– (iii) documents related to public government:

∗ citizen petitions, law drafts, laws, administrative forms, letters
between state and local government adminsitrators and between
these and citizens, court verdicts, etc., and

– (iv) bus timetables,

∗ as part of contracts for a company to provide bus servises.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-3 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

504 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• The permissions and obligations issues are:

– (i) for the owner (agent) of some intellectual property to be paid
(i.e., an obligation) by users when they perform permitted oper-
ations (rendering, copying, editing, sub-licensing) on their works;

– (ii) for the patient to be professionally treated — by medical staff
who are basically obliged to try to cure the patient;

– (iii) for public administrators and citizens to enjoy good gover-
nance: transparency in law making (national parliaments and local
prefectures and city councils), in law enforcement (i.e., the daily
administration of laws), and law interpretation (the judiciary) —
by agents who are basically obliged to produce certain documents
while being permitted to consult (i.e., read, perhaps copy) other
documents;

– (iv) for citizens to enjoy timely and reliable bus services and the
local government to secure adequate price-performance standards.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-3 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 505

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Example 63 – A Health Care License Language:

• Citizens

– go to hospitals

– in order to be treated for some calamity (disease or other),

– and by doing so these citizens become patients.

• At hospitals patients, in a sense, issue a request to be treated with
the aim of full or partial restitution.

• This request is directed at medical staff, that is,

– the patient authorises medical staff to perform a set of actions upon
the patient.

– One could claim, as we shall, that the patient issues a license.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-hcll c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

506 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Patients and Patient Medical Records ⊕

• So patients and their attendant patient medical records (PMRs) are
the main entities, the “works” of this domain.

•We shall treat them synonymously: PMRs as surrogates for patients.

• Typical actions on patients — and hence on PMRs — involve

– admitting patients,

– interviewing patients,

– analysing patients,

– diagnosing patients,

– planning treatment for patients,

– actually treating patients, and,

– under normal circumstance, to finally release patients.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-hcll Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 507

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Medical Staff ⊕

•Medical staff may request (‘refer’ to)

– other medical staff to perform some of these actions.

– One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans.

– We shall call such scripts for licenses.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-hcll c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

508 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Professional Health Care ⊕

• The issue is now,

– given that we record these licenses,

– their being issued and being honoured,

– whether the handling of patients at hospitals

∗ follow,

∗ or does not follow

properly issued licenses.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-hcll Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 509

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ A Notion of License Execution State ⊕

• In the context of the Artistic License Language licensees could basi-
cally perform licensed actions in any sequence and as often as they
so desired.

– There were, of course, some obvious constraints.

∗ Operations on local works could not be done before these had
been created — say by copying.

∗ Editing could only be done on local works and hence required a
prior action of, for example, copying a licensed work.

• In the context of hospital health care most of the actions can only
be performed if the patient has reached a suitable state in the hos-
pitalisation.

•We refer to Fig. 13 on the next slide for an idealised hospitalisation
plan.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-hcll c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

510 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Figure 13: An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-hcll Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 511

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

•We therefore suggest

– to join to the licensed commands

– an indicator which prescribe the (set of) state(s) of the hospitali-
sation plan in which the command action may be performed.

• Two or more medical staff may now be licensed

– to perform different (or even same !) actions

– in same or different states.

– If licensed to perform same action(s) in same state(s) —

– well that may be “bad license programming” if and only if it is
bad medical practice !

• One cannot design a language and prevent it being misused!

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-hcll c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

512 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ The License Language ⊕

• The syntax has two parts.

– One for licenses being issued by licensors.

– And one for the actions that licensees may wish to perform.

type
0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(staff1:Mn,mandate:ML,pat:Pn)
3. ML == mkML(staff2:Mn,to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt
5. Cmd == mkCmd(σs:Σ-set,stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-hcll Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 513

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

• The above syntax is correct RSL.

• But it is decorated!

• The subtypes {|boldface keyword|} are inserted for readability.

• (0.) Licenses, medical staff and patients have names.

• (1.) Licenses further consist of license bodies (Lic).

• (2.) A license body names the licensee (Mn), the patient (Pn), and,

• (3.) through the “mandated” licence part (ML), it names the licensor
(Mn) and which set of commands (C) or (o) implicit licenses (L, for
CoL) the licensor is mandated to issue.

• (4.) An explicit command or licensing (CoL) is either a command
(Cmd), or a sub-license (ML) or an alternative.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-hcll c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

514 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

• (5.) A command (Cmd) is a state-labelled statement.

• (3.) A sub-license just states the command set that the sub-license
licenses.

– As for the Artistic License Language the licensee

– chooses an appropriate subset of commands.

– The context “inherits” the name of the patient.

– But the sub-licensee is explicitly mandated in the license!

• (6.) An alternative is also just a set of commands.

– The meaning is that

∗ either the licensee choose to perform the designated actions

∗ or, as for ML, but now freely choosing the sub-licensee,

∗ the licensee (now new licensor) chooses to confer actions to other
staff.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-hcll Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 515

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

• (7.) A statement is either

– an admit,

– an interview,

– a plan analysis,

– an analysis,

– a diagnose,

– a plan treatment,

– a treatment,

– a transfer, or

– a release

directive

• Information given in the patient medical report

– for the designated state

– inform medical staff as to the details

– of analysis, what to base a diagnosis on, of treatment, etc.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-hcll c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

516 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

• (8.) Each action actually attempted by a medical staff refers to the
license, and hence the patient name.

• (9.) Actions are either of

– an admit,

– an interview,

– a plan analysis,

– an analysis,

– a diagnose,

– a plan treatment,

– a treatment,

– a transfer, or

– a release

actions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-hcll Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 517

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

• Each individual action is only allowed in a state σ

– if the action directive appears in the named license

– and the patient (medical record) designates state σ.

• (10.) Or an action can be a sub-licensing action.

– Either the sub-licensing action that the licensee is attempting is
explicitly mandated by the license (4. ML),

– or is an alternative one thus implicitly mandated (6.).

– The full sub-license, as defined in (1.–3.) is compiled from contex-
tual information.

This ends Example 63

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-hcll c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

518 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Example 64 – A Public Administration License Language:
⊕ The Three Branches of Government ⊕

• By public government we shall,

– following Charles de Secondat, baron de Montesquieu (1689–1755),

– understand a composition of three powers:

∗ the law-making (legislative),

∗ the law-enforcing and

∗ the law-interpreting

parts of public government.

• Typically

– national parliament and local (province and city) councils are part of law-
making government,

– law-enforcing government is called the executive (the administration),

– and law-interpreting government is called the judiciary [system] (including lawyers
etc.).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 519

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Documents ⊕

• A crucial means of expressing public administration is through doc-
uments.

•We shall therefore provide a brief domain analysis of a concept of
documents.

• (This document domain description also applies

– to patient medical records and,

– by some “light” interpretation, also to artistic works —

insofar as they also are documents.)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

520 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

• Documents are

– created,

– edited and

– read;

• and documents can be

– copied,

– distributed,

– the subject of calculations (interpretations) and be

– shared and

– shredded

.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 521

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Document Attributes ⊕

•With documents one can associate, as attributes of documents, the actors who

– created,

– edited,

– read,

– copied,

– distributed

∗ (to whom distributed),

– shared,

– performed calculations and

– shredded

documents.

•With these operations on documents,

• and hence as attributes of documents one can, again conceptually,

• associate the

– location and

– time

of these operations.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

522 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Actor Attributes and Licenses ⊕

•With actors (whether agents of public government or citizens)

– one can associate the authority (i.e., the rights)

– these actors have with respect to performing actions on documents.

•We now intend to express these authorisations as licenses.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 523

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Document Tracing ⊕

• An issue of public government is

– whether citizens and agents of public government act in accordance
with the laws —

– with actions and laws reflected in documents

– such that the action documents enables a trace from the actions
to the laws “governing” these actions.

•We shall therefore assume that every document can be traced

– back to its law-origin

– as well as to all the documents any one document-creation or -
editing was based on.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

524 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ A Document License Language ⊕

• The syntax has two parts.

– One for licenses being issued by licensors.

– And one for the actions that licensees may wish to perform.

type
0. Ln, An, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(license:Ln,licensor:An,granted ops:Op-set,licensee:An)
3. Extend == mkE(licensor:An,licensee:An,license:Ln,with ops:Op-set)
4. Restrict == mkR(licensor:An,licensee:An,license:Ln,to ops:Op-set)
5. Withdraw == mkW(licensor:An,licensee:An,license:Ln)
6. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 525

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

type
7. Dn, DCn, UDI
8. Crea == mkCr(dn:Dn,doc class:DCn,based on:UDI-set)
9. Edit == mkEd(doc:UDI,based on:UDI-set)
10. Read == mkRd(doc:UDI)
11. Copy == mkCp(doc:UDI)
12a. Licn == mkLi(kind:LiTy)
12b. LiTy == grant | extend | restrict | withdraw
13. Shar == mkSh(doc:UDI,with:An-set)
14. Rvok == mkRv(doc:UDI,from:An-set)
15. Rlea == mkRl(dn:Dn)
16. Rtur == mkRt(dn:Dn)
17. Calc == mkCa(fcts:CFn-set,docs:UDI-set)
18. Shrd == mkSh(doc:UDI)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

526 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (0.) The are names of licenses (Ln), actors (An), documents (UDI),
document classes (DCn) and calculation functions (Cfn).

• (1.) There are four kinds of licenses: granting, extending, restricting
and withdrawing.

• (2.) Actors (licensors) grant licenses to other actors (licensees).

– An actor is constrained to always grant distinctly named licenses.

– No two actors grant identically named licenses.

– A set of operations on (named) documents are granted.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 527

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (3.–5.) Actors who have issued named licenses may extend, restrict
or withdraw the license rights (wrt. operations, or fully).

• (6.) There are nine kinds of operation authorisations. Some of the
next explications also explain parts of some of the corresponding
actions (see (16.–24.).

• (7.) There are names of documents (Dn), names of classes of docu-
ments (DCn), and there are unique document identifiers (UDI).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

528 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (8.) Creation results in an initially void document which is

– not necessarily uniquely named (dn:Dn) (but that name is uniquely
associated with the unique document identifier created when the
document is created)

– typed by a document class name (dcn:DCn) and possibly

– based on one or more identified documents (over which the licensee
(at least) has reading rights).

– We can presently omit consideration of the document class con-
cept.

– “based on” means that the initially void document contains refer-
ences to those (zero, one or more) documents.

– The “based on” documents are moved from licensor to licensee.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 529

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (9.) Editing a document

– may be based on “inspiration” from, that is, with reference to a
number of other documents (over which the licensee (at least) has
reading rights).

– What this “be based on” means is simply that the edited document
contains those references. (They can therefore be traced.)

– The “based on” documents are moved from licensor to licensee

∗ if not already so moved as the result of the specification of other
authorised actions.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

530 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (10.) Reading a document

– only changes its “having been read” status.

– The read document, if not the result of a copy, is moved from
licensor to licensee — if not already so moved as the result of the
specification of other authorised actions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 531

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (11.) Copying a document

– increases the document population by exactly one document.

– All previously existing documents remain unchanged except that
the document which served as a master for the copy has been so
marked.

– The copied document is like the master document except that the
copied document is marked to be a copy.

– The master document, if not the result of a create or copy, is moved
from licensor to licensee

∗ if not already so moved as the result of the specification of other
authorised actions.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

532 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (12a.) A licensee can sub-license (sL) certain operations to be
performed by other actors.

• (12b.) The granting, extending, restricting or withdrawing permis-
sions,

– cannot name a license (the user has to do that),

– do not need to refer to the licensor (the licensee issuing the sub-
license),

– and leaves it open to the licensor to freely choose a licensee.

– The licensor (the licensee issuing the sub-license) must choose a
unique license name.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 533

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (13.) A document can be shared

– between two or more actors.

– One of these is the licensee, the others are implicitly given read
authorisations.

– (One could think of extending, instead the licensing actions with
a shared attribute.)

– The shared document, if not the result of a create and edit or copy,
is moved from licensor to licensee — if not already so moved as
the result of the specification of other authorised actions.

– Sharing a document does not move nor copy it.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

534 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (14.) Sharing documents can be revoked. That is, the reading rights
are removed.

• (15.) The release operation:

– if a licensor has authorised a licensee to create a document

– (and that document, when created got the unique document iden-
tifier udi:UDI)

– then that licensee can release the created, and possibly edited
document (by that identification)

– to the licensor, say, for comments.

– The licensor thus obtains the master copy.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 535

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (16.) The return operation:

– if a licensor has authorised a licensee to create a document

– (and that document, when created got the unique document iden-
tifier udi:UDI)

– then that licensee can return the created, and possibly edited
document (by that identification)

– to the licensor — “for good”!

– The licensee relinquishes all control over that document.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

536 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (17.) Two or more documents can be subjected to any one of a set
of permitted calculation functions.

– These documents, if not the result of a creates and edits or copies,
are moved from licensor to licensee —

– if not already so moved as the result of the specification of other
authorised actions.

– Observe that there can be many calculation permissions, over over-
lapping documents and functions.

• (18.) A document can be shredded.

– It seems pointless to shred a document if that was the only right
granted wrt. document.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 537

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

17. Action = Ln × Clause
18. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
19. Cre == mkCre(dcn:DCn,based on docs:UID-set)
20. Edt == mkEdt(uid:UID,based on docs:UID-set)
21. Rea == mkRea(uid:UID)
22. Cop == mkCop(uid:UID)
23. Lic == mkLic(license:L)
24. Sha == mkSha(uid:UID,with:An-set)
25. Rvk == mkRvk(uid:UID,from:An-set)
25. Rev == mkRev(uid:UID,from:An-set)
26. Rel == mkRel(dn:Dn,uid:UID)
27. Ret == mkRet(dn:Dn,uid:UID)
28. Cal == mkCal(fct:Cfn,over docs:UID-set)
29. Shr == mkShr(uid:UID)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

538 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• A clause elaborates to a state change and usually some value.

• The value yielded by elaboration of the above

– create, copy, and calculation

clauses

• are unique document identifiers.

• These are chosen by the “system”.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 539

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (17.) Actions are tagged by the name of the license

– with respect to which their authorisation and document names has
to be checked.

– No action can be performed by a licensee

– unless it is so authorised by the named license,

– both as concerns the operation (create, edit, read, copy, license,
share, revoke, calculate and shred)

– and the documents actually named in the action.

– They must have been mentioned in the license,

– or, created or copies of downloaded (and possibly edited) docu-
ments or copies of these — in which cases operations are inherited.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

540 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (19.) A licensee may create documents if so licensed —

– and obtains all operation authorisations to this document.

• (20.) A licensee may edit “downloaded” (edited and/or copied) or
created documents.

• (21.) A licensee may read “downloaded” (edited and/or copied) or
created and edited documents.

• (22.) A licensee may (conditionally) copy “downloaded” (edited
and/or copied) or created and edited documents.

– The licensee decides which name to give the new document, i.e.,
the copy.

– All rights of the master are inherited to the copy.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 541

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (23.) A licensee may issue licenses

– of the kind permitted.

– The licensee decides whether to do so or not.

– The licensee decides

∗ to whom,

∗ over which, if any, documents,

∗ and for which operations.

– The licensee looks after a proper ordering of licensing commands:

∗ first grant,

∗ then sequences of zero, one or more either extensions or restric-
tions,

∗ and finally, perhaps, a withdrawal.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

542 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (24.) A “downloaded” (possibly edited or copied) document may
(conditionally) be shared with one or more other actors.

– Sharing, in a digital world, for example,

– means that any edits done after the opening of the sharing session,

– can be read by all so-granted other actors.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 543

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (25.) Sharing may (conditionally) be revoked, partially or fully, that
is, wrt. original “sharers”.

• (26.) A document may be released.

– It means that the licensor who originally requested

– a document (named dn:Dn) to be created

– now is being able to see the results —

– and is expected to comment on this document

– and eventually to re-license the licensee to further work.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-pall c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

544 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (27.) A document may be returned.

– It means that the licensor who originally requested

– a document (named dn:Dn) to be created

– is now given back the full control over this document.

– The licensee will no longer operate on it.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-pall Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 545

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• (28.) A license may (conditionally) apply any of a licensed set of
calculation functions

– to “downloaded” (edited, copied, etc.) documents,

– or can (unconditionally) apply any of a licensed set of calculation
functions

– to created (etc.) documents.

– The result of a calculation is a document.

– The licensee obtains all operation authorisations to this document
(— as for created documents).

• (29.) A license may (conditionally) shred a “downloaded” (etc.)
document.

This ends Example 64

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-3 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

546 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Example 65 – A Bus Services Contract Language:

• In a number of steps

– (‘A Synopsis’,

– ‘A Pragmatics and Semantics Analysis’, and

– ‘Contracted Operations, An Overview’)

• we arrive at a sound basis from which to formulate the narrative.

– We shall, however, forego such a detailed narrative.

– Instead we leave that detailed narrative to the student.

– (The detailed narrative can be “derived” from the formalisation.)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 547

⊕ A Synopsis ⊕

• Contracts obligate transport companies to deliver bus traffic according to a timetable.

• The timetable is part of the contract.

• A contractor may sub-contract (other) transport companies to deliver bus traffic
according to timetables that are sub-parts of their own timetable.

• Contractors are either public transport authorities or contracted transport com-
panies.

• Contracted transport companies may cancel a subset of bus rides provided the
total amount of cancellations per 24 hours for each bus line does not exceed a
contracted upper limit.

• The cancellation rights are spelled out in the contract.

• A sub-contractor cannot increase a contracted upper limit for cancellations above
what the sub-contractor was told (in its contract) by its contractor.

• Etcetera.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

548 Dines Bjørner: Domain & Requirements Engineering

⊕ A Pragmatics and Semantics Analysis ⊕

• The “works” of the bus transport contracts are two:

– the timetables and, implicitly,

– the designated (and obligated) bus traffic.

• A bus timetable appears to define one or more bus lines,

– with each bus line giving rise to one or more bus rides.

• Nothing is (otherwise) said about regularity of bus rides.

• It appears that bus ride cancellations must be reported back to the contractor.

– And we assume that cancellations by a sub-contractor is further reported back
also to the sub-contractor’s contractor.

– Hence eventually that the public transport authority is notified.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 549

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

• Nothing is said, in the contracts, such as we shall model them,

– about passenger fees for bus rides

– nor of percentages of profits (i.e., royalties) to be paid back from
a sub-contractor to the contractor.

• So we shall not bother, in this example, about transport costs nor
transport subsidies.

• The opposite of cancellations appears to be ‘insertion’ of extra bus
rides,

– that is, bus rides not listed in the time table,

– but, perhaps, mandated by special events

– We assume that such insertions must also be reported back to the
contractor.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

550 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

•We assume concepts of acceptable and unacceptable bus ride delays.

– Details of delay acceptability may be given in contracts,

∗ but we ignore further descriptions of delay acceptability.

∗ but assume that unacceptable bus ride delays are also to be
(iteratively) reported back to contractors.

•We finally assume that sub-contractors cannot (otherwise) change
timetables.

– (A timetable change can only occur after, or at, the expiration of
a license.)

• Thus we find that contracts have definite period of validity.

– (Expired contracts may be replaced by new contracts, possibly
with new timetables.)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 551

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Contracted Operations, An Overview ⊕

• So these are the operations that are allowed by a contractor according
to a contract:

– (i) start: to perform, i.e., to start, a bus ride (obligated);

– (ii) cancel: to cancel a bus ride (allowed, with restrictions);

– (iii) insert: to insert a bus ride; and

– (iv) subcontract: to sub-contract part or all of a contract.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

552 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

⊕ Syntax ⊕

•We treat separately,

– the syntax of contracts (for a schematised example see Slide 552) and

– the syntax of the actions implied by contracts (for schematised examples see Slide 556).

Contracts

• An example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee

to perform operations

{"start","cancel","insert","subcontract"}
with respect to timetable tt.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 553

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

•We assume a context (a global state)

– in which all contract actions (including contracting) takes place

– and in which the implicit net is defined.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

554 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

184. contracts, contractors and sub-contractors have unique identifiers
CId, CNm, CNm.

185. A contract has a unique identification, names the contractor and the
sub-contractor (and we assume the contractor and sub-contractor
names to be distinct). A contract also specifies a contract body.

186. A contract body stipulates a timetable and the set of operations that
are mandated or allowed by the contractor.

187. An Operation is either a "start" (i.e., start a bus ride), a bus
ride "cancel"lation, a bus ride "insert", or a "subcontract"ing
operation.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 555

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

type
184. CId, CNm
185. Contract = CId × CNm × CNm × Body
186. Body = Op-set × TT
187. Op == ′′

start
′′ | ′′

cancel
′′ | ′′

insert
′′ | ′′

subcontract
′′

An abstract example contract:
(cid,cnmi,cnmj,({′′

start
′′,′′cancel′′,′′insert′′,′′sublicense′′},tt))

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

556 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 0. 0

Actions

• Concrete example actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t

(b) cid: cancel bus ride (blid,bid) at time t

(c) cid: insert bus ride like (blid,bid) at time t

• The schematised license (Slide 552) shown earlier is almost like an
action; here is the action form:

(d) cid: sub-contractor cnm′ is granted a contract cid′

to perform operations {”conduct”,”cancel”,”insert”,sublicense”}
with respect to timetable tt′.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 557

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

7.7.0.1. Actions

• All actions are being performed by a sub-contractor in a context
which defines

– that sub-contractor cnm,

– the relevant net, say n,

– the base contract, referred here to by cid (from which this is a
sublicense), and

– a timetable tt of which tt′ is a subset.

• contract name cnm′ is new and is to be unique.

• The subcontracting action can (thus) be simply transformed into a
contract as shown on Slide 552.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

558 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

type
Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Start | Cancel | Insert
Conduct == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

examples:
(a) (cnm,cid,mkSta(blid,id),t)
(b) (cnm,cid,mkCan(blid,id),t)
(c) (cnm,cid,mkIns(blid,id),t)
(d) (cnm,cid,mkCon(cid′,({′′

conduct
′′,′′cancel′′,′′insert′′,′′sublicense′′},tt′),t))

where: cid′ = generate CId(cid,cnm,t) See Item/Line 190 on Slide 562

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 559

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

•We observe that

– the essential information given in the start, cancel and insert action
prescriptions is the same;

– and that the RSL record-constructors (mkSta, mkCan, mkIns) make
them distinct.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

560 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Uniqueness and Traceability of Contract Identifications

188. There is a “root” contract name, rcid.

189. There is a “root” contractor name, rcnm.

value
188 rcid:CId
189 rcnm:CNm

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 561

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

• All other contract names are derived from the root name.

• Any contractor can at most generate one contract name per time
unit.

• Any, but the root, sub-contractor obtains contracts from other sub-
contractors, i.e., the contractor. Eventually all sub-contractors, hence
contract identifications can be referred back to the root contractor.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

562 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

190. Such a contract name generator is a function which given a con-
tract identifier, a sub-contractor name and the time at which the
new contract identifier is generated, yields the unique new contract
identifier.

