
Dines Bjørner∗

From Domains to Requirements
The Triptych Approach to Software Engineering

August 30, 2009: 13:10

To be submitted, Summer 2009, to Springer

Berlin Heidelberg NewYork
HongKong London
Milan Paris Tokyo

∗Fredsvej 11, DK-2840 Holte, Danmark, E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db



VI

s1

c© 2009 Dines Bjørner



Dedication

My parents:

Else Margrethe Sigrid Bjørner (Christensen) 1905–1993
Ivar Hainau (Christensen) 1907–1971

— for a classical childhood and youth.





Part I

Opening





Preface
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This Textbook is Different ! s2

This textbook is different in a number of ways:

1. The Triptych Dogma : The dogma “says”:

• Before software can be designed one must understand the requirements.
• Before requirements can be prescribed one must understand the domain.

This dogma carries the two main parts of the book:

• Part IV: Domains and
• Part V: Requirements.

No other ‘Software Engineering’ textbook (other than [19] of the approximately 2400
page [17–19]) propagates this dogma.

2. Domain Engineering : s3

This is a new phase of software development. It is thoroughly treated in Chap. 7. It is explained
and motivated in Chaps. 2–3.

No other ‘Software Engineering’ textbook (other than [19]) covers ‘Domain Engineer-
ing’ — and the present volume covers that topic in a novel (read: “improved”) way.

3. Derivation of Requirements from Domain Models : s4

Requirements development is here presented in a way which differs fundamentally and signif-
icantly from how it has been presented by past textbooks on ‘Software Requirements Engi-
neering’. This novel and simpler approach, as based on careful domain descriptions, both in
narrative and in formal form is thoroughly treated in Chap. 8.

No other ‘Software Engineering’ textbook (other than [19]) covers Requirements Engi-
neering in this novel and logical way and the current treatment significantly improves
that of [19].

4. Proper Conceptualisation (Part III): s5

Software development is a highly intellectual process. Among the constituent sets of theories,
principles and techniques of software development are those of ‘Abstraction & Modelling’,
‘Semiotics’ and ‘Specification Ontology’. These are treated in separate chapters of this book.

No other ‘Software Engineering’ textbook (other than [17–19]) covers these three con-
cepts, ‘Abstraction & Modelling’, ‘Semiotics’ and ‘Specification Ontology’, in this sim-
plified way.

We shall very briefly explain these three concepts. s6

4.1 Abstraction & Modelling Chapter 4:
Abstraction relates to conquering complexity of description through the judicious use of
abstraction, where abstraction, briefly, is the act and result of omitting consideration of
(what would then be called) details while, instead, focusing on (what would therefore be
called) important aspects.
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s7

Modelling relates to choosing between (i) property- and model-oriented specification; (ii)
a suitable balance between analogic, analytic and iconic modelling; (iii) descriptive and
prescriptive modelling as for domain modelling, respectively requirements modelling; and
(iv) extensional versus intentional models.
Modelling also has to decide “for which purposes” a model shall serve: to gain understanding,
to get inspiration and to inspire, to present, educate and train, to assert and predict and to
implement requirements derived from domain models.

4.2 Semiotics Chapter 5: s8

Semiotics deal with the form, i.e., the syntax, in which we express concepts; the meaning,
i.e., the semantics, of what is being expressed; and the reason, i.e., the pragmatics, of why
we express something and the chosen form of expression.
Since all we really ever do when expressing domains, requirements and software is to
produce textual documents it is of utmost importance that we command these three facets
of semiotics.

4.3 Specification Ontology 1 Chapter 6: s9

How do we present descriptions ? The technical means of expressing the phenomena and
concepts of domains form a meta-ontology. And the description itself is an ontology of
the domain. In Chap. 6 we advance three “faces” of ontological nature: (i) the simple
entity, operation, event and behaviour approach to description; (ii) the mereology of simple
entities; and (iii) the laws of description !

Our treatment of ‘Abstraction & Modelling’, ‘Semiotics’ and ‘Specification Ontology’,
above are quite novel and constitute, in our opinion, quite a significant improvement
of [19].

5. Examples : s10

The book carries more that 140 substantial both informal and formal examples. Almost half
are several pages long.

No other ‘Software Engineering’ textbook (not even [17–19]) carries so many informal-
&formal examples, examples that are substantial — and the present volume ties the
many examples more strongly together.

6. Projects : s11

In Appendix D there is a list of annotated course project proposals. A course — based on
this book — is proposed to consist of both ‘formal’ class lectures — covering this book —
and ‘informal’ tutoring sessions —advising students on how to proceed using the book in engi-
neering both a domain description and a requirements prescription for one of the projects listed in
Appendix D. That appendix will give some hints, to both lecturers (course project tutors) and
students. Hints to lecturers on how to use this book in the ‘formal’ class lectures is given in as12

separate booklet that is (i.e., will be) available on the Internet.
We cannot overemphasise the pedagogical and didactical need to both give the ‘formal’ class
lectures and the course project ‘informal’ tutoring sessions:
• “learn by doing”
• “but on a science-based foundation”.

Chapter-by-Chapter Overview
s13

(Chapter 1) We start by providing a background for this study.s14

1Ontology is the philosophical study of the nature of being, existence or reality in general, as well as
of the basic categories of being and their relations. Traditionally listed as a part of the major branch of
philosophy known as metaphysics, ontology deals with questions concerning what entities exist or can be
said to exist, and how such entities can be grouped, related within a hierarchy, and subdivided according
to similarities and differences [Wikipedia].
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(Chapter 2) We introduce the concepts of domains, that is, potential or actual application domains
for software. s15

(Chapter 3) We then motivate the study of domains where such studies aim at creating both precise
informal and formal descriptions of domains – (and) where formal descriptions are limited to what we can
today mathematically formalise. s16

(Chapter 4) Abstraction and modelling are keywords in specifications and we shall therefore very
briefly summarise a few key concepts – including property- and model-oriented abstractions. We shall
also, likewise very briefly, overview a tool for formal abstraction: the main specification language. RSL, of
this book and its use in achieving abstractions. s17

(Chapter 5) We take a very brief look at issues of semiotics: pragmatics, semantics and syntax. The
prime goal of software engineering work is description, prescription and specification, that is: producing
documents, that is, informal and formal texts. Texts have syntax — what we write has meaning (i.e.,
semantics), and the reason we wrote it down is motivated, i.e., is pragmatics. s18

(Chapter 6) What is it that we are describing (as for domains), prescribing (as for requirements)
and specifying (as for software designs)? We shall suggest that the descriptions (etc.) focus on entities
and behaviours, functions and events – and shall therefore briefly summarise these concepts (and likewise
briefly exemplify their abstract modelling) before deploying this “specification ontology” in domain and
in requirements engineering. s19

(Chapter 7) Domain engineering is then outlined in terms of its many stages: [i] information document
creation, [ii] identification of domain stake-holders, [iii] business process rough sketching, [iv] domain ac-
quisition, [v] domain analysis and concept formation, [vi] domain terminologisation, [vii] domain modelling
– the major stage – [viii] domain model verification (checking, testing), [ix] domain description validation,
and [x] domain theory creation. Emphasis is put on business process description (Sect. 7.2) and on the s20

six sub-stages of domain modelling: (a) intrinsics, (b) support technologies, (c) management and organ-
isation, (d) rules and regulations, (e) scripts and (f) human behaviour (Sects. 7.3–7.8). A final section,
Sect. 7.9 summarises the opening and closing stages of domain engineering: stakeholder identification and
liaison, acquisition, business processes, terminoligisation, respectively verification, model checking, testing,
validation and domain theory issues. s21

(Chapter 8) It is finally outlined, in some detail, how major parts of requirements can be system-
atically “derived” from domain descriptions: in three major sub-stages: [A] domain requirements, [B]
interface requirements and [C] machine requirements – where our contribution is sôlely placed in sub-
stages [A–B]. In this part it is briefly argued why current requirements engineering appears to be based s22

on a flawed foundation. Emphasis is put on the pivotal steps of domain requirements in which (a) business
processes are re-engineering (Sect. 8.5); (b) domain requirements are projected, instantiated, made more
deterministic, extended and fitted (Sect. 8.6); (c) interface requirements are “created” while considering
the simple entities, functions, events and behaviours shared that are (to be) shared between the domain
and the machine (Sect. 8.8); and (d) machine requirements are laboriously enumerated and instantiated
(Sect. 8.9). A final section, Sect. 8.10 summarises the opening and closing stages of requirements engineer- s23

ing: stakeholder identification and liaison, acquisition, business process re-engineering, terminoligisation,
respectively verification, model checking, testing, validation, satisfiability & feasibility and requirements
theory issues.

A Lecture Schedule Proposal

Each of the lectures, Lectures 1–18, listed below, is thought of as a double lecture session of (two)
50 minute lectures separated by a 10 minute break.

Lectures marked (⊖) can be omitted entirely.
In this way the listed 18 lectures can be “cut” to 14.

1. Lecture 1:

• Opening XII–XIII
• Background 3–4

2. Lecture 2:
• What are Domains ? 5–18
• Motivation for Domain Engineering 19–

20

3. Lecture 3: Abstraction & Modelling – I

• Abstraction 23–27

4. Lecture 4: Abstraction & Modelling – II

• Abstraction 27–31

• Modelling 31–35

5. Lecture 5: Semiotics ⊖
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• Syntax 37–46
• Semantics & Pragmatics 46–53

6. Lecture 6: A Specification Ontology – I

• Simple Entities 55–63
• Behaviours 63–66

7. Lecture 7: A Specification Ontology – II

• Functions 66–69
• Events 69–73

8. Lecture 8: Domain Engineering – I

• Opening Stages 77–84
• Intrinsics 84–88

9. Lecture 9: Domain Engineering – II

• Supp.Techns. 88–93
• Mgt. & Org. 93–96

10. Lecture 10: Domain Engineering – III

• Rules & Regs. 96–98

• Scripts 98–123

11. Lecture 11: Domain Engineering – IV

• Human Behaviour 123–128
• Closing Stages 128–129

12. Lecture 12: Requirements Engineering – I

• Opening Stages and Acquisition 133–134
• Business Processes 134–141

13. Lecture 13: Requirements Engineering – II

• Domain Requirements 141–153

14. Lecture 14: Requirements Engineering – III

• Interface Requirements 153–164

15. Lecture 15: Requirements Engineering – IV

• Machine Requirements 165–173
• Closing Stages 173–174
• Closing 177–177

Appendix C (Pages 223–228). provides a lecturers’ guide to using this textbook.

Course Project Tutoring

In addition to the lectures it is strongly suggested that each day, for example, a morning double
lecture is given, there is also an afternoon two hour project tutoring session. More about this in
Appendix. D (Pages 229–234).
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Introduction





1

Background

s24 acm-intro

This book is written on the background of three more-or-less independent lines of (a) more
than 40 years of speculations, by our community, about, proposals for, and, obviously, practice of
software engineering [114]; (b) about 40 years of progress in program verification [79], and (c) of
almost 50 years of formal specification of first programming language semantics [11, 103,107,112,
135], then software designs, then requirements, and now, finally domains. s25

This book is also written on the background of many efforts that seek to merge these lines —
as witnessed in strand (c) above: (d) notably there is the effort to express abstractions and their
refinement [80], for example, (e) such as these abstractions and refinements, with respect abstract
data structures and abstract operations, were (first) facilitated in VDM [26,27,55,56], and, (g) with
respect to process abstractions, such as they were facilitated in CSP [81, 82, 130,134]. s26

Over 30+ years of determined efforts in the areas of formal specification languages [25] and re-
finement [27,92–94]; and of their deployment in many industrial projects, this line of research and
experimental development has been manifested in at least three notable forms: (i) the systematic-
to-rigorous development of an Ada compiler using VDM [28]; (ii) the commercialisation of an
industry-strength tool set for the VDM Specification Language, VDM-SL, by the Japanese software
house CSK1; and (iii) the publication of [17–19]. s27

All this research and development, (1) 35+ years of doing advanced type experimental, explo-
rative and actually overseeing real, industry-strength commercial software developments, (2) 30+
years of teaching the underlying approaches, semantics, formal specification, and refinement in a
software engineering setting, and (3) putting students on the road to found and direct some eight
software houses (now with some 600 former students) — based on student MSc and PhD projects
— and survive in the business, makes me conclude that the basic elements to be included in a
proper software engineering education and to be regularly practised by the graduating software
engineers include the following concepts: (a) a firm grasp on the simple use of discrete mathemat- s28

ics: sets, Cartesians, sequences, maps, functions (including the λ-Calculus), and simple universal
algebras; (b) a firm grasp on the simple use of mathematical logic; (c) a firm grasp on the simple
use of abstract and concrete types and their values, sub-types and derived types (such as found
in several formal specification languages); (d) a firm grasp on the simple use of the semiotics con-
cepts of syntax, semantics and pragmatics, including the formalisation of syntax and semantics —
in various forms: “classical” operational semantics, denotational semantics, structural operational
semantics, etc. [40, 67, 128, 133, 141, 144]; (e) a firm grasp on the simple use of property- as well s29

as model-oriented abstractions as facilitated by such formal specification languages as Alloy [90],
B and Event B [1,33], RAISE [17–19,61,62,64], VDM [26,27,55,56] or Z [77,78,137,138,145]; (f)
a firm grasp on the simple use of the diagrammatic specification approaches provided by finite

state automata and finite state machines (any reasonable textbook on formal languages and
automata theory should do), MSC (message sequence charts) [86–88], Petri nets [91,115,123–125]
and Statecharts [71–74,76]; (g) a firm grasp on the use some temporal logic approach to specify s30

1http://www.csk.com/support e/vdm/index.html
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time dependent behaviours, DC (duration calculus) [148,149], ITL (interval temporal logic) [53,113],
the Pnueli/Manna approach [100–102], or TLA+ [96,97,105,106]; and (h) a firm grasp on the simple
use of CSP (communicating sequential processes) [81, 82, 130,134].

This book will overview some, we think crucial, aspects of software engineering on this back-
ground. (We shall not cover Items (f–g).)



2

What are Domains?

s31 acm-wad

2.1 Delineation

Definition 1 – Domain: By a domain, or, more precisely an application domain, we shall
understand (i) a suitably delineated area of human activity, that is, (ii) a universe of discourse,
something for which we have what we will call a domain-specific terminology, (iii) such that this
domain has reasonably clear interfaces to other such domains.

s32

Definition 2 – Domain Description: By a domain description we shall understand (i) a set of
pairs of informal, for ex., English language, and formal, say mathematical, texts, (ii) which are
commensurate, that is, the English text “reads” the formulas, and (iii) which describe the simple
entities, operations, events and behaviours of a domain in a reasonably comprehensive manner.

We use the simpler term ‘domain’ in lieu of the longer term ‘application domain’. The prefix (of
the latter) shall indicate that we are eventually referring to computer application.

2.1.1 Elements, Aims and Objectives of Domain Science(I) s33

What will emerge from this book are the contours of ‘domain science’: the study and knowledge
of domains. We shall here start the sketching of these contours.

In order to better understand what domain engineering is about we contrast it to physics.
But first we must make a distinction between the terms ‘phenomenon’ (phenomena) and ‘concept’
(concepts).

s34

Definition 3 – Phenomenon: By a phenomenon we understand an observable fact, that is, a
temporal or spatio/temporal individual (particular, “thing”) of sensory experience as distinguished
from a noumenon1, that is a fact of scientific interest susceptible to scientific description and
explanation.

s35

Definition 4 – Concept: By a concept we understand something conceived in the mind, a
thought, an abstract or generic idea generalized from particular instances.

1Noumenon: a posited object or event as it appears in itself independent of perception by the senses.
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2.1.2 Physics versus Domain Science s36

General

Physicists study ‘mother nature’:

“Physics (Greek: physis φυσις meaning ‘nature’), a natural science, is the study of matter
and its motion through space-time and all that derives from these, such as energy and
force. More broadly, it is the general analysis of nature, conducted in order to understand
how the world and universe behave.” [Wikipedia]

Domain scientists and engineers study ‘domains’:

“Domains are here seen as predominantly man-made universes, that is, as areas of hu-
man activity, where the emphasis is on the structures (entities) conceived and built by
humans (the domain owners, managers, designers, domain enterprise workers, etc.), and
the operations that are initially requested, or triggered, by humans (the domain users).”

s37

In physics (as characterised above) the physicists, in principle, do not include human actions and
behaviour in their study.2

In domain science and engineering the scientists and engineers, in principle, do include human
actions and behaviours in their study.s38

In physics physicists model usually continuous state values of the chosen sub-universe, that
is, the dynamics of observable or postulated state component values, and their principle tools are
those of differential equations, integral calculi, statistics, etc. Space and time plays a core rôle.s39

In domain science and engineering the scientists and engineers model (i) algebraic3 structures
of the chosen sub-universe (in addition to their usually discrete “state” values and operations),
(ii) how simple entities are composed, (not only just their atomic but also composite values), (iii)
how these structures may expand or retract, that is, operations on structures, not just on values.
Space and time normally plays only a secondary rôle.s40

The tools of domain scientists and engineers are those of careful, precise informal (i.e., nar-
rative) natural language and likewise careful abstractions expressed in some formal specification
languages emphasising the algebraic nature of entities and their operations. That is, tools that
originate with computer and computing scientists.s41

Why not use the same tools as physicists do? Well, they are simply not suited for the problems
at hand. Firstly the states of physics typically vary continuously, whereas those of domains typically
vary in discrete steps. Secondly the number of state variables of physics do usually not vary, whereas
those of domain do — whole structures “collapse” or “expand” (sometimes “wholesale”, sometimes
“en detail”). Thirdly the models of physics, by comparison to those of domains, contain “only a
few types” of oftentimes thousands of state variables — almost all modelled as reals, or vectors,
matrices, tensors, etc., of reals, whereas those of domains contain very many, quite different types
— sometimes atomic, sometimes composite, but rarely modelled in matrix form.s42

Models of physics, as already mentioned, express continuous phenomena. Models of domains,
as also already mentioned, express logic properties of discrete, algebraic structures.