191. From any but the root contract identifier one can observe the contract
identifier, the sub-contractor name and the time that “went into” its
creation.

value
190 gen CId: CId × CNm × Time → CId

191 obs CId: CId
∼→ CIdL [ pre obs CId(cid):cid6=rcid ]

191 obs CNm: CId
∼→ CNm [ pre obs CNm(cid):cid6=rcid ]

191 obs Time: CId
∼→ Time [ pre obs Time(cid):cid6=rcid ]

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 563

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

192. All contract names are unique.

axiom
192 ∀ cid,cid′:CId•cid 6=cid′⇒
192 obs CId(cid)6=obs CId(cid′) ∨ obs CNm(cid)6=obs CNm(cid′)
192 ∨ obs LicNm(cid)=obs CId(cid′)∧obs CNm(cid)=obs CNm(cid′)
192 ⇒ obs Time(cid)6=obs Time(cid′)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

564 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

193. Thus a contract name defines a trace of license name, sub-contractor name and
time triple, “all the way back” to “creation”.

type
CIdCNmTTrace = TraceTriple∗

TraceTriple == mkTrTr(CId,CNm,s t:Time)
value
193 contract trace: CId → LCIdCNmTTrace
193 contract trace(cid) ≡
193 case cid of
193 rcid → 〈〉,
193 → contract trace(obs LicNm(cid))̂〈obs TraceTriple(cid)〉
193 end

193 obs TraceTriple: CId → TraceTriple
193 obs TraceTriple(cid) ≡
193 mkTrTr(obs CId(cid),obs CNm(cid),obs Time(cid))

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 565

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

• The trace is generated in the chronological order: most recent con-
tract name generation times last.

•Well, there is a theorem to be proven once we have outlined the full
formal model of this contract language:

• namely that time entries in contract name traces increase with in-
creasing indices.

theorem
∀ licn:LicNm •

∀ trace:LicNmLeeNmTimeTrace • trace ∈ license trace(licn)⇒
∀ i:Nat • {i,i+1}⊆inds trace ⇒ s t(trace(i))<s t(trace(i+1))

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

566 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

⊕ Execution State ⊕

Local and Global States

• Each sub-contractor has an own local state and has access to a global state.

• All sub-contractors access the same global state.

• The global state is the bus traffic on the net.

• There is, in addition, a notion of running-state. It is a meta-state notion.

– The running state “is made up” from the fact that

– there are n sub-contractors, each communicating, as contractors,

– over channels with other sub-contractors.

• The global state is distinct from sub-contractor to sub-contractor – no sharing of
local states between sub-contractors.

•We now examine, in some detail, what the states consist of.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 567

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Global State

• The net is part of the global state (and of bus traffics).

•We consider just the bus traffic.

194. Bus traffic is a modelled as a discrete function from densely posi-
tioned time points to a pair of the (possibly dynamically changing)
net and the position of busses. Bus positions map bus numbers to
the physical entity of busses and their position.

195. A bus is positioned either

196. at a hub (coming from some link heading for some link), or

197. on a link, some fraction of the distance from a hub towards a hub,
or

198. at a bus stop, some fraction of the distance from a hub towards a
hub.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

568 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

type
136. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

194. BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
195. BPos = atHub | onLnk | atBS
196. atHub == mkAtHub(s fl:LI,s hi:HI,s tl:LI)
197. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
198. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

Frac = {|f:Real•0<f<1|}

•We shall consider BusTraffic (with its Net) to reflect the global state.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 569

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Local Sub-contractor Contract States: Semantic Types

• A sub-contractor state contains, as a state component, the zero, one or more
contracts

– that the sub-contractor has received and

– that the sub-contractor has sublicensed.

type
Body = Op-set × TT
LicΣ = RcvLicΣ×SubLicΣ×LorBusΣ
RcvLicΣ = LorNm→m (LicNm→m (Body×TT))
SubLicΣ = LeeNm→m (LicNm→m Body)
LorBusΣ ... [ see ′′

Local sub-contractor Bus States: Semantic Types
′′ next ] ...

• (Recall that LorNm and LeeNm are the same.)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

570 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Local Sub-contractor Bus States: Semantic Types

• The sub-contractor state further contains a bus status state component which
records

– which buses are free, FreeBusΣ, that is, available for dispatch, and where
“garaged”,

– which are in active use, ActvBusΣ, and on which bus ride, and a bus history
for that bus ride,

– and histories of all past bus rides, BusHistΣ.

– A trace of a bus ride is a list of zero, one or more pairs of times and bus stops.

– A bus history, BusHistory, associates a bus trace to a quadruple of bus line
identifiers, bus ride identifiers, contract names and sub-contractor name.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 571

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

type
BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×LicNm×LeeNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗
BusTrace = (Time×BusStop)∗
LorBusΣ = LeeNm →m (LicNm →m ((BLId×BId)→m (BNo×BusTrace)))

• A bus is identified by its unique number (i.e., registration) plate
(BusNo).

• The two components are modified whenever a bus is commissioned
into action or returned from duty, that is, twice per bus ride.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

572 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Local Sub-contractor Bus States: Update Functions

value
update BusΣ: Bno×(T×BusStop)→ ActBusΣ → ActBusΣ
update BusΣ(bno,(t,bs))(actσ) ≡
let (blid,bid,licn,leen,trace) = actσ(bno) in
actσ†[ bno 7→(licn,leen,blid,bid,tracê〈(t,bs)〉) ] end
pre bno ∈ dom actσ

update FreeΣ ActΣ:
BNo×BusStop→BusΣ→BusΣ

update FreeΣ ActΣ(bno,bs)(freeσ,actvσ) ≡
let ( , , , ,trace) = actσ(b) in
let freeσ′ = freeσ†[ bs 7→ (freeσ(bs))∪{b} ] in
(freeσ′,actσ\{b}) end end
pre bno 6∈ freeσ(bs) ∧ bno ∈ dom actσ

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 573

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

update LorBusΣ:
LorNm×LicNm×lee:LeeNm×(BLId×BId)×(BNo×Trace)
→LorBusΣ→out {l to l[ leen,lorn ]|lorn:LorNm•lorn ∈ leenms\{leen}}

update LorBusΣ(lorn,licn,leen,(blid,bid),(bno,tr))(lbσ) ≡
l to l[ leenm,lornm ]!Licensor BusHistΣMsg(bno,blid,bid,libn,leen,tr) ;
lbσ†[ leen 7→(lbσ(leen))†[ licn 7→((lbσ(leen))(licn))†[ (blid,bid)7→(bno,trace) ]
pre leen ∈ dom lbσ ∧ licn ∈ dom (lbσ(leen))

update ActΣ FreeΣ:
LeeNm×LicNm×BusStop×(BLId×BId)→BusΣ→BusΣ×BNo

update ActΣ FreeΣ(leen,licn,bs,(blid,bid))(freeσ,actvσ) ≡
let bno:Bno • bno ∈ freeσ(bs) in
((freeσ\{bno},actvσ ∪ [ bno 7→(blid,bid,licnm,leenm,〈〉) ]),bno) end
pre bs ∈ dom freeσ ∧ bno ∈ freeσ(bs) ∧ bno 6∈ dom actvσ ∧ [ bs exists ...

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

574 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Constant State Values

• There are a number of constant values, of various types, which char-
acterise the “business of contract holders”. We define some of these
now.

199. For simplicity we assume a constant net — constant, that is, only
with respect to the set of identifiers links and hubs. These links
and hubs obviously change state over time.

200. We also assume a constant set, leens, of sub-contractors. In re-
ality sub-contractors, that is, transport companies, come and go,
are established and go out of business. But assuming constancy
does not materially invalidate our model. Its emphasis is on con-
tracts and their implied actions — and these are unchanged wrt.
constancy or variability of contract holders.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 575

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

201. There is an initial bus traffic, tr.

202. There is an initial time, t0, which is equal to or larger than the
start of the bus traffic tr.

203. To maintain the bus traffic “spelled out”, in total, by timetable tt
one needs a number of buses.

204. The various bus companies (that is, sub-contractors) each have
a number of buses. Each bus, independent of ownership, has a
unique (car number plate) bus number (BusNo).

These buses have distinct bus (number [registration] plate) num-
bers.

205. We leave it to the student to define a function which ascertain the
minimum number of buses needed to implement traffic tr.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

576 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

value
199. net : N,
200. leens : LeeNm-set,
201. tr : BusTraffic, axiom wf Traffic(tr)(net)
202. t0 : T • t0 ≥ mindom tr,
203. min no of buses : Nat • necessary no of buses(itt),
204. busnos : BusNo-set • card busnos ≥ min no of buses
205. necessary no of buses: TT → Nat

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 577

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

206. To “bootstrap” the whole contract system we need a distinguished
contractor, named init leen, whose only license originates with a
“ghost” contractor, named root leen (o, for outside [the system]).

207. The initial, i.e., the distinguished, contract has a name, root licn.

208. The initial contract can only perform the "sublicense" opera-
tion.

209. The initial contract has a timetable, tt.

210. The initial contract can thus be made up from the above.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

578 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

value
206. root leen,init ln : LeeNm • root leen 6∈ leens ∧ initi leen ∈ leens,
207. root licn : LicNm
208. iops : Op-set = {′′

sublicense
′′},

209. itt : TT,
210. init lic:License = (root licn,root leen,(iops,itt),init leen)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 579

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Initial Sub-contractor Contract States

type
InitLicΣs = LeeNm →m LicΣ

value
ilσ:LicΣ=([ init leen 7→ [ root leen 7→ [ iln 7→ init lic ] ] ]

∪ [ leen 7→ [ ] | leen:LeeNm • leen ∈ leenms\{init leen} ],[ ],[ ])

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

580 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Initial Sub-contractor Bus States

211. Initially each sub-contractor possesses a number of buses.

212. No two sub-contractors share buses.

213. We assume an initial assignment of buses to bus stops of the free
buses state component and for respective contracts.

214. We do not prescribe a “satisfiable and practical” such initial assign-
ment (ibσs).

215. But we can constrain ibσs.

216. The sub-contractor names of initial assignments must match those
of initial bus assignments, allbuses.

217. Active bus states must be empty.

218. No two free bus states must share buses.

219. All bus histories are void.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 581

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

type
211. AllBuses′ = LeeNm →m BusNo-set
212. AllBuses = {|ab:AllBuses′

•∀ {bs,bs′}⊆rng ab∧bns 6=bns′⇒bns ∩ bns′={}|}
213. InitBusΣs = LeeNm →m BusΣ
value
212. allbuses:Allbuses • dom allbuses = leenms ∪ {root leen} ∧ ∪ rng allbuses = busnos

213. ibσs:InitBusΣs
214. wf InitBusΣs: InitBusΣs → Bool
215. wf InitBusΣs(iσs) ≡
216. dom iσs = leenms ∧
217. ∀ ( ,abσ, ):BusΣ•( ,abσ, ) ∈ rng iσs ⇒ abσ=[ ] ∧
218. ∀ (fbiσ,abiσ),(fbjσ,abjσ):BusΣ •

218. {(fbiσ,abiσ),(fbjσ,abjσ)}⊆rng iσs
218. ⇒ (fbiσ,actiσ) 6=(fbjσ,actjσ)
218. ⇒ rng fbiσ ∩ rng fbjσ = {}
219. ∧ actiσ=[ ]=actjσ

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

582 Dines Bjørner: Domain & Requirements Engineering

⊕ Communication Channels ⊕

• The running state is a meta notion. It reflects the channels over
which

– contracts are issued;

– messages about committed, cancelled and inserted bus rides are
communicated, and

– fund transfers take place.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 583

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Sub-Contractor↔Sub-Contractor Channels

• Consider each sub-contractor (same as contractor) to be modelled as
a behaviour.

• Each sub-contractor (licensor) behaviour has a unique name, the
LeeNm.

• Each sub-contractor can potentially communicate with every other
sub-contractor.

•We model each such communication potential by a channel.

• For n sub-contractors there are thus n× (n− 1) channels.

channel { l to l[ fi,ti ] | fi:LeeNm,ti:LeeNm • {fi,ti}⊆leens ∧ fi 6=ti } LLMSG
type LLMSG = ...

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

584 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Sub-Contractor↔Bus Channels

• Each sub-contractor has a set of buses. That set may vary.

• So we allow for any sub-contractor to potentially communicate with
any bus.

• In reality only the buses allocated and scheduled by a sub-contractor
can be “reached” by that sub-contractor.

channel { l to b[ l,b ] | l:LeeNm,b:BNo • l ∈ leens ∧ b ∈ busnos } LBMSG
type LBMSG = ...

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 585

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Sub-Contractor↔Time Channels

•Whenever a sub-contractor wishes to perform a contract operation

• that sub-contractor needs know the time.

• There is just one, the global time, modelled as one behaviour: time clock.

channel { l to t[ l ] | l:LeeNm • l ∈ leens } LTMSG
type LTMSG = ...

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

586 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Bus↔Traffic Channels

• Each bus is able, at any (known) time to ascertain where in the traffic
it is.

•We model bus behaviours as processes, one for each bus.

• And we model global bus traffic as a single, separate behaviour.

channel { b to tr[ b ] | b:BusNo • b ∈ busnos } LTrMSG
type BTrMSG == reqBusAndPos(s bno:BNo,s t:Time) | (Bus×BusPos)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 587

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Buses↔Time Channel

• Each bus needs to know what time it is.

channel { b to t[ b ] | b:BNo • b ∈ busnos } BTMSG
type BTMSG ...

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

588 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

⊕ Run-time Environment ⊕
:

• So we shall be modelling the transport contract domain as follows:

– As for behaviours we have this to say.

∗ There will be n sub-contractors. One sub-contractor will be
initialised to one given license.

∗ Each sub-contractor is modelled, in RSL, as a CSP-like process.

∗With each sub-contractor, li, there will be a number, bi, of buses.
That number may vary from sub-contractor to sub-contractor.

∗ There will be bi channels of communication between a sub-
contractor and that sub-contractor’s buses, for each sub-contractor.

∗ There is one global process, the traffic. There is one channel of
communication between a sub-contractor and the traffic. Thus
there are n such channels.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 589

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

– As for operations, including behaviour interactions we assume the
following.

∗ All operations of all processes are to be thought of as instanta-
neous, that is, taking nil time !

∗Most such operations are the result of channel communications

· either just one-way notifications,

· or inquiry requests.

∗ Both the former (the one-way notifications) and the latter (in-
quiry requests) must not be indefinitely barred from receipt,
otherwise holding up the notifier.

∗ The latter (inquiry requests) should lead to rather immediate
responses, thus must not lead to dead-locks.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

590 Dines Bjørner: Domain & Requirements Engineering

⊕ The System Behaviour ⊕

• The system behaviour starts by establishing a number of

– licenseholder – and – bus ride

behaviours and the single

– time clock – and – bus traffic

behaviours

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 591

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

value
system: Unit→ Unit
system() ≡
licenseholder(init leen)(ilσ(init leen),ibσ(init leen))
‖ (‖ {licenseholder(leen)(ilσ(leen),ibσ(leen))
| leen:LeeNm•leen ∈ leens\{init leen}})

‖ (‖ {bus ride(b,leen)(root lorn,′′nil′′)
| leen:LeeNm,b:BusNo •leen ∈ dom allbuses ∧ b ∈ allbuses(leen)})

‖ time clock(t0) ‖ bus traffic(tr)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

592 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

• The initial licenseholder behaviour states are individually initialised

– with basically empty license states and

– by means of the global state entity bus states.

• The initial bus behaviours need no initial state.

• Only a designated licenseholder behaviour is initialised

– to a single, received license.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 593

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

⊕ Semantic Elaboration Functions ⊕

The Licenseholder Behaviour

220. The licenseholder behaviour is a sequential, but internally non-deterministic be-
haviour.

221. It internally non-deterministically (⌈⌉) alternates between

(a) performing the licensed operations (on the net and with buses),

(b) receiving information about the whereabouts of these buses, and informing
contractors of its (and its subsub-contractors’) handling of the contracts (i.e.,
the bus traffic), and

(c) negotiating new, or renewing old contracts.

220. licenseholder: LeeNm → (LicΣ×BusΣ)→ Unit
221. licenseholder(leen)(licσ,busσ) ≡
221. licenseholder(leen)((lic ops⌈⌉bus mon⌈⌉neg licenses)(leen)(licσ,busσ))

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

594 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

The Bus Behaviour

222. Buses ply the network following a timed bus route description.

A timed bus route description is a list of timed bus stop visits.

223. A timed bus stop visit is a pair: a time and a bus stop.

224. Given a bus route and a bus schedule one can construct a timed bus route descrip-
tion.

(a) The first result element is the first bus stop and origin departure time.

(b) Intermediate result elements are pairs of respective intermediate schedule ele-
ments and intermediate bus route elements.

(c) The last result element is the last bus stop and final destination arrival time.

225. Bus behaviours start with a “nil” bus route description.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 595

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

type
222. TBR = TBSV∗
223. TBSV = Time × BusStop
value
224. conTBR: BusRoute × BusSched→ TBR
224. conTBR((dt,til,at),(bs1,bsl,bsn)) ≡
224(a)) 〈(dt,bs1)〉
224(b)) ̂ 〈(til[ i ],bsl[ i ])|i:Nat•i:〈1..len til〉〉
224(c)) ̂ 〈(at,bsn)〉

pre: len til = len bsl
type
225. BRD == ′′

nil
′′ | TBR

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

596 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

226. The bus behaviour is here abstracted to only communicate with some
contract holder, time and traffic,

227. The bus repeatedly observes the time, t, and its position, po, in the
traffic.

228. There are now four case distinctions to be made.

229. If the bus is idle (and a a bus stop) then it waits for a next route,
brd′ on which to engage.

230. If the bus is at the destination of its journey then it so informs its
owner (i.e., the sub-contractor) and resumes being idle.

231. If the bus is ‘en route’, at a bus stop, then it so informs its owner
and continues the journey.

232. In all other cases the bus continues its journey

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 597

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

value

226. bus ride: leen:LeeNm × bno:Bno→ (LicNm × BRD) →
226. in,out l to b[ leen,bno ], in,out b to tr[ bno ], in b to t[ bno ] Unit

226. bus ride(leen,bno)(licn,brd) ≡
227. let t = b to t[ bno ]? in

227. let (bus,pos) = (b to tr[ bno ]!reqBusAndPos(bno,t) ; b to tr[ bno ]?) in

228. case (brd,pos) of

229. (′′

nil
′′,mkAtBS( , , , )) →

229. let (licn,brd′) = (l to b[ leen,bno ]!reqBusRid(pos);l to b[ leen,bno ]?) in

229. bus ride(leen,bno)(licn,brd′) end

230. (〈(at,pos)〉,mkAtBS( , , , )) →
230s l to b[ l,b ]!BusΣMsg(t,pos);

230 l to b[ l,b ]!BusHistΣMsg(licn,bno);

230 l to b[ l,b ]!FreeΣ ActΣMsg(licn,bno) ;

230 bus ride(leen,bno)(ilicn,′′nil′′),

231. (〈(t,pos),(t′,bs′)〉̂brd′,mkAtBS( , , , )) →
231s l to b[ l,b ]!BusΣMsg(t,pos) ;

231 bus ride(licn,bno)(〈(t′,bs′)〉̂brd′),

232. → bus ride(leen,bno)(licn,brd) end end end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

598 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

• In formula line 227 of bus ride we obtained the bus.

• But we did not use “that” bus !

•We we may wish to record, somehow, number of passengers alighting and boarding
at bus stops, bus fees paid, one way or another, etc.

• The bus, which is a time-dependent entity, gives us that information.

• Thus we can revise formula lines 230s and 231s:

Simple: 230s l to b[ l,b ]!BusΣMsg(pos);
Revised: 230r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

Simple: 231s l to b[ l,b ]!BusΣMsg(pos);
Revised: 231r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

type
Bus Info = Passengers × Passengers × Cash × ...

value
bus info: Bus → Bus Info
bus info(bus) ≡ (obs alighted(bus),obs boarded(bus),obs till(bus),...)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 599

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

The Global Time Behaviour

233. The time clock is a never ending behaviour — started at some time
t0.

234. The time can be inquired at any moment by any of the licenseholder
behaviours and by any of the bus behaviours.

235. At any moment the time clock behaviour may not be inquired.

236. After a skip of the clock or an inquiry the time clock behaviour
continues, non-deterministically either maintaining the time or ad-
vancing the clock!

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

600 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

value
233. time clock: T →
233. in,out {l to t[ leen ] | leen:LeeNm • leen ∈ leenms}
233. in,out {b to t[ bno ] | bno:BusNo • bno ∈ busnos} Unit
233. time clock:(t) ≡
235. (skip ⌈⌉
234. (⌈⌉⌊⌋{l to t[ leen ]? ; l to t[ leen ]!t | leen:LeeNm•leen ∈ leens})
234. ⌈⌉ (⌈⌉⌊⌋{b to t[ bno ]? ; b to t[ bno ]!t | bno:BusNo•bno ∈ busnos})) ;
236. (time clock:(t) ⌈⌉ time clock(t+δt))

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 601

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

The Bus Traffic Behaviour

237. There is a single bus traffic behaviour. It is, “mysteriously”, given
a constant argument, “the” traffic, tr.

238. At any moment it is ready to inform of the position, bps(b), of a bus,
b, assumed to be in the traffic at time t.

239. The request for a bus position comes from some bus.

240. The bus positions are part of the traffic at time t.

241. The bus traffic behaviour, after informing of a bus position reverts
to “itself”.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

602 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

value
237. bus traffic: TR → in,out {b to tr[ bno ]|bno:BusNo•bno ∈ busnos} Unit
237. bus traffic(tr) ≡
239. ⌈⌉⌊⌋ { let reqBusAndPos(bno,time) = b to tr[ b ]? in assert b=bno
238. if time 6∈ dom tr then chaos else
240. let ( ,bps) = tr(t) in
238. if bno 6∈ dom tr(t) then chaos else
238. b to tr[ bno ]!bps(bno) end end end end | b:BusNo•b ∈ busnos}
241. bus traffic(tr)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 603

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

License Operations

242. The lic ops function models the contract holder choosing between and performing
licensed operations.

243. To perform any licensed operation the sub-contractor needs to know the time and

244. must choose amongst the four kinds of operations that are licensed.

• The choice function, which we do not define, makes a basically non-deterministic
choice among licensed alternatives.

• The choice yields the contract number of a received contract and,

• based on its set of licensed operations,

• it yields either a simple action or a sub-contracting action.

245. Thus there is a case distinction amongst four alternatives.

246. This case distinction is expressed in the four lines identified by: 246.

247. All the auxiliary functions, besides the action arguments, require the same state
arguments.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

604 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

value
242. lic ops: LeeNm → (LicΣ×BusΣ) → (LicΣ×BusΣ)
242. lic ops(leen)(licσ,busσ) ≡
243. let t = (time channel(leen)!req Time;time channel(leen)?) in
244. let (licn,act) = choice(licσ)(busσ)(t) in
245. (case act of
246. mkCon(blid,bid) → cndct(licn,leenm,t,act),
246. mkCan(blid,bid) → cancl(licn,leenm,t,act),
246. mkIns(blid,bid) → insrt(licn,leenm,t,act),
246. mkLic(leenm′,bo) → sublic(licn,leenm,t,act) end)(licσ,busσ) end end

cndct,cancl,insert: SmpAct→(LicΣ×BusΣ)→(LicΣ×BusΣ)
sublic: SubLic→(LicΣ×BusΣ)→(LicΣ×BusΣ)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 605

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

Bus Monitoring

• Like for the bus ride behaviour we decompose the bus monitoring behaviour
into two behaviours.