For those and several other reasons the tools of physicists are quite different from the tools of
domain scientists and engineers.s43

In theoretical physics there is no real concern for computability. Mathematical models them-
selves provide the answers. For domain engineering there is a real concern for computability. The
mathematical models often serve as a basis for requirements for software, that is, for computing.
Hence it was natural that the tools of domain science and engineering originated with the formal
specification languages that were and are used for specifying software.

2The claimed possibility that humans are the origin, through their use of fossil energy sources, of the
depletion of the ozon layer, does not mean that the physicists, in their model include human actions and
behaviour: if physicists do consider humans as the “culprits”, then that still does not enter into their
models !

3Recall that an algebra is a usually finite set of possibly infinite classes (i.e., types) of usually discrete
entities and a usually finite set of operations whose signature ranges of the entity types.
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Spatial Attributes of Phenomena and Concepts s44

Some phenomena (p:P) (types over and values of such types) enjoy the meta-linguistic L property,
L for Location. Let any phenomenon be subject to the meta-linguistic predicate, has L, and
function, obs L:

type
P,C

value
has L: P → Bool

obs L: P
∼→ L, pre obs L(e): has L(e)

axiom
∀ p,p′:P •

has L(p)∧has L(p′) ∧ p6=p′ ⇒ obs L(p) 6= obs L(p′)
s45

We consider L (for Locations) to be an attribute of those phenomena which satisfy the has L
property.

Simple Entities versus Attributes s46

We make a distinction between simple entities and attributes. Simple entities are phenomena or
concepts that may be separable parts of other simple entities; that may (thus) be composed into
other (composite) simple entities; and that otherwise possess one or more attributes. Attributes s47

are properties of simple entity phenomena that together form atomic simple entities, or characterise
composite entities apart, i.e., in isolation from their sub-entities; that cannot be “removed” from
a simple entity otherwise possessing such attributes; and that may be modelled as values of simple
or composite types.

2.1.3 Constituent Sciences of Domain Science s48

Knowledge Engineering

“Knowledge engineering is an engineering discipline that involves integrating knowledge
into computer systems in order to solve complex problems normally requiring a high level
of human expertise.” [Wikipedia]

Knowledge (science and) engineering [54], what humans know and believe, promise and commit,
what is necessary, probable and/or possible, is a proper part of domain science — but we omit
any treatment of this fascinating topic.

Computer Science s49

Definition 5 – Computer Science: Computer science is the study and knowledge about the
“things” that may exist inside computers.

Computing Science

Definition 6 – Computing Science: is the study and knowledge how to construct the “things”
that may exist inside computers.

2.1.4 Elements, Aims and Objectives of Domain Science (II) s50

So computing science and knowledge (science and) engineering are both part of domain science.
Computer science, notably with its emphasis on algebraic structures and mathematical (modal)
logics provide some of the foundations for the studies of computing science and knowledge (science
and) engineering
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2.2 Informal Examples s51

We will give several informal examples. For each of these examples we shall very briefly mention
observable simple entity, operation, event and behaviour phenomena as well as concepts.s52

Example 1 – Air Traffic (I): The domain-specific terminology includes such entities as: aircraft,
ground, terminal, area and continental control towers and centers, air-lanes, etc. The modelled atomic
and composite structures and operations include airspace as consisting of air-lanes, airports and various
control towers; traffic modelled as function from time to aircraft positions in airspace; operations of
aircraft take-off, guidance and landing; events of communication between pilots and control towers; et
cetera, [12]

See Example 50: Air Traffic Business Processes starting Page 81.s53

Example 2 – Banking: The domain-specific terminology includes such terms as: clients; banks
with demand/deposit accounts with yield and interest rates and credit limits and with open, deposit,
withdraw, transfer, statement and close operations; and with mortgage accounts and loan approval,
payment installation, loan defaulting, etc.; and bankruptcy, payment due, credit limit exceeded, etc.
events; et cetera; et cetera.

s54

See Examples 66–69.

Example 3 – Container Line Industry: The domain-specific terminology includes such terms as:
container, container line, container vessel (bay, row, stack, etc.), container terminal port (quay, crane,
stack/stacking, etc.), sea lane, etc, container stowage, et cetera, [20].

s55

Example 4 – Health Care: The domain-specific terminology includes such terms as: citizen cum
patient, medical staff, hospital, ward, bed, operating theatre, patient medical journal, anamnese4,
analysis, diagnostics, treatment, etc., hospitalisation plan, et cetera, [44].

See Example 63: A Health Care License Language starting Page 103.
s56

Example 5 – “The Market”: The domain-specific terminology includes such terms as: consumer,
retailer, wholesaler and producer; merchandise, order, price, quantity, in-store, back-order, etc.; supply
chain; inquire, order, inspect delivered goods, accept goods, pay; failure of delivery, default on payments,
etc.; et cetera. [14].

s57

Example 6 – Oil Industry: The domain-specific terminology includes such terms as: oil field, pump
and platform; oil pipeline, pipe, flow pump, valve, etc.; oil refinery; oil tanker, harbour, etc. [21].

more to come

See Example 55: An Oil Pipeline System starting Page 84.s58

Example 7 – Public Government: The domain-specific terminology includes such terms as:
citizens, lawmakers, administrators, judges, etc., law-making, law-enforcing (central and local govern-
ment administration) and law-judging (“the judiciary”), documents: law drafts, laws, public admin-
istration templates, forms and letters, verdicts, etc., document creation, editing, reading, copying,
distribution and shredding, etc. [45].

more to come

See Example 64: A Public Administration License Language starting Page 105.s59

4Anamnese: the patients’ history of illness, including the most present.
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Example 8 – Railways: The domain-specific terminology includes such terms as: railway net with
track units such as linear, simple switches, simple crossover, crossover switches, signals, etc. [15]; trains;
passengers, tickets, reservations; timetable and train traffic; train schedules [119], train rostering [140],
train maintenance plan [120], etc.

more to come

See Example 56: Railway Switch Support Technology starting Page 88. s60

Example 9 – Road System: The domain-specific terminology includes such terms as: hubs (inter-
sections) and links (road segments), open and close hub and link traversal directions, hub semaphores,
etc. [22].

more to come

See Example 10: Transport Net (I) starting Page 9 and Example 34: Transport Net (II) starting
Page 55.

2.3 An Initial Domain Description Example s61

Before we delve into pragmatic and methodological issues of domain engineering we need an
example which show the both informal and formal form in which we express a domain description.

The example is that of describing a transport net. s62
acm-transportnet

Example 10 – Transport Net (I): acm-transportnet

1. There are hubs and links.
2. There are nets, and a net consists of a set of two or more hubs and one or more links.

type
1 H, L,
2 N = H-set × L-set

axiom
2 ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1

RSL Explanation

• 1: The type clause type H, L, defines two abstract types, also called sorts, H and L, of what is A.1.2

Pg.194
meant to abstractly model “real” hubs and nets. H and L are hereby introduced as type (i.e., sort)
names.
(The fact that the type clause (1) is “spread” over two lines is immaterial.)

• 2: the type clause type N = H-set × L-set defines a concrete type N (of what is meant to abstractly
model “real” nets).
⋆ The equal sign, , defines the meaning of the left-hand side type name, N, to be that of the

meaning of
⋆ H-set×L-set, namely Cartesian groupings of, in this case, pairs of sets of hubs (H-set) and sets A.4.3

of links (L-set), that is,
Pg.192[9]

⋆ × is a type operator which, when infix applied to two (or more) type expressions yields the type
of all groupings of values from respective types, and

⋆ -set is a type operator which, when suffix applied, to, for example H, i.e., H-set, constructs, Pg.192[7]

A.4.2
the type power-set of H, that is, the type of all finite subsets of type H.

⋆ Similarly for L-set.
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(The fact that type clause (2), as it appears in the formalisation, is not preceded immediately by
the literal type, is (still) immaterial: it is part of the type clause starting with type and ending with
the clause 2.)

• 2: The axiom axiom ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1 A.2,A.4.6

Pg.198[30]
• Thus we see that a type clause starts with the keyword (or literal) type and ends just before another

such specification keyword, here axiom. That is, a type clause syntactically consists of the keyword
type followed by one or more sort and concrete type definitions (there were three above).

• And we see that a fragment of a formal specification consists of either type clauses, or axioms, orA.10

of both, or, as we shall see later, “much more” !
End of RSL Explanation

s63

3. There are hub and link identifiers.
4. Each hub (and each link) has an own, unique hub (respectively link) identifiers (which can be

observed from the hub [respectively link]).

type
3 HI, LI

value
4a obs HI: H → HI, obs LI: L → LI

axiom
4b ∀ h,h′:H, l,l′:L • h 6=h′ ⇒

obs HI(h)6=obs HI(h′) ∧ l 6=l′⇒obs LI(l)6=obs LI(l′)

RSL Explanation

• 3: introduces two new sorts;
• 4a: introduces two new observer functions:A.6.5

⋆ → is here an infix type operators.
Pg.192[13]

⋆ Infixing L and LI it constructs the type of functions (i.e., function values) which apply to values
of type L and yield values of type LI.

and
• 4b: expresses the uniqueness of identifiers.

End of RSL Explanation
s64

In order to model the physical (i.e., domain) fact that links are delimited by two hubs and that one or
more links emanate from and are, at the same time incident upon a hub we express the following:

5. From any link of a net one can observe the two hubs to which the link is connected.
a) We take this ‘observing’ to mean the following: From any link of a net one can observe the

two distinct identifiers of these hubs.
6. From any hub of a net one can observe the one or more links to which are connected to the hub.

a) Again: by observing their distinct link identifiers.
7. Extending Item 5: the observed hub identifiers must be identifiers of hubs of the net to which the

link belongs.
8. Extending Item 6: the observed link identifiers must be identifiers of links of the net to which the

hub belongs

We used, above, the concept of ‘identifiers of hubs’ and ‘identifiers of links’ of nets. We define, below,
functions (iohs, iols) which calculate these sets.s65

value
5a obs HIs: L → HI-set,
6a obs LIs: H → LI-set,

axiom
5b ∀ l:L • card obs HIs(l)=2 ∧
6b ∀ h:H • card obs LIs(h)≥1 ∧
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∀ (hs,ls):N •

5a) ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧

6a) ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

7 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
8 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

RSL Explanation

• 5a,6a: Two observer functions are introduced.
• 5b,6b: Universal quantification secure that all hubs and links have prerequisite number of unique A.3

(reference) identifiers.
⋆ 5a): We read ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒ ∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧

obs HI(h) ∈ obs HIs(l′): For all hubs (h) of the net (∀h:H•h∈hs) it is the case (⇒) that for
all link identifiers (li) of that hub (∀li:LI•li∈obs LIs(h)) it is the case that there exists a link of
the net (∃l′:L•l′∈ls) where that link’s (l′’s) identifier is li and the identifier of h is observed in
the link l′.

⋆ 6a): We read ∀ l:L • l ∈ ls⇒ ∃ h′,h′′:H • {h′,h′′} ⊆hs ∧ obs HIs(l) = {obs HI(h′), obs HI(h′′)}:
for all ... further reading is left as exercise to the reader.

• 7: Reading is left as exercise to the reader.
• 8: Reading is left as exercise to the reader.
• iohs,iols: These two lines define the signature: name and type of two functions. A.6.5

• iohs(hs) calculates the set ({...}) of all hub identifiers (obs HI(h)) for which h is a member of the
A.4.2

Pg.195

set, hs, of net hubs.
• iols(ls) calculates in the same manner as does iohs(hs).

A.4.2We can read the set comprehension expression to the left of the definition symbol ≡: “the set of

Pg.195
all obs LI(l) for which (|) l is of type L and such that (•) l is in ls”.

End of RSL Explanation
s66

In the above extensive example we have focused on just five entities: nets, hubs, links and their
identifiers. The nets, hubs and links can be seen as separable phenomena. The hub and link identifiers
are conceptual models of the fact that hubs and links are connected — so the identifiers are abstract
models of ‘connection’, or, as we shall later discuss it, the mereology of nets, that is, of how nets are
composed. These identifiers are attributes of entities.

Links and hubs have been modelled to possess link and hub identifiers. A link’s “own” link identifier
enables us to refer to the link, A link’s two hub identifiers enables us to refer to the connected hubs.
Similarly for the hub and link identifiers of hubs.

To illustrate the concept of operations5 on transport nets we postulate those which “build” and
“maintain” the transport nets, that is those road net or rail net (or other) development constructions
which add or remove links. (We do not here consider operations which “just” add or remove hubs.)
By an operation designator we shall understand the syntactic clause whose meaning (i.e., semantics)
is that of an action being performed on a state. The state is here the net. We can also think of an
operation designators as a “command”.

Initialising a net must then be that of inserting a link with two new hubs into an “empty” net.
Well, the notion of an empty net has not been defined. The axioms, which so far determine nets and
which has been given above, appears to define a “minimal” net as just that: two linked hubs ! s67

First we treat the syntax of operation designators (“commands”).

9. To a net one can insert a new link in either of three ways:

5We use the terms functions and operations synonymously.
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a) Either the link is connected to two existing hubs — and the insert operation must therefore
specify the new link and the identifiers of two existing hubs;

b) or the link is connected to one existing hub and to a new hub — and the insert operation must
therefore specify the new link, the identifier of an existing hub, and a new hub;

c) or the link is connected to two new hubs — and the insert operation must therefore specify
the new link and two new hubs.

d) From the inserted link one must be able to observe identifier of respective hubs.
10. From a net one can remove a link. The removal command specifies a link identifier.

s68

type
9 Insert == Ins(s ins:Ins)
9 Ins = 2xHubs | 1x1nH | 2nHs
9a) 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
9b) 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
9c) 2nHs == 2newH(s h1:H,s l:L,s h2:H)

axiom
9d) ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

type
10 Remove == Rmv(s li:LI)

RSL Explanation

• 9: The type clause type Ins = 2xHubs | 1x1nH | 2nHs introduces the type name Ins and defines it
to be the union (|) type of values of either of three types: 2xHubs, 1x1nH and 2nHs.Pg.192[16]

⋆ 9a): The type clause type 2xHubs == 2oldH(s hi1:HI, s l:L, s hi2:HI) defines the type 2xHubs
to be the type of values of record type 2oldH(s hi1:HI,s l:L,s hi2:HI), that is, Cartesian-like,Pg.193

or “tree”-like values with record (root) name 2oldH and with three sub-values, like branches of
a tree, of types HI, L and HI. Given a value, cmd, of type 2xHubs, applying the selectors s hi1,
s l and s hi2 to cmd yield the corresponding sub-values.

⋆ 9b): Reading of this type clause is left as exercise to the reader.
⋆ 9c): Reading of this type clause is left as exercise to the reader.
⋆ 9d): The axiom axiom has three predicate clauses, one for each category of Insert commands.

3 The first clause: ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs HIs(l) = {hi′, hi′′} reads as follows:
◦ For all record structures, 2oldH(hi′,l,hi′′), that is, values of type Insert (which in this

case is the same as of type 2xHubs),
◦ that is values which can be expressed as a record with root name 2oldH and with three

sub-values (“freely”) named hi′, l and hi′′

◦ (where these are bound to be of type HI, L and HI by the definition of 2xHubs),
◦ the two hub identifiers hi′ and hi′′ must be different,
◦ and the hub identifiers observed from the new link, l, must be the two argument hub

identifiers hi′ and hi′′.
3 Reading of the second predicate clause is left as exercise to the reader.
3 Reading of the third predicate clause is left as exercise to the reader.

The three types 2xHubs, 1x1nH and 2nHs are disjoint: no value in one of them is the same value as
in any of the other merely due to the fact that the record names, 2oldH, 1oldH1newH and 2newH,
are distinct. This is no matter what the “bodies” of their record structure is, and they are here also
distinct: (s hi1:HI,s l:L,s hi2:HI), (s hi:HI,s l:L,s h:H), respectively (s h1:H,s l:L,s h2:H).

• 10; The type clause type Remove == Rmv(s li:LI)
⋆ (as for Items 9b) and 9c))
⋆ defines a type of record values, say rmv,
⋆ with record name Rmv and with a single sub-value, say li of type LI
⋆ where li can be selected from by rmv selector s li.
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End of RSL Explanation

s69

Then we consider the meaning of the Insert operation designators.

11. The insert operation takes an Insert command and a net and yields either a new net or chaos for
the case where the insertion command “is at odds” with, that is, is not semantically well-formed
with respect to the net.

12. We characterise the “is not at odds”, i.e., is semantically well-formed, that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions, op, and nets, (hs.ls), and
yields a truth value if the below relation between the command arguments and the net is satisfied.
Let (hs,ls) be a value of type N.

13. If the command is of the form 2oldH(hi′,l,hi′) then
⋆1 hi′ must be the identifier of a hub in hs,
⋆s2l must not be in ls and its identifier must (also) not be observable in ls, and
⋆3 hi′′ must be the identifier of a(nother) hub in hs.

s70

14. If the command is of the form 1oldH1newH(hi,l,h) then
⋆1 hi must be the identifier of a hub in hs,
⋆2 l must not be in ls and its identifier must (also) not be observable in ls, and
⋆3 h must not be in hs and its identifier must (also) not be observable in hs.

15. If the command is of the form 2newH(h′,l,h′′) then
⋆1 h′ — left to the reader as an exercise (see formalisation !),
⋆2 l — left to the reader as an exercise (see formalisation !), and
⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three cases) can be expressed
independent of the insert command category.

s71

value

11 int Insert: Insert → N
∼→ N

12′ pre int Insert: Ins → N → Bool
12′′ pre int Insert(Ins(op))(hs,ls) ≡

⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧
case op of

13) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
14) 1oldH1newH(hi,l,h)→

hi ∈ iohs(hs) ∧ h 6∈ hs ∧ obs HI(h)6∈ iohs(hs),
15) 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

RSL Explanation

• 11: The value clause value int Insert: Insert → N
∼→ N names a value, int Insert, and defines its

type to be Insert → N
∼→ N, that is, a partial function (

∼→) from Insert commands and nets (N) to
nets.
(int Insert is thus a function. What that function calculates will be defined later.)

• 12′: The predicate pre int Insert: Insert → N → Bool function (which is used in connection with
int Insert to assert semantic well-formedness) applies to Insert commands and nets and yield truth
value true if the command can be meaningfully performed on the net state.

• 12′′: The action pre int Insert(op)(hs,ls) (that is, the effect of performing the function pre int Insert
on an Insert command and a net state is defined by a case distinction over the category of the
Insert command. But first we test the common property:
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• ⋆2: s l(op)6∈ls∧obs LI(s l(op))6∈iols(ls), namely that the new link is not an existing net link and
that its identifier is not already known.
⋆ 13): If the Insert command is of kind 2oldH(hi’,l,hi”) then {hi′,hi′′}∈ iohs(hs), that is, then the

two distinct argument hub identifiers must not be in the set of known hub identifiers, i.e., of
the existing hubs hs.

⋆ 14): If the Insert command is of kind 1oldH1newH(hi,l,h) then ... exercise left as an exercises
to the reader.

⋆ 15): If the Insert command is of kind 2newH(h’,l,h”) ... exercise left as an exercises to the reader.
The set intersection operation is defined in Sect. A.4.6 on page 197 Item 23 on page 198.

End of RSL Explanation

s72

16. Given a net, (hs,ls), and given a hub identifier, (hi), which can be observed from some hub in the
net, xtr H(hi)(hs,ls) extracts the hub with that identifier.

17. Given a net, (hs,ls), and given a link identifier, (li), which can be observed from some link in the
net, xtr L(li)(hs,ls) extracts the hub with that identifier.

value

16: xtr H: HI → N
∼→ H

16: xtr H(hi)(hs, ) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end
pre hi ∈ iohs(hs)

17: xtr L: HI → N
∼→ H

17: xtr L(li)( ,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end
pre li ∈ iols(ls)

RSL Explanation

• 16: Function application xtr H(hi)(hs, ) yields the hub h, i.e. the value h of type H, such that (•)Pg.205

h is in hs and h has hub identifier hi.
• 16: The wild-card, , expresses that the extraction (xtr H) function does not need the L-set

argument.
• 17: Left as an exercise for the reader.

End of RSL Explanation

s73

18. When a new link is joined to an existing hub then the observable link identifiers of that hub must
be updated to reflect the link identifier of the new link.

19. When an existing link is removed from a remaining hub then the observable link identifiers of that
hub must be updated to reflect the removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼→ H

18: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

19: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

RSL Explanation

• 18: The add link identifier function aLI:
⋆ The function definition clause aLI(h,li) as h′ defines the application of aLI to a pair (h,li) to

yield an update, h′ of h.
⋆ The pre-condition pre li 6∈ obs LIs(h) expresses that the link identifier li must not be observable

h.
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⋆ The post-condition post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′) expresses that the
link identifiers of the resulting hub are those of the argument hub except (\) that the argument Pg.198[25]

link identifier is not in the resulting hub.
• 19: The remove link identifier function rLI:

⋆ The function definition clause rLI(h′,li) as h defines the application of rLI to a pair (h′,li) to
yield an update, h of h′.

⋆ The pre-condition clause pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2 expresses that the link
identifier li must not be observable h.

⋆ post-condition clause post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′) expresses that
the link identifiers of the resulting hub are those of the argument hub except that the argument
link identifier is not in the resulting hub.

End of RSL Explanation

s74

20. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and links, has
• the hubs hs joined, ∪, by the set {h′,h′′} and
• the links ls joined by the singleton set of {l}.

21. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs and links, has
21.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.
21.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′ and the new

hub.
21.2 : The set of links augmented by the new link.

22. If the Insert command is of kind 2oldH(hi’,l,hi”) then
22.1–.2 : the two connecting hubs are updated to reflect the new link,
22.3 : and the resulting sets of hubs and links updated.

s75

int Insert(op)(hs,ls) ≡
⋆i case op of
20 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
21 1oldH1newH(hi,l,h) →
21.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in
21.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
22 2oldH(hi′,l,hi′′) →
22.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
22.2 aLI(xtr H(hi′′,hs),obs LI(l))} in
22.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end
⋆j end
⋆k pre pre int Insert(op)(hs,ls)

RSL Explanation

• ⋆i–⋆j: The clause case op of p1 → c1, p2 → c2, . . . pn → cn end is a conditional clause.
• ⋆k: The pre-condition expresses that the insert command is semantically well-formed — which

means that those reference identifiers that are used are known and that the new link and hubs are
not known in the net.

• ⋆i + 20: If op is of the form 2newH(h′,l,h′′ then — the narrative explains the rest;
else

• ⋆i + 21: If op is of the form 1oldH1newH(hi,l,h) then
⋆ 21.1: h′ is the known hub (identified by hi) updated to reflect the new link being connected to

that hub,
⋆ 21.2: and the pair [(updated hs,updated ls)] reflects the new net: the hubs have the hub originally

known by hi replaced by h′, and the links have been simple extended (∪) by the singleton set
of the new link;
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else
• ⋆i + 22: 22: If op is of the form 2oldH(hi′,l,hi′′) then

⋆ 22.1: the first element of the set of two hubs (hsδ) reflect one of the updated hubs,
⋆ 22.2: the second element of the set of two hubs (hsδ) reflect the other of the updated hubs,
⋆ 22.3: the set of two original hubs known by the argument hub identifiers are removed and

replaced by the set hsδ;
else — well, there is no need for a further ‘else’ part as the operator can only be of either of the
three mutually exclusive forms !

End of RSL Explanation

s76

23. The remove command is of the form Rmv(li) for some li.
24. We now sketch the meaning of removing a link:

a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l, in the net.
b) That link connects to two hubs, let us refer to them as h′ and h′.
c) For each of these two hubs, say h, the following holds wrt. removal of their connecting link:

i. If l is the only link connected to h then hub h is removed. This may mean that
• either one
• or two hubs
are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect that it is no
longer connected to l.

d) The resulting net is that of the pair of adjusted set of hubs and links.

s77

value

23 int Remove: Rmv → N
∼→ N

24 int Remove(Rmv(li))(hs,ls) ≡
24a) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in
24b) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in
24c) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in
24d) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end
24a) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set
cond rmv(li,h,hs) ≡
24(c)i) if obs HIs(h)={li} then {}
24(c)ii) else {sLI(li,h)} end
pre li ∈ obs HIs(h)

RSL Explanation

• 23: The int Remove operation applies to a remove command Rmv(li) and a net (hs,ls) and yields
a net — provided the remove command is semantically well-formed.

• 24: To Remove a link identifier by li from the net (hs,ls) can be formalised as follows:
⋆ 24a): obtain the link l from its identifier li and the set of links ls, and
⋆ 24a): obtain the identifiers, {hi′,hi′′}, of the two distinct hubs to which link l is connected;
⋆ 24b): then obtain the hubs {h′,h′′} with these identifiers;
⋆ 24c): now examine cond rmv each of these hubs (see Lines 24(c)i)–24(c)ii)).
◦ The examination function cond rmv either yields an empty set or the singleton set of one

modified hub (a link identifier has been removed).
◦ 24c) The set, hs′, of zero, one or two modified hubs is yielded.
◦ That set is joined to the result of removing the hubs {h′,h′′}
◦ and the set of links that result from removing l from ls.
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The conditional hub remove function cond rmv
⋆ 24(c)i): either yields the empty set (of no hubs) if li is the only link identifier inh,
⋆ 24(c)ii): or yields a modification of h in which the link identifier li is no longer observable.

End of RSL Explanation

This ends Example 10

2.4 Preliminary Summary s78

acm-wad

So domain descriptions are both informal and formal descriptions: narratives and formalisations
of the domain as it is; no references are to be made to requirements let alone to software (being
required).

Domain descriptions can never be normative. s79

We should be able to foresee a time, say 10 years from now, ideally, where there are a number of
text- and reference-book like domain descriptions for a large variety of domains: air traffic, airports,
financial services institutions (banks, brokers, stock and other commodities [metal, crops, oil, etc.]
exchanges, portfolio management, credit cards, insurance, etc.), transportation (container lines,
airlines, railways, commuter bus transports, etc.), assembly manufacturing, gas and oil pipelines,
health care, etc. s80

But although these domain descriptions should represent quite extensive and detailed models
they are only indicative. Any one software house which specialises in software (or, in general IT
systems) within one (or more) of these domains will, when doing their requirements engineering
tasks do so most likely on instantiated, i.e., modified, such domain descriptions.

We will never be able to describe a domain completely.

2.5 Structure of Book s81

In Sect. 3 we motivate why creating and analysing domain models is a necessity for requirements
development — as well as, in general, for that of just plainly understanding the man-made world
around us.

Key issues of abstraction and modelling need be identified and briefly discussed. This is done
in Sect. 4.

In describing domains, in prescribing requirements and in specifying software we must somehow
structure our narratives and our formalisations. One way of doing so is around the dual concepts
of entities and behaviours and of functions and events. This specification ontology is outlined in
Sect. 6.

Sections 7 and 8 constitute the two major sections of this paper.
In Sect. 7 we outline and exemplify domain modelling terms of six facets of, i.e., ways of viewing

a domain. These facets are (i) the intrinsics, (ii) the support technologies, (iii) the management
and organisation, (iv) the rules and regulations, (v) the scripts and (vi) the human behaviour —
as these facets cast different, revealing light on the domain. We consider our emphasis on domain
engineering and especially the identification of these facets and the principles and techniques for
their description to be a contribution.

In Sect. 8 we show how major aspects of requirements can be systematically “derived” from
the domain description. We put double quotes around ‘derived’ so that we can emphasise that the
derivation cannot be automated. But major assists can be made in formally relating the result-
ing domain- and interface requirements prescriptions to the domain description. From Sect. 8 it
therefore transpires that we structure our requirements prescriptions into three parts: (i) domain
requirements prescriptions, (ii) interface requirements prescriptions and (iii) machine requirements
prescriptions. The former, (i), are those requirements which can be expressed sôlely using terms
from the domain. The latter, (iii), are those requirements which, in principle, can be expressed
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sôlely using terms from the machine, that is, the hardware and the software being required. Inter-
face requirements are those which are concerned which phenomena and concepts that are shared
between the domain, the environment of the machine, and the machine. Thus interface require-
ments are expressed using terms from both the domain and the machine. For domain requirements
we identify a number of “derivation” operators: projection, instantiation, determination, extension
and fitting. And for interface requirements we structure these around requirements for the initial-
isation and refreshment of shared entities, requirements for interactive computations of shared
functions, and so forth.

We consider our emphasis on the “derivation” of requirements and especially the identification
of these principles and techniques of both domain and interface requirements to be a contribution.

In Sect. 9 we conclude. Our conclusion includes an outline of future research.

more to come

• • •
Appendix A presents an ultra-short introduction to the RAISE formal Specification Language RSL

[17–19,61, 62, 64].

2.6 Exercises

See Items 1–2 (of Appendix D, starting Page 229).



3

Motivation for Domain Descriptions

s82 acm-mfdd

There are two basic reasons for creating domain descriptions. One is general and is related to
the understanding of the world around and, to some extent, within us; the other is in relation to
the development of IT systems, notably software.

3.1 Domain Descriptions of Infrastructure Components s83

We use here a term, ‘infrastructure’, that we ought first define.
according to the World Bank, ‘infrastructure’1. is an umbrella term for many activities referred

to as ‘social overhead capital’ by some development economists, and encompasses activities that
share technical and economic features (such as economies of scale and spill-overs from users to
non-users).2 s84

We take a more technical view, and see infrastructures as concerned with supporting other
systems or activities.

A first reason for pursuing the research and experimental engineering of domain descriptions
— both informal narratives and formal specifications — is to achieve understanding, insight and,
eventually, theories of domains being thus described. s85

A second reason for domain engineering is to create, not necessarily normative models, but
models which can be instantiated to fit a current constellation of a number of these institutions
with the aim of studying possible business process re-engineering proposals, yes even to generate
such proposals, see Sect. 8.5, or with the aim of software development, see Sect. 3.2. s86

A third reason for domain engineering is to create (again not necessarily normative) descriptions
whose narrative parts can be used in company training and in school education,

3.2 Domain Descriptions for Software Development s87

The reasons given in Sect. 3.1 are independent of whether one aims at developing software for a
segment of the described domain or not.

But, a reason for pursuing the research and experimental engineering of domain descriptions
can, nevertheless be that one wishes to develop software support for entities, operations, events
and behaviours and in the supporting technologies, management and organisation, rules and
regulations, scripts and the possible human behaviours (that is, the business processes) s88

So here is the dogma that guides us:

1Winston Churchill is quoted as having said, in the House of Commons, in 1946: . . . the young Labourite

speaker, that we just heard, obviously wishes to impress his constituency with the fact that he has attended

Eton and Oxford when he uses such modern terms as ‘infrastructure’ . . .
2I thank Jan Goossenarts for bringing the text of this paragraph to my attention.



20 3 Motivation for Domain Descriptions

Dogma 1 – The D,S |= R Dogma: Before Software can be designed we must understand the
Requirements, and before Requirements can be expressed we must understand the Domain.

s89

This dogma entails that we decompose software development into three phases and their attendant
stages:

Domain Engineering: identification of domain stake-holders, domain acquisition, rough sketch
of business processes, domain analysis and concept formation, domain ‘terminologisation’,
the main stages of domain modelling (intertwined with domain model verification), domain
validation and domain theory formation.s90

Requirements Engineering: identification of requirements stake-holders, requirements acqui-
sition, rough sketch of business process re-engineering, requirements analysis and concept
formation, requirements ‘terminologisation’, the main stages of requirements modelling
(intertwined with requirements model verification), requirements validation, requirements
feasibility and satisfiability and requirements theory formation.s91

Software Design: etcetera.

We shall later show how the requirements acquisition stage is basically a rough sketch version of
the the main stages of requirements modelling.

3.3 Discussion s92

The dogma as enunciated above is not “dogmatic”.
Engineers of the classical engineering disciplines are all rather deeply educated and trained in

the domains of their subject: electronic chip designers are well-versed in plasma physics; aeronau-
tical engineers are well-versed in aerodynamics, and celestial mechanics; mobile phone antenna
designers, whether emitters or receivers, are well-versed in applying (“massaging” and calculating
over) Maxwell’s equations; et cetera.s93

No pharmaceutical company would hire a person into their research and development of new
medical drugs unless that person had a serious, professional education and training in the scientific,
i.e., in the domain disciplines of pharmaceutics. Likewise for structural engineers hired to design
suspension or other forms of road and rail bridges: certainly they must be well-versed in structural
engineering.s94

For a software engineer — to be deployed in the development of software for transportation,
or for financial service institutions, or for health care, etc. — to be well-versed in the theories of
automata and formal languages, semantics of programming and specification languages, operating
systems, compilers, database management systems, etc., is accepted — but what is also needed is
an ability to either read existing or to develop new domain descriptions for the fields of respectively
transportation, financial service institutions, health care, or similarly.
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Abstraction & Modelling

s95 acm-aam

4.1 Abstraction

Abstraction relates to conquering complexity of description through the judicious use of abstrac-
tion, where abstraction, briefly, is the act and result of omitting consideration of (what would then
be called) details while, instead, focusing on (what would therefore be called) important aspects.