– The local bus monitoring behaviour monitors the buses that are commis-
sioned by the sub-contractor.

– The licensor bus monitoring behaviour monitors the buses that are com-
missioned by sub-contractors sub-contractd by the contractor.

value
bus mon: l:LeeNm → (LicΣ×BusΣ)

→ in {l to b[ l,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
bus mon(l)(licσ,busσ) ≡

local bus mon(l)(licσ,busσ) ⌈⌉ licensor bus mon(l)(licσ,busσ)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

606 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

248. The local bus monitoring function models all the interaction be-
tween a contract holder and its despatched buses.

249. We show only the communications from buses to contract holders.

250.

251.

252.

253.

254.

255.

256.

257.

258.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 607

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

248. local bus mon: leen:LeeNm → (LicΣ×BusΣ)
249. → in {l to b[ leen,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
248. local bus mon(leen)(licσ:(rlσ,slσ,lbσ),busσ:(fbσ,abσ)) ≡
250. let (bno,msg) = ⌈⌉⌊⌋{(b,l to b[ l,b ]?)|b:BNo•b ∈ allbuses(leen)} in
254. let (blid,bid,licn,lorn,trace) = abσ(bno) in
251. case msg of
252. BusΣMsg(t,bs)→
256. let abσ′ = update BusΣ(bno)(licn,leen,blid,bid)(t,bs)(abσ) in
256. (licσ,(fbσ,abσ′,histσ)) end,
258. BusHistΣMsg(licn,bno)→
258. let lbσ′ =
258. update LorBusΣ(obs LorNm(licn),licn,leen,(blid,bid),(b,trace))(lbσ) in
258. l to l[ leen,obs LorNm(licn) ]!Licensor BusHistΣMsg(licn,leen,bno,blid,bid,tr);
258. ((rlσ,slσ,lbσ′),busσ) end
257. FreeΣ ActΣMsg(licn,bno)→
258. let (fbσ′,abσ′) = update FreeΣ ActΣ(bno,bs)(fbσ,abσ) in
258. (licσ,(fbσ′,abσ′)) end
258. end end end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

608 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

259.

260.

261.

262.

263.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 609

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

259. licensor bus mon: lorn:LorNm → (LicΣ×BusΣ)
259. → in {l to l[ lorn,leen ]|leen:LeeNm•leen ∈ leenms\{lorn}} (LicΣ×BusΣ)
259. licensor bus mon(lorn)(licσ,busσ) ≡
259. let (rlσ,slσ,lbhσ) = licσ in
259. let (leen,Licensor BusHistΣMsg(licn,leen′′,bno,blid,bid,tr))

= ⌈⌉⌊⌋{(leen′,l to l[ lorn,leen′ ]?)|leen′:LeeNm•leen′ ∈ leenms\{lorn}} in
259. let lbhσ′ =
259. update BusHistΣ(obs LorNm(licn),licn,leen′′,(blid,bid),(bno,trace))(lbhσ) in
259. l to l[ leenm,obs LorNm(licnm) ]!Licensor BusHistΣMsg(b,blid,bid,lin,lee,tr);
259. ((rlσ,slσ,lbhσ′),busσ)
259. end end end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

610 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

License Negotiation

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 611

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

612 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

The Conduct Bus Ride Action

276. The conduct bus ride action prescribed by (ln,mkCon(bli,bi,t′) takes
place in a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is
known from the context.

(b) First it is checked that the timetable in the contract named ln does
indeed provide a journey, j, indexed by bli and (then) bi, and that
that journey starts (approximately) at time t′ which is the same
as or later than t.

(c) Being so the action results in the contractor, whose name is “em-
bedded” in ln, receiving notification of the bus ride commitment.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 613

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

(d) Then a bus, selected from a pool of available buses at the bust stop
of origin of journey j, is given j as its journey script, whereupon
that bus, as a behaviour separate from that of sub-contractor li,
commences its ride.

(e) The bus is to report back to sub-contractor li the times at which
it stops at en route bus stops as well as the number (and kind) of
passengers alighting and boarding the bus at these stops.

(f) Finally the bus reaches its destination, as prescribed in j, and this
is reported back to sub-contractor li.

(g) Finally sub-contractor li, upon receiving this ‘end-of-journey’ no-
tification, records the bus as no longer in actions but available at
the destination bus stop.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

614 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

276.
276(a))
276(b))
276(c))
276(d))
276(e))
276(f))
276(g))

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 615

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

The Cancel Bus Ride Action

277. The cancel bus ride action prescribed by (ln,mkCan(bli,bi,t′) takes
place in a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is
known from the context.

(b) First a check like that prescribed in Item 276(b)) is performed.

(c) If the check is OK, then the action results in the contractor, whose
name is “embedded” in ln, receiving notification of the bus ride
cancellation.

That’s all !

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

616 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

277.
277(a))
277(b))
277(c))

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 617

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

The Insert Bus Ride Action

278. The insert bus ride action prescribed by (ln,mkIns(bli,bi,t′) takes
place in a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is
known from the context.

(b) First a check like that prescribed in Item 276(b)) is performed.

(c) If the check is OK, then the action results in the contractor, whose
name is “embedded” in ln, receiving notification of the new bus
ride commitment.

(d) The rest of the effect is like that prescribed in Items 276(d))–
276(g)).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

618 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

278.
278(a))
278(b))
278(c))
278(d))

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 619

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

The Contracting Action

279. The subcontracting action prescribed by (ln,mkLic(li′,(pe′,ops′,tt′))) takes place in
a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is known from the
context.

(b) First it is checked that timetable tt is a subset of the timetable contained in, and
that the operations ops are a subset of those granted by, the contract named ln.

(c) Being so the action gives rise to a contract of the form (ln′,li,(pe′,ops′,tt′),li′).
ln′ is a unique new contract name computed on the basis of ln, li, and t. li′

is a sub-contractor name chosen by contractor li. tt′ is a timetable chosen by
contractor li. ops′ is a set of operations likewise chosen by contractor li.

(d) This contract is communicated by contractor li to sub-contractor li′.

(e) The receipt of that contract is recorded in the license state.

(f) The fact that the contractor has sublicensed part (or all) of its obligation to
conduct bus rides is recorded in the modified component of its received con-
tracts.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering cacm-bscl c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

620 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

279.
279(a))
279(b))
279(c))
279(d))
279(e))
279(f))

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark cacm-bscl Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 621

7.Domain Engineering 7.Domain Scripts, Licenses and Contracts 0. 1. 0

⊕ Discussion ⊕

•
•
•
•

This ends Example 65

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-3 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

622 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts )

7.7.1. Principles

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-3 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 623

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts 7.7.1. Principles )

7.7.2. Discussion

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-3 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 9

Domain Engineering: Scripts

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-3 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 10

Domain Engineering: Human Behaviour and Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-3 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

624 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.7. Domain Scripts, Licenses and Contracts 7.7.2. Discussion )

7.8. Domain Human Behaviour

Definition 57 – Human Behaviour: By human behaviour we
mean

• any of a quality spectrum of carrying out assigned work:

– from careful, diligent and accurate,

via

– sloppy dispatch, and

– delinquent work,

to

– outright criminal pursuit.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 625

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

Example 66 – A Casually Described Bank Script: Our formu-
lation amounts to just a (casual) rough sketch. It is followed by a series
of three larger examples (Examples 67–69). Each of these elaborate on
the theme of (bank) scripts.

• The problem area is that of how repayments of mortgage loans are to
be calculated.

– At any one time a mortgage loan has

∗ a balance,

∗ a most recent previous date of repayment,

∗ an interest rate and

∗ a handling fee.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

626 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

– When a repayment occurs, then the following calculations shall take
place:

∗ the interest on the balance of the loan since the most recent
repayment,

∗ the handling fee, normally considered fixed,

∗ the effective repayment

·— being the difference between the repayment

· and the sum of the interest and the handling fee —

∗ and the new balance,

· being the difference between the old balance

· and the effective repayment.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 627

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

– We assume repayments to occur from a designated account, say a
demand/deposit account.

– We assume that bank to have designated fee and interest income
accounts.

– The interest is subtracted from the mortgage holder’s demand/de-
posit account and added to the bank’s interest (income) account.

– The handling fee is subtracted from the mortgage holder’s de-
mand/deposit account and added to the bank’s fee (income) ac-
count.

– The effective repayment is subtracted from the mortgage holder’s
demand/deposit account and also from the mortgage balance.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

628 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

– Finally, one must also describe deviations such as

∗ overdue repayments,

∗ too large, or too small repayments,

∗ and so on.

This ends Example 66

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 629

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

Example 67 – A Formally Described Bank Script: First we must
informally and formally define the bank state:

• There are clients (c:C),

• account numbers (a:A),

•mortgage numbers (m:M),

• account yields (ay:AY) and

•mortgage interest rates (mi:MI).

• The bank registers, by client, all accounts (ρ:A Register) and

• all mortgages (µ:M Register).

• To each account number there is a balance (α:Accounts).

• To each mortgage number there is a loan (ℓ:Loans).

• To each loan is attached the last date that interest was paid on the
loan.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

630 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.8. Domain Human Behaviour )

value
r, r′:Real axiom ...

type
C, A, M, Date
AY′ = Real, AY = {| ay:AY′

• 0<ay≤r |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤r′ |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′

• wf Bank(β)|}
A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 631

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

Then we must define well-formedness of the bank state:

value
ay:AY, mi:MI

wf Bank: Bank → Bool
wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ

axiom
ay<mi [ ∧ ... ]

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

632 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

We — perhaps too rigidly — assume that mortgage interest rates are higher than
demand/deposit account interest rates: ay<mi.

Operations on banks are denoted by the commands of the bank script language. First
the syntax:

type
Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P,d:Date)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

value
period: Date × Date → Days [ for calculating interest ]
before: Date × Date → Bool [ first date is earlier than last date ]

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 633

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

And then the semantics:

int Cmd(mkPM(c,a,m,p,d))(ρ,α,µ,ℓ) ≡
let (b,d′) = ℓ(m) in
if α(a)≥p
then
let i = interest(mi,b,period(d,d′)),

ℓ′ = ℓ † [ m7→ℓ(m)−(p−i) ]
α′ = α † [ a 7→α(a)−p,ai 7→α(ai)+i ] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ a ∈ dom α ∧ m ∈ µ(c)
post before(d,d′)

interest: MI × Loan × Days → P

This ends Example 67

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

634 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

Example 68 – Bank Staff or Programmer Behaviour:

• Let us assume a bank clerk, “in ye olde” days, when calculating, say
mortgage repayments (cf. Example 67).

– We would characterise such a clerk as being diligent, etc., if that
person carefully follows the mortgage calculation rules, and checks
and double-checks that calculations “tally up”, or lets others do so.

– We would characterise a clerk as being sloppy if that person occa-
sionally forgets the checks alluded to above.

– We would characterise a clerk as being delinquent if that person
systematically forgets these checks.

– And we would call such a person a criminal if that person intention-
ally miscalculates in such a way that the bank (and/or the mortgage
client) is cheated out of funds which, instead, may be diverted to
the cheater.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 635

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

• Let us, instead of a bank clerk, assume a software programmer charged
with implementing an automatic routine for effecting mortgage repay-
ments (cf. Example 67).

– We would characterise the programmer as being diligent if that person carefully
follows the mortgage calculation rules, and throughout the development verifies
and tests that the calculations are correct with respect to the rules.

– We would characterise the programmer as being sloppy if that person forgets
certain checks and tests when otherwise correcting the computing program under
development.

– We would characterise the programmer as being delinquent if that person sys-
tematically forgets these checks and tests.

– And we would characterise the programmer as being a criminal if that person
intentionally provides a program which miscalculates the mortgage interest, etc.,
in such a way that the bank (and/or the mortgage client) is cheated out of funds.

This ends Example 68

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

636 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

Example 69 – A Human Behaviour Mortgage Calculation:

int Cmd(mkPM(c,a,m,p,d))(ρ,α,µ,ℓ) ≡
let (b,d′) = ℓ(m) in
if q(α(a),p) /∗ α(a)≤p∨α(a)=p∨α(a)≤p∨... ∗/
then
let i = f1(interest(mi,b,period(d,d′))),

ℓ′ = ℓ † [ m7→f2(ℓ(m)−(p−i)) ]
α′ = α † [ a 7→f3(α(a)−p),ai 7→f4(α(ai)+i),

a“staff” 7→f“staff”(α(a“staff”)+i) ] in
((ρ,α′,µ,ℓ′),ok) end

else
((ρ,α′,µ,ℓ),nok)

end end
pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼→ Bool

f1,f2,f3,f4,f“staff”: P
∼→ P [ typically: f“staff” = λp.p ]

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 637

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

The predicate q and the functions f1, f2, f3, f4 and f“staff” of Exam-
ple 67 are deliberately left undefined. They are being defined by the
“staffer” when performing (incl., programming) the mortgage calcula-
tion routine.

The point of Example 67 is that one must first define the mortgage
calculation script precisely as one would like to see the diligent staff
(programmer) to perform (incl., correctly program) it before one can
“pinpoint” all the places where lack of diligence may “set in”. The
invocations of q, f1, f2, f3, f4 and f“staff” designate those places.

The point of Example 67 is also that we must first domain-define, “to
the best of our ability” all the places where human behaviour may play
other than a desirable role. If we cannot, then we cannot claim that some
requirements aim at countering undesirable human behaviour. This
ends Example 69

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

638 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 8.Domain Human Behaviour 0. 0. 0

Example 70 – Transport Net Building:

•We show the example in two stages:

– First we show a description of a diligent operation;

– then of a less careful operation.

Sub-example 1 (of Example 70 – ) A Diligent Operation:

• The int Insert operation of Example 10 Slide 67

– was expressed without stating necessary pre-conditions:

11 30 The insert operation takes an Insert command and a net and yields
either a new net or chaos for the case where the insertion command
“is at odds” with, that is, is not semantically well-formed with respect
to the net.

30See Page 69 for Item 11 et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 639

(7. Domain Engineering 7.8. Domain Human Behaviour )

12 We characterise the “is not at odds”, i.e., is semantically well-formed,
that is: pre int Insert(op)(hs,ls), as follows: it is a propositional func-
tion which applies to Insert actions, op, and nets, (hs.ls), and yields
a truth value if the below relation between the command arguments
and the net is satisfied.

Let (hs,ls) be a value of type N.

13 If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

640 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.8. Domain Human Behaviour )

14 If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable
in hs.

15 If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 641

(7. Domain Engineering 7.8. Domain Human Behaviour )

value
12′ pre int Insert: Ins → N → Bool
12′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
13 2oldH(hi′,l,hi′′) → {hi′,hi′′}⊆iohs(hs),
14 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∧h 6∈ hs∧obs HI(h) 6∈ iohs(hs),
15 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∧{obs HI(h′),obs HI(h′′)}∩ iohs(hs)

end

• These must be carefully expressed and adhered to

• in order for staff to be said to carry out the link insertion operation
accurately.

This ends Sub-example 70.1

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

642 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.8. Domain Human Behaviour )

Sub-example 2 (of Example 70 – ) A Sloppy via Delinquent to Criminal Op-
eration:

• We replace systematic checks (∧) with partial checks (∨), etcetera,

• and obtain various degrees of sloppy to delinquent, or even criminal behaviour.

value
12′ pre int Insert: Ins → N → Bool
12′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
13 2oldH(hi′,l,hi′′) → hi′ ∈ iohs(hs)∨hi′′isin iohs(hs),
14 1oldH1newH(hi,l,h) → hi ∈ iohs(hs)∨h6∈ hs∨obs HI(h)6∈ iohs(hs),
15 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∨{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

This ends Sub-example 70.2

This ends Example 70

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 643

(7. Domain Engineering 7.8. Domain Human Behaviour )

7.8.1. A Meta Characteristic of Human Behaviour

• Commensurate with the above, humans interpret rules and regula-
tions differently,

• and not always consistently — in the sense of repeatedly applying
the same interpretations.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

644 Dines Bjørner: Domain & Requirements Engineering

7.Domain Engineering 8.Domain Human Behaviour 1.A Meta Characteristic of Human Behaviour 0. 0

Schema 3 – A Human Behaviour Specification Pattern:

type

[ 1 ] α: Action = Σ
∼→ Σ-infset

value
[ 2 ] hum int: Rule → Σ → RUL-infset
[ 3 ] action: Stimulus → Σ → Σ

[ 4 ] hum beha: Stimulus × Rules → Action → Σ
∼→ Σ-infset

[ 5 ] hum beha(sy sti,sy rul)(α)(σ) as σset
[ 6 ] post
[ 7 ] σset = α(σ) ∧ action(sy sti)(θ) ∈ θset
[ 8 ] ∧ ∀ σ′:Σ•σ′ ∈ σset ⇒
[ 9 ] ∃ se rul:RUL•se rul ∈ hum int(sy rul)(σ)⇒se rul(σ,σ′)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 645

7.Domain Engineering 8.Domain Human Behaviour 1.A Meta Characteristic of Human Behaviour 0. 0

• The above is, necessarily, sketchy:

– [1] There is a possibly infinite variety of ways of interpreting some rules.

– [2] A human, in carrying out an action, interprets applicable rules and chooses
one which that person believes suits some (professional, sloppy, delinquent or
criminal) intent.

– “Suits” means that it satisfies the intent,

∗ i.e., yields true on the pre/post-configuration pair,

∗ when the action is performed —

∗ whether as intended by the ones who issued the rules and regulations or not.

– We do not cover the case of whether an appropriate regulation is applied or
not.

• The above-stated axioms express how it is in the domain,

• not how we would like it to be.

• For that we have to establish requirements.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

646 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.8. Domain Human Behaviour 7.8.1. A Meta Characteristic of Human Behaviour )

7.8.2. Principles

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 647

(7. Domain Engineering 7.8. Domain Human Behaviour 7.8.2. Principles )

7.8.3. Discussion

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-4 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 10

Domain Engineering: Human Behaviour and Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 11

Domain Engineering: Opening and Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-4 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

648 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.8. Domain Human Behaviour 7.8.3. Discussion )

7.9. Opening and Closing Stages

•We cover in this lecture the following aspects of domain engineering:

– opening stages ;

– closing stages ; and

– domain engineering documentation — .

• Sections

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 649

(7. Domain Engineering 7.9. Opening and Closing Stages )

7.9.1. Opening Stages

• For completeness, we shall briefly list the opening stages of domain
engineering.

1. domain stake-holder identification (and subsequent liaison);

2. rough sketching of business processes;

3. domain acquisition

• literature study,

• Internet study,

• on-site interviews,

• questionnaire preparation,

• questionnaire fill-in, and

• questionnaire handling —

resulting in a great number of domain description units;

4. domain analysis (based on domain description units) and concept
formation, and

5. domain “terminologisation”.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

650 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.1. Opening Stages )

7.9.1.1. Stakeholder Identification and Liaison

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 651

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.1. Opening Stages 7.9.1.1. Stakeholder Identification and Liaison )

7.9.1.2. Domain Acquisition

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

652 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.1. Opening Stages 7.9.1.2. Domain Acquisition )

7.9.1.3. Domain Analysis

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 653

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.1. Opening Stages 7.9.1.3. Domain Analysis )

7.9.1.4. Terminoligisation

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

654 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.1. Opening Stages 7.9.1.4. Terminoligisation )

7.9.2. Closing Stages

• For completeness, we shall, as in Sect. on Slide 649, briefly list the
closing stages of domain engineering.

• They are:

1. domain verification, model checking and testing – the assurance of
properties of the formalisation of the domain model ;

2. domain validation – the assurance of the veracity of the informal,
i.e., the narrative domain description ; and

3. domain theory formation .

• Other than this brief mentioning we shall not cover these, from an
engineering view-point rather important stages.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 655

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.2. Closing Stages )

7.9.2.1. Verification, Model Checking and Testing

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

656 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.2. Closing Stages 7.9.2.1. Verification, Model Checking and Testing )

7.9.2.2. Domain Validation

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 657

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.2. Closing Stages 7.9.2.2. Domain Validation )

7.9.2.3. Domain Theory

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

658 Dines Bjørner: Domain & Requirements Engineering

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.2. Closing Stages 7.9.2.3. Domain Theory )

7.9.3. Domain Engineering Documentation

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 659

(7. Domain Engineering 7.9. Opening and Closing Stages 7.9.3. Domain Engineering Documentation )

7.9.4. Conclusion

•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-tsode-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 11

Domain Engineering: Opening and Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 12

Reqs. Eng.: Opening, Acquisition & BPR

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-tsode-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

660 Dines Bjørner: Domain & Requirements Engineering

8. Requirements Engineering

8.1. Characterisations

Definition 58 – IEEE Definition of ‘Requirements’:

• By a requirements we understand (cf. IEEE Standard 610.12):

– “A condition or capability

– needed by a user

– to solve a problem

– or achieve an objective”.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 661

8.Requirements Engineering 1.Characterisations 0. 0. 0

Principle 4 – Requirements Engineering [1]: Prescribe only those
requirements that can be objectively shown to hold for the designed
software.

Principle 5 – Requirements Engineering [2]: When prescribing
requirements,

• formulate, at the same time, tests (theorems, properties for model
checking)

• whose actualisation should show adherence to the requirements

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-a c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

662 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 1.Characterisations 0. 0. 0

Definition 59 – Requirements:

• By requirements we shall understand a document which pre-
scribes desired properties of a machine:

– (i) what entities the machine shall “maintain”, and

– what the machine shall (must; not should) offer of

∗ (ii) functions and of

∗ (iii) behaviours

– (iv) while also expressing which events the machine shall “han-
dle”.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 663

8.Requirements Engineering 1.Characterisations 0. 0. 0

• A requirements prescription ideally specifies

• externally observable properties of

– simple entities,

– functions,

– events and

– behaviours

• of the machine

• such as the requirements stake-holders wish them to be.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-a c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

664 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 1.Characterisations 0. 0. 0

• Above we used the term ‘ideally’.

– Even in good practice the requirements engineer

– may, here and there in the requirements prescription,

– resort to prescribe the requirements more by how it effects the
what

– rather than only (i.e., ‘ideally’) prescribe the requirements by what
the machine is to offer.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 665

8.Requirements Engineering 1.Characterisations 0. 0. 0

• The machine is what is required, that is,

– the hardware and

– software

• that is to be designed and

• which are to satisfy the requirements.

• It is a highlight of this document that

– requirements engineering has a scientific foundation

– and that that scientific foundation is the domain theory,

– that is the properties of the domain as modelled by a domain
description.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-a c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

666 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 1.Characterisations 0. 0. 0

• Conventional requirements engineering,

– as covered in a great number of software engineering textbooks,

– does not have (such) a scientific foundation.