4.1.1 From Phenomena to Concepts s96

Phenomena are “things” that we can point to. They are often referred to as ‘individuals’ since
what is pointed to is a single specimen of possibly many “similar” instances of phenomena. We can
then, when “figuratively pointing to” an individual (a phenomenon), either keep “talking about”
just that one individual, or we can ‘abstract’ to the class of all ‘similar’ phenomena. When we do
the latter then we have abstracted from a phenomenon, that is, a specific value, to a concept, i.e.,
to the type of all such values.

4.1.2 From Narratives to Formalisations s97

We describe domains both informally, in terms of concise natural language narratives, and formally,
using one or more formal specification languages. The terms of the natural language narrative
designate concepts nouns typically denoting types and values of simple entities; verbs typically
denoting operations over entities; etcetera. These terms are chosen carefully to correspond, as far
as is reasonable in order to achieve a readable natural language text, to names of types, values,
operations, etc., of the formal specification.Thus there is, in fact, a “two-way relation” between the s98

choice of mathematical abstractions of the formal specification and the terms of the narrative; the
objective is to bring “an as close as possible” relation between the narrative and the formalisation.

4.1.3 Examples of Abstraction s99

Example 10 illustrated two forms of abstraction: (i) model-oriented abstraction and (ii) property-
oriented abstraction.

The model-oriented abstraction of Example 10 is illustrated by the modelling of nets as pairs
of sets of hubs and links, cf. Item 2 on page 9: N = H-set × L-set, as well as by the concrete type
syntax types of link insertion and remove commands and their semantics, Items 9–24d (Pages 11–
16).

The property-oriented abstraction of Example 10 is illustrated by the sorts and observers
relating to hubs and links, cf. Items 1 on page 9, 3–8 (Pages 10–11).

In this section we shall give some small examples of abstractions. s100
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Example 11 – Model-oriented Directory:

25. Terminal directory entries are files and files are further undefined.
26. A directory consists of a finite set of uniquely (directory identifier) distinguished entries.
27. A directory is either a file or is a directory.

type
25. FILE, DId
26. DIR = Did →m Entry
27. Entry = FILE | DIR

Directories are modelled as maps. The specification abstracts from representation of directory identifiers
and files.

s101

Example 12 – Networked Social Structures: People live in communities. People of communities
may network with people of distinct other communities. And people of such network may network with
people of distinct other networks. We formulate this in a narrative and we formalise the narrative.s102

28. People are at the heart of any social structure.
29. A region consists of a finite set of one or more communities and a finite set of zero, one or more

social networks.
30. A community consists of a non-empty, finite set of people.
31. A social network consists of a non-empty, finite set of two or more people, such that

a) all people of a network belong to distinct communities of the region, (i.e., no two people of a
net belong to the same community),

b) and, if they also are members of other networks, then they all belong to distinct other networks
(i.e., no two people of a network belong to the same other networks),

s103

type
28. P
29. R′ = C-set × N-set, R = {|(cs,ns):R′

•cs 6={}|}
30. C′ = P-set, C = {|c:C′

•c 6={}|}
31. N′ == mkN(sn:P-set), N = {|mkN(ps):N′

•card ps≥2|}
axiom
∀ (cs,ns):R •

31a. ∀ n:N • n ∈ ns ⇒
card n = card{c|c:C•c ∈ cs ∧ n ∩ c 6= {}} ∧

31b. ∃ p:P • p ∈ n ∧
∃ n′:N • n′ ∈ ns ∧ n 6=n′ ∧ p ∈ n′ ⇒
∀ p:P • p ∈ n ⇒
∃ n′′:N • n′′ ∈ ns ∧ n 6=n′′ ∧ p ∈ n′′ ∧

card n′ = card{n′′|n′′:N•n′′ ∈ ns ∧ n′′ ∩ n′ 6= {}}
s104

Formula line cardn=card{c|c:C•c∈cs∧n∩c 6={}}, the first of the two lines starting with card, expresses
that the number of persons in the network is the same as the number of the communities to which
these persons belong. The fact that n∩c 6={} can be proven to be the same as card(n∩c)=1 is left as
an exercise.

Formula line cardn′=card{n′′|n′′:N•n′′∈ns∧n′′∩ n′6={}}, the second of the two lines starting with
card, expresses that the number of persons in the network for the case that at least one of the persons
in the network is a member of some other network, is the same as the number of the networks to
which all other persons of the n must belong. The fact that n′′∩n′ 6={} can be proven to be the same
as card(n′′∩n′)=1 is left as an exercise.

s105

Example 13 – Railway Nets: We bring a variant of Example 10.
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32. A railway net consists of one or more lines and two or more stations.

type
32. RN, LI, ST

value
32. obs LIs: RN → LI-set
32. obs STs: RN → ST-set

axiom
32. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

s106
33. A railway net consists of rail units.

type
33. U

value
33. obs Us: RN → U-set

34. A line is a linear sequence of one or more linear rail units.

axiom
34. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)

s107
35. The rail units of a line must be rail units of the railway net of the line.

value
34. obs Us: LI → U-set

axiom
35. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

36. A station is a set of one or more rail units.

value
36. obs Us: ST → U-set

axiom
36. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

s108
37. The rail units of a station must be rail units of the railway net of the station.

axiom
37. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ obs Us(s) ⊆ obs Us(n)

38. No two distinct lines and/or stations of a railway net share rail units.

axiom
38. ∀ n:RN,l,l′:LI•{l,l′}⊆obs LIs(n)∧l 6=l′⇒obs Us(l)∩ obs Us(l′)={}
38. ∀ n:RN,l:LI,s:ST•l ∈ obs LIs(n)∧s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}
38. ∀ n:RN,s,s′:ST•{s,s′}⊆obs STs(n)∧s 6=s′⇒obs Us(s)∩ obs Us(s′)={}

s109
39. A station consists of one or more tracks.

type
39. Tr

value
39. obs Trs: ST → Tr-set

axiom
39. ∀ s:ST•card obs Trs(s)≥1

40. A track is a linear sequence of one or more linear rail units.
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axiom
40. ∀ n:RN,s:ST,t:Tr•s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

s110
41. No two distinct tracks share rail units.

axiom
41. ∀ n:RN,s:ST,t,t′:Tr•s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t 6=t′⇒obs Us(t) ∩ obs Us(t′)={}

42. The rail units of a track must be rail units of the station (of that track).

value
42. obs Us: Tr → U-set

axiom
42. ∀ rn:RN,st:ST,tr:TR •

st ∈ obs STs(rn)∧tr ∈ obs Trs(st)⇒obs Us(tr)⊆obs Us(st)

s111
43. A rail unit is either a linear, or is a switch, or a is simple crossover, or is a switchable crossover,

etc., rail unit.

value
43. is Linear: U → Bool
43. is Switch: U → Bool
43. is Simple Crossover: U → Bool
43. is Switchable Crossover: U → Bool

44. A rail unit has one or more connectors.

type
44. K

value
44. obs Ks: U → K-set

s112
45. A linear rail unit has two distinct connectors. A switch (a point) rail unit has three distinct con-

nectors. Crossover rail units have four distinct connectors (whether simple or switchable), etc.

axiom
∀ u:U •

is Linear(u) ⇒ card obs Ks(u)=2∧
is Switch(u) ⇒ card obs Ks(u)=3∧
is Simple Crossover(u) ⇒ card obs Ks(u)=4∧
is Switchable Crossover(u) ⇒ card obs Ks(u)=4

46. For every connector there are at most two rail units which have that connector in common.

axiom
46. ∀ n:RN • ∀ k:K • k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}

⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

s113
47. Every line of a railway net is connected to exactly two distinct stations of that railway net.

axiom
47. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒
∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s 6=s′ ⇒

let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in
∃ u,u′,u′′,u′′′:U • u ∈ sus ∧

u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks = obs Ks(u), sks′ = obs Ks(u′),
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lks = obs Ks(u′′), lks′ = obs Ks(u′′′) in
∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}

end end

s114
48. A linear sequence of (linear) rail units is an acyclic sequence of linear units such that neighbouring

units share connectors.

value
48. lin seq: U-set → Bool

lin seq(us) ≡
∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K • obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

This ends Example 13
s115

Example 14 – A Telephone Exchange:
The example is “borrowed” — in edited form — from J.C.P. Woodcock and M. Loomes’ book

Software Engineering Mathematics [146]1

We start the informal description by presenting a synopsis and its immediate analysis: s116

• Synopsis: The simple telephone exchange system serves to efficiently honour requests for con-
ference calls amongst any number of subscribers, whether immediately connectable, whereby they
become actual, or being queued, i.e., deferred (or pending) for later connection. s117

• Analysis: The concepts of subscribers and calls are central: In this example we do not further
analyse the concept of subscribers. A call is either an actual call, involving two or more subscribers
not involved in any other actual calls, or a call is a deferred call, i.e., a requested call that is not
actual, because one or more of the subscribers of the deferred call is already involved in actual calls.
We shall presently pursue the concepts of requested, respectively actual calls, and only indirectly
with deferred calls.

s118

The structure of the types of interest are first described. We informally describe first the basis types,
then their composition. (i) Subscribers: There is a class (S) of further undefined subscribers. (ii)
Connections: There is a class (C) of connections. A connection involves one subscriber, the ‘caller’,
and any number of one or more other subscribers, the ‘called’. (iii) Exchange: At any time an exchange s119

reflects (i.e., is in a state which records) a number of requested connections and a number of actual
connections (a) such that no two actual connections share any subscribers, (b) such that all actual
connections are also requested connections, and (c) such that there are no requested calls that are
not actual and share no subscribers in common with any other actual connection. (That is: The actual
connections are all that can be made actual out of the requested connections. This part addresses the
efficiency issue referred to above.) (iv) Requested connections: The set of all requested connections for s120

a given exchange forms a set of connections. (v) Actual connections: The set of all actual connections,
for a given exchange, forms a subset of its requested connections such that no two actual connections
share subscribers.

In this example we shall also be able to refer to the exchange, later to be named X, as ‘the state’
(of the telephone exchange system). We shall later have a great deal more to say about the concept
of state.

1Permission to “lift” this example (converting it, however, from Z into RAISE, and providing it with
a property-oriented solution) has been granted by Prof., Dr J.C.P. Woodcock (February 28, 2001).
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Formalisation of Property-oriented State s121

type
S, C, X

value
obs Caller: C → S
obs Called: C → S-set
obs Requests: X → C-set
obs Actual: X → C-set

subs: C → S-set
subs(c) ≡ obs Caller(c) ∪ obs Called(c)

subs: C-set → S-set
subs(cs) ≡ ∪ { subs(c) | c:C • c ∈ cs }

s122
The overloaded function name subs stands for two different functions. One observes (“extracts”) the
set of all subscribers said to be engaged in a connection. The other likewise observes the set of all
subscribers engaged in any set of connections. We shall often find it useful to introduce such auxiliary
functions.s123

axiom
[ 1 ] ∀ c:C, ∃ s:S •

[ 2 ] s = obs Caller(c) ⇒ s 6∈ obs Called(c),

[ 3 ] ∀ x:X •

[ 4 ] let rcs = obs Requests(x),
[ 5 ] acs = obs Actual(x) in
[ 6 ] acs ⊆ rcs ∧
[ 7 ] ∀ c,c′:C • c 6= c′ ∧ {c,c′} ⊆ acs ⇒
[ 8 ] obs Caller(c) 6= obs Caller(c′) ∧
[ 9 ] obs Called(c) ∩ obs Called(c′) = {} ∧
[ 10 ] ∼∃ c:C • c ∈ rcs \ acs •

[ 11 ] subs(c) ∩ subs(acs) = {} end

Let us annotate the above specification. [1] For all connections there exists a subscriber such that [2]
the subscriber is a caller, but not a called subscriber. [3] For all telephone exchanges (i.e., telephone
exchange states), [4–5] let us observe the requested and the actual connections. [6] The actual ones
must also be requested connections, and [7] for any two different actual connections, [8] their callers
must be different, [9] the callers and the ones called cannot share subscribers, and [10] there must not
be a requested, but not actual connection [11] which could be an actual connection. That is all such
connections must have some subscriber in common with some actual connection.s124

The last two lines above express the efficiency criterion mentioned earlier.
We can express a law that holds about the kind of exchanges that we are describing:

theorem
∀ x:X •

obs Actual(x)={} ≡ obs Requests(x)={}
s125

The law expresses that there cannot be a non-empty set of deferred calls if there are no actual calls.
That is, at least one deferred call can be established should a situation arise in which a last actual call
is terminated and there is at least one deferred call.

The law is a theorem that can be proved on the basis of the telephone exchange system axioms
and a proof system for sets.
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Operation Signatures s126

The following operations, involving telephone exchanges, can be performed: (i) Request: A caller indi-
cates, to the exchange, the set of one or more other subscribers with which a connection (i.e., a call)
is requested. If the connection can be effected then it is immediately made actual, else it is deferred
and (the connection) will be made actual once all called subscribers are not engaged in any actual
call. (ii) Caller Hang: A caller, engaged in a requested call, whether actual or not, can hang up, i.e.,
terminate, if actual, and then on behalf of all called subscribers also, or can cancel the requested (but
not yet actual) call. (iii) Called Hang: Any called subscriber engaged in some actual call can leave s127

that call individually. If that called subscriber is the only called subscriber (“left in the call”), then the
call is terminated, also on behalf of the caller. (iv) is Busy: Any subscriber can inquire as to whether
any other subscriber is already engaged in an actual call. (v) is Called: Any subscriber can inquire as
to the identities of all those (zero, one or more) callers who has requested a call with the inquiring
subscriber. s128

First the signatures:

value
newX: Unit → X
request: S × S-set → X → X

caller hang: S → X
∼→ X

called hang: S → X
∼→ X

is busy: S → X → Bool
is called: S → X → Bool

s129
The generator function newX is an auxiliary function. It is needed only to make the axioms cover all
states of the telephone exchange system. In a sense it generates an empty, that is, an initial state.
Usually such empty state generator functions are “paired” with a similar test for empty state observer
function. s130

Then we get the axioms:

axiom
∀ x:X • obs Requests(x)={} ≡ x=newX(),
∀ x:X,s,s′:S,ss:S-set •

∼is busy(s,newX()) ∧
s 6=s′ ⇒

s ∈ ss ⇒ is busy(s)(request(s′,ss)(x)) ∧
s 6∈ ss ⇒ is busy(s)(request(s′,ss)(x)) ≡ is busy(s)(x),
... etcetera ...

s131
We leave the axiom incomplete. Our job was to illustrate the informal and formal parts of a property-
oriented specification, not to do it completely.

Model-oriented State s132

type
S
C = {| ss | ss:S-set • card ss ≥ 2 |}
R = C-set
A = C-set
X = {| (r,a) | (r,a):R×A • a ⊆ r ∧ ⋂

a = {} |}



30 4 Abstraction & Modelling

Efficient States s133

There is a notion of telephone exchange system efficiency, a constraint that governs its operation,
hence the state, at any one time. The efficiency criterion says that all requested calls that can actually
be connected are indeed connected:

value

eff X: X
∼→ Bool

eff X(r,a) ≡ ∼∃ a′:A • a ⊂ a′ ∧ (r,a′) ∈ X

Formalisation of Action Types s134

type
Cmd = Call | Hang | Busy
Call′ == mk Call(p:S,cs:C)
Call = {| c:Call′ • card cs(c) ≥ 1 }
Hang == mk Hang(s:S)
Busy == mk Busy(s:S)

Pre/Post and Direct Operation Definitions s135

We shall, for each operation, define its meaning both in terms of pre/post conditions and in terms of
a direct “abstract data type algorithm”.

Multi-party Call s136

A multi-party call involves a (primary, s) caller and one or more (secondary, ss) callees. Enacting such
a call makes the desired connection a requested connection. If none of the callers are already engaged
in an actual connection then the call can be actualised. A multi-party call cannot be made by a caller
who has already requested other calls.s137

value

int Call: Call
∼→ X

∼→ X
int Call(mk Call(p,cs))(r,) as (r′,a′)
pre p 6∈ ⋃

r
post r′ = r ∪ {{p} ∪ cs} ∧ eff X(r′,a′)

int Call(mk Call(p,cs))(r,a) ≡
let r′ = r ∪ {{p} ∪ cs},

a′ = a ∪ if ({{p} ∪ cs} ∩ ⋃
a) = {}

then {{p} ∪ cs} else {} end in
(r′,a′) end
pre p 6∈ ⋃

r

The above pre/post-definition (of int Call) illustrates the power of this style of definition. No algo-
rithm is specified, instead all the work is expressed by appealing to the invariant!

Call Termination s138

It takes one person, one subscriber, to terminate a call.
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value

int Hang: Hang → X
∼→ X

int Hang(mk Hang(p))(r,a) as (r′,a′)
pre existS c:C • c ∈ a ∧ p ∈ a
post r′ = r \ {c|c:C • c ∈ r ∧ p ∈ c} ∧ eff X(r′,a′)

int Hang(mk Hang(p))(r,a) ≡
let r′ = r \ { c | c:C • c ∈ a ∧ p ∈ c },

a′ = a \ { c | c:C • c ∈ r ∧ p ∈ c } in
let a′′ = a′ ∪ { c | c:C • c ∈ r′ ∧ c

⋂
a′ = {} } in

(r′,a′′) end end
pre existS c:C • c ∈ a ∧ p ∈ a

The two ways of defining the above int Hang function again demonstrate the strong abstractional
feature of defining by means of pre/post-conditions.

Subscriber Busy s139

A line (that is, a subscriber) is only ‘busy’ if it (the person) is engaged in an actual call.

value

int Busy: S → X
∼→ Bool

int Busy(mk Busy(p))( ,a) as b
pre true
post if b then p ∈ ⋃

a else p 6∈ ⋃
a end

int Busy(mk Busy(p))( ,a) ≡ p ∈ ⋃
a

Here, perhaps not so surprisingly, we find that the explicit function definition is the most straightforward.
This ends Example 14

4.1.4 Mathematics and Formal Specification Languages s140

Using mathematical concepts has shown to be the most powerful way of expressing abstractions.
The discrete mathematical concepts of sets, Cartesians, sequences, maps, that is, enumerable
functions and functions, as well as mathematical logic and algebras has served mathematicians
well for quite some time and will serve professional software engineers well. s141

Formal specification languages, like Alloy [90], Event B [1, 33], RSL [17–19, 61, 62, 64], VDM
[26, 27, 55, 56], Z [77, 78, 137, 138, 145] and others, embody the above-mentioned mathematical

concepts in quite readable forms. The current book favours the RAISE specification language RSL.
The first use of the RSL notation was in Example 10 starting Page 9. That first use of RSL will be
extensively annotated and with margin references to sections and pages of Appendix A.

4.2 Modelling s142

Definition 7 Model: A model is the mathematical meaning of a description of a domain, or a
prescription of requirements, or a specification of software, i.e., is the meaning of a specification
of some universe of discourse.

s143

Definition 8 Modelling: Modelling is the act (or process) of identifying appropriate phenomena
and concepts and of choosing appropriate abstractions in order to construct a model (or a set of
models) which reflects appropriately on the universe of discourse being modelled.
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4.2.1 Property-oriented Modelling s144

Definition 9 Property-oriented Modelling: By property-oriented modelling we shall under-
stand a modelling which emphasises the properties of what is being modelled, through suitable use
of abstract types, that is, sorts, of postulated observer (obs ), generator (mk ) and type checking
( is ) functions, and axioms over these.

4.2.2 Model-oriented Modelling s145

Definition 10 Model-oriented Modelling: By abstract, but model-oriented modelling we shall
understand a modelling which expresses the properties of what is being modelled, through suitable
use of mathematical concepts such as sets, Cartesians, sequences, maps (finite domain, enumerable
functions), and functions (in the sense of λ-Calculus functions).

4.3 Model Attributes s146

Specifications achieve their intended purpose by emphasising one or more attributes. Either: (i.1)
analogic, (i.2) analytic and/or (i.3) iconic; and then either: (ii.1) descriptive or (ii.2) prescriptive;
and finally either: (iii.1) extensional or (iii.2) intensional. That is, a model may, at the sames147

time (although time has nothing to do with this aspect of models), be one or more of analogic,
analytic and iconic; expressed either only descriptive, or mostly descriptive (with some prescriptive
aspects), or only prescriptive, or mostly prescriptive (etc.); and expressed either only extensional,
or mostly extensional (with some aspects), or only intensional, or mostly intensional (etc.). We
may claim that a good model blends the above consciously and judiciously — including featuring
exactly (or primarily) one attribute from each of the three categorisations. We next take a look
at these model attributes.

4.3.1 Analogic, Analytics and Iconic Models s148

Definition 11 Analogic Model: An analogic model resembles some other universe than the uni-
verse of discourse purported to be modelled.

Definition 12 Analytic Model: An analytic model is a mathematical specification: It allows
analysis of the universe of discourse being modelled.

Definition 13 Iconic Model: An iconic model is an “image” of the universe of discourse that is
the target of our attention.

s149

Example 15 – Analogic, Analytic and Iconic Models: We lump three kinds of examples into
one larger example:

• Analogic models: (1) The symbol, on the visual display screen of your computer, of a trash can,
denoting an ability to delete files.2 (2) A four-pole, electric circuit network of resistors, inductances,
capacitors and current or voltage supplies can be used to analogically model some aspects of the
behaviour of certain mechanical vibration and/or spring dampening aggregations. (3) A tomographic
image of, say the brain, with its colour-enhanced “blots” is an analogic model of a cross section of
that brain!s150

2Thus Macintosh systems, although undoubtedly so-called “user-friendly”, got the concept name
wrong: The Macintosh ‘trash can’ symbol is not an icon! It is an analogic!
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• Analytic models: (4) The differential equations whose variables model spatial x, y, z coordinates
and the temporal t dimension, and whose constant, m, model the mass of a stone, may be an
analytic model of the dynamics of the throwing of such a stone in a vacuum. (5) A description,
in RSL, involving quantities that purport to model bank accounts, their balance, time, etc., may
be an analytic model of a banking system — in the real world — provided the model reflects at
least “some of the things that can go wrong” in actual life. (6) A graph with labelled nodes and
weighted arcs may be used as a model of a road net with cities and distances between these, and
can be used for the computation of shortest distances, etc. s151

• Iconic models: Typical iconic models are certain advisory or judicially binding traffic signs: (7) The
roadside sign showing, typically in Sweden, an Elk, denoting that elks may be crossing the road
ahead at any time; (8) the roadside sign showing an automobile (from behind) "underlined"

with two crossing S curves, denoting that the road surface ahead may be slippery and hence
that automobiles may spin out of control; and (9) the roadside sign showing a crossed-out horn,
denoting that use of the automobile horn is not allowed.

Observe that a model may possess characteristics of more than one of the above attributes.

4.3.2 Descriptive and Prescriptive Models s152

Definition 14 Descriptive Model: A descriptive model 3 describes something already existing.

Definition 15 Prescriptive Model: A prescriptive model 4 models something as yet to be im-
plemented.

s153

Thus domain specifications are descriptive, while requirements specifications are prescriptive. A re-
quirements specification prescribes properties that the intended software (cum computing system)
shall satisfy. A software specification prescribes certain kinds of computations. s154

We remind the reader that we use the terms model and specification near synonymously. A
specification defines a set of zero, one or more, possibly even an infinity, of models. But we use
the term the model in connection with a given specification to stand for the general member of
the set of models. Hence when we use the term model below, please read specification. s155

Example 16 – Descriptive and Prescriptive Models: A descriptive model: A railway net consists
of two or more distinct stations and one or more distinct railway lines. A railway line consists of a
linear sequence of one or more linear rail units. Any railway line connects exactly two distinct stations.
A route is a sequence of one or more, and if more, then connected railway lines. Two railway lines are
connected if they have the connecting station in common. s156

A prescriptive model: The train timetable shall, for each train journey, list all station visits. A train
timetable station visit shall list the name of the station visited, the time of arrival of the train, the time
of departure of the train. No train timetable train journey entry lists the same station twice. Times
of train departures and train arrivals shall be compatible with reasonable stops at stations and with
the distance between stations visited. Two immediately time-consecutive train timetable station visits
must be compatible with the railway net: It shall be possible to route a train between such consecutive
stations.

s157

Notice in the descriptive model the unhedged use of the verbs consists, connects, is and are. A
description is indicative: 5 It tells what there is. Likewise notice in the prescriptive model the use
of the (compelling) verbs shall and must. A prescription is putative: 6 It tells what there will be.

3Descriptive: factually grounded or informative rather than normative, prescriptive, or emotive [139].
4Prescriptive: to lay down a rule [139].
5Indicative: of, relating to, or constituting a verb form or set of verb forms that represents the denoted

act or state as an objective fact [139].
6Putative: of “putare” to think, assumed to exist [139].
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4.3.3 Extensional and Intensional Models s158

Definition 16 Extensional Model: An extensional model 7 (black, opaque box) presentation
models something as if observed by someone external to the universe of discourse.

Definition 17 Intensional Model: An intensional model 8 in logic, correlative words that in-
dicate the reference of a term or concept. Intension indicates the internal content of a term or
concept that constitutes its formal definition. .

s159

Intensional versus extensional meaning: (i) intensional meaning: consists of the qualities or at-
tributes the term connotes (the attributes of class membership); (ii) extensional meaning: consists
of the qualities or attributes the term denotes (the class members themselves).

Connotation: the suggesting of a meaning by a word apart from the thing it explicitly names
or describes.

Denotation: a direct specific meaning as distinct from an implied or associated idea. (glass (or
white), transparent box) presentation models the internal structure of the universe of discourses160

An extensional model presents, i.e., reflects, the behaviour as seen from an outside. In that sense
one may claim, but the claim cannot be justified from extensionality alone, that an extensional
model focuses on properties, on what the thing that is being modelled offers an outside world, i.e.,
users of that thing. If a model is expressed in a property-oriented style, then we can claim the
converse: that the model is extensional!

An intensional model presents the internal mechanisms of what is being modelled in a way
that may explain why it has the extension that it might have.s161

The subject of intension and extension, in mathematical logic as well as in philosophy, is not a
closed book. It is still very much subject to analysis, redefinition, rethinking. In this paper we shall
restrict ourselves to the views expressed above. Extension is the “black box” view of observing
only externally perceivable properties of what is being specified. Intension is the “glass box” view
of observing some, most or all of the inner workings of what is being specified.

Example 17 – Extensional Model Presentations: (1) To explain the square root function,
√

n =
r, by explaining that r × r = n ∧ r ≥ 0 is to give an extensional definition, hence model.

(2) To explain a stack extensionally we may define (a) the stack sorts for elements and stacks, (b)
the signatures of the empty, pop, top and push functions, and (c) the axioms which relate sorts and
operations.

s162

Example 18 – Intensional Model Presentations: (1) To explain the square root function,
√

n,
by presenting, e.g., the Newton–Raphson algorithm ([121] pp. 230, 347, 355 and 360), is to give an
intensional definition, hence model.

(2) An intensional model of stacks may model stacks as lists of (extensionally modelled) elements,
and define the (i) empty, (ii) pop, (iii) top, and (iv) push functions in terms of (i) constructing the
empty list, of (ii) yielding the tail of a list, of (iii) yielding the head element of a list, and (iv) of
concatenating a supplied element to the front of the list.

4.4 Rôles of Models s163

We pursue modelling for one or more reasons:
(i) To gain understanding: in the process of modelling we are forced to come to grips with

many issues of the universe of discourse.
(ii) To get inspiration and to inspire: abstraction often invites such generalisations that induce,

in the writer, or in the reader, desires of change.
(iii) To present, educate and train: a model can serve as the basis for presentations to others

for the purposes of awareness, education or training.s164

7Extensional: concerned with objective reality.
8Intensional: TBD
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(iv) To assert and predict: a mathematical, including a formal model, usually allows abstract
interpretation — in the “vernacular”: calculations, computations — that simulates, estimates or
otherwise expresses potential properties of the universe of discourse.

(v) To implement: two kinds of implementations can be suggested: in business process re-
engineering we propose the re-engineeringof some domain on the basis of a model and in computing
systems design we base the development of requirements on a domain specification and we base
software design on requirements.

4.5 Exercises

See Items 3–4 (of Appendix D, starting Page 230).





5

Semiotics

s165 acm-semiotics

5.1 An Overview

The following decomposition of language concepts and their explication is taken from [6]. The
syntax-semantics-pragmatics sub-structuring is believed to be due to Morris [34–36,108,109,147].
In fact, the term ‘semiotics’, as we use it, is really to be taken in its widest meaning [37].

Definition 18 – Semiotics: Semiotics is the study of and knowledge about the structure of all
‘sign systems’. We divide this study (and our knowledge) into three parts: syntax, semantics and
pragmatics.

Conventional natural language as spoken (written) by people is but one ‘sign’ system. Examples
of sign systems are sound (audio), sight (visual), touch (tactile), smell and taste — and in all
contexts: dance, film, politics, eating and clothing [37]. s166

Definition 19 – Syntax: Syntax is the study of and knowledge about how signs (words) can be
put together to form correct sentences and of how sentence-signs relate to one another.

We shall understand signs (words) and sentences in a wide sense. Programs in a programing lan-
guages and specifications in a formal specification language will here be considered to be sentences.
and variable and function identifiers (a, ab, id, fct, etc.); constants (0, 1, 2, . . . , true, false, chaos,
etc.); expressions and statements; statement and expression symbols (such as value operators s167

(+,−, /, ∗,×, 7→, etc.), and dom, rng, elems, len, card) etc.; type operators (Boolean, integer,

real, char, string, etc., and -set, -infset, ∗, ω, →,
∼→, →m , ×); parentheses ((, ), {, }, [, ] etc.);

comma (,); semicolon (;); assignment symbols (:=, =, ←); definition symbols (≡, ::=) etc.) and
literals (such as begin, end, let, in, cases, of, while, do, type, value, axiom, etc.) will here be
considered words. s168

But also diagrams, say technical drawings and actual layout of, for example, buildings and
railway tracks, will be considered sentences, and the boxes and lines of diagrams, and the various
visual (proper) sub-components of actual physical phenomena will be considered words. That is, we s169

consider phenomena such as geographical and geodetic maps; buildings, and their “accompanying”
architectural and engineering drawings; railway tracks (lines and stations) and their “accompany-
ing” engineering drawings; cities and city plans; etc., as languages [5]. GIS and CAD/CAM systems
thus translate descriptions of such phenomena into database structures and GIS and CAD/CAM
system user commands are compiled and executed as language programs in the context of these
databases. s170

We define syntaxes in terms of either BNF grammars or RSL types. We distinguish between syn-
tactic types and semantic types. The syntactic types designate sentences and words. The semantic
types designate meanings (of sentences and words).
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Definition 20 – Semantics: Semantics is the study of and knowledge about the meaning of
words, sentences, and structures of sentences.

s171

Let

type
SynType, SemType

designate syntactic, respectively semantic types. Then

value
M: SynType → SemType

presents the signature of a semantic function M. It assumes all syntactic inputs to be well-formed.
If the syntax of SynType is such as to allow ill-formed sentences, then we must define a well-
formedness function:

value
Wf SynType: SynType → Bool

and the signature of M must be sharpened:

value

M: SynType
∼→ SemType

s172

Definition 21 – Pragmatics: Pragmatics is the study of and knowledge about the use of words,
sentences and structures of sentences, and of how contexts affect the meanings of words, sentences,
etc.

5.2 Syntax s173

We recall our definition: syntax is the study of and knowledge about how signs (words) can be
put together to form correct sentences and of how sentence-signs relate to one another.

We shall divide our presentation of syntax into three parts: (i) BNF grammars, (ii) concrete
type syntax and (iii) abstract type syntax. These three are just three increasingly more abstract
ways of dealing with syntax.s174

The subject of syntax goes well beyond our software engineering treatment. The computer
science topic of formal languages and automata theory studies far wider consequences of gram-
mars and syntax than we cover. Seminal books are [83]1 The computing science topic of regular
expression recognizers and context free language parsers likewise goes well beyond our coverage —
and their study is important for the software engineer to implement efficient software for language
handling. Seminal books are [4].2s175

BNF grammars define sets of strings of characters; concrete type syntaxes define sets of math-
ematical structures (numbers, Booleans, sets, Cartesians, maps and functions over concrete type
values); and abstract type syntaxes define properties of simple phenomena and concept entities.
We say that BNF grammars and concrete type syntaxes define simple phenomena and concept
entities in a model-oriented fashion whereas abstract type syntaxes define simple phenomena and
concept entities in a property-oriented fashion.

1 Dines: Find more recent references.
2 Dines: Find more recent references.
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5.2.1 BNF Grammars s176

BNF stands for Backus Naur Form. BNF grammars, as we shall see, stand for sets of finite length
strings of characters, including blanks and punctuation marks.

Definition 22 – Character: A character is a symbol that can be displayed (on paper, on a
computer screen, or otherwise).