• This foundation allows us to pursue requirements engineering in quite
a new manner.

• The key idea of the kind of requirements engineering that we shall
present is

– that a major part of the requirements can be systematically “de-
rived”

– from a description of the domain in which the requirements ‘reside’.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 667

(8. Requirements Engineering 8.1. Characterisations )

8.2. The Core Stages of Requirements Engineering

• The core stages of requirements engineering are therefore those of
‘deriving’ the following requirements facets:

– business process re-engineering,

– domain requirements,

– interface requirements and

– machine requirements.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-a c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

668 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.2. The Core Stages of Requirements Engineering )

8.3. On Opening and Closing Requirements Engineering Stages

•
•
•
•
•We shall treat the stages and steps of RE opening and closing stages

later.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 669

(8. Requirements Engineering 8.3. On Opening and Closing Requirements Engineering Stages )

8.4. Requirements Acquisition

• Requirements ‘reside’ in the domain.

• That means:

– one can not possibly utter a reasonably comprehensive set of re-
quirements

– without stating the domain “to which they apply”.

• Therefore

– we first describe the domain before

– we next prescribe the requirements.

• And therefore

– we shall “base our requirements acquisition”

– on a supposedly existing domain description.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-a c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

670 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 4.Requirements Acquisition 0. 0. 0

• To ‘base our requirements acquisition . . . etc.’ shall mean

– that we carefully go through the domain description

– (found most appropriate for the requirements at hand)

– with the requirements stake-holders

– asking them a number of questions.

•Which these questions are will be dealt with soon.

• For domain acquisition there were, in principle, no prior domain description doc-
uments, really, to refer to.

– Hence an elaborate set of procedures had to be followed

– in order to solicit and elicit domain acquisition units.

– Before such elicitation could be done in any systematic fashion the domain
engineer had to study the domain, by whatever informal means available.

– Now there is the domain description.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 671

8.Requirements Engineering 4.Requirements Acquisition 0. 0. 0

• From a purely linguistic point of view we can think of decompos-
ing requirements acquisition relative to the domain description along
three axes:

– the first axis of domain requirements — being those which can be
expressed sôlely using terms from the domain;

– the second axis of machine requirements — being those which can
be expressed sôlely using terms from the machine; and

– the third axis of interface requirements — being those which can
be expressed using terms from both the domain and the machine.

• The next three sections,

– Sects. –,

– shall therefore be structured into two parts:

∗ the respective requirements acquisition part

∗ and the corresponding requirements modelling part.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

672 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.4. Requirements Acquisition )

8.5. Business Process Re-Engineering

Definition 60 – Business Process Re-Engineering: By business
process re-engineering we understand

• the reformulation of previously adopted business process descrip-
tions,

• together with additional business process engineering work.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 673

8.Requirements Engineering 5.Business Process Re-Engineering 0. 0. 0

• Business process re-engineering (BPR) is about change,

• and hence BPR is also about change management.

• The concept of workflow is one of these “hyped” as well as “hijacked”
terms:

– They sound good, and they make you “feel” good.

– But they are often applied to widely different subjects, albeit hav-
ing some phenomena in common.

• By workflow we shall, very loosely, understand the physical move-
ment of people, materials, information and “centre (‘locus’) of con-
trol” in some organisation (be it a factory, a hospital or other).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

674 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.5. Business Process Re-Engineering )

8.5.1. Michael Hammer’s Ideas on BPR

1. Understand a method of re-engineering before you do it for se-
rious.

2. One can only re-engineer processes.

3. Understanding the process is an essential first step in re-engineering.

4. If you proceed to re-engineer without the proper leadership, you
are making a fatal mistake.

5. Re-Engineering requires radical, breakthrough ideas about pro-
cess design.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 675

8.Requirements Engineering 5.Business Process Re-Engineering 1.Michael Hammer’s Ideas on BPR 0. 0

6. Before implementing a process in the real world create a labo-
ratory version in order to test whether your ideas work.

7. You must re-engineer quickly.

8. You cannot re-engineer a process in isolation. Everything must
be on the table.

9. Re-Engineering needs its own style of implementation: fast, im-
provisational, and iterative.

10. Any successful re-engineering effort must take into account the
personal needs of the individuals it will affect.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

676 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.1. Michael Hammer’s Ideas on BPR )

8.5.2. What Are BPR Requirements?

• Two “paths” lead to business process re-engineering:

– A client wishes to improve enterprise operations by deploying new computing
systems (i.e., new software).

∗ In the course of formulating requirements for this new computing system

∗ a need arises to also re-engineer the human operations within and without
the enterprise.

– An enterprise wishes to improve operations by redesigning the way staff operates
within the enterprise and the way in which customers and staff operate across
the enterprise-to-environment interface.

∗ In the course of formulating re-engineering directives

∗ a need arises to also deploy new software, for which requirements therefore
have to be enunciated.

• One way or the other, business process re-engineering is an integral component in
deploying new computing systems.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 677

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.2. What Are BPR Requirements? )

8.5.3. Overview of BPR Operations

•We suggest six domain-to-business process re-engineering operations.

– They are based on the facets that were prominent in the process of constructing
a domain description.

1. introduction of some new and removal of some old intrinsics;

2. introduction of some new and removal of some old support technologies;

3. introduction of some new and removal of some old management and organisa-
tion substructures;

4. introduction of some new and removal of some old rules and regulations;

5. related scripting; and

6. introduction of some new and removal of some old work practices (relating to
human behaviours);

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

678 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.3. Overview of BPR Operations )

8.5.4. BPR and the Requirements Document

8.5.4.1. Requirements for New Business Processes

• The reader must be duly “warned”:

– The BPR requirements are not for a computing system,

– but for the people who “surround” that (future) system.

– The BPR requirements state, unequivocally,

– how those people are to act,

– i.e., to use that system properly.

• Any implications, by the BPR requirements,

• as to concepts and facilities of the new computing system

•must be prescribed (also) in the domain and interface requirements.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 679

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.4. BPR and the Requirements Document 8.5.4.1. Requirements for New Business Processes )

8.5.4.2. Place in Narrative Document

•We shall thus, in the later part of this lecture, treat a number of
BPR facets.

• Each of whatever you decide to focus on,

• in any one requirements development,

•must be prescribed.

• And the prescription must be put into the overall requirements pre-
scription document.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

680 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 4.BPR and the Requirements Document 2.Place in Narrative Document 0

• As the BPR requirements “rebuilds” the business process description
part of the domain description31,

• and as the BPR requirements are not directly requirements for the
machine,

• we find that they (the BPR requirements texts) can be simply put
in a separate section.

31— Even if that business process description part of the domain description is “empty” or nearly so!

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 681

8.Requirements Engineering 5.Business Process Re-Engineering 4.BPR and the Requirements Document 2.Place in Narrative Document 0

• There are basically two ways of “rebuilding”

– the domain description’s business process’s description part (DBP )

– into the requirements prescription part’s BPR requirements (RBPR).

– Either

∗ you keep all of D as a base part in RBPR,

∗ and then you follow that part (i.e., RBPR)

∗ with statements, R′BPR, that express the new business process’s
“differences”

∗ with respect to the “old” (DBP ).

∗ Call the result RBPR.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

682 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 4.BPR and the Requirements Document 2.Place in Narrative Document 0

– Or

∗ you simply rewrite (in a sense, the whole of) DBP directly into
RBPR,

∗ copying all of DBP ,

∗ and editing wherever necessary.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 683

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.4. BPR and the Requirements Document 8.5.4.2. Place in Narrative Document )

8.5.4.3. Place in Formalisation Document

• The above statements as how to express the “merging” of BPR re-
quirements into the overall requirements document apply to the nar-
rative as well as to the formalised prescriptions.

Principle 6 – Documentation:

•We may assume that there is a formal domain description, DBP ,
(of business processes) from which we develop the formal pre-
scription of the BPR requirements.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

684 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 4.BPR and the Requirements Document 3.Place in Formalisation Document 0

•We may then decide to

– either develop entirely new descriptions of the new business
processes, i.e., actually prescriptions for the business re-engineered
processes, RBPR;

– or develop, from DBP , using a suitable schema calculus, such
as the one in RSL, the requirements prescription RBPR, by
suitable parameterisation, extension, hiding, etc., of the do-
main description DBP .

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 685

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.4. BPR and the Requirements Document 8.5.4.3. Place in Formalisation Document )

8.5.5. Intrinsics Review and Replacement

Definition 61 – Intrinsics Review and Replacement: By in-
trinsics review and replacement we understand an evaluation

• as to whether current intrinsics stays or goes, and

• as to whether newer intrinsics need to be introduced.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

686 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 5.Intrinsics Review and Replacement 0. 0

Example 71 – Intrinsics Replacement: A railway net owner changes
its business from owning, operating and maintaining railway nets (lines,
stations and signals) to operating trains. Hence the more detailed state
changing notions of rail units need no longer be part of that new com-
pany’s intrinsics while the notions of trains and passengers need be in-
troduced as relevant intrinsics.

Replacement of intrinsics usually point to dramatic changes of the busi-
ness and are usually not done in connection with subsequent and related
software requirements development.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 687

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.5. Intrinsics Review and Replacement )

8.5.6. Support Technology Review and Replacement

Definition 62 – Support Technology Review and Replacement:
By support technology review and replacement we understand an
evaluation

• as to whether current support technology as used in the enter-
prise is adequate, and

• as to whether other (newer) support technology can better per-
form the desired services.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

688 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 6.Support Technology Review and Replacement 0. 0

Example 72 – Support Technology Review and Replacement:

• Currently the main information flow of an enterprise is taken care of
by printed paper, copying machines and physical distribution. All such
documents, whether originals (masters), copies, or annotated versions
of originals or copies, are subject to confidentiality.

• As part of a computerised system for handling the future information
flow, it is specified, by some domain requirements, that document
confidentiality is to be taken care of by encryption, public and private
keys, and digital signatures.

• However, it is realised that there can be a need for taking physical,
not just electronic, copies of documents.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 689

8.Requirements Engineering 5.Business Process Re-Engineering 6.Support Technology Review and Replacement 0. 0

• The following business process re-engineering proposal is therefore con-
sidered:

– Specially made printing paper and printing and copying machines are to be pro-
cured, and so are printers and copiers whose use requires the insertion of special
signature cards which, when used, check that the person printing or copying is
the person identified on the card, and that that person may print the desired
document.

– All copiers will refuse to copy such copied documents — hence the special paper.

– Such paper copies can thus be read at, but not carried outside the premises (of
the printers and copiers).

– And such printers and copiers can register who printed, respectively who tried to
copy, which documents.

– Thus people are now responsible for the security (whereabouts) of possible paper
copies (not the required computing system).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

690 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 6.Support Technology Review and Replacement 0. 0

• The above, somewhat construed example, shows the “division of labour”
between the contemplated (required, desired) computing system (the
“machine”) and the “business re-engineered” persons authorised to
print and possess confidential documents.

• It is implied in the above that the re-engineered handling of documents
would not be feasible without proper computing support.

• Thus there is a “spill-off” from the business re-engineered world to
the world of computing systems requirements.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 691

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.6. Support Technology Review and Replacement )

8.5.7. Management and Organisation Re-Engineering

Definition 63 – Management and Organisation Re-Engineering:
By management and organisation re-engineering we understand an
evaluation

• as to whether current management principles and organisation
structures as used in the enterprise are adequate, and

• as to whether other management principles and organisation
structures can better monitor and control the enterprise.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

692 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 7.Management and Organisation Re-Engineering 0. 0

Example 73 – Management and Organisation Re-Engineering:

• A rather complete computerisation of the procurement practices of a
company is being contemplated.

• Previously procurement was manifested in the following physically sep-
arate as well as designwise differently formatted paper documents:
requisition form, order form, purchase order, delivery inspection form,
rejection and return form, and payment form.

• The supplier had corresponding forms: order acceptance and quota-
tion form, delivery form, return acceptance form, invoice form, return
verification form, and payment acceptance form.

• The current concern is only the procurement forms, not the supplier
forms.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 693

8.Requirements Engineering 5.Business Process Re-Engineering 7.Management and Organisation Re-Engineering 0. 0

• The proposed domain requirements are mandating

– that all procurer forms disappear in their paper version,

– that basically only one, the procurement document, represents all
phases of procurement,

– and that order, rejection and return notification slips, and payment
authorisation notes,

– be effected by electronically communicated and duly digitally signed
messages that represent appropriate subparts of the one, now elec-
tronic procurement document.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

694 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 7.Management and Organisation Re-Engineering 0. 0

• The business process re-engineering part may now

– “short-circuit” previous staff’s review and

– acceptance/rejection of former forms,

• in favour of fewer staff interventions.

• The new business procedures, in this case, subsequently find their way
into proper domain requirements: those that support, that is monitor
and control all stages of the re-engineered procurement process.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 695

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.7. Management and Organisation Re-Engineering )

8.5.8. Rules and Regulations Re-Engineering

Definition 64 – Rules and Regulation Re-Engineering: By
rules and regulations re-engineering we understand an evaluation

• as to whether current rules and regulations as used in the enter-
prise are adequate, and

• as to whether other rules and regulations can better guide and
regulate the enterprise.

• Here it should be remembered that rules and regulations principally
stipulate business engineering processes.

• That is, they are — i.e., were — usually not computerised.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

696 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 8.Rules and Regulations Re-Engineering 0. 0

Example 74 – Rules and Regulations Re-Engineering:

• Our example continues that of Example 60 on Slide 473.

• Assume now, due to re-engineered support technologies, that interlock signalling
can be made magnitudes safer than before, without interlocking.

• Thence it makes sense to re-engineer the rule of Example 60

– from: In any three-minute interval at most one train may either arrive to or depart
from a railway station

– into: In any 20-second interval at most two trains may either arrive to or depart
from a railway station.

• This re-engineered rule is subsequently made into a domain requirements, namely
that the software system for interlocking is bound by that rule.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 697

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.8. Rules and Regulations Re-Engineering )

8.5.9. Script Re-Engineering

• On one hand, there is the engineering of the contents of rules and
regulations,

• and, on another hand, there are

– the people (management, staff) who script these rules and regula-
tions,

– and the way in which these rules and regulations are communicated
to managers and staff concerned.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

698 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 9.Script Re-Engineering 0. 0

Definition 65 – Script Re-Engineering: By script re-engineering
we understand evaluation

• as to whether the way in which rules and regulations are scripted
and made known (i.e., posted) to stakeholders in and of the en-
terprise is adequate, and

• as to whether other ways of scripting and posting are more suit-
able for the enterprise.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 699

8.Requirements Engineering 5.Business Process Re-Engineering 9.Script Re-Engineering 0. 0

Example 75 – Health-care Script Re-Engineering:

•We refer to Example 63 (Pages 505–517).

• Let us assume that the situation before this business re-engineering
process starts, in relation to hospital health-care, was that

– there was no physically visible notion of a health-care license lan-
guage,

– but the the requirements now calls for such a language to be intro-
duced

– with as much computer & communication support as is reasonable

– and that the hospital(s) in question are to become “paper-less”.

• Now we can foresee a number of business process re-engineering based
on the concept that such a health-care license language has been
designed.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

700 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 9.Script Re-Engineering 0. 0

– For every action performed by a medical staff, whether an admit-
tance, annamnese, planning analysis, carrying out our analysis, di-
agnostics, treatment planning, treatment (in all forms), et cetera,
action (cf. Fig. 13 on Slide 510),

– there now has to be prescribed, by and for the hospital health-care
staff a BPR prescription, which outlines what the staff members
must do

∗ in preparation of the action,

∗ the action (probably nothing new here),

∗ and in concluding the action

so that the medical staff performs the necessary “chores” assumed
by the health-care license language software.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 701

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.9. Script Re-Engineering )

8.5.10. Human Behaviour Re-Engineering

Definition 66 – Human Behaviour Re-Engineering: By human
behaviour re-engineering we understand an evaluation

• as to whether current human behaviour as experienced in the
enterprise is acceptable, and

• as to whether partially changed human behaviours are more suit-
able for the enterprise.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

702 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 10.Human Behaviour Re-Engineering 0. 0

Example 76 – Human Behaviour Re-Engineering:

• A company has experienced certain lax attitudes among members of
a certain category of staff.

• The progress of certain work procedures therefore is re-engineered,

• implying that members of another category of staff are henceforth
expected to follow up on the progress of “that” work.

• In a subsequent domain requirements stage the above re-engineering

• leads to a number of requirements for computerised monitoring of the
two groups of staff.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 703

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.10. Human Behaviour Re-Engineering )

8.5.11. A Specific Example of BPR

Example 77 – A Toll-road System (I):

• Example 10 (Pages 62–77) outline a generic model of a domain of
roads (links) and their intersections (hubs).

•We shall base some of the requirements examples of Sect. on an
instantiation of that domain model (Example 10) to a specific toll-
road system.

• In this example we shall rough sketch that toll-road system.

• First we refer to Fig. 14 on the following slide.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

704 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 11.A Specific Example of BPR 0. 0

tp1 tp2 tp3 tpntpn−1tpj

l12

l32

l23 l34 lj−1j

ljj−1l43 lj+1j

ljj+1

ln−1n−2

ln−1n

lnn−1

ln−2n−1

l21

l1 l2 l3 lj ln−1 ln

h2h1 h3 hj hn−1 hn

Figure 14: A simple, linear toll road net:
tpi: tboll plaza i,
ti1, tin: terminal (or toll plaza) intersection k,
hk: intermediate intersection (hub) k, 1<k<n

ℓi: toll plaza link i,
lxy: toll-way link from ix to iy, y=x+1 or y=x-1 and 1≤x<n.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 705

8.Requirements Engineering 5.Business Process Re-Engineering 11.A Specific Example of BPR 0. 0

•We first explain the kind of toll-roads semi-generically hinted at by
Fig. 14 on preceding slide.

– The core of the (semi-generic) toll-road is the “linear” stretch of
pairs of one-way links (ℓjj+1

, ℓj+1j
) between adjacent hubs hj and

hj+1. This is the actual toll-road.

– In order to enter and leave the toll-road there are entries and exits.
These are in the form of toll plazas tpi.

– Simple two-way links, ℓj, connect toll plaza tpj (via toll plaza in-
tersection tij to toll-road intersection hj.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

706 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 11.A Specific Example of BPR 0. 0

•We must here state that toll plazas are equipped with toll booths

– for cars entering the toll-road system and

– for cars leaving the toll-road system.

• The basic business process of this toll-road system includes

– (i) the maintenance of all roads, intersections and toll plaza toll
booths;

– (ii) the travel, through the toll-road system of a toll-paying car; and

– (iii) the monitoring and control of toll-paying car traffic within the
toll-road system.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 707

8.Requirements Engineering 5.Business Process Re-Engineering 11.A Specific Example of BPR 0. 0

•We shall only summarise the travel (i) business process:

– (1) A car enters the toll-road system at toll plaza tpi.

– (2) A toll booth gate prevents the car from fully entering the system.

– (3) The car is issued a toll slip by an entry toll-booth at toll plaza
tpi.

– (4) The toll-booth gate allows the car from entering the system.

– (5) The car travels along toll plaza link ℓj to toll-road hub hj. [Let,
in the following hj now be hi.]

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

708 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 5.Business Process Re-Engineering 11.A Specific Example of BPR 0. 0

– (6) At toll-road hub hi the car decides whether to continue driving
along the toll-road proper or to leave the toll-road system along toll
plaza link ℓj to toll plaza tpi. In the latter case the business process
description continues with Item (8).

– (7) The car travels, along toll-road link either ℓii+1
or ℓii−1

, between
toll-road hub hi and hub hi+1 respectively hub hi+−. [Let, in the
following this target hub now be hi.] The next business process
step is now described in Item (6).

– (8) At toll plaza tpi the car enters an exit toll-booth.

– (9) A toll-booth gate prevents the car from leaving the toll-road
system.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 709

8.Requirements Engineering 5.Business Process Re-Engineering 11.A Specific Example of BPR 0. 0

– (10) The previously issued toll slip is now presented at the toll-
booth.

– (11) The toll-booth calculates the fare from entry plaza to exit
plaza32.

– (13) The car (driver) somehow33

– (14) The toll-booth gate allows the car to leave the toll-road system.

– (15) The car leaves the toll-road system.

This ends Example 77

32We shall not detail this calculation. Its proper calculation may involve that the system has traced the car’s passage through all hubs.
33We shall not detail that “somehow”: whether it is by cash payment, via credit card, or by means of a toll-road system credit mechanism “built-into” the car.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

710 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.11. A Specific Example of BPR )

8.5.12. Discussion: Business Process Re-Engineering

8.5.12.1. Who Should Do the Business Process Re-Engineering?

• It is not in our power, as software engineers,

• to make the kind of business process re-engineering decisions implied
above.

• Rather it is, perhaps, more the prerogative of appropriately educated,
trained and skilled (i.e., gifted) other kinds of engineers or business
people

• to make the kinds of decisions implied above.

• Once the BP re-engineering has been made, it then behooves the
client stakeholders to further decide whether the BP re-engineering
shall imply some requirements, or not.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 711

8.Requirements Engineering 5.Business Process Re-Engineering 12.Discussion: Business Process Re-Engineering 1.Who Should Do the Business Process Re-Engineering? 0

• Once that last decision has been made in the affirmative, we, as
software engineers, can then apply our abstraction and modelling
skills, and,

• while collaborating with the former kinds of professionals,

•make the appropriate prescriptions for the BPR requirements.

• These will typically be in the form of domain requirements, which
are covered extensively in later lectures.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-bpr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

712 Dines Bjørner: Domain & Requirements Engineering

Requirements Engineering 8.5. Business Process Re-Engineering 8.5.12. Discussion: Business Process Re-Engineering 8.5.12.1. Who Should Do the Business Process Re-Engineering?

8.5.12.2. General

• Business process re-engineering is based on the premise

• that corporations must change their way of operating,

• and, hence, must “reinvent” themselves.

• Some corporations (enterprises, businesses, etc.) are

– “vertically” structured

∗ along functions, products or geographical regions.

– Others are “horizontally” structured

∗ along coherent business processes.

– In either case adjustments may need to be made as the business
(i.e., products, sales, markets, etc.) changes.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 12

Reqs. Eng.: Opening, Acquisition & BPR

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 13

Domain Requirements Engineering

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-bpr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 713

(8. Requirements Engineering 8.5. Business Process Re-Engineering 8.5.12. Discussion: Business Process Re-Engineering 8.5.12.2. General )

8.6. Domain Requirements

8.6.1. A Small Domain Example

• In exemplifying several of the very many kinds of domain and ma-
chine requirements we need a small domain description.

• This small domain description will be that of a timetable, cf. Exam-
ple 78.

• The sequence of machine requirements examples based on Exam-
ple 78 will, furthermore, be expressed using the scheme and class
modularisation constructs of RSL.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

714 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 1.A Small Domain Example 0. 0

Example 78 – A Domain Example: an ‘Airline Timetable Sys-
tem’:

•We choose a very simple domain:

• that of a traffic timetable, say flight timetable.

• In the domain you could, in “ye olde days”, hold such a timetable in
your hand, you could browse it, you could look up a special flight, you
could tear pages out of it, etc.

• There was no end as to what you could do to such a timetable.

• So we will just postulate a sort, TT, of timetables.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 715

8.Requirements Engineering 6.Domain Requirements 1.A Small Domain Example 0. 0

• Airline customers, clients, in general, only wish to inquire a timetable
(so we will here omit treatment of more or less “malicious” or destruc-
tive acts).

• But you could still count the number of digits “7” in the timetable,
and other such ridiculous things.

• So we postulate a broadest variety of inquiry functions, qu:QU, that
apply to timetables, tt:TT, and yield values, val:VAL.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt0 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

716 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 1.A Small Domain Example 0. 0

• Specifically designated airline staff may, however, in addition to what
a client can do, update the timetable.

• But, recalling human behaviours, all we can ascertain for sure is that
update functions, up:UP, apply to timetables and yield two things:
another, replacement timetable, tt:TT, and a result, res:RES, such as:
“your update succeeded”, or “your update did not succeed”, etc.

• In essence this is all we can say for sure about the domain of timetable
creations and uses.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 717

8.Requirements Engineering 6.Domain Requirements 1.A Small Domain Example 0. 0

•We can view the domain of the

– timetable,

– clients and

– staff

• as a behaviour

– which nondeterministically alternates (⌈⌉) between

– the client querying the timetable client 0(tt),

– and the staff updating the same staff 0(tt).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt0 c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

718 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 1.A Small Domain Example 0. 0

scheme TI TBL 0 =
class
type

TT, VAL, RES
QU = TT → VAL
UP = TT → TT × RES

value
client 0: TT → VAL, client 0(tt) ≡ let q:QU in q(tt) end
staff 0: TT → TT × RES, staff 0(tt) ≡ let u:UP in u(tt) end

tim tbl 0: TT → Unit
tim tbl 0(tt) ≡

(let v = client 0(tt) in tim tbl 0(tt) end)
⌈⌉ (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

end

This ends Example 78

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0 Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 719

(8. Requirements Engineering 8.6. Domain Requirements 8.6.1. A Small Domain Example )

8.6.2. Acquisition

• Common to the acquisition and modelling of domain requirements
are the following sub-stages:

– projection,

– instantiation,

– determination,

– extension and

– fitting.

sub-stages.

•With each and every stake-holder group the domain engineer(s) go
through the domain description and asks the following questions:

– Which of the simple entities, functions, events and behaviour (parts)
of the domain do you wish to be represented somehow in, i.e., pro-
jected onto the machine ?

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

720 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 2.Acquisition 0. 0

– Which of the simple entities, functions, events and behaviour (parts)
of the domain do you wish to be less generic, more instantiated in
the machine ?

– Which of the simple entities, functions, events and behaviour (parts)
of the domain do you wish to appear more deterministic in the ma-
chine ?

– Are there simple entities, functions, events and behaviours that
could be in the domain but are not there because their “existence”
is not feasible — if so, with computing and communication are they
now feasible and should the domain thus be extended ?

– Given that there may be several, parallel ongoing requirements
development for related parts of the domain, should they be fitted ?

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 721

8.Requirements Engineering 6.Domain Requirements 2.Acquisition 0. 0

• For each of these five sub-stages of domain requirements the acqui-
sition consists in asking these questions and marking the domain
description cum emerging domain requirements document with the
answers:

– circling-in the domain description parts that are to be part of the
domain requirements (i.e., projection)

– marking those parts with possible directives as to instantiation and
determination;

– making adequate notes on possible extensions

– and fittings.

• Once this domain requirements acquisition has taken place for all
groups of stake-holders the requirements engineers can proceed to
interface requirements acquisition.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

722 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.2. Acquisition )

8.6.3. Projection

Definition 67 – Projection: By domain projection we under-
stand an operation

• that applies to a domain description

• and yields a domain requirements prescription.

• The latter represents a projection of the former

• in which only those parts of the domain are present

• that shall be of interest in the ongoing requirements development

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 723

8.Requirements Engineering 6.Domain Requirements 3.Projection 0. 0

Example 79 – Projection: A Road Maintenance System:

• The requirements are for a road maintenance system.

– That is, maintenance of link and hub (road segment and road in-
tersection) surfaces,

– the monitoring of their quality

– and road repair.

• Instead of listing all the phenomena and concepts of the domain that
are “projected away”, we list those few that remain:

– hubs,

– links,

– hub identifiers and

– link identifiers;

– nets,

– observer functions, and

– axioms.

34Formula numbers refer to narrative text items as from Page 62 etc.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering arms-projection c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

724 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.3. Projection )

type

1: H, L,34

2: N = H-set × L-set
axiom
2: ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1

type
3: HI, LI

value
4a: obs HI: H → HI, obs LI: L → LI

axiom
4b: ∀ h,h′:H, l,l′:L • h 6=h′

⇒ obs HI(h) 6=obs HI(h′) ∧ l6=l′⇒obs LI(l) 6=obs LI(l′)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark arms-projection Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 725

(8. Requirements Engineering 8.6. Domain Requirements 8.6.3. Projection )

value
5a: obs HIs: L → HI-set
6a: obs LIs: H → LI-set
5b: ∀ l:L • card obs HIs(l)=2 ∧
6b: ∀ h:H • card obs LIs(h)≥1 ∧
5(a): ∀ (hs,ls):N • ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒

∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧
6(a): ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

7: ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
8: ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

This ends Example 79
August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering arms-projection c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

726 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 3.Projection 0. 0

Example 80 – Projection: A Toll-road System:

• For the ‘Toll-road System’, as outlined in Example 77, in addition to
what was projected for the ‘Road Maintenance System’ of Example 79,
the following entities and most related functions are projected:

– hubs, links,

– hub and link identifiers;

– nets, that is,

– hub state and hub state spaces and

– link states and link state spaces,

– corresponding observer functions,

– corresponding axioms and

– syntactic and

– semantic wellformedness predicates.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark atrs-projection Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 727

(8. Requirements Engineering 8.6. Domain Requirements 8.6.3. Projection )

type
LΣ′ = L Trav-set
L Trav = (HI × LI × HI)
LΣ = {| lnkσ:LΣ′ • syn wf LΣ{lnkσ} |}
HΣ′ = H Trav-set
H Trav = (LI × HI × LI)
HΣ = {| hubσ:HΣ′ • wf HΣ{hubσ} |}
HΩ = HΣ-set, LΩ = LΣ-set

value
obs HΣ: H → HΣ, obs LΣ: L → LΣ
obs HΩ: H → HΩ, obs LΩ: L → LΩ

axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

This ends Example 80

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-projection c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

728 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.3. Projection )

8.6.4. Instantiation

Definition 68 – Instantiation: By domain instantiation we un-
derstand an operation

• that applies to a (projected and possibly determined) domain de-
scription, i.e., a requirements prescription,

• and yields a domain requirements prescription,

• where the latter has been made more specific, usually by con-
straining a domain description

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 729

8.Requirements Engineering 6.Domain Requirements 4.Instantiation 0. 0

Example 81 – Instantiation: A Road Maintenance System:
We continue Example 79.

280. The road net consist of a sequence of one or more road segments.

281. A road segment can be characterised by a pair of hubs and a pair of
links connected to these hubs.

282. Neighbouring road segments share a hub.

283. All hubs are otherwise distinct.

284. All links are distinct.

285. The two links of a road segment connects to the hubs of the road
segment.

286. We can show that road nets are specific instances of concretisations
of the former, thus more abstract road nets.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering arms-instantiation c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

730 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.4. Instantiation )

type
280 RN = RS∗,
281 RS = H × (L × L) × H
axiom
∀ rn:RN •

282 ∀ i:Nat • {i,i+1}⊆inds rn ⇒ let ( , ,h)=rn(i),(h′, , )=rn(i+1) in h=h′ end ∧
283 len rn + 1 = card{h,h′|h,h′:H•(h, ,h′)∈ elems rn} ∧
284 2∗(len rn) = card{l,l′|l,l′:L•( ,(l,l′), )∈ elems rn} ∧
285 ∀ (h,(l,l′),h′):RS • (h,(l,l′),h′) ∈ elems rn ⇒

obs Σ(l)={(obs HI(h),obs HI(h′))} ∧ obs Σ(l′)={(obs HI(h′),obs HI(h))}
value
286 abs N: RN → N

abs N(rsl) ≡
({h,h′|(h, ,h′):RS • (h, ,h′) ∈ elems rsl},{l,l′|( ,(,l,l′), ):RS • ( .(l,l′), ) ∈ elems rsl})

This ends Example 81

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark arms-instantiation Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 731

8.Requirements Engineering 6.Domain Requirements 4.Instantiation 0. 0

Example 82 – Instantiation: A Toll-road System: We continue
Example 80.

• The 1st version domain requirements prescription, Example 80, is now
updated with respect to the properties of the toll-road net:

– We refer to Fig. 14 on Slide 704 and the preliminary description
given in Example 77.

– There are three kinds of hubs:

∗ tollgate hubs and

∗ intersection hubs:

· terminal intersection hubs

and

· proper, intermediate inter-
section hubs.

– Tollgate hubs have one connecting two way link.

∗ linking the tollgate hub to its associated intersection hub.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-instantiation c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

732 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.4. Instantiation )

– Terminal intersection hubs have three connecting links:

∗ (i) one, a two-way link, to a tollgate hub,

∗ (ii) one one-way link emanating to a next up (or down) intersec-
tion hub, and

∗ (iii) one one-way link incident upon this hub from a next up (or
down) intersection hub.

– Proper intersection hubs have five connecting links:

∗ one, a two way link, to a tollgate hub,

∗ two one way links emanating to next up and down intersection
hubs, and

∗ two one way links incident upon this hub from next up and down
intersection hub.

– etc.

• As a result we obtain a 2nd version domain requirements prescription.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark atrs-instantiation Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 733

(8. Requirements Engineering 8.6. Domain Requirements 8.6.4. Instantiation )

type
TN = ((H × L) × (H × L × L))∗ × H × (L × H)

value
abs N: TN → N
abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,( ,hn)) ≡
{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

tn links: TN → L-set
tn links(hll, ,(ln, )) ≡
{ln} ∪ {tlj,lj,lj′|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-instantiation c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

734 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.4. Instantiation )

type
LnkM == plaza | way

value
wf TN: TN → Bool
wf TN(tn:(hll,h,(ln,hn))) ≡

wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [ to be defined under Determination ]

wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool
wf Toll Ways(hll,h) ≡
∀ j:Nat • {j,j+1}⊆inds hll ⇒
let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),( ,(hj′, , )) = hll(j+1) in
wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧
let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in
wf Toll Lnk(thk,tlk,hk)(plaza) ∧
wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark atrs-instantiation Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 735

(8. Requirements Engineering 8.6. Domain Requirements 8.6.4. Instantiation )

wf Toll Lnk: (H×L×H) → LnkM → Bool
wf Toll Lnk(h,l,h′)(m) ≡

obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),(obs HI(h′),obs LI(l),obs HI(h))} ∧
obs Σ(l) = case m of

plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

This ends Example 82

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-instantiation c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

736 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.4. Instantiation )

8.6.5. Determination

Definition 69 – Determination: By domain determination we
understand an operation

• that applies to a (projected) domain description, i.e., a require-
ments prescription,

• and yields a domain requirements prescription,

• where the latter has made deterministic, or specific, some func-
tion results or some behaviours of the former

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 737

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

Example 83 – Timetable System Determination:

•We make airline timetables more specific, more deterministic.

– There are given notions

∗ of departure and arrival times, and

∗ of airports, and

∗ of airline flight numbers.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt0-dd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

738 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

scheme TI TBL 2 =
extend TI TBL 1 with
class
type

T, An, Fn
end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0-dd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 739

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

• A timetable consists of a number of air flight journey entries.

– Each entry has a flight number,

– and a list of two or more airport visits.

∗ an airport visit consists of three parts: An airport name, and a
pair of (gate) arrival and departure times.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt0-dd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

740 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

scheme TI TBL 3 =
extend TI TBL 2 with
class
type
JR′ = (T × An × T)∗
JR = {| jr:JR′

• len jr ≥ 2 ∧ ... |}
TT = Fn →m JR

end

•We illustrate just one, simple form of airline timetable queries.

• A simple airline timetable query

– either just browses all of an airline timetable,

– or inquires of the journey of a specific flight.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0-dd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 741

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

• The simple

– browse query thus need not provide specific argument data,

– whereas the flight journey query needs to provide a flight number.

• A simple

– update query inserts a new pairing of a flight number and a journey
to the timetable,

– whereas a delete query need just provide the number of the flight
to be deleted.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt0-dd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

742 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

• The result of a query is a value:

– the specific journey inquired,

– or the entire timetable browsed.

• The result of an update is a possible timetable change

– and either an “OK” response if the update could be made,

– or a “Not OK” response if the update could not be made:

∗ Either the flight number of the journey to be inserted was already
present in the timetable,

∗ or the flight number of the journey to be deleted was not present
in the timetable.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0-dd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 743

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

scheme TI TBL 3Q =
extend TI TBL 3 with
class
type

Query == mk brow() | mk jour(fn:Fn)
Update == mk inst(fn:Fn,jr:JR) | mk delt(fn:Fn)
VAL = TT
RES == ok | not ok

end

Then we define the semantics of the query commands:

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt0-dd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

744 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

scheme TI TBL 3U =
extend TI TBL 3 with
class
value
Mq: Query→ QU
Mq(qu) ≡
case qu of

mk brow()→ λtt:TT•tt,
mk jour(fn)
→ λtt:TT • if fn ∈ dom tt

then [ fn 7→tt(fn) ] else [ ] end
end end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0-dd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 745

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

scheme TI TBL 3U =
extend TI TBL 3 with
class
Mu: Update → UP
Mu(up) ≡
case qu of

mk inst(fn,jr)→ λtt:TT •

if fn ∈ dom tt
then (tt,not ok) else (tt ∪ [ fn 7→jr ],ok) end,

mk delt(fn)→ λtt:TT •

if fn ∈ dom tt
then (tt \ {fn},ok) else (tt,not ok) end

end end

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt0-dd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

746 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

• Before we had:

value
tim tbl 0: TT → Unit
tim tbl 0(tt) ≡

(let v = client 0(tt) in tim tbl 0(tt) end)
⌈⌉ (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

• Now we get:

value
system: TT → Unit
system() ≡

(let q:Query in let v =Mq(q)(tt) in system(tt) end end)
⌈⌉ (let u:Update in let (r,tt′) =Mu(q)(tt) in system(tt′) end end)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt0-dd Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 747

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

Or, for use in Example 99:

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT→ Unit
client(tt) ≡
let q:Query in let v =Mq(q)(tt) in system(tt) end end

staff: TT→ Unit
staff(tt) ≡
let u:Update in let (r,tt′) =Mu(q)(tt) in system(tt′) end end

This ends Example 83

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt1-dd c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

748 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

Example 84 – Determination: A Road Maintenance System:
We continue Example 81.

• We shall, in this example, claim that the following items constitute issues of more
determinate nature of the ‘Road Management System’ under development.

– fixing the states of links and hubs;

– endowing links and hubs with such attributes as

∗ road surface material (concrete, asphalt, etc.),

∗ state of road surface wear-and-tear,

∗ hub and link areas, say in m2,

∗ time units needed for and cost of ordinary cleaning of m2s of hub and link
surface;

∗ time units needed for and cost of ordinary repairs of m2s of hub and link
surface;

∗ etcetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark arms-determination Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 749

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

287. The two links of a road segment are open for traffic in one direction
and in opposite directions only.

288. Hubs are always in the same state, namely one that allows traffic from
incoming links to continue onto all outgoing links.

289. Hubs and Links have a number of attributes that allow for the mon-
itoring and planning of hub and link surface conditions, i.e., whether
in ordinary or urgent need of cleaning and/or repair.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering arms-determination c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

750 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.5. Determination )

axiom
∀ rn:RN •

287 ∀ (h,(l,l′),h′):RS • (h,(l,l′),h′) ∈ elems rn ⇒
obs LΣl(l) = {(obs HI(h),obs LI(l),obs HI(h′))} ∧
obs LΣl(l′) = {(obs HI(h′),obs LI(l′),obs HI(h))} ∧

288 ∀ i:Nat • {i,i+1}⊆inds rn •

let ((h,(l,l′),h′),(h′,(l′′,l′′′),h′′)) = (rn(i),rn(i+1)) in
case i of

1 → obs HΣ(h) = {(obs LI(l),obs HI(h),obs LI(l′))},
len rn → obs HΣ(h′) = {(obs LI(l′),obs HI(h′),obs LI(l))},
→ obs HΣ(h′)

= {(obs LI(l),obs HI(h′),obs LI(l′)),(obs LI(l),obs HI(h′),obs LI(l′))}
end end

type
289 Surface, WearTear, Area, OrdTime, OrdCost, RepTime, RepCost, ...
value
289 obs Surface: (H|L)→Surface, obs WearTear: (H|L)→WearTear, ...

This ends Example 84

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark arms-determination Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 751

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

Example 85 – Determination: A Toll-road System: We con-
tinue Example 82.

•We single out only two ’determinations’:

– The link state spaces.

∗ There is only one link state: the set of all paths through the link,

∗ thus any link state space is the singleton set of its only link state.

– The hub state spaces are the singleton sets of the “current” hub
states which allow these crossings:

∗ (i) from terminal link back to terminal link,

∗ (ii) from terminal link to emanating tollway link,

∗ (iii) from incident tollway link to terminal link, and

∗ (iv) from incident tollway link to emanating tollway link.

• Special provision must be made for expressing the entering from the
outside and leaving toll plazas to the outside.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-determination c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

752 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

wf State Spaces: TN → Bool
wf State Spaces(hll,hn,(thn,tln)) ≡
let ((th1,tl1),(h1,l12,l21)) = hll(1),

((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in
wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒
let (,(hj,ljj,lj′j)) = hll(j),((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in
wf Plaza(thj′,tlj′,hj′) ∧ wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end

wf Plaza(th,tl,h) ≡
obs HΣ(th) = [ crossings at toll plazas ]
{(external,obs HI(th),obs LI(tl)),

(obs LI(tl),obs HI(th),external),
(obs LI(tl),obs HI(th),obs LI(tl))} ∧

obs HΩ(th)={obs HΣ(th)} ∧
obs LΩ(tl) = {obs LΣ(tl)}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark atrs-determination Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 753

8.Requirements Engineering 6.Domain Requirements 5.Determination 0. 0

wf End(h,tl,l,l′) ≡
obs HΣ(h) = [ crossings at 3−link end hubs ]
{(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧ obs LΩ(l′) = {obs LΣ(l′)}

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[ crossings at properly intermediate, 5−link hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧ obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧ obs LΩ(dl) = {obs LΣ(dl)}

This ends Example 85

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-determination c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

754 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.5. Determination )

8.6.6. Extension

Definition 70 – Extension: By domain extension we understand
an operation

• that applies to a (projected and possibly determined and instan-
tiated) domain description, i.e., a (domain) requirements pre-
scription,

• and yields a (domain) requirements prescription.

• The latter prescribes that a software system is to support, par-
tially or fully, an operation that is not only feasible but also
computable in reasonable time

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 755

8.Requirements Engineering 6.Domain Requirements 6.Extension 0. 0

Example 86 – Timetable System Extension:

•We assume a projected and instantiated timetable (see Sect. 83 on
Slide 737).

• A query of a timetable may, syntactically, specify an airport of ori-
gin, ao, an airport of destination, ad, and a maximum number, n, of
intermediate stops.

• The query semantically designates the set of all those trips of one up to
n direct air journeys between ao and ad, i.e., trips where the passenger
may change flights (up to n− 1 times) at intermediate airports.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering tt1-de c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

756 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 6.Extension 0. 0

scheme TI TBL 3C =
extend TI TBL 3 with
class
type
Query′ == Query | mk conn(fa:An,ta:An,n:Nat)
VAL′ = VAL | CNS
CNS = (JR∗)-set

value
Mq(mk conn(fa,ta,n)) as
pre ...
post ...

end

This ends Example 86

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark tt1-de Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 757

8.Requirements Engineering 6.Domain Requirements 6.Extension 0. 0

Example 87 – Extension: A Toll-road System: We continue
Examples 77 and 85.

• In the rough sketch of the toll-road business processes (Example 77)

• references were made to a concept of a toll-booth.

• The domain extension is that of the controlled access of vehicles to
and departure from the toll road net:

– the entry to (and departure from) tollgates from (respectively to)
an "an external" net — which we do not describe;

– the new entities of tollgates with all their machinery;

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-extension c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

758 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 6.Extension 0. 0

– the user/machine functions:

∗ upon entry:

· driver pressing entry button,

· tollgate delivering ticket;

∗ upon exit:

· driver presenting ticket,

· tollgate requesting payment,

· driver providing payment, etc.

• One added (extended) domain requirements:

– as vehicles are allowed to cruise the entire net

– payment is a function of the totality of links traversed, possibly
multiple times.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark atrs-extension Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 759

8.Requirements Engineering 6.Domain Requirements 6.Extension 0. 0

– This requires, in our case,

∗ that tickets be made such as to be sensed somewhat remotely,

∗ and that intersections be equipped with sensors which can record

∗ and transmit information about vehicle intersection crossings.

· (When exiting the tollgate machine can then access the exiting
vehicles sequence of intersection crossings — based on which a
payment fee calculation can be done.)

· All this to be described in detail — including all the thinks that
can go wrong (in the domain) and how drivers and tollgates are
expected to react.

•We suggest only some signatures:

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering atrs-extension c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

760 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 6.Extension 0. 0

type
Mach, Ticket, Cash, Payment, Map TN

value
obs Cash: Mach → Cash, obs Tickets: M → Ticket-set
obs Entry, obs Exit: Ticket → HI, obs Ticket: V → (Ticket|nil)
calculate Payment: (HI×HI) → Map TN → Payment
press Entry: M → M × Ticket [ gate up ]
press Exit: M × Ticket → M × Payment
payment: M × Payment → M × Cash [ gate up ]

This ends Example 87

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark atrs-extension Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 761

(8. Requirements Engineering 8.6. Domain Requirements 8.6.6. Extension )

8.6.7. Fitting

Definition 71 – Fitting: By domain requirements fitting we understand an
operation

• that applies to two or more, say m, projected and possibly determined, in-
stantiated and extended domain descriptions, i.e., to two or more, say m,
original domain requirements prescriptions,

• and yields m + n (resulting, revised original plus new, shared) domain re-
quirements prescriptions.

• The m revised original domain requirements prescriptions resulting from the
fitting prescribe most of the original (m) domain requirements.

• The n (new, shared) domain requirements prescriptions resulting from the
fitting prescribe requirements that are shared between two or more of the m
revised original domain requirements

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

762 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 7.Fitting 0. 0

Example 88 – Fitting: Road Maintenance and Toll-road Sys-
tems: We end the series of examples that illustrate requirements for a
road maintenance respectively a toll-road system (Examples 77–87).