Example 19 – Characters: Our example is the conventional example of characters from an En-
glish/American computer keyboard: a, A, b, B, c, C, ..., z, Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, !, @, #, $, %,
&, *, ˜, (, ), {, }, [, ], -, +, ’, ”, <, >, ., ,, :, ;, ?, /, |, [blank], etc.

s177

Definition 23 – Alphabet: An alphabet is a finite set of characters.

Example 20 – Alphabet: Three examples, Ai,Aj ,Ak, of subsets of the above characters:

• Ai : {a,b,[blank],O,|}
• Aj : {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,[blank]}
• Ak : {0,1,2,3,4,5,6,7,8,9,[blank],a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

s178

Definition 24 – Terminal: By a terminal we understand a sequence of one or more characters
of some given alphabet.

Example 21 – Terminals:

• a, b, c, 0, 1;
• a, aa, aaa, abc, 0, 1, 00, 01, 001;
• open, deposit, withdraw, close, account, client, number.

s179

Definition 25 – Non-terminal: By a non-terminal we understand a specially highlighted sequence
of one or more characters, not necessarily from the alphabet of a given set of terminals.

Example 22 – Non-terminals:

• <| Command>|,
• <| Open>|, <| Deposit>|, <| Withdraw>|, <| Close>|
• <| ClientName>|, <| AccountNumber>|,
• <| Cash>|, <| Amount>|

s180

Definition 26 – BNF Rules: By a BNF rule we understand a triple: (L, ::=, As) where L is
a non-terminal and As is a finite set of zero, one or more alternatives where an alternative is a
finite sequence of zero, one or more non-terminals and/or terminals. ::= is the definition symbol.

Example 23 – BNF Rules:

• <| Command>| ::= <| Open>| | <| Close>|
• <| Open>| ::= client <| ClientName>| opens account
• <| Withdraw>| ::= client <| ClientName>| withdraws <| Amount>|

from account <| AccountNumber>|

s181

Definition 27 – BNF Grammar: By a BNF grammar we understand a quadruple

(N , T ,R,G)
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• N is an alphabet of non-terminals,
• T is an alphabet of terminals,

• R is a set of rules,
• G is a non-terminal,

such that G is in N ; all the left hand sides of rules in R are in N ; all the non-terminals of right
hand sides of rules in R are distinct and together form N ; and all the terminals of right hand
sides of rules in R are in T .

s182

Example 24 – BNF Grammar: Banks: The ... (Identifiers,Alphanumerics,Numerals) are not part
of the syntax.

N : {<| Command>|, <| Open>|, <| Deposit>|, <| Withdraw>|, <| Close>|, <| ClientName>|,
<| AccountNumber>|, <| Amount>|}

T : {client,opens account,deposits,into account,withdraws,from account,closes account} . . .
... ∪ Identifiers ∪ Alphanumerics ∪ Numerals

R : <| Command>| ::= <| Open>| | <| Deposit>| | <| Withdraw>| | <| Close>|
<| Open>| ::= client <| ClientName>| opens account
<| Deposit>| ::= client <| ClientName>| deposits <| Amount>| into account <| AccountNumber>|
<| Withdraw>| ::= client <| ClientName>| withdraws <| Amount>| from account <| AccountNumber>|
<| Close>| ::= client <| ClientName>| closes account <| AccountNumber>|
<| ClientName>| ::= ... Identifiers
<| AccountNumber>| ::= ... Alphanumerics
<| Amount>| ::= ... Numerals

G : <| Command>|

s183

The “... ∪ Identifiers ∪ Alphanumerics ∪ Numerals” which is not part of the syntax, ought be
fully defined by a somewhat longer BNF grammar.

The example showed one form of BNF grammars. In the below definition of the meaning of
BNF grammars we abstract from the above forms of rules for BNF grammars.

Examples 26 on the facing page and 28 on page 45 follow up on this example of a BNF grammar
by presenting a concrete type syntax, respectively an abstract type syntax for “supposedly” the
same command language.s184

Definition 28 – Meaning of a BNF Grammar: The meaning of a BNF grammar is a language,
that is, a possibly infinite set of finite length strings over the terminal alphabet of the BNF grammar.
To properly define this language, for any BNF grammar we shall proceed, formally, as follows:

Let N and T denote the alphabets of non-terminals and terminals.
Let r : (n, {ℓ1, ℓ2, . . . , ℓm}) designate a rule, r, that is: n : N and ℓi : (N |T )∗, for m ≥ 0, 1 ≤

i ≤ m where (N |T )∗ denotes the possibly infinite set of finite length strings over non-terminal and
terminal characters.

Let G : (N, T, R, n0) where G names the grammar, N the alphabet of non-terminals, T the
alphabet of terminals, R the finite set of rules (over N and T ), and n0 a distinguished non-terminal
of N .

G is constrained as follows: no two distinct rules, (n, ls) and (n′, ls′) in G have n = n′, that
is: all left hand side non-terminals are distinct and together they form N , and there is a rule
r : (n, {ℓ1, ℓ2, . . . , ℓm}) in R such that n = n0.s185

Let sîsj denote the concatenation of strings si and sj.
Let ŝÛs′ be a string over (N |T )∗.
Let (U, {ℓ1, ℓ2, . . . , ℓi, . . . , ℓm}) be a rule in R.
Then ŝÛs′ →G ŝℓîs′ means: from ŝÛs′, by means of rule (U, {ℓ1, ℓ2, . . . , ℓm}) of G,

we derive, →G, ŝℓîs′.
If, in some rule (U, {ℓ1, ℓ2, . . . , ℓi, . . . , ℓm}), m = 0, that is, the rule is (U, {}), then ŝÛs′ →G

ŝs′.
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If sp →G sq, sq →G sr, ..., and sv →G sw, then sp →G
∗ sw (and thus sp →G

∗ sr, sp →G
∗ sw,

etc. — assuming sp →G
∗ sv).

The meaning of →G is specific to the given Grammar.
Now the meaning, L(G) is defined as follows:

LG = {s | n0 →G
∗ s ∧ s ∈ T ∗}

s186

Some BNF grammars are such that LG is empty: no derivation, →G, and hence →G
∗, results in

terminal strings. s187

Example 25 – Meaning of a BNF Grammar: First we show a form of BNF grammar which is
more in line with the above definition.

N = {E, C, V, P, I, B},
T = {0, 1, 2, 3, 4, 5, . . . , a, b, c, . . . , z,+,−, ∗, /,
R =
0 { E = C | V | P | I | B,
1 C = 0 | 1 | 2 | 3 | 4 | 5 . . .,
2 V = a | b | c | . . . | z,
3 P = −E,
4 I = E O E,
5 O = + | − | ∗ | /,
6 B = ( E ) }
n0 = E

s188

Then we show a derivation of the expression 5 + (a/3) +−c from E:

E → 0
I → 4
E O E → 0
C O E → 1
5 O E → 5
5 + E → 0
5 + I → 4
5 + E O E → 6
5 + B O E → 4
5 + ( E ) O E → 0
5 + ( I ) O E → 4

5 + ( E O E ) O E → 0
5 + ( V O E ) O E → 2
5 + ( a O E ) O E → 5
5 + ( a / E ) O E → 0
5 + ( a / C ) O E → 1
5 + ( a / 3 ) O E → 5
5 + ( a / 3 ) + E → 0
5 + ( a / 3 ) + P → 3
5 + ( a / 3 ) + −E → 0
5 + ( a / 3 ) + − V → 2
5 + ( a / 3 ) + − c

s189

Please disregard that we have, in the above derivation, always replaced the leftmost non-terminal. That
is of no consequence. The fact that the BNF grammar is ambiguous, that is, allows entirely distinct
derivation sequences to lead to the same final string also should be disregarded. It is, at most, perhaps,
an unfortunate choice of grammar !

5.2.2 Concrete Type Syntax s190

Definition 29 – Concrete Type Syntax: By a concrete type syntax we shall understand the
definition of a set of mathematical structures such as sets, Cartesians, lists, maps and functions.

s191

Example 26 – A Concrete Type Syntax: Banks:

49. There are clients, c:C, account numbers a:A and money, m:M.
50. A bank record client accounts and account balances.
51. Client accounts map client names to a finite number of zero, one or more account numbers.
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52. Account balances map account numbers into money balances.
53. All client accounts are recorded by the account balances, and the account balances record only

accounts listed by one or more clients.

type
49. C, A, Money
50. Bank = Clients × Accounts
51. Clients = C →m A-set
52. Accounts = A →m Money
axiom
53. ∀ (cs,acs):Bank • ∪ rng cs = dom acs

s192
The two sentences of Item 53 (53.1) All client accounts are recorded by the account balances, and
(53.2) the account balances record all accounts listed by clients. correspond to:

axiom
53. ∀ (cs,acs):Bank •

53.1 ∪ rng cs ⊆ dom acs
53.2 dom acs ⊆ ∪ rng cs

Hence formula line 53.s193

We then give a concrete type syntax for a bank/client comand language first hinted at in Example 24
on page 40.

54. To the syntactic types we include client identifications, account numbers, money (i.e., cash) and
amounts of such.

55. There are open, deposit, withdraw and close commands.
56. Open commands identify the client.
57. Deposit commands identify the client, the account number and the monies to be deposited.
58. Withdraw commands identify the client, the account number and the amount of monies to be

withdrawn.
59. Close commands identify the client and the account to be closed.

s194

54. C, A, Money, Amount
55. Command = Open | Deposit | Withdraw | Close
56. Open == mkO(c:C)
57. Deposit == mkD(c:C,a:A,m:Money)
58. Withdraw == mkW(c:C,a:A,amount:Amount)
59. Close == mkC(c:C,a:A)

This example will be followed up by Examples 28 on page 45 and 29 on page 46.
s195

Definition 30 – Meaning of Concrete Type Syntax: We explain both the syntactic RSL type
definitions, expressions and their meaning. First the syntax.

60. There are two kinds of type definitions:
a) simple type definitions which have a left hand side type name and a right hand side type

expression (separated by an equal sign: ‘=’),
b) record type definitions which have a left hand side type name and a right hand side pair of a

record constructor name and a parenthesized list of pairs of distinct selector and not necessarily
distinct type names (where the left and the right is separated by a double equal sign: ‘==’).

61. Type, record constructor and selector names are identifiers.s196

62. A type expression is either
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a) a Boolean (Bool) or
b) an integer number (Intg) or
c) a natural number (Nat) or
d) a real number (Real) type name, or is
e) a set (A-set) or
f) a Cartesian (A×B×. . .×C) or

g) a list (A∗) or

h) a map (A →m B) or

i) a partial (A
∼

→B) or

j) a total function (A→B) type expression, or is

k) a set of (alternative, |) type expressions.

The below only shows how such type definitions and expressions may look like when we (otherwise)
write them. That is, the below type definitions and expressions are not type definitions and proper
type expressions. s197

Type Definition Examples:
60a. TN = TE
60b. TN == RN(s1:TN1,s2:TN2,...,sn:TNm)

Type Expression Examples:
62. TE =
62a. Bool
62b. Int
62c. Nat
62d. Real

62e. TE-set
62f. TE1×TE2×...×TEm
62g. TE∗

62h. TEi →m TEj

62i. TEi
∼

→ TEj
62j. TEi → TEj
62k. TE1 | TE2 | ... | TEm

where: m≥2

In an concrete type syntax of two or more type definitions all left hand side type names are distinct, all
type names occurring in right hand side record constructor and type expressions are defined by an abstract
or concrete type syntax, and no set (62e.) or function (62h.,62i.) type is defined recursively. Now to the s198

meaning of a concrete type syntax.

• The meaning of a type name is the meaning of the right hand side
⋆ type expression TE
⋆ or record constructor expression RN(s1:TN1,s2:TN2,...,sn:TNm).

We shall use a concept of the meanings being “sets” of values. The practicing software engineer may
consider these “sets” just as normal set. But, for reasons not explained here, but based in a proper
definition of a mathematical semantics for RSL, they are not sets in the usual sense of mathematics. s199

• The meaning of a type expression depends on its form:
⋆ Bool: the “set” {false,true,chaos};
⋆ Intg: the “set” of all integers: {. . . ,-3,-2,-1,0,1,2,3,. . . };
⋆ Nat: the “set” of all natural numbers {0,1,2,3,. . . };
⋆ Real: the “set” of all real number {m/n | m,n :Nat, n 6= 0};
⋆ TE-set: the “set” of all finite sets of zero, one or more elements, ei, of TE: {. . . {ei, ej , . . . , ek}. . . };
⋆ TE1×TE2×...×TEm: the “set” of all Cartesians { . . . , (eTE1i

, eTE2i
, . . . , eTEmn), . . . };

⋆ TE∗: the “set” of all finite length sequences (or lists) of zero, one or more elements, ei, of TE:
{. . . ,〈ei, ej , . . . , ek〉,. . . };

⋆ TEi →m TEj: the “set” of all finite maps (that is, finite definition set discrete functions) from
elements, eik

, of TEi to elements, ejℓ
, of TEj: {. . . ,[. . . ,eik

7→ejℓ
,. . . ]. . . }; s200

⋆ TEi
∼

→TEj: the “set” of all partial functions from some, but not all elements, eik
, of TEi, to elements,

ejℓ
, of TEj: λei : TEi • ETEj;

3

⋆ TEi→TEj: the “set” of all total functions from elements eik
, of type TEi, to elements, ejℓ

, of TEj:
λei • Ej ; and

⋆ TE1|TE2|...|TEm: the “set” which is a “union” of the “sets” denoted by the TEi for i=1,2,. . . ,m.
• The meaning of a record constructor type definition, Tn == RN(s1:TN1, s2:TN2, ..., sn:TNm), is the

“set” of all records, { . . . , RN(te1,te2,. . . ,tem), . . . }, where tei is any value of type TEi for all i.

s201

Where the meaning of a BNF grammar is a possibly infinite set of strings over a terminal alphabet,
the meaning of a concrete type syntax is a possibly infinite “set” of mathematical values: Booleans,
numbers, sets, Cartesians, lists, maps, partial and total functions, where the elements of sets,
Cartesians, lists and maps, and where the function argument and results values are any of the
values of any of these mathematical values.

The RSL type constructs also allow infinite sets, TE-infset, and infinite length lists, TEω.

3The expression λe : Ti • ETj
denotes the function which when applied to elements v, of type Ti, yields

a value (of type Tj) of expression ETj
where all free occurrences of e are replaced by v.
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5.2.3 Abstract Type Syntax s202

The first abstract syntax proposal was put forward by John McCarthy in [103] where an analytic
abstract syntax was given for arithmetic expressions the latter in what McCarthy calls a synthetic
manner. In an analytic abstract syntax we postulate, as sorts, a class of terms as a subset of all
the “things” that can be analysed. And we associate a number of observer functions with these.

Definition 31 – Abstract Type Syntax Definition: By an abstract type syntax definition we
mean a set of one or more sorts, that is, type names, a set of one or more observer, of zero, one or
more selector and zero, and one or more constructor (‘make’) function signatures (function names
and argument and result types over these sorts) and a set of axioms which which range over the
sorts and defines the observer, selector and constructor (‘make’) functions.

s203

Definition 32 – Abstract Type Syntax: By an abstract type syntax we mean a set of sort values
of named type with observer, selector and constructor (‘make’) functions where the sort values and
the functions satisfy the axioms.

s204

Example 27 – An Abstract Type Syntax: Arithmetic Expressions: First we treat the notion of
analytic grammar, then that of synthetic grammar.

Analytic Grammars: Observers and Selectors For a “small” language of arithmetic expressions we
focus just on constants, variables, and infix sum and product terms:

type
A, Term

value
is term: A → Bool
is const: Term → Bool
is var: Term → Bool

is sum: Term → Bool
is prod: Term → Bool
s addend: Term → Term
s augend: Term → Term
s mplier: Term → Term
s mpcand: Term → Term

s205
axiom
∀ t:Term •

(is const(t) ∧ ∼ (is var(t) ∨ is sum(t) ∨ is prod(t))) ∧
(is var(t) ∧ ∼ (is const(t) ∨ is sum(t) ∨ is prod(t))) ∧
(is sum(t) ∧ ∼ (is const(t) ∨ is var(t) ∨ is prod(t))) ∧
(is prod(t) ∧ ∼ (isc const(t) ∨ isv ar(t) ∨ is sum(t))),

∀ t:A • is term(t) ≡
(is var(t) ∨ is const(t) ∨ is sum(t) ∨ is prod(t)) ∧
(is sum(t) ≡ is term(s addend(t)) ∧ is term(s augend(t))) ∧
(is prod(t) ≡ is term(s mplier(t)) ∧ is term(s mpcand(t)))

s206
A is a universe of “things”: some are terms, some are not! The terms are restricted, in this example,
to constants, variables, two argument sums and two argument products. How a sum is represented
one way or another is immaterial to the above. Thus one could think of the following external, written
representations: a + b, +ab, (PLUS A B), or 7a × 11b.s207

Synthetic Grammars: Generators A synthetic abstract syntax introduces generators of sort values,
i.e., as here, of terms:

value
mk sum: Term × Term → Term
mk prod: Term × Term → Term

axiom
∀ u,v:Term •

is sum(mk sum(u,v)) ∧ is prod(mk prod(u,v)) ∧
s addend(mk sum(u,v)) ≡ u ∧ s augend(mk sum(u,v)) ≡ v ∧
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s mplier(mk prod(u,v)) ≡ u ∧ s apcand(mk prod(u,v)) ≡ v ∧
is sum(t) ⇒ mk sum(s addend(t),s augend(t)) ≡ t ∧
is prod(t) ⇒ mk prod(s mplier(t),s mpcand(t)) ≡ t

McCarthy’s notion of abstract syntax, both the analytic and the synthetic aspects, are found in most
abstraction languages, thus are also in RSL.

s208

The previous example illustrated the expression of an abstract type syntax for a syntactic type
of arithmetic expressions. The next example illustrates the expression of an abstract type syntax
for a semantic type of banks as well as expression of an abstract type syntax for a syntactic type
of client commands. The example “pairs” with Example 26 on page 41. s209

Example 28 – An Abstract Type Syntax: Banks:
We refer (back) to Example 26 on page 41.