•We postulate two domain requirements:

– We have outlined a domain requirements development for software
support for road maintenance;

– and we have outlined a domain requirements development for soft-
ware support for a toll-road system.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark arms+atrs-fitting Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 763

8.Requirements Engineering 6.Domain Requirements 7.Fitting 0. 0

•We can therefore postulate that there are two domain requirements
developments, both based on the transport domain:

– one, drroad-maint., for a toll road computing system monitoring and con-
trolling vehicle flow in and out of toll plazas, and

– another, drtoll-road, for a toll link and intersection (i.e., hub) building
and maintenance system monitoring and controlling link and hub
quality and for development.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering arms+atrs-fitting c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

764 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 6.Domain Requirements 7.Fitting 0. 0

• The fitting procedure now identifies the shared of awareness of the net
by both drroad-maint. and drtoll-road of nets (N), hubs (H) and links (L).

– We conclude from this that we can single out a common require-
ments for software that manages net, hubs and links.

– Such software requirements basically amounts to requirements for
a database system.

– A suitable such system, say a relational database management sys-
tem, DBrel, may already be available with the customer.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark arms+atrs-fitting Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 765

8.Requirements Engineering 6.Domain Requirements 7.Fitting 0. 0

– In any case, where there before were two requirements (drroad-maint., drtoll-road)
there are now four:

∗ d′rroad-maint.
, a modification of drroad-maint. which omits the description

parts pertaining to the net;

∗ d′rtoll-road
, a modification of drtoll-road which likewise omits the descrip-

tion parts pertaining to the net;

∗ drnet
, which contains what was basically omitted in d′rroad-maint.

and
d′rtoll-road

; and

∗ drdb:i/f
(for database interface) which prescribes a mapping between

type names of drnet
and relation and attribute names of DBrel.

•Much more can and should be said, but this suffices as an example.

This ends Example 88

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering arms+atrs-fitting c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

766 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.6. Domain Requirements 8.6.7. Fitting )

8.7. A Caveat: Domain Descriptions versus Requirements Prescriptions

8.7.1. Domain Phenomena

•When in the domain we describe simple entities by:

type L, H, N

then we mean that

– L, H and N denote types of real, actually in the domain occurring
phenomena

– l:L, h:H and n:N

– (as here, from Example 10, links, hubs and nets).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 767

(8. Requirements Engineering 8.7. A Caveat: Domain Descriptions versus Requirements Prescriptions 8.7.1. Domain Phenomena )

8.7.2. Requirements Concepts

•When, however, in the requirements, we describe simple entities by
the same identifiers

– then we mean that

– L, H and N denote types of representation of domain phenomena
l:L, h:H and n:N,

– not the “the real thing”, but “only” representations thereof.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

768 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.7. A Caveat: Domain Descriptions versus Requirements Prescriptions 8.7.2. Requirements Concepts )

8.7.3. A Possible Source of Confusion

•We have decided not to make a syntactic distinction between these
two kinds of (simple entity, operation, event and behaviour) names.

• The context, that is, the fact that such names occur in a section on
requirements, is enough, we think, to make the distinction clear.

•When there can be doubt, as we shall see in the next section, on In-
terface Requirements (Sect. ), then we shall “spell out” the difference,
viz., L (domain) versus LINK (requirements).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 769

(8. Requirements Engineering 8.7. A Caveat: Domain Descriptions versus Requirements Prescriptions 8.7.3. A Possible Source of Confusion )

8.7.4. Relations of Requirements Concepts to Domain Phenomena

•We did not bother to warn the readerearlier,

– about the possible source of confusion

– that lies in mistaking a requirements concepts for “the real thing”:
its domain phenomena “counterpart”.

• But we find that it is high time now,

– before we enter the section on ‘Interface Requirements’ (just be-
low),

– to highlight that the simple entities, operations, events and be-
haviours referred to in requirements

– are concept

– whereas those of domains

– are phenomena.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

770 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 7.A Caveat: Domain Descriptions versus Requirements Prescriptions 4.Relations of Requirements Concepts to Domain Phenomena 0. 0

• The reason (for now emphasising the difference) is simple:

– interface requirements are about the relations between

– phenomena of the domain and

– concepts of the software (being required).

•When,

– in the domain, we name a (simple entity, operation, event or be-
haviour) phenomena D, and when

– in the requirements, we name a corresponding (simple entity, op-
eration, event or behaviour) R;

• then, by corresponding,

– we mean that there is an unprovable relation

R |= D.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 771

8.Requirements Engineering 7.A Caveat: Domain Descriptions versus Requirements Prescriptions 4.Relations of Requirements Concepts to Domain Phenomena 0. 0

•We cannot possibly formally claim that

R = D or even R ≃ D,

– The R is a mathematical model of some requirements concept

– whereas D is thought of as “the real thing”.

• Let us understand the above, seemingly contradictory statement:

– The D is expressed mathematically, so it must be conceptual, as
is R.

– Therefore they ought be comparable.

– If we take this view that both are mathematical models, then all
is OK and we can compare them.

– If, however, we take the view that the names (of what is assumed,
or claimed, to be domain phenomena inD) denote “the real things,
out there in the actual world”, then we cannot compare them.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

772 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 7.A Caveat: Domain Descriptions versus Requirements Prescriptions 4.Relations of Requirements Concepts to Domain Phenomena 0. 0

• How do we, in the following, reconcile these two views ?

•We do so as follows:

– On one hand we write R |= D to mean that the requirements
abstractly models the domain,

– while, when we write

∗ R abstractly refines D
or

∗ abs D(Req) = Dom

we mean that

∗ the mathematical model of the requirements

∗ is a refinement of the mathematical model of the domain —

∗ in which latter phenomena names are considered names of math-
ematical concepts.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 773

(8. Requirements Engineering 8.7. A Caveat: Domain Descriptions versus Requirements Prescriptions 8.7.4. Relations of Requirements Concepts to Domain Phenomena

8.7.5. Sort versus Type Definitions

• As a principle we prefer to use sorts and observer functions:

Example 89 – Domain Types and Observer Functions:

type
N, L, H, LI, HI, Location, Length

value
obs Ls: N → L-set, obs Hs: N → H-set
obs LI: L → LI, obs HI: H → HI
obs LIs: H → LI-set, obs HIs: L → HI-set
obs Location: L → Location, obs Length: L → Real

• rather then type definitions:

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

774 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 7.A Caveat: Domain Descriptions versus Requirements Prescriptions 5.Sort versus Type Definitions 0. 0

Example 90 – Requirements Types and Decompositions:

type
LI, HI, Location, Length
N = L-set × H-set
L = LI × (HI×HI) × Location × Length × ...
H = HI × LI-set × Length × ...

value
(ls,hs):N, (li,(fhi,thi),loc,len,...):L, (hi,lis,len,...):H

• when defining simple domain entities.

• The type definitions are then typically introduced in requirements prescriptions.

• As shown in the last formula line of Example 90, the observer functions of domain
descriptions can then be simply effected by decompositions.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 775

(8. Requirements Engineering 8.7. A Caveat: Domain Descriptions versus Requirements Prescriptions 8.7.5. Sort versus Type Definitions )

8.7.5.1. Discussion

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-b c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 13

Domain Requirements Engineering

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 14

Interface Requirements Engineering

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-b Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

776 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.7. A Caveat: Domain Descriptions versus Requirements Prescriptions 8.7.5. Sort versus Type Definitions 8.7.5.1. Discussion )

8.8. Interface Requirements

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 777

(8. Requirements Engineering 8.8. Interface Requirements )

8.8.1. Acquisition

• Interface requirements acquisition evolves around a notion of

• shared phenomena and concepts of the domain. These are listed
now.

• Shared Simple Entities: The shared simple entities are those
simple entities that ‘occur’ in the domain but must also be repre-
sented by the machine.

• Shared Operations: The shared operations are those operations
of the domain that can only be partially ‘executed’ by the machine.

• Shared Events: The shared events are those events of the domain
that must be brought to the attention of the machine.

• Shared Behaviours: The shared behaviours are those behaviours
of the domain that can only be partially ‘processed’ by the machine.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-c c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

778 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 1.Acquisition 0. 0

• Again the requirements engineers “walk” through the domain de-
scription together with each group of requirements stake-holders

– marking up all the shared phenomena and concepts,

– and decides their basic principles resolution,

– which are duly noted in the evolving interface requirements docu-
ment.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 779

(8. Requirements Engineering 8.8. Interface Requirements 8.8.1. Acquisition )

8.8.2. Shared Simple Entity Requirements

Definition 72 – Shared Simple Entity:

• By a shared simple entity we understand

– a simple entity that ‘occurs’ in the domain

– but must also be represented by the machine.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-c c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

780 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

Example 91 – Shared Simple Entities: Railway Units:

•We may think of a train traffic monitoring and control system being
interface requirements developed.

• The following phenomena are then identified as among those being
shared:

– rail units,

– signals,

– road level crossing gates,

– train sensors (optical sensor sensing passing trains) and

– trains.

This ends Example 91

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark shared-se-ru Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 781

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

Example 92 – Shared Simple Entities: Toll-road Units:

•We may think of a toll-road traffic monitoring and control system
being interface requirements developed.

• The following phenomena are identified as among those being shared:

– links,

– hubs,

– cars, (optical sensors sensing passing cars)

– toll-both gates,

– toll-booth externally arriving car sensor,

– toll-booth internally arriving car sensor,

– toll-booth request slip sensor and

– toll-booth accept slip sensor.

This ends Example 92

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

782 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

Example 93 – Shared Simple Entities: Transport Net Data
Representation:

•We deliberately formulated

– Examples 91: “Shared Simple Entities: Railway Units”

– and 92: “Shared Simple Entities: Toll-road Units”

• so as to conjure the image of two very similar set of requirements.

• These are now made into one set. In this example we focus on the
machine representation of simple entities.

•We now continue these examples as well as Example 84.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark shared-tndr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 783

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

290. The shared simple entities are the links and the hubs. In the domain
we referred to these by the sort names L and H, in the machine they
will be represented by the types LINK and HUB

291. Now we must make sure that we can abstract LINK s and HUBs “back”
into L and H.

292. A number of properties that could be observed of links and hubs in
the domain must be represented, somehow, in the machine. (Again
we refer to Example 84.) Some properties are:

• link and hub Location,

• link Length,

• road (link and hub) Surface material (concrete, macadamised, dirt road, etc.),

• road (link and hub) WearTear (surface quality),

• Date last surveyed (i.e., monitored)

• Date last maintained (i.e., controlled) with respect to surface quality,

• next scheduled Date of survey, etc.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tndr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

784 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

293. Let us call the pair of sets of representations of LINK s and HUBs for
NET. We omit, in this example, the modelling of net attributes.

294. We postulate an abstraction function, abs N, which from a concretely
represented net:NET abstracts the abstract n(et) in N(et).

295. Tentatively we might impose the following representation theorem (a
relation) between concrete and abstract nets: the links [hubs] (in L [in
H ]) that can be abstracted from any concrete net net must be those
observable in the abstracted net.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark shared-tndr Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 785

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

type
290 Length, Surface, WearTear, Date, L Location, H Location
292 LINK = LI×(HI×HI)×L Location×Length×Surface×WearTear×(Date×Date×Date)× ...
292 HUB = HI×H Location×Surface×WearTear×(Date×Date×Date)× ...
293 NET = LINK-set × HUB-set
value
291 abs L: LINK → L, abs H: HUB → L
294 abs N: NET → N
theorems:
294 ∀ (links,hubs):NET, ∃ n:N •

294 (links,hubs) |= n ∧
294 abs N(links,hubs) abstractly refines n ∧
295 let ls = {abs L(link)|link:LINK • link ∈ links}
295 hs = {abs H(hub)|hub:HUB • hub ∈ hubs} in
295 obs Ls(abs N(net))|=ls ∧ obs Hs(abs N(net))|=hs end

• We shall discuss the representation of concrete hubs in Example 94.

This ends Example 93

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tndr c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

786 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

• In Example 93 (“Shared Simple Entities: Transport Net Data Rep-
resentation”)

• we kept an abstract representation of links and hubs.

• At some time in the software development process we are forced
to decide on a concrete type representation of links and hubs so
that we can implement those types through the use of a practical
programming language.

• Here we shall choose, as already hinted at in Example 88, to rep-
resent links and hubs as tuples in relations of a relational database
management system.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 787

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

Example 94 – Representation of Transport Net Hubs:

•We continue Example 93 (“Shared Simple Entities: Transport Net
Data Representation”).

•With the hints given in the text paragraph just preceding this example

• we are now ready to suggest a concrete type for LINK s and HUBs,

– namely as tuples or respective relations,

– but with the twist that we do not endow a concrete hub represen-
tation with the set of link identifiers that, in the domain, can be
observed from that hub

– since, as we shall shortly show, that information can be calculated
from the set of links having the same hub identifiers as that of the
hub.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tnhs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

788 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

• You may now object,

– if you did not already wonder way back in Example 10,

– as to why we did not already include this in the domain model of
the net.

– The answer is: Yes, we could have done that, but we prefer to have
modelled links and hubs, as we did it in Example 10, since we think
that that is a most abstract, “no tricks” model.

– The “tricks” we refer to is represented below by the xtr LIs func-
tion.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark shared-tnhs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 789

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

type
L Location, H Location
LINK = LI×(HI×HI)×L Location×Length×Surface×WearTear×(Date×Date
HUB = HI×H Location×Surface×WearTear×(Date×Date×Date)× ...
RDB = LINK-set × HUB-set

value
xtr LIs: HUB → RDB → LI-set
xtr LIs(hi,hl,s,wt,(ld,md,nd),...)(ls,hs) ≡
{li|li:LI•

∃ link:(li′,(hi′,hi′′),ll,lgt,s,wt,(d′,d′′,d′′′),...):LINK•

link ∈ ls ∧ (hi=hi′ ∨ hi=hi′′)}
This ends Example 94

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tnhs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

790 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

• The requirements example that now follows

• to some extent deviate from the ideal of expressing requirements:

– rather than expressing properties, the what,

– these requirements express an abstract design, the how.

• One might very well claim that the example that now follows

– really should be moved to a section on Software Design

– since it can be said to be such an abstract design.

• Be that as it may,

– we have chosen to place the next example here,

– under shared entity data initialisation,

– as it illustrates that concept rather well.

• The point is that

– the more we include considerations of the machine the

– the more operational, that is, the less what the more how

– the interface requirements becomes.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 791

(8. Requirements Engineering 8.8. Interface Requirements 8.8.2. Shared Simple Entity Requirements )

Example 95 – Shared Simple Entities: Transport Net Data
Initialisation:

•We continue Example 93 (“Shared Simple Entities: Transport Net
Data Representation”).

•We now focus on the initialisation of simple entity data.

296. Input of representations of simple transport net entities, that is, rep-
resentations of links and hubs, is by means of a software package, call
it NetDataInput.

297. NetDataInput assumes a rather old-fashioned constellation of a graphic
user interface (GUI), NetDataGUI, in-data and a conventional rela-
tional database NetDataRDB.

298. The NetDataRDB is here thought of as just consisting of two relations
ls:LINKS and hs:HUBS.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tndi c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

792 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

299. Each relation consists of a set of LINK, respectively HUB “tupleisa-
tions” of links and hubs — which, to repeat, are representations of
links and hubs .

300. When NetDataInput is invoked, the NetDataInput GUI shall open
in a window with a click-able, simple either/or choice icon: Road Net

or Rail Net.

301. Clicking one of these shall result in replacing the either/or window
being replaced by a window for the input of net units for the selected
choice of net.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark shared-tndi Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 793

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

In the following we shall treat only the Road Net variant of this in-
terface requirements.

302. The Road Net (GUI) window has the following alternative click-able
choice icons: link and hub.

303. Clicking the Road Net link icon shall result in replacing the Road

Net window being replaced by a window for the input of representa-
tions of road links. Similarly for clicking the Road Net link icon.

In the following we shall treat only the Road Net link icon variant
of this interface requirements.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tndi c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

794 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

304. The Road Net link window has the following named fields:

• link identifier fill in

• hub identifier 1 fill in

• hub identifier 2 fill in

• link location fill in

• link surface fill in

• link wear & tear fill in

• a triple of link dates:

– last survey fill in

– last maintenance fill in

– next survey fill in

• et cetera.

• submit

• Each field, except for the submit icon, consists of a name part and
an input, fill in , part.

• (In the formalisation below the type names “cover” both parts.)

• The system shall assign unique link identifiers, i.e., “fill-in” the link
identifier automatically.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark shared-tndi Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 795

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

305. Clicking the submit icon shall result in the following checks:

• The composite in-data, keyed into the input parts of the Road Net link window
fields are vetted:

– Is the link identifier already defined ?

– Do the location co-ordinates conflict with earlier input ?

– Are the dates in an appropriate chronological order ?

– Et cetera.

• If checks are OK, then the following actions are performed:

– The NetDataRDB link relation is updated to reflect the new link tuple.

– The Road Net system then reverts to the Road Net link window, allowing,
however, the input staff to select the alternative

– (i) Road Net hub window, or

– (ii) to request a partial or full vetting of the state of the NetDataRDB link

and hub relations,

– (iii) or to conclude the input on net data.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tndi c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

796 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

Rail / Road Link / Hub

Road Net Link

Link Id:
Hub 1: 
Location:

Wear&Tear:
Last Survey
Last Maintenance
Next Survey

Surface:

Dates:

Hub 2:

Net Initialisation Road Net

...
vet concluderoad net hub ...

Figure 15: Three snapshots of NetDataInput

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark shared-tndi Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 797

8.Requirements Engineering 8.Interface Requirements 2.Shared Simple Entity Requirements 0. 0

type

296 NDI

298 RDB = Links × Hubs

299 Links = LINK-set

299 Hubs = HUB-set

300 GUI == EitherOrW | RoadNetW | RailNetW

300 EitherOrW == roadnet | railnet

302 RoadNetW == link | hub

304 LINK = LI×(HI×HI)×L Location×Surface×WearTear×(Date×Date×Date)× ...

304 HUB = HI×H Location×Surface×WearTear×(Date×Date×Date)× ...

Response == ok | (not ok × Error Msg)

Error Msg

value

297 obs GUI: NDI → GUI, obs RDB: NDI → RDB

301 select RoadOrRail: GUI → GUI

303 select Link or Hub: GUI → GUI

305 submit Link input: GUI → GUI × Response

• We leave it to the reader to complete the interface requirements for shared simple entity initialisation.

This ends Example 95

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering shared-tndi c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

798 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.8. Interface Requirements 8.8.2. Shared Simple Entity Requirements )

8.8.3. Shared Operation Requirements

Definition 73 – Shared Operation: By a shared operation we
understand an operation of the domain that can only be partially
‘executed’ by the machine — with the remaining operation parts
being “executed” by a human or some “gadget” of the domain “out-
side” of our concern.

•We start by giving a consolidated domain description of a fragment
of a financial services industry,

– in other words: Example 96

– is not a requirements prescription.

• But it will be the basis for a shared operations interface requirements
prescription.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 799

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

Example 96 – Shared Operations: Personal Financial Trans-
actions:

•With the advent of the Internet,

– i.e., computing and communications,

– and with the merging of in-numerous functionalities of the financial service sector,

– we are witnessing the ability of some clients of the financial service industry to
handle most of their transactions “themselves”.

• In the first part, Items 306–314 of this example, we rough-sketch the
state and the signatures of some of the client operations of a financial
service industry.

• In the second part, Items 319–331, we rough sketch client states and
behaviours.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

800 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

306. The financial service industry includes one or mare banking and secu-
rities instrument trading services.

(a) Banks are uniquely identified (BId).

(b) Banks offer accounts:

i. a client may have one or more demand/deposit accounts and

ii. one or more mortgage accounts, identified by account numbers;

accounts, in this simplified example, holds a balance of (deposited
or mortgaged) money.

(c) Two or more clients may share accounts and bank registers corre-
late client names (C ) to account and (A) mortage (M) account
numbers.

(d) We do not describe bank identifiers, client names, demand/deposit
account numbers, mortgage account numbers,

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 801

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

type
306 Banks, SecTrad
306(a) Banks = BId →m Bank
306(b) Bank = Registers × Accounts × Mortgages × ...
306((b))i Accounts = A →m Account
306((b))ii Mortgages = M →m Mortgage
306(c) Registers = C →m (A|M)-set
306(d) C, A, BId, Account, Mortgage, Account, Mortgage, OrdNr

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

802 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

307. Bank clients

(a) open account and

(b) close (demand/deposit and mortgage) accounts,

(c) deposit money into accounts,

(d) transfer money to (possibly other client) accounts, and

(e) withdraw (cash) money (say, through an ATM).

308. Client supplied arguments to and

309. responses from these banking operations are also not further described.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 803

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

value
307(a) openacct: Arg∗ → Banks → Banks × Response
307(b) closeacct: Arg∗ → Banks → Banks × Response
307(c) deposit: Arg∗ → Banks → Banks × Response
307(d) transfer: Arg∗ → Banks → Banks × Response
307(e) withdraw: Arg∗ → Banks → Banks × Response
type
308 Arg = BId | C | A | M | OrdNr | Amount | Cash | Date | Time
309 Response = (A | M | Cash | ... | Date | Time)-set

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

804 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

310. A securities exchange keeps track of buy and sell offers, of suspended
such offerings and of transacted trading.

311. Basic concepts of trading, apart from buying, selling, suspension and
concluded trading, are

(a) securities instrument identifications (SId);

(b) quantities offered for selling or buying, or traded (Quant);

(c) the order numbers of placed offers (OrdNr),

(d) prices (Price),

(e) dates (Date) and

(f) times (Time).

type
310 SecTrad = BuyOfrs × SellOfrs × Suspension × Tradings
311 SId, Quant, OrdNr, Price, Date, Time, ...

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 805

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

312. Securities trading allows clients

(a) to place buy and

(b) sell offers,

giving their client and bank identification, their bank demand/deposit
account number (from which to withdraw [i.e., demand], resp. into
which to deposit) buying or selling prices), the securities instrument
[e.g., stock] identifier, quantity to be bought or sold, the high, respec-
tively the low price acceptable, and the last date of the offer.

313. Clients may inquire as to the trading status of their offer.

314. We can therefore think of the following kinds of client transaction
“codes” (Cmd): omkt (observe the market), open (some kind of
bank or securities trading account: demand/deposit, mortgage, trad-
ing, etc.), deposit, withdraw, transfer, close, buy offer, sell offer, in-
quire, et cetera.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

806 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

value
312(a) int buyofr: Arg∗ → SecTrad → SecTrad × Response
312(b) int sellofr: Arg∗ → SecTrad → SecTrad × Response
313 trading: SecTrad → SecTrad × Response

type
314 Cmd == obsmkt|analmkt|openacct|deposit|withdraw|transfer|closeacct

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 807

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

We can, finally, suggest crucial components of the securities exchange state:

315. BuyOfrs map client names, C, into (client) bank identifiers, BId, and client account
numbers, A, which then map into OrdNrs, which (then again) map into a quadruple
of securities instrument identifications, SId,Quantity of instrument to be bought,
the preferred lowest Price and the Date of placement or order.

316. SellOfrs have same components as buy offers — but now the Price designate a
highest price.

317. Suspensions just list order number and date and time of suspension.

318. Tradings list pertinent information.

type
315 BuyOfr = OrdNr →m (C × BId × A) →m (SId × Quant × Price × Date)
316 SellOfr = OrdNr →m (C × BId × A) →m (SId × Quant × Price × Date)
317 Suspension = OrdNr →m (C × Date × Time)
318 Tradings = OrdNr →m SId × Quant × Price × (C×Bid×A×(Date×Time))

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

808 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

•We now rough-sketch a concept of ‘personal finance management’
operations.

– It is in this part, not the first, that this example reveals that it is
an example of an operation that is shared between the domain and
the machine.

– We maintain, however, that the example is still that of a domain
description.

– The operation is that of a client managing own, personal finances.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 809

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

– This ‘personal finance management’ operation is a composite oper-
ation.

∗ It is a sequence of ”one-step” operations, each operation being a
banking or a securities trading. (For simplicity, but without any
loss of generality, we limit the example to just these two sets of
operations.)

∗ Each such operation results in a date- and time-stamped response
(Item 309 on Slide 802).

∗ Each response is studied by the client.

∗ The client may then decide to proceed with further ‘one-step’
operations or end this sequence “at this time” — allowing, of
course, the client to resume ‘personal finance management’ at a
later ‘personal finance management session’.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

810 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

309. Each of the banking and securities instrument operations result in a
response.

319. This response becomes part of the client’s ‘finance management’ state,
ΠΦΣ.

320. We refer to the global financial service industry state as Ω.

Besides the banks and securities trading, the global financial ser-
vice industry state (ω:Ω) is thought of as including all those as-
pects of the clients of this industry which affects and/or reflects
the financial situation.

321. A ‘personal finance management (pfm) session’ is now a conditional
iteration (formula Line 325 below) of personal finance management
operations.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 811

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

322. A client can always observe the dated and timed responses received
as a result of past personal f inance management operations.

323. An iteration of ‘personal finance management’ starts with the client
analysing (ω anal mkt) the market based on past responses;

324. followed by an analysis (cli anal mkt) of the personal financial situ-
ation based on the market response.

325. If the analysis advises some ‘personal finance management’

326. then the client inquires, what to do, past responses and as to which
transaction, cmd, and with which arguments, argl, such a transaction
should be performed.

This operation, what to do, is not computable. It is an opera-
tion performed basically by the client.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

812 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

327. The client then performs (Int Cmd) this (i.e., the cmd) transaction. The trans-
action usually transforms the finance industry state (ω) into a next state (ω′) and
always yields a date- and

328. Once the transaction has been concluded the client reverts to the ‘personal finance
management (pfm) session’ with an updated “past responses” (merge pfm) and in
the new global state, ω′.

329. Else, that is, if the analysis “advises” no transactions, the ‘personal finance man-
agement’ state, πφσ and the global financial state, ω, is left unchanged and the
(i.e., this) session ends.

330. To perform a transaction depends on which kind of transaction, cmd, has been
advised.

331. We leave the interpretation of Int Cmd to the reader.

π The lines, below, marked π designate actions that are performed by the client or
jointly between the client and the financial system (designated by an ω or ω′ argu-
ment).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 813

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

type

319–320 ΠΦΣ, Ω

322 Responses = (Date×Time) →m Response

314 Cmd == obsmkt|analmkt|openacct|deposit|withdraw|transfer|closeacct|...|buyofr|sellofr|trading|...
value

322 obs Responses: ΠΦΣ → Responses

321 pfm session: ΠΦΣ → Ω → Ω × ΠΦΣ

321 pfm session(πφσ)(ω) ≡
322π let past responses = obs Responses(πφσ) in

323π let ω response = ω anal mkt(past responses)(ω) in

324π let πφσ response = cli anal mkt(response)(πφσ) in

325π if advice pfm action(πφσ response)

326π then let (cmd,argl) = what to do(πφσ response)(ω) in

327 let (response,ω′) = Int Cmd(cmd,argl)(ω) in

328π pfm session(merge pfm(response,date,time)(πφσ))(ω′) end end end

329 else (ω,πφσ) end end end

323 ω anal mkt: Responses → Ω → Response

324π cli anal mkt: Response → ΠΦΣ → Response

325 advice pfm action: Response → Bool

326π what to do: Responses → Ω → Cmd × Arg∗

328π merge pfm: Responses → ΠΦΣ → Ω → Ω × ΠΦΣ

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

814 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

330. To perform a transaction depends on which kind of transaction, cmd, has been
advised.

332. A case distinction is made between the very many kinds of transactions (listed in
Item 314).

333. The obs mkt and anal pfm operations do not change the state of the financial
industry.

We think of these operations as not being computable functions. Rather we
think of them as a more-or-less “informed” study, by the client of the market
of financial instruments including the status of those enterprises whose stocks
are traded.

334. The argument l ist of the open transaction indicates which kind of account is to be
established (demand/deposit, mortgage, etc.).

335. The argument l ist of the buy of fer transaction indicates which kind of securities
(stocks, oil, metals, or other commodities) is sought, in which quantity, at which
price level, up till which date, et cetera.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-tops Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 815

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

value
330 Int Cmd: (Cmd × Arg∗) → Ω → Ω × Response
330 Int Cmd(cmd,argl)(ω) ≡
332 case cmd of
333π obsmkt → (ω,eval obs mkt(argl)(ω)),
333π analmkt → (ω,ω anal mkt(argl)(ω)),

...
334π openacct → int open acct(argl)(ω),

...
335π buyofr → int buyofr(argl)(ω),

...
332 end

333π eval obs mkt: Arg∗ → Ω → Response
333π ω anal mkt: Arg∗ → Ω → Response
334 int open acct: Arg∗ → Ω → Ω × Response
335 int buyofr: Arg∗ → Ω → Ω × Response

This ends Example 96

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-tops c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

816 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 3.Shared Operation Requirements 0. 0

• The reader may well ask:

– What in Example 96

– illustrates the shared operations interface requirements ?

– We have already indicated part of the answer to this question by
the π annotations.

•Why is this a reasonable question ?

– It is a reasonable question because we have not made that abun-
dantly clear.

– That is, we have not discussed the placement of π annotations in
much detail.

– Example 96 could really be construed as a domain description
based in the intrinsics, support technology, management and or-
ganisation and human behaviour regime.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 817

(8. Requirements Engineering 8.8. Interface Requirements 8.8.3. Shared Operation Requirements )

8.8.4. Shared Event Requirements

Definition 74 – Shared Event: By a shared event we understand
an event of the domain that must be brought to the attention of the
machine.

•We defer the exemplification of shared events till our treatment of
‘shared behaviour’.

•We therefore progress right on to exemplify ‘shared behaviours’.

• The ‘step of development’,

– from the specification of Example 96 (Shared Operations)

– to the specification of Example 97 (Shared Behaviours)

• is not a formal refinement:

– but it can be made into such a formally verifiable refinement.

– So we pose that as a relevant MSc Thesis topic.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-c c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

818 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.8. Interface Requirements 8.8.4. Shared Event Requirements )

8.8.5. Shared Behaviour Requirements

Definition 75 – Shared Behaviour:

• By a shared behaviours we understand a behaviour of the domain

– that can only be partially ‘processed’ by the machine —

– with the remaining behaviour being provided by

– humans or some “gadgets” of the domain,“outside” of our
concern.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 819

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

Example 97 – Shared Behaviours: Personal Financial Trans-
actions:

336. There is an index set, CI, of clients.

337. For each client there is an “own”

338. ‘personal finance management’ state πφσci : ΠΦΣ (cf. 319 on Slide 810).

339. The finance industry “grand state” ω : Ω is as before (cf. Item and formula line 320
on Slide 810).

340. The system consists of

(a) an indexed set of client behaviours

(b) and one finance industry “grand state” behaviour omega.

341. We model communications between clients and the financial industry to occur over
client-industry channels.

342. We model communications over these channels as being of type M. M will be
“revealed” as we go on.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

820 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

type
336 CI
337 ΠΦΣs = CI →m ΠΦΣ
338 ΠΦΣ
339 Ω = Banks × SecTrad × ...
value
336 cis:CI-set
337 πφσs:ΠΦΣs
339 ω:Ω
340 system: Unit → Unit
340 system() ≡
340(a) ‖ {client(ci)(πφσs(ci))|ci:CI•ci ∈ cis}
340(b) ‖ omega(ω)
channel
341 {c ω ch[ ci ]|ci:CI•ci ∈ cis} M
type
342 M

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-bhvs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 821

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

• Let us first consider the issue of events.

• First the events arise in “the market”,

• here symbolised with the global state ω : Ω.

343. The omega(ω) behaviour and the client(ci)(πφσs(ci)) behaviours, for all clients, are
cyclic — expressed through ‘tail recursion’ over possibly updated states.

344. To model events we let the omega(ω) behaviour alternate between either

(a) inquiring its state as to unusual situations in, the status status of, “the market”,
and,

(b) if so, inform an arbitrary subsets of clients of such “events” and

(c) continuing in an unchanged global financial system state

or

345. servicing client requests — from any client.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

822 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

type
Event

value
omega: Ω → in,out {c ω ch[ ci ]|ci:CI•ci ∈ cis} Unit
omega(ω) ≡

344(b) (let scis:CI-set • scis⊆cis in
344(a) let event = ωstatus(ωsnapshot(ω)) in
344(b) if nok status(event) then {c ω ch[ ci ]!event|ci:CI•ci ∈ scis} end;
344(c) omega(ω) end end)
344 ⌈⌉
345 ⌈⌉⌊⌋ {let req = c ω ch[ ci ] ? in ... see Items350–357(b) ... end | ci:CI • ci
344(a) ωsnapshot: Ω → Ω
344(a) ωstatus: Ω → Event
344(b) nok status: Event → Bool

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-bhvs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 823

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

• Then we consider how clients respond

• to becoming aware of unusual events in “the market”.

346. Clients alternate between handling events:

347. first deciding (345–347) to “listen to the market”,

(a) then updating an own personal finance state (πφσ),

(b) and then coming a client behaviour in that new personal finance
state,

and

348. handling ordinary, that is, personal finance management (pfm) or

349. just idling.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

824 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

value
346 client: ci:CI → ΠΦΣ → in,out c ω ch[ ci ] Unit
346 client(ci)(πφσ) ≡
347 (let event = c ω ch[ ci ]? in
347(a) let πφσ′ = update πφσ(πφσ)(event) in
347(b) client(ci)(πφσ′) end end)
346 ⌈⌉
348 client(ci)(pfm session(ci)(πφσ))
346 ⌈⌉
349 client(ci)(πφσ)

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-bhvs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 825

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

• Let us now turn to the treatment of usual financial transactions.

• The main functions, in Example 96, are

– pfm session (Items 321–329 and formulas on Slides 813–813) and

– Int Cmd (Items 332–335 and formulas on Slides 815–815)

•We now analyse these two functions.

•We refer, in the following to the formula lines on Slides 813–813 and
Slides 815–815.

• The analysis is with respect to

– what actions, π, are expected to occur in the client behaviour and

– what actions are expected from the financial industry (i.e., to occur
in the omega behaviour).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

826 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

• In pfm session (Slides 813–813), formula lines

– 322π: obs Responses(πφσ),

– 324π: cli anal mkt(response)(πφσ),

– 325π: if ok or nok = ok and

– 328π: merge pfm(response,date,time)(

are expected from the client behaviour, all others from the industry,
i.e., the omega behaviour.

• In Int Cmd (Slides 815–815), formula lines

– 333π: eval obs mkt(argl)(ω),

– 333π: ω anal mkt(argl)(ω),

– 334π: int open acct(argl)(ω),

– . . . ,

– 335π: int buyofr(argl)(ω),

– . . . ,

are expected from the client behaviour.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-bhvs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 827

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

• Of the functions itemised above, the

350. (323π) ω anal mkt(past responses)(ω),

351. (333π) eval obs mkt(ω),

352. (334π) int open acct(argl)(ω),

353. . . . ,

354. (335π) int buyofr(argl)(ω),

355. . . . ,

functions — as invoked by the client, in the pfm session and the
Int Cmd behaviours —

• require access to the global financial service industry state ω.

• The idea is now, for the client,

– in its Int Cmd (see Formula lines 330.0 onwards [Slide 833])

– to communicate these functions, as function named argument lists,

– cf. Formula lines 350–355 below.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

828 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.8. Interface Requirements 8.8.5. Shared Behaviour Requirements )

type
FCT == Anal mkt|Obs mkt|...|Open aact|...|Buy Ofr|...

350 Anal mkt = mkAnalMkt(argl:Arg∗)
351 Obs mkt = mkObsMkt(argl:Arg∗)
352 Open acct = mkOpenAcct(argl:Arg∗)
353 ...
354 Buy Ofr = mkBuyOfr(argl:Arg∗)
355 ...
channel
341 {c ω ch[ ci ]|ci:CI•ci ∈ cis}: Event | FCT | Response

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-bhvs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 829

(8. Requirements Engineering 8.8. Interface Requirements 8.8.5. Shared Behaviour Requirements )

356. The omega behaviour thus alternates

(a) between accepting and responding to either of the many forms of
functions, FCT

(b) or generating event notifications.

357. If the omega behaviour of its own will, that is, internally non-deterministically
chooses to accept a client initiate request it externally non-deterministically
chooses which client request to serve.

(a) The omega behaviour deciphers the request;

(b) applies the communicated function to (possibly communicated ar-
guments) and the ω”grand state”; and communicates the result
back to the chosen client.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

830 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.8. Interface Requirements 8.8.5. Shared Behaviour Requirements )

value

omega: Ω → in,out {c ω ch[ ci ]|ci:CI•ci ∈ cis} Unit

omega(ω) ≡
356(b) (let scis:CI-set • scis⊆cis in

356(b) let event = ωstatus(ωsnapshot(ω)) in

356(b) if nok status(event) then {c ω ch[ ci ]!event|ci:CI•ci ∈ scis} end;

356(b) omega(ω) end end)

356 ⌈⌉
357 ⌈⌉⌊⌋ {let req = c ω ch[ ci ] ? in

357(a) case req of

356(a) mkObsMkt(argl) → c ω ch[ ci ] ! eval obs mkt(argl)(ω) ; omega(ω),

356(a) mkAnalMkt(argl) → c ω ch[ ci ] ! ω anal mkt(argl)(ω) ; omega(ω),

356(a) mkOpenAcct(argl) →
357(a) let (ω′,res) = int open acct(argl)(ω) in c ω ch[ ci ] ! res ; omega(ω′) end,

356(a) ...

356(a) mkBuyOfr(argl) →
357(a) let (ω′,res) = int buyofr(argl)(ω) in c ω ch[ ci ] ! res ; omega(ω′) end,

356(a) ...

357(a) end end | ci:CI • ci ∈ cis}

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-bhvs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 831

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

Some auxiliary functions:

value
333π eval obs mkt: Arg∗ → Ω → Response
333π ω anal mkt: Arg∗ → Ω → Response
334 int open acct: Arg∗ → Ω → Ω × Response
335 int buyofr: Arg∗ → Ω → Ω × Response

• There is only minor changes, marked
√

, to pfm session:

– (321) an additional argument, ci:CI and

– (327) an additional argument, (ci) to Int Cmd(ci)(cmd,argl).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

832 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

value
321
√

pfm session: ci:CI → ΠΦΣ → in,out ωch ΠΦΣ
321
√

pfm session(ci)(πφσ) ≡
322 let past responses = obs Responses(πφσ) in
323 let response = ωch[ ci ]!mkObsMkt(past responses); ωch[ ci ] ? in
324 let response = analyse pfm(past responses)(πφσ) in
325 if advice pfm action(response)
326 then (let (cmd,argl) = what pfm to do(response) in
327
√

let response = Int Cmd(ci)(cmd,argl) in
328
√

pfm session(ci)(merge pfm(response)(πφσ)) end end) end
329 else πφσ end end end

325 advice pfm action: Response → Bool
324 analyse pfm: Responses → ({|ok|}|Event) → {|ok|nok|}

• Similarly the changes to Int Cmd are obvious and

• marked, as before, with .i, i = 0, 1, 2, 3:

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark pfm-shrd-bhvs Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 833

8.Requirements Engineering 8.Interface Requirements 5.Shared Behaviour Requirements 0. 0

value
330.0 Int Cmd: ci:CI × (Cmd × Arg∗) → in,out ωch Response
330 Int Cmd(ci)(cmd,argl) ≡
330 case cmd of
330.2 obsmkt → ωch[ ci ]!mkObsMkt(argl) ; ωch[ ci ]?
330.2 analpfm → ωch[ ci ]!mkAnalMkt(argl) ; ωch[ ci ]?
330 ...
330.2 openacct → ωch[ ci ]!mkOpenAcct(argl) ; ωch[ ci ]?
330 ...
330.3 buyofr → ωch[ ci ]!mkBuyOfr(argl) ; ωch[ ci ]?
330 ...
330 end

This ends Example 97

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering pfm-shrd-bhvs c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

834 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.8. Interface Requirements 8.8.5. Shared Behaviour Requirements )

8.8.5.1. Discussion

•
• to be written

•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 14

Interface Requirements Engineering

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 15

Reqs. Eng.: Machine Reqs. & Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 835

(8. Requirements Engineering 8.8. Interface Requirements 8.8.5. Shared Behaviour Requirements 8.8.5.1. Discussion )

8.9. Machine Requirements

Definition 76 – Machine Requirements: By machine require-
ments we understand

• those requirements that can be expressed

• sôlely in terms of (or with prime reference to) machine concepts

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

836 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements )

8.9.1. An Enumeration of Machine Requirements Issues

• There are many separable machine requirements.

• To find one’s way around all these separable machine requirements
we shall start by enumerating the very many that we shall overview.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 837

(8. Requirements Engineering 8.9. Machine Requirements 8.9.1. An Enumeration of Machine Requirements Issues )

1. Performance Requirements from Slide 841

(a) Storage Requirements from Slide 848

(b) Machine Cycle Requirements from Slide 849

(c) Other Resource Consumption Requirements from Slide 850

2. Dependability Requirements from Slide 851

(a) Accesability Requirements from Slide 862

(b) Availability Requirements from Slide 865

(c) Integrity Requirements from Slide 868

(d) Reliability Requirements from Slide 869

(e) Safety Requirements from Slide 870

(f) Security Requirements from Slide 871

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

838 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.1. An Enumeration of Machine Requirements Issues )

3. Maintenance Requirements from Slide 877

(a) Adaptive Maintenance Requirements from Slide 879

(b) Corrective Maintenance Requirements from Slide 881

(c) Perfective Maintenance Requirements from Slide 882

(d) Preventive Maintenance Requirements from Slide 884

4. Platform Requirements from Slide 888

(a) Development Platform Requirements from Slide 890

(b) Execution Platform Requirements from Slide 891

(c) Maintenance Platform Requirements from Slide 892

(d) Demonstration Platform Requirements from Slide 893

5. Documentation Requirements from Slide 895

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 839

(8. Requirements Engineering 8.9. Machine Requirements 8.9.1. An Enumeration of Machine Requirements Issues )

8.9.2. Performance Requirements

Definition 77 – Performance Requirements: By performance requirements
we understand machine requirements that prescribe

• storage consumption,

• (execution, access, etc.) time consumption,

• as well as consumption of any other machine resource:

– number of CPU units (incl. their quantitative characteristics such as cost,
etc.),

– number of printers, displays, etc., terminals (incl. their quantitative char-
acteristics),

– number of “other”, ancillary software packages (incl. their quantitative
characteristics),

– of data communication bandwidth,

– etcetera.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

840 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.2. Performance Requirements )

• Pragmatically speaking, performance requirements translate into fi-
nancial resources spent, or to be spent.

Example 98 – Timetable System Performance: We continue
Example 86 on Slide 755.

• The machine shall serve 1000 users and 1 staff simultaneously.

• Average response time shall be at most 1.5 seconds, when the system
is fully utilised.

This ends Example 98

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 841

(8. Requirements Engineering 8.9. Machine Requirements 8.9.2. Performance Requirements )

8.9.2.1. General

• Till now we may have expressed certain (functions and) behaviours
as generic (functions and) behaviours.

• From now on we may have to “split” a specified behaviour

– into an indexed family of behaviours,

– all “near identical” save for the unique index.

• And we may have to separate out, as a special behaviour, (those of)
shared entities.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

842 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.2. Performance Requirements 8.9.2.1. General )

Example 99 – Timetable System Users and Staff: We continue
Example 83 on Slide 737 and Example 98 on Slide 840.

• In Example 83 the sharing of the timetable between users and staff
was expressed parametrically.

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
client(tt) ≡ let q:Query in let v =Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡
let u:Update in let (r,tt′) =Mu(u)(tt) in system(tt′) end end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 843

8.Requirements Engineering 9.Machine Requirements 2.Performance Requirements 1.General 0

•We now factor the timetable entity out as a separate behaviour,

• accessible, via indexed communications, i.e., channels,

• by a family of client behaviours and the staff behaviour.

type
CIdx /∗ Index set of, say 1000 terminals ∗/

channel
{ ct[ i ]:QU,tc[ i ]:VAL | i:CIdx }
st:UP,ts:RES

value
system: TT → Unit
system(tt) ≡ time table(tt) ‖ (‖ {client(i)|i:CIdx}) ‖ staff()

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

844 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 2.Performance Requirements 1.General 0

client: i:CIdx → out ct[ i ] in tc[ i ] Unit
client(i) ≡ let qc:Query in ct[ i ]!Mq(qc) end tc[ i ]?;client(i)

staff: Unit → out st in ts Unit
staff() ≡ let uc:Update in st!Mu(uc) end let res = ts? in staff() end

time table: TT → in {ct[ i ]|i:CIdx},st out {tc[ i ]|i:CIdx},ts Unit
time table(tt) ≡
⌈⌉⌊⌋ {let qf = ct[ i ]? in tc[ i ]!qf(tt) end | i:CIdx}
⌈⌉⌊⌋ let uf = st? in let (tt′,r)=uf(tt) in ts!r; time table(tt′) end end

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 845

8.Requirements Engineering 9.Machine Requirements 2.Performance Requirements 1.General 0

• Please observe the “shift”

– from using ⌈⌉ in system earlier in this example

– to ⌈⌉⌊⌋ just above.

• The former expresses nondeterministic internal choice.

• The latter expresses nondeterministic external choice.

• The change can be justified as follows:

– The former, the nondeterministic internal choice, was “between” two expressions
which express no external possibility of influencing the choice.

– The latter, the nondeterministic external choice, is “between” two expressions
where both express the possibility of an external input, i.e., a choice.

• The latter is thus acceptable as an implementation of the former.

This ends Example 99

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

846 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 2.Performance Requirements 1.General 0

• The next example, Example 100, continues the performance require-
ments expressed just above.