Abstract Syntax of Semantic Types

63. There are banks (BANK) and clients (C), and client have accounts (A) with amounts (Amount)
of money (M).

64. From a bank one can observe its set of clients (by their client identifications, C),
65. and its set of accounts (by their account numbers, A).
66. From a bank one can observe the account numbers of a client.
67. For every bank client there is at least one account.
68. From a bank one can observe the money of an account of a client.

s210

type
63 BANK, C, A, Amount, M
value
64 obs Cs: BANK → C-set
65 obs As: BANK → A-set
66 obs As: BANK × C → A-set

pre obs As(bank,c): c ∈ obs Cs(bank)
axiom
∀ bank:BANK •

67 ∀ c:C • c ∈ obs Cs(bank) ⇒ obs As(bank,c)⊆obs As(bank)
type
68 obs M: BANK × C × A → M

pre obs M(bank,c,a): c ∈ obs Cs(bank)∧a ∈ obs As(bank,c)

s211

Abstract Syntax of Syntactic Types

69. There are bank transaction commands (Command) and these are either open (Open), deposit
(Deposit), withdraw (Withdraw) or close (Close) commands.

70. One can observe whether a command is an open, or a deposit, or a withdraw, or a close command.
71. From any command one can observe the identity of the client issuing the command.
72. From other that open commands one can observe the number of the account “against” which the

client is directing the transaction.
73. From a deposit command one can observe the cash money being deposited.
74. From a withdraw command one can observe the amount of cash money to be withdrawn.

s212

type
69 cmd:Command, Open, Deposit, Withdraw, Amount, Close
value
70 is Open, is Deposit, is Withdraw, is Close: Command → Bool
71 obs C: Command → C

72 obs A: Command
∼→ A
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pre obs A(cmd): ∼is Open(cmd)

73 obs M: Command
∼→ M

pre obs M(cmd): is Deposit(cmd)

74 obs Amount: Command
∼→ Amount

pre obs Amount(cmd): is Withdraw(cmd)

5.2.4 Abstract Versus Concrete Type Syntax s213

Example 29 – Comparison: Abstract and Concrete Banks: We refer (back) to Examples 26 on
page 41 and 28 on the preceding page. The former presented a concrete type syntax of both semantic
and syntactic types related to banking. The latter presented an abstract type syntax of both semantic
and syntactic types related to banking. Supposedly the two notion of banks are the same ! We formulate
this as follows: The meaning of the model-oriented definition of Example 26 is a model of the meaning
of the property-oriented definition of Example 28. The properties expressed by Example 28 are satisfied
by the meaning of Example 26.

Usually a property-oriented definition has many, usually an infinite set of models. We now shows214

three “other” model-oriented definitions of the semantic types of banks.

type
BANK1=(C →m A-set)×(A →m M)

type
BANK2=A →m (C-set×M)

type
BANK3=(C×A×M)-set

The first model is that of Example 26 with its invariant as expressed in Item 53 on page 42. The second
model requires the following invariant

axiom
∀ bank2:BANK2 • ∀ (cs,m):(C-set×M) • (cs,m)∈ rng bank2⇒cs 6={}

s215
The third model is like a relational database-oriented model. Each Cartesian (c,a,m) in any bank3 is
like a relation tuple. But two different Cartesians with same account number, (c,a,m), (c′,a,m′) must
have same cash balance:

type
BANK3=(C×A×M)-set

axiom
∀ bank3:BANK3 •

∀ (c,a,m),(c′,a′,m′):(C×A×M) •

{(c,a,m),(c′,a′,m′)}⊆bank3 ∧ a=a′ ⇒ m=m′.

For each of the four models: Example 26 and the three above, one can define the observer observer
functions of Example 28 and prove its axioms.

5.3 Semantics s216

We recall our definition of semantics: semantics is the study of and knowledge about the meaning
of words, sentences, and structures of sentences.

We consider two forms of semantics definition styles: denotational and behavioural. Both will
be briefly characterised and both will be “amply” exemplified. There are many (other) semantics
definition styles: but we shall leave it to other textbooks to fill you in on those, and even our
presentation of the two “announced” styles need a deeper treatment than the present software
engineering coverage. We refer to [17, Chaps. 19–21] and [18, Chaps. 7 and Chaps. 16-19] for a
more thorough software engineering coverage and to [40, 67, 128, 133, 141, 144] for computer and
computing science in-depth treatments.
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5.3.1 Denotational Semantics s217

Definition 33 – Denotational Semantics: By a denotational semantics we understand a se-
mantics which to simple sentences ascribe a mathematical function and to composite sentences
ascribe a semantics which is a homomorphic composition of the meaning of the simpler parts.

s218

Example 30 – A Denotational Language Semantics: Banks: We continue Example 26. We
augment the simple sentences of commands with a ‘command’ which is a list of simple commands:

type
Command′ = Command | CmdList
ComdList == mkCL(cl:Command∗)
Response == ok | nokd |nokw | nokc | mkM(m:M)

The meaning of a command is a bank to bank state change and a response value.

value

M: Command′ → BANK
∼→ BANK × Response

s219
The nokd, nokw, and nokc responses “signal” the client that command arguments were erroneous.

Opening an account is always possible, but for the other simple commands the client must be
known by the bank and the account must be an account of that client. For the withdraw command
the amount to be withdrawn must be less than or equal to the account balance. The response value
serves to record these conditions for a successful transaction as well as “containing” the “returned”
monies in the case of the withdraw and close commands. s220

value

M: Command′ → BANK
∼→ BANK × Response

M(cmd)(bank) ≡
case cmd of

mkO(c) → Open(c)(bank),
mkD(c,a) → Deposit(c,a)(bank),
mkW(c,m) → Withdraw(c,a,am)(bank),
mkC(c,a) → Close(c,a)(bank),
mkCL(cl) → Compose(cl)(bank)(ok)

end
s221

Next we define the five auxiliary semantic functions, Open, Deposit, Withdraw, Close and Compose
The auxiliary functions Open, Deposit, Withdraw and Closefunction definitions show the denotational
principle of ascribing simple functions, in BANK

∼→BANK, to simple commands. The latter, Compose,
is defined first. It shows the denotational principle of homomorphic composition. s222

value

Compose: Command∗ → BANK
∼→ BANK × Response

Compose(cl)(bank)(r) ≡
if cl=〈〉

then (bank,r)
else let (r′,bank′) =M(hd cl)(bank) in Compose(tl cl)(bank′)(r′) end

end

The homomorphic composition is that of function composition: Compose(tl cl) being applied to the
bank part, (bank′), of the result of M(hd cl)(bank).The “continuation” Response argument, r, of
Compose is there to “clean” up, by “removing”, the intermediate response results. s223

value
m0:M
Open: C → BANK → BANK × Response
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Open(c)(bank) ≡
let a:A • a 6∈ dom acs in
let cs′ = if c 6∈ dom cs then [ c 7→{a} ] else [ c 7→cs(c)∪{a} ] end,

acs′ = acs ∪ [ a 7→m0 ] in
((cs′,acs′),ok) end end

We annotate this function definition:

• let a:A • a 6∈ dom acs expresses that a “fresh, hitherto unused” account number is “fetched”;
• let cs′ = if c 6∈ dom cs then [ c 7→{a} ] else [ c 7→cs(c)∪{a} ] end, expresses that the new Clients

components updates the “input” component cs as follows: if the client is not (yet) known by
the bank then the new cs′ is the old cs with a new mapping (7→) from c to the singleton set
{a};

• acs′ = acs ∪ [ a 7→m0 ] expresses that the new Accounts component joins (∪) the mapping (7→)
from a to a zero valued Money value; and

• (cs′,acs′) expresses the “new” bank.
s224

value

Deposit: C × A × M → BANK
∼→ BANK × Response

Deposit(c,a,m)(cs,acs) ≡
if c ∈ dom cs ∧ a ∈ cs(c)

then ((cs,acs†[ a 7→AddM(acs(a),m) ]),ok)
else ((cs,acs),nokd)

end
AddM: M × M → M

We annotate this function definition:

• The if argument a ∈ cs(c) expresses that account a should be an account of client c;
• (cs,acs†[ a 7→AddM(acs(a),m) ]) expresses the “updated” bank:

⋆ the Clients component cs is unchanged;
⋆ the Accounts component acs is updated to reflect that the cash money m has been added,

AddM, to the previous balance acs(a) of the a account;
• ((cs,acs),nokd) expresses the “not ok” result of an unchanged bank.

s225

value

Withdraw: C × A × Amount → BANK
∼→ BANK × Response

Withdraw(c,a,am)(cs,acs) ≡
if c ∈ dom cs ∧ a ∈ cs(c) ∧ LessEqM(am,ConvM(acs(a)))

then ((cs,acs†[ a 7→SubM(am,acs(a)) ]),mkM(ConvM(am)))
else ((cs,acs),nokw)

end

SubM: M × M
∼→ M

ConvM: (M → Amount)|(Amount → M)
LessEqM: Amount × Amount → Bool

We annotate this function definition:

• The if argument: if c ∈ dom cs ∧ a ∈ cs(c) ∧ LessEqM(am,ConvM(acs(a))) expresses that the
client must be known, that the account must be one of that client and that the amount to be
withdrawn must be less than or equal to the in-going account balance;

• the Clients component, cs, of the new bank is unchanged;
• the Accounts component, acs†[ a 7→SubM(am,acs(a)) ] is an update of the previous acs component

where account a is updated (†) to a balance which is the previous balance, acs(a), minus the
withdrawn amount of money (am);
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• the ((cs,acs),nokw) expresses the “not ok” result of an unchanged bank.
• The SubM function subtracts monies.
• The ConvM function converts money into their face value (and vice versa).
• The LessEqM compares two money face values.

s226

value

Close: C × A → BANK
∼→ BANK × (nok|M)

Close(c,a)(cs,acs) ≡
if c ∈ dom cs ∧ a ∈ cs(c)

then let cs′ = cs‖[ c′7→cs(c′)\{a}|c′:C•c′ ∈ dom cs∧a ∈ cs(c′) ],
acs′ = acs\{a} in
((cs′,acs′),acs(a)) end

else ((cs,acs),nokc)
end

We annotate this function definition:

• The if argument c ∈ dom cs ∧ a ∈ cs(c) expresses that the client must be known (by the bank)
and that the account must be one of that client;

• let cs′ = cs‖[ c 7→cs(c)\{a}|c:C•c ∈ dom cs∧a ∈ cs(a) ] expresses that the update Clients part,
cs′, of the new bank reflect that all clients, not just the command-issuing client c, that share
this account (a) will have their association with that account removed.

• acs′ = acs\{a} expresses that the update Accounts part, acs′, of the new bank reflect that
account a has been removed.

• ((cs′,acs′),acs(a)) expresses the new bank “value” and that any monies of the closed account
are being return to client c;

• ((cs,acs),nokc) expresses the “not ok” result of an unchanged bank.
• It is only in this function definition that we reveal that accounts may be shared. How such

accounts got share we do not reveal — such sharing could be effected by a ‘Share’ command:

type
Command′′ == Command′ | mkS{c1:C,a:A,c2:C}.

The fact that we have not dealt with the issue of who “owns” (and can close an account) and
who “co-shares” (and cannot close an account) is of no consequence for our main purpose of
this example, namely showing semantics of a client/banking command language.

• • •
s227

The nokd, nokw, and nokc responses could, in a requirements prescriptions be detailed, for example
as follows:

• nokd: "client or account deposit arguments were wrong",
• nokw: "client or account deposit arguments were wrong or amount to be withdrawn

was too large", and
• nokc: "client or account deposit arguments were wrong";

And, of course, even these more informative “diagnostics” can be sharpened to reflect the con-
junction of the if predicates.

5.3.2 Behavioural Semantics s228

Definition 34 – Behavioural Semantics: By a behavioural semantics we shall here understand
a semantics which emphasises concurrency properties of the language being modelled.

s229
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Example 31 – A Behavioural Semantics: We continue Example 30.

75. There are a number of clients, each is considered a distinct cyclic behaviour
76. indexed by a (well: the) unique Client index.

value
75. client: C ... → Unit

The Unit designates a “never ending” client behaviour. The . . . will now be “filled in”.s230

77. Each client communicates with one bank (with communication modelled in terms of channel
input/output (c?, c!cmd)).

78. There is one cyclic bank behaviour.

77. channel {ch[ c ]|c:C} Command|Response
75. client: c:C × CΣ → out,in {cb[ c′ ]|c′:C\{c}} Unit
78. bank: BANK → in,out {ch[ c ]|c:C} Unit

s231

79. Client behaviours (over some internal state, cσ [not explained]) alternate
a) between doing nothing, skip, in relation to the bank, and
b) arbitrarily issuing, based on some property of its local state,
c) a client/banking command to the bank
d) and waiting for a response from the bank —
e) based on which the client updates its local state and continues.

80. We do not detail the predicate over choice of commands and the local client state nor the local
client state update.

s232

type
79. CΣ
value
79. client(c,cσ) ≡
79a. (skip ; client(c,cσ))

⌈⌉
79b. (let cmd:Command′ • P(cmd,cσ) in
79c. ch[ c ]!cmd;
79d. let r = ch[ c ]? in
79e. client(c,client state update(cmd,r,cσ)) end end)

80. P : Command′ × CΣ → Bool
80. client state update: Command′ × Response × CΣ → CΣ

s233

81. The bank alternates between serving any of its customers.
82. Sooner or later, if ever a client, c, issues a command, cmd, that command and its origin is received.
83. The command interpretation results in a possibly new bank and a response.
84. The response is communicated to the issuing client.
85. And the bank continues in the possibly new bank state.

value
81. bank(β) ≡
82. let (c,cmd) = ⌈⌉⌊⌋{ch[ c ]?|c:C} in
83. let (β′,r) =M(cmd)(β) in
84. ch[ c ]!r;
85. bank(β′) end end
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5.3.3 Axiomatic Semantics s234

Definition 35 – Axiomatic Semantics: By an axiomatic semantics we understand a pair of
abstract type presentations of syntactic and semantic types and a set of axioms which express the
meaning of some syntactic values in terms of semantic values.

s235

Example 32 – An Axiomatic Semantics: Banks: We continue Example 28. We now give an
axiomatics semantics of the simple commands of Example 28. We start by recalling semantic and
syntactic types and observer functions. First the semantic types:

type
63 BANK, C, A, Amount, M
value
64 obs Cs: BANK → C-set
65 obs As: BANK → A-set
66 obs As: BANK × C → A-set

pre obs As(bank,c): c ∈ obs Cs(bank)
axiom
∀ bank:BANK •

67 ∀ c:C • c ∈ obs Cs(bank) ⇒ obs As(bank,c)⊆obs As(bank)
type
68 obs M: BANK × C × A → M

pre obs M(bank,c,a): c ∈ obs Cs(bank)∧a ∈ obs As(bank,c)

s236
Then the syntactic types:

type
69 cmd:Command, Open, Deposit, Withdraw, Amount, Close
value
70 is Open, is Deposit, is Withdraw, is Close: Command → Bool
71 obs C: Command → C

72 obs A: Command
∼→ A

pre obs A(cmd): ∼is Open(cmd)

73 obs M: Command
∼→ M

pre obs M(cmd): is Deposit(cmd)

74 obs Amount: Command
∼→ Amount

pre obs Amount(cmd): is Withdraw(cmd)
s237

The semantic function signatures are:

value
open: Open → BANK → BANK × A
deposit: Deposit → BANK → BANK × (ok|nok)
withdraw: Withdraw → BANK → BANK × (mkM(m:M)|nok)
close: Close → BANK → BANK × (mkM(m:M)|nok)

s238
We shall illustrate an axiomatic semantics of just Open commands.

value
m0:M

axiom
∀ bank:Bank
∀ op:Open •

let c = obs C(op),
(bank′,a) = open(op)(bank),
cs = obs Cs(bank), cs′ = obs Cs(bank′),
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acs = obs As(bank), acs′ = obs As(bank′),
cacs = if c ∈ obs Cs(bank) then obs As(bank,c) else {} end,
cacs′ = obs As(bank′,c) in

cs\{c} = cs′\{c} ∧ c ∈ cs′ ∧ a 6∈ acs ∧ a 6∈ cacs′ ∧
acs′ = acs ∪{a} ∧ cacs′ = cacs ∪{a} ∧ m0=obs M(bank′,c,a) ∧
∀ c′:C • c′ ∈ cs\{c} ⇒ obs As(bank,c′)=obs As(bank′,c′) ∧
∀ a:A • a ∈ obs As(bank,c′) ⇒ obs M(bank,c′,a)=obs M(bank′,c′,a)

end
s239

The reader is encouraged to formulate the axiomatic semantics for the Deposit, Withdraw and Close
commands. This ends Example 32

5.4 Pragmatics s240

We recall our definition of pragmatics: pragmatics is the study of and knowledge about the use of
words, sentences and structures of sentences, and of how contexts affect the meanings of words,
sentences, etc.