• Those two requirements could have been put in one phrase, i.e., as
one prescription unit.

• But we prefer to separate them, as they pertain to different kinds
(types, categories) of resources: terminal + data communication
equipment facilities versus time and space.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 847

8.Requirements Engineering 9.Machine Requirements 2.Performance Requirements 1.General 0

Example 100 – Storage and Speed for n-Transfer Travel In-
quiries: We continue Example 86 on Slide 755.

•When performing the n-Transfer Travel Inquiry (rough sketch) pre-
scribed above,

– the first — of an expected many — result shall be communicated
back to the inquirer in less than 5 seconds after the inquiry has been
submitted,

– and, at no time during the calculation of the “next” results must
the storage buffer needed to calculate these exceed around 100,000
bytes.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

848 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.2. Performance Requirements 8.9.2.1. General )

8.9.2.2. Storage Requirements

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 849

(8. Requirements Engineering 8.9. Machine Requirements 8.9.2. Performance Requirements 8.9.2.2. Storage Requirements )

8.9.2.3. Machine Cycle Requirements

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

850 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.2. Performance Requirements 8.9.2.3. Machine Cycle Requirements )

8.9.2.4. Other Resource Consumption

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 851

(8. Requirements Engineering 8.9. Machine Requirements 8.9.2. Performance Requirements 8.9.2.4. Other Resource Consumption )

8.9.3. Dependability Requirements

• To properly define the concept of dependability we need first intro-
duce and define the concepts of

– failure,

– error, and

– fault.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

852 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements )

Definition 78 – Failure:

• A machine failure occurs

• when the delivered service

• deviates from fulfilling the machine function,

• the latter being what the machine is aimed at.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 853

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 0. 0

Definition 79 – Error:

• An error

• is that part of a machine state

• which is liable to lead to subsequent failure.

• An error affecting the service

• is an indication that a failure occurs or has occurred.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

854 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 0. 0

Definition 80 – Fault:

• The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an
error

• is a fault.

• The term hazard is here taken to mean the same as the term fault.

• One should read the phrase: “adjudged or hypothesised cause” care-
fully:

• In order to avoid an unending trace backward as to the cause,

• we stop at the cause which is intended to be prevented or toler-
ated.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 855

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements )

Definition 81 – Machine Service: The service delivered by a
machine

• is its behaviour

• as it is perceptible by its user(s),

• where a user is a human, another machine or a(nother) system

• which interacts with it.

Definition 82 – Dependability: Dependability is defined

• as the property of a machine

• such that reliance can justifiably be placed on the service it delivers.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

856 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 0. 0

• Impairments to dependability are the unavoidably expectable cir-
cumstances causing or resulting from “undependability”: faults, er-
rors and failures.

•Means for dependability are the techniques enabling one

– to provide the ability to deliver a service on which reliance can be
placed,

– and to reach confidence in this ability.

• Attributes of dependability enable

– the properties which are expected from the system to be expressed,

– and allow the machine quality resulting from the impairments and
the means opposing them to be assessed.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 857

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements )

8.9.3.1. Dependability Tree

• Having already discussed the “threats” aspect,

• we shall therefore discuss the “means” aspect of the dependability
tree.

• Attributes:

– Accessibility

– Availability

– Integrity

– Reliability

– Safety

– Security

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

858 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.1. Dependability Tree )

8.9.3.2. Dependability Tree

•Means:

– Procurement

∗ Fault prevention

∗ Fault tolerance

– Validation

∗ Fault removal

∗ Fault forecasting

• Threats:

– Faults

– Errors

– Failures

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 859

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.2. Dependability Tree )

8.9.3.3. Dependability Concepts

• Despite all the principles, techniques and tools aimed at fault pre-
vention,

• faults are created.

• Hence the need for fault removal.

• Fault removal is itself imperfect.

• Hence the need for fault forecasting.

• Our increasing dependence on computing systems in the end brings
in the need for fault tolerance.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

860 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.3. Dependability Concepts )

8.9.3.4. Dependability Concepts

Definition 83 – Dependability Attribute: By a dependability
attribute we shall mean either one of the following:

• accessibility,

• availability,

• integrity,

• reliability,

• robustness,

• safety and

• security.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 861

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.4. Dependability Concepts )

8.9.3.5. Dependability Concepts
That is, a machine is dependable if it satisfies some degree of “mixture” of being

accessible, available, having integrity, and being reliable, safe and secure.

• The crucial term above is “satisfies”.

• The issue is: To what “degree”?

• As we shall see — in a later later lecture — to cope properly

– with dependability requirements and

– their resolution

requires that we deploy

– mathematical formulation techniques,

– including analysis and simulation,

from statistics (stochastics, etc.).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

862 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.5. Dependability Concepts )

8.9.3.6. Accesability Requirements

• Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

• Their being granted access to computing time is usually specified,
at an abstract level, as being determined by some internal nondeter-
ministic choice, that is: essentially by “tossing a coin”!

• If such internal nondeterminism was carried over, into an implemen-
tation, some “coin tossers” might never get access to the machine.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 863

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.6. Accesability Requirements )

8.9.3.7. Accesability Requirements

Definition 84 – Accessibility: A system being accessible — in
the context of a machine being dependable —

•means that some form of “fairness”

• is achieved in guaranteeing users “equal” access

• to machine resources, notably computing time (and what derives
from that).

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

864 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 7.Accesability Requirements 0

Example 101 – Timetable Accessibility:

• The timetable (system) shall be “inquirable” by any number of users,

• and shall be update-able by a few, so authorised, airline staff.

• At any time it is expected that up towards a thousand users are di-
recting queries at the timetable (system).

• And at regular times, say at midnights between Saturdays and Sun-
days, airline staff are making updates to the timetable (system).

• No matter how many users are “on line” with the timetable (system),
each user shall be given the appearance that that user has exclusive
access to the timetable (system).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 865

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.7. Accesability Requirements )

8.9.3.8. Availability Requirements

• Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

• Once a user has been granted access to machine resources, usually
computing time, that user’s computation may effectively make the
machine unavailable to other users —

• by “going on and on and on”!

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

866 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 8.Availability Requirements 0

Definition 85 – Availability: By availability — in the context of
a machine being dependable — we mean

• its readiness for usage.

• That is, that some form of “guaranteed percentage of computing
time” per time interval (or percentage of some other computing
resource consumption)

• is achieved — hence some form of “time slicing” is to be effected.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 867

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 8.Availability Requirements 0

Example 102 – Timetable Availability: We continue Examples 83
on Slide 737, 86 on Slide 755 and 101 on Slide 864:

• No matter which query composition any number of (up to a thousand)
users are directing at the timetable (system),

• each such user shall be given a reasonable amount of compute time
per maximum of three seconds,

• so as to give the psychological appearance that each user — in principle
— “possesses” the timetable (system).

• If the timetable system can predict that this will not be possible, then
the system shall so advise all (relevant) users.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

868 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.8. Availability Requirements )

8.9.3.9. Integrity Requirements

Definition 86 – Integrity: A system has integrity, in the context
of a machine being dependable, if

• it is and remains unimpaired,

• i.e., has no faults, errors and failures,

• and remains so

• even in the situations where the environment of the machine has
faults, errors and failures.

• Integrity seems to be a highest form of dependability,

• i.e., a machine having integrity is 100% dependable!

• The machine is sound and is incorruptible.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 869

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.9. Integrity Requirements )

8.9.3.10. Reliability Requirements

Definition 87 – Reliability: A system being reliable, in the con-
text of a machine being dependable, means

• some measure of continuous correct service,

• that is, measure of time to failure.

Example 103 – Timetable Reliability:

•Mean time between failures shall be at least 30 days,

• and downtime due to failure (i.e., an availability requirements) shall,
for 90% of such cases, be less than 2 hours.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

870 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.10. Reliability Requirements )

8.9.3.11. Safety Requirements

Definition 88 – Safety: By safety — in the context of a machine
being dependable — we mean

• some measure of continuous delivery of service of

– either correct service, or incorrect service after benign failure,

• that is: Measure of time to catastrophic failure.

Example 104 – Timetable Safety:

•Mean time between failures

• whose resulting downtime is more than 4 hours

• shall be at least 120 days.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 871

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.11. Safety Requirements )

8.9.3.12. Security Requirements

• Security requires a notion of authorised user,

• with authorised users being fine-grained authorised to access only a
well-defined subset of system resources (data, functions, etc.).

• An un-authorised user (for a resource) is anyone who is not autho-
rised access to that resource.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

872 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.12. Security Requirements )

8.9.3.13. Security Requirements

Definition 89 – Security: A system being secure — in the con-
text of a machine being dependable —

•means that an un-authorised user, after believing that he or she
has had access to a requested system resource:

– cannot find out what the system resource is doing,

– cannot find out how the system resource is working

– and does not know that he/she does not know!

• That is, prevention of un-authorised access to computing and/or
handling of information (i.e., data).

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 873

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 13.Security Requirements 0

• The characterisation of security is rather abstract.

• As such it is really no good as an a priori design guide.

• That is, the characterisation gives no hints as how to implement a
secure system.

• But, once a system is implemented, and claimed secure, the charac-
terisation is useful as a guide on how to test for security!

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

874 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 13.Security Requirements 0

Example 105 – Timetable Security: We continue Examples 83
on Slide 737, 86 on Slide 755, 101 on Slide 864, and 102 on Slide 867.

• Timetable users can be any airline client logging in as a user, and such
(logged-in) users may inquire the timetable.

• The timetable machine shall be secure against timetable updates from
any user.

• Airline staff shall be authorised to both update and inquire, in a same
session.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 875

8.Requirements Engineering 9.Machine Requirements 3.Dependability Requirements 13.Security Requirements 0

Example 106 – Hospital Information System Security:

• General access to (including copying rights of) patient’s medical jour-
nals is granted only to designated hospital staff.

• In certain forms of emergency situations any hospital staff may , get
access to a hospital patient’s medical journal.

• Such incidents shall be duly and properly recorded and reported.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

876 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.13. Security Requirements )

8.9.3.14. Robustness Requirements

Definition 90 – Robustness: A system is robust — in the con-
text of dependability —

• if it retains its attributes

– after failure, and

– after maintenance.

• Thus a robust system is “stable”

– across failures

– and “across” possibly intervening “repairs”

– and “across” other forms of maintenance.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 877

(8. Requirements Engineering 8.9. Machine Requirements 8.9.3. Dependability Requirements 8.9.3.14. Robustness Requirements )

8.9.4. Maintenance Requirements

Definition 91 – Maintenance Requirements: By maintenance
requirements we understand a combination of requirements:

• adaptive maintenance,

• corrective maintenance,

• perfective maintenance,

• preventive maintenance and

• extensional maintenance.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

878 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 4.Maintenance Requirements 0. 0

•Maintenance of building, mechanical, electro-technical and electronic
artifacts — i.e., of artifacts based on the natural sciences — is based
both on documents and on the presence of the physical artifacts.

•Maintenance of software is based just on software, that is, on all the
documents (including tests) entailed by software.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 879

(8. Requirements Engineering 8.9. Machine Requirements 8.9.4. Maintenance Requirements )

8.9.4.1. Adaptive Maintenance Requirements

Definition 92 – Adaptive Maintenance: By adaptive mainte-
nance we understand such maintenance

• that changes a part of that software so as to also, or instead, fit
to

– some other software, or

– some other hardware equipment

(i.e., other software or hardware which provides new, respectively
replacement, functions)

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

880 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 4.Maintenance Requirements 1.Adaptive Maintenance Requirements 0

Example 107 – Timetable System Adaptability:

• The timetable system is expected to be implemented in terms of a
number of components that implement respective domain and inter-
face requirements, as well as some (other) machine requirements.

• The overall timetable system shall have these components connected,
i.e., interfaced with one another — where they need to be interfaced
— in such a way that any component can later be replaced by another
component ostensibly delivering the same service, i.e., functionalities
and behaviour.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 881

(8. Requirements Engineering 8.9. Machine Requirements 8.9.4. Maintenance Requirements 8.9.4.1. Adaptive Maintenance Requirements )

8.9.4.2. Corrective Maintenance Requirements

Definition 93 – Corrective Maintenance: By corrective main-
tenance we understand such maintenance which

• corrects a software error.

Example 108 – Timetable System Correct-ability:

• Corrective maintenance shall be done remotely:

– from a developer site,

– via secure Internet connections.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

882 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.4. Maintenance Requirements 8.9.4.2. Corrective Maintenance Requirements )

8.9.4.3. Perfective Maintenance Requirements

Definition 94 – Perfective Maintenance: By perfective main-
tenance we understand such maintenance which

• helps improve (i.e., lower) the need for

• hardware (storage, time, equipment),

• as well as software

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 883

8.Requirements Engineering 9.Machine Requirements 4.Maintenance Requirements 3.Perfective Maintenance Requirements 0

Example 109 – Timetable System Perfectability:

• The system shall be designed in such a way as to

– clearly be able to monitor the use of

– “scratch” (i.e., buffer) storage and compute time

for any instance of any query command.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

884 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.4. Maintenance Requirements 8.9.4.3. Perfective Maintenance Requirements )

8.9.4.4. Preventive Maintenance Requirements

Definition 95 – Preventive Maintenance: By preventive main-
tenance we understand such maintenance which

• helps detect, i.e., forestall, future occurrence

• of software or hardware errors

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 885

(8. Requirements Engineering 8.9. Machine Requirements 8.9.4. Maintenance Requirements 8.9.4.4. Preventive Maintenance Requirements )

8.9.4.5. Extensional Maintenance Requirements

Definition 96 – Extensional Maintenance: By extensional main-
tenance we understand such maintenance which adds new function-
alities to the software, i.e., which implements additional require-
ments

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

886 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 4.Maintenance Requirements 5.Extensional Maintenance Requirements 0

Example 110 – Timetable System Extendability:

• Assume a release of a timetable software system to implement a re-
quirements that, for example, expresses

– that shortest routes

– but not that fastest routes be found

– in response to a travel query.

• If a subsequent release of that software

– is now expected to also calculate fastest routes

– in response to a travel query,

• then we say that the implementation of that last requirements

• constitutes extensional maintenance.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 887

8.Requirements Engineering 9.Machine Requirements 4.Maintenance Requirements 5.Extensional Maintenance Requirements 0

•Whenever a maintenance job has been concluded, the software sys-
tem is to undergo an extensive acceptance test:

• a predetermined, large set of (typically thousands of) test programs
has to be successfully executed.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

888 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.4. Maintenance Requirements 8.9.4.5. Extensional Maintenance Requirements )

8.9.5. Platform Requirements

Definition 97 – Platform: By a [computing] platform is here
understood a combination of hardware and systems software — so
equipped as to be able to execute the software being requirements
prescribed — and ‘more’

Definition 98 – Platform Requirements: By platform require-
ments we mean a combination of the following:

• development platform requirements,

• execution platform requirements,

•maintenance platform requirements and

• demonstration platform requirements

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 889

8.Requirements Engineering 9.Machine Requirements 5.Platform Requirements 0. 0

Example 111 – Space Satellite Software Platforms: Elsewhere
prescribed software for some space satellite function is to satisfy the
following platform requirements:

• shall be developed on a Sun workstation under Sun UNIX,

• shall execute on the military MI1750 hardware computer running its
proprietary MI1750 Operating System,

• shall be maintained at the NASA Houston, TX installation of MI1750
Emulating Sun Sparc Stations, and

• shall be demonstrated on ordinary Sun workstations under Sun UNIX.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

890 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.5. Platform Requirements )

8.9.5.1. Development Platform Requirements

Definition 99 – Development Platform Requirements: By de-
velopment platform requirements we shall understand such ma-
chine requirements which

• detail the specific software and hardware

• for the platform on which the software

• is to be developed

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 891

(8. Requirements Engineering 8.9. Machine Requirements 8.9.5. Platform Requirements 8.9.5.1. Development Platform Requirements )

8.9.5.2. Execution Platform Requirements

Definition 100 – Execution Platform Requirements: By ex-
ecution platform requirements we shall understand such machine
requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be executed

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

892 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.5. Platform Requirements 8.9.5.2. Execution Platform Requirements )

8.9.5.3. Maintenance Platform Requirements

Definition 101 – Maintenance Platform Requirements: By
maintenance platform requirements we shall understand such ma-
chine requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be maintained

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 893

(8. Requirements Engineering 8.9. Machine Requirements 8.9.5. Platform Requirements 8.9.5.3. Maintenance Platform Requirements )

8.9.5.4. Demonstration Platform Requirements

Definition 102 – Demonstration Platform Requirements: By
demonstration platform requirements we shall understand such ma-
chine requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be demonstrated to the customer — say for acceptance tests,
or for management demos, or for user training

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

894 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.5. Platform Requirements 8.9.5.4. Demonstration Platform Requirements )

8.9.5.5. Discussion

• Example 111 is rather superficial.

• And we do not give examples for each of the specific four platforms.

•More realistic examples would go into rather extensive details,

• listing hardware and software product names, versions, releases, etc.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 895

(8. Requirements Engineering 8.9. Machine Requirements 8.9.5. Platform Requirements 8.9.5.5. Discussion )

8.9.6. Documentation Requirements

Definition 103 – Documentation Requirements: By documen-
tation requirements we mean requirements of any of the software
documents that together make up software:

• not only code that may be the basis for executions by a computer,

• but also its full development documentation:

– the stages and steps of application domain description,

– the stages and steps of requirements prescription, and

– the stages and steps of software design prior to code,

with all of the above including all validation and verification
(incl., test) documents.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

896 Dines Bjørner: Domain & Requirements Engineering

8.Requirements Engineering 9.Machine Requirements 6.Documentation Requirements 0. 0

• In addition, as part of our wider concept of software, we also
include

• a comprehensive collection of supporting documents:

– training manuals,

– installation manuals,

– user manuals,

– maintenance manuals, and

– development and maintenance logbooks.

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 897

(8. Requirements Engineering 8.9. Machine Requirements 8.9.6. Documentation Requirements )

•We do not attempt, in our characterisation, to detail what such
documentation requirements could be.

• Such requirements could cover a spectrum

– from the simple presence, as a delivery, of specific ones,

– to detailed directions as to their contents, informal or formal.

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-d c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 15

Reqs. Eng.: Machine Reqs. & Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 16

Reqs. Eng.: Opening and Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-d Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

898 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.9. Machine Requirements 8.9.6. Documentation Requirements )

8.10. Opening and Closing Stages

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 899

(8. Requirements Engineering 8.10. Opening and Closing Stages )

8.10.1. Opening Stages

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

900 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.1. Opening Stages )

8.10.1.1. Stakeholder Identification and Liaison

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 901

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.1. Opening Stages 8.10.1.1. Stakeholder Identification and Liaison )

8.10.1.2. Requirements Acquisition

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

902 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.1. Opening Stages 8.10.1.2. Requirements Acquisition )

8.10.1.3. Requirements Analysis

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 903

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.1. Opening Stages 8.10.1.3. Requirements Analysis )

8.10.1.4. Terminoligisation

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

904 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.1. Opening Stages 8.10.1.4. Terminoligisation )

8.10.2. Closing Stages

• For completeness, we shall, as in Sects. on Slide 654 and on Slide 899,
briefly list the closing stages of requirements engineering.

• They are:

1. requirements verification, model checking and testing – the assur-
ance of properties of the formalisation of the requirements model;

2. requirements validation – the validation of the veracity of the in-
formal, i.e., the narrative requirements prescription;

3. requirements feasibility and satisfiability; and

4. requirements theory formation.

•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 905

•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

906 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.2. Closing Stages )

8.10.2.1. Verification, Model Checking and Testing

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 907

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.2. Closing Stages 8.10.2.1. Verification, Model Checking and Testing )

8.10.2.2. Requirements Validation

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

908 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.2. Closing Stages 8.10.2.2. Requirements Validation )

8.10.2.3. Requirements Satisfiability & Feasibility

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 909

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.2. Closing Stages 8.10.2.3. Requirements Satisfiability & Feasibility )

8.10.2.4. Requirements Theory

•
•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

910 Dines Bjørner: Domain & Requirements Engineering

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.2. Closing Stages 8.10.2.4. Requirements Theory )

8.10.3. Requirements Engineering Documentation

•
•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 911

(8. Requirements Engineering 8.10. Opening and Closing Stages 8.10.3. Requirements Engineering Documentation )

8.10.4. Conclusion

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-rtre-e c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 16

Reqs. Eng.: Opening and Closing Stages

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

Lecture 17

Conclusion

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-rtre-e Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

912 Dines Bjørner: Domain & Requirements Engineering

9. Conclusion

•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 913

(9. Conclusion )

9.1. What Have We Achieved ?

•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-c c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

914 Dines Bjørner: Domain & Requirements Engineering

(9. Conclusion 9.1. What Have We Achieved ? )

9.2. What Have We Omitted ?

•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 915

(9. Conclusion 9.2. What Have We Omitted ? )

9.3. What Have We Not Been Able to Cover ?

•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-c c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

916 Dines Bjørner: Domain & Requirements Engineering

(9. Conclusion 9.3. What Have We Not Been Able to Cover ? )

9.4. What Is Next ?

•
•
•

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-c Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 917

(9. Conclusion 9.4. What Is Next ? )

9.5. How Do You Now Proceed ?

•
•
•

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-c c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

918 Dines Bjørner: Domain & Requirements Engineering

10. Acknowledgements

• This book has been written after I retired from almost 32 years as
professor at The Technical University of Denmark, as of April 1,
2007.

• I have therefore been basically deprived of the daily, invigorating
interaction with dear colleagues at DTU Informatics.

• Instead I was invited, or, more-or-less, invited myself, to lecture at
universities in Nancy35, Graz36 and Saarbrücken37.

• The present book underwent a number of iterations while presenting
its material at intensive 30 lectures plus 15 afternoons of project
tutoring.

35Oct.–Dec., 2007, University of Henri Poincare (UHP) and INRIA, France
36Oct.–Dec., 2008, Technical University of Graz (TUG), Austria
37March 2009, University of Saarland, Germany

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

Dines Bjørner: Domain & Requirements Engineering 919

(10. Acknowledgements )

• I am therefore profoundly grateful (alphabetically listed) to

– Bernhard Aichernig (TUG),

– Hermann Maurer (TUG),

– Dominique Méry (UHP/INRIA),

– Wolfgang Paul (UdS),

– Thomas in der Rieden (UdS) and

– Franz Wotawa (TUG)

• for hosting me and for giving me the opportunity to refine the course
material and be challenged by bright young people from a dozen
European and Asian countries.

• Sir Tony Hoare provided ...

August 30, 2009, 13:10, Domain Engineering Domain & Requirements Engineering acm-a c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark



in
vi

si
bl

e
DRAFT Version 1.d: July 20, 2009

0 Dines Bjørner: Domain & Requirements Engineering

End of Lecture 17

Conclusion and Acknowledgements

c© Dines Bjørner 2009, Fredsvej 11, DK–2840 Holte, Denmark acm-a Domain Engineering Domain & Requirements Engineering August 30, 2009, 13:10