Recall that we “extended” the notion of sentences and words to include building drawings,
city plans, machine drawings, production floor machinery, radio circuit diagrams, railway track
layouts, enterprise organisation charts, et cetera, We think of these two or three dimensional
artefacts as designating systems.s241

Rather than dwelling on how, for example bank clients may use the client/banking language
of command, we shall, in our example we therefore emphasise

• mostly the pragmatics of both what and how
⋆ we choose to domain model (describe) and
⋆ requirements prescribe
and

• to some extent also the pragmatics of why these systems are endowed with certain structurings.

We shall emphasise “the use of words, sentences and structures of sentences,” and not say much
about “how contexts affect the meanings of words, sentences, etc.”s242

Example 33 – Pragmatics: Banks: The pragmatics of what we describe of banks is determined by
the pedagogics of giving as simple, yet as “convincing” examples of syntactic and semantic types and
both denotational (albeit a rather “simplistic example of that) without embellishing the example with
too many kinds of banking services (for example, intra-bank account transfers, mortgages, statement
requests, etc.).s243

The pragmatics of how we describe banks is determined by the didactics of covering both con-
crete type syntaxes and abstract type syntaxes of syntactic types, and covering both denotational and
behavioural semantics definitions.s244

The pragmatics of why we describe banks is determined by our wish to convince the reader that it
is not a difficult software engineering task to give easy and realistic domain descriptions of important,
seemingly “large” infrastructure components (such as banks).s245

The pragmatics related to “how contexts affect the meanings” includes that we do not, in Exam-
ples 26, 28, 29, and 30–31, describe other financial institutions such as portfolio (wealth and investment)
management, insurance companies, credit card companies, brokers, trader, commodity and stock ex-
changes, let alone include the modelling of several banks. These other institutions and banks form one
possible context of our model and hence our model limits the meaning of client/banking commands.
Another possible context is provided by the personal diligent or casual or delinquent or sloppy, etc.,
behaviour of client. The human behaviours are not modelled, but must eventually be modelled (cf.
Sect. 7.8’s Examples 68 on page 125 and 69 on page 125).
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s246

Pragmatics is not about empirical aspects of software engineering. The pragmatics that we refer
to, in the above definition, is that of staff and users of banks. The pragmatics that we covered
in the example is that of the pedagogics and didactics of presenting a methodology for software
engineering. s247

The aspects of software engineering that we cover, namely that of domain and requirements
engineering, are not empirical sciences, or, more precisely the methodologies of domain and require-
ments engineering are not based on studies of the behaviour of neither domain nor requirements
engineers. The aspects of software engineering that we put forward in this book are based on s248

computing science4 and computing science, like mathematics, upon which it is based, is not an
empirical science.5 s249

The pragmatics of the kind of domains in the context of the way in which we wish to describe
these domains and prescribe requirements for computing systems to serve in these domains is far
from studied.

We, but this is only a personal remark and not a scientific conjecture, venture to claim that
perhaps one cannot formalise pragmatics, that is, that pragmatics is what cannot be formalised.
But this is just a “hunch” !

5.5 Discussion s250

We summarise this chapter on semiotics by first recalling our definition: Semiotics is the study of
and knowledge about the structure of all ‘sign systems’. In accordance with some practice we have
divided our presentation into three parts: syntax, semantics and pragmatics. s251

BNF grammars were first6 made known (in the late 1950s) in connection with the work on
defining the first block structured programming language, Algol 60 [9]. So BNF grammars were
for defining the one-dimensional, i.e., textual layout of programming languages. In Sect. 5.1 we
enlarge the scope of syntax to also embody the definition of the structure of ‘systems’ (that is,
domains) such as mentioned there (Page 37). The “language” of systems is the possibly infinite
set of utterings that staff and users, i.e., system stake holders express when working with (or in)
the system. We exemplified this only briefly and in terms of client/banking commands. We make, s252

in this chapter and in this book, a distinction between using syntax definitions to define syntactic
types versus using syntax definitions to define semantic types.

more to come

We encourage readers to embark on studies of the (albeit informal) pragmatics of domains.

5.6 Exercises

See Items 5–6 (of Appendix D, starting Page 230).

4Software engineering is applied computing science.
5Although some may reasonably claim that Mathematics is what Mathematicians do, that is not, in our

opinion, the same as saying: let us therefore study how all those people who claim they are mathematicians
are doing call what they mathematics and let the result of such an empirical study determine what
mathematics is!

6 Dines: Find reference to Don Knuth’s “paper” on ancient Indian’s knowing of “BNF”.
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A Specification Ontology

s253 acm-aso

The point of philosophy is to start with something so simple
as not to seem worth stating,

and to end with something so paradoxical
that no one will believe it.

Bertrand Russell

The Philosophy of Logical Atomism

The Monist1, The Open Court Publ.Co., Chicago, USA

Vol. XXVIII 1918: pp 495-527

Vol. XXIX 1919: pp 32-63, 190-222, 345-380
s254

The basic approach to description (prescription and specification) is to describe algebras. We take a
somewhat “novel” approach to this: We describe simple entities and functions (i.e., operations) over
these, as for any algebra; and then we focus on behaviours of simple entities as sequences of function
invocations and events, where events are the results of usually external function invocations. In
addition we describe (prescribe and specify) both informally, by means of precise narratives and
formally — here in the RAISE specification language RSL [17–19,61, 62, 64]. s255

Example 34 – Transport Net (II): In Example 10 nets, hubs and links are examples of simple
entities of (Pages 9–11). (Hub and link identifiers are not simple entities, they are entity attributes.)
The link insert and delete operations (Pages 11–17) of that example are examples of operations.
The situation that a link suddenly “disappears” (a road segment is covered by a mudslide, or a bridge
collapses) are examples of events (that can be “mimicked” by the remove link operation). The sequence
of many insert, some remove and a few link disappearances form a behaviour.

6.1 Russel’s Logical Atomism s256

6.1.1 Metaphysics and Methodology

Russell’s metaphysical view can be expressed as follows: the world consists of a plurality of
independent existing particulars (phenomena, things, entities, individuals2) exhibiting qualities
and standing in relations.

Russell’s methodology for doing philosophy was follow a process of analysis, whereby one
attempts to define or construct more complex notions or vocabularies in terms of simpler ones. s257

1See http://www.archive.org/search.php?query=title%3A(the monist) AND creator%3A(Hegeler In-
stitute)

2We consider the terms ‘particulars’, ‘phenomena’, ‘things’, ‘entities’ and ‘individuals’ to be synony-
mous.
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Russell’s idea of logical atomism can be expressed as consisting of both the metaphysics and
the methodology as basically outlined above.

We shall later in this chapter take up Russell’s line of inquiry.

6.1.2 The Particulars [Phenomena - Things - Entities - Individuals] s258

So which are the particulars, that is, the phenomena that we are to describe? Well, they are the
particulars of the domain. How do we describe them? Well, we shall now introduce our description
ontology. By ‘ontology’ is meant

the philosophical study of the nature of being, existence or reality in general, as well as of the
basic categories of being and their relations. Traditionally listed as a part of the major branch
of philosophy known as metaphysics, ontology deals with questions concerning what entities
exist or can be said to exist, and how such entities can be grouped, related within a hierarchy,
and subdivided according to similarities and differences.3

s259

We can speak both of a domain ontology and a description ontology. First, in this section, we
shall cover the notion of description ontology, or, as we shall generalise it, specification ontology.
The purpose of having a firm understanding of, hopefully a good specification ontology is to be
better able to produce good domain ontologies. Later in following chapters we shall outline how
to construct pleasing domain ontologies.s260

Our specification (description, prescription) ontology emphasises, as also mentioned in the
above indented and slanted quote, the basic categories of being and their relations and how such
entities can be grouped, related within a hierarchy, and subdivided according to similarities and differ-
ences.

The basic description categories, that is, the grouping, hierarchy, subdivision of means of descrip-
tion are these: (i) simple entities4, (ii) operations (over entities), (iii) events (involving entities)
and (iv) behaviours.s261

We should here bring a reasoned argument, of philosophical nature, in order to motivate this
subdivision of specification means. Instead we postulate this subdivision and hope that the reader,
after having read this chapter, will accept the subdivision.

6.2 Entities s262

We have used and we shall be using the term ‘entity’ extensively in this book. Other, synonymous
terms are ‘particular’ and ‘individual’.

Definition 36 – Entity: By an entity we shall understand a phenomenon or a concept which is
either inert (in which case we shall call it a ‘simple entity’), or “like” a function, or an event, or
a behaviour.

6.3 Simple Entities and Behaviours s263

We lump two of the description categories: simple entities and behaviours in this section. The rea-
son is that we wish to highlight a duality: simple entities as exhibiting behaviours, and behaviours
are evolving around simple entities. In the vernacular one often refers to a phenomenon using a
name that both covers that phenomenon as a simple entity and as a behaviour.

3http://en.wikipedia.org/wiki/Ontology
4We shall consider all four categories of description items as entities, but single out simple entities as

a category of its own.
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Example: A bank as a simple, in this case composite entity with demand/deposit accounts,
mortgage accounts, and clients; and a bank as a behaviour with clients opening and closing ac-
counts, depositing into and withdrawing from accounts, etc., and with events such a interest rate
change, attempts at withdrawing below the credit limits, etc. 2

Rather than further motivating this duality, let us cover the two notions and show how they
relate.

6.3.1 Simple Entities s264

Definition 37 – Simple Entity: By a simple entity we shall here understand a phenomenon that
we can designate, viz. see, touch, hear, smell or taste, or measure by some instrument (of physics,
incl. chemistry).

s265

Example 35 – Simple Entities: (i) From air traffic we illustrate aircraft, terminal control towers,
ground control towers, regional control centers and continental control centers as simple entities. (ii)
From the financial service industry we illustrate money (cash), securities instruments (like stocks, bonds,
a transacted credit card slip, etc.), banks, brokers, traders, stock exchanges, commodities exchanges,
bank and mortgage accounts, etc. as simple entities. (iii) From health care we illustrate citizens and
potential patients, medical staff, wards, beds, medicine and operating theatres as simple entities. (iv)
From railway systems we illustrate train stations and rail tracks, their constituent (linear, switch,
crossover, etc.) rail units, trains, train wagons, tickets, passengers, timetables, station and train staff
as simple entities.

• • • s266

We model simple entities by stating their types.

type
A, B, C, D, E, F, G. H, J
aT

cT = A × B-set × C∗ × (D→m E) × (F→G) × (H
∼→J)

value
obs A: aT → A
obs Bs: aT → B-set
obs Dl: aT → C∗

obs mEF: aT → D→m E
obs−tfGH: aT → F→G

obs pfJK: aT → H
∼→J

A, B, C, D, E, F, G, H, J and aT are sorts, that is, abstract types. cT is a (concrete) type definition. It
defines values ct:cT to be Cartesians (groupings, records, structures) consisting of six components:
an A value, a value consisting of a set of zero, one or more B values, a value consisting of a list
of zero, one or more C values, a value which is a finite definition set function, that is, a map
from D values to E values, a value which is a total function from F values to G values, and a
value which is a partial function from H values to J values. Let us assume that values of type aT
contain (at least) six distinguishable components, like those of aT then we can define corresponding
observer functions. So for sort, i.e., abstract type, values, one can always define observer functions
as appropriate. s267

Our specification language, here RSL, allows us to define Cartesian, set, list, map, partial
function and total function types. It also allows us to define sorts and observer functions. These
possibilities permit us to model composite entities as follows: unordered collections of sub-entities
as sets, ordered collections of sub-entities as lists, finite sets of uniquely “marked” sub-entities
as maps, and infinite or indefinite sets of uniquely “marked” sub-entities as functions, partial or
total.
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• • • s268

A simple entity has properties5. A simple entity is either continuous or is discrete, and then it is
either atomic or composite.s269

By an attribute we mean a property of an entity a simple entity has properties pi, pj , . . . , pk.
Typically we express attributes by a pair of a type designator: the attribute is of type V , and a
value: the attribute has value v (of type V , i.e., v : V ). A simple entity may have many properties.

s270

Example 36 – Attributes: A continuous simple entity, like ‘oil’, may have the following attributes:
class: mineral, kind: Brent-crude, amount: 6 barrels, price: 45US $/barrel.

type
Oil, Barrel, Price
Class == mineral|organic
Kind == brent crude|brent sweet light crude|oseberg|ecofisk|forties

value
obs Class: Oil → Class
obs Kind: Oil → Kind
obs No of Barrels: Oil → Nat
obs Price: Oil → Price

s271
An atomic simple entity, like a ‘person’, may have the following attributes: gender : male, name: Dines
Bjørner, age: (“oh well, too old anyway”), height: 178cm, weight: (“oh well, too much anyway”).

type
Person, Age, Height
Gender == female|male

value
obs Gender: Person → Gender
obs Age: Person → Age
obs Height: Person → Height

s272
A composite simple entity, like a railway system, may have the following attributes: country: Denmark,
name: DSB, electrified: partly, owner : independent public enterprise owned by Danish Ministry of
Transport.

type
RS, Owner, Name, Owner,
Country == denmark!norway|sweden|...
Electrified == no|partly|yes

value
obs Country: RS → Country
obs Name: RS → Name
obs Electrified: RS → Electrified
obs Owner: RS → Owner

The above informal and formal descriptions are just rough sketches.
s273

A simple entity is said to be continuous if it can be arbitrarily decomposed into smaller parts each
of which still remain simple continuous entities of the same simple entity kind.

Example 37 – Continuous Entities: Examples of continuous entities are: oil, i.e., any fluid, air,
i.e., any gas, time period and a measure of fabric.
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s274

A simple entity is said to be discrete if its immediate structure is not continuous. A simple discrete
entity may, however, contain continuous sub-entities.

Example 38 – Discrete Entities: Examples of discrete entities are: persons, rail units, oil pipes,
a group of persons, a railway line (of one or more rail units) and an oil pipeline (of one or more oil
pipes, pumps and valves).

s275

A simple entity is said to be atomic if it cannot be meaningfully decomposed into parts where
these parts have a useful “value” in the context in which the simple entity is viewed and while
still remaining an instantiation of that entity. s276

Example 39 – Atomic Entities: Thus a ‘physically able person’, which we consider atomic, can,
from the point of physical ability, not be decomposed into meaningful parts: a leg, an arm, a head, etc.
Other atomic entities could be a rail unit, an oil pipe, or a hospital bed.

The only thing characterising an atomic entity is its attributes.
A simple entity, c, is said to be composite if it can be meaningfully decomposed into sub-entities

that have separate meaning in the context in which c is viewed. s277

Example 40 – Composite Entities (1): A railway net (of a railway system) can be decomposed
into a set of one or more train lines and a set of two or more train stations. Lines and stations are
themselves composite entities.

type
RS, RN, Line, Station

value
obs RN: RS → RN
obs Lines: RN → Line-set
obs Stations: RN → Station-set

axiom
∀ rs:RS,rn:RN • let rn = obs RN(rs) in

card obs Lines(rn)≥2 ∧ card obs Stations(rn)≥1 end

s278

Example 41 – Composite Entities (2): An Oil industry whose decomposition include: one or
more oil fields, one or more pipeline systems, one or more oil refineries and one or more one or more
oil product distribution systems. Each of these sub-entities are also composite.

type
Oil Industry, Oil Field, Pipeline System, Refinery, Distrib System

value
obs Oil Field: Oil Industry → Oil Field-set
obs Pipeline System: Oil Industry → Pipeline System-set
obs Refineries: Oil Industry → Refinery-set
obs Distrib Systems: Oil Industry → Distrib System-set

axiom
[ all observed sets are non−empty ]

s279

Composite simple entities are thus characterisable by their attributes, their sub-entities, and the
mereology of how these sub-entities are put together.

5We shall refrain from a deeper, more ontological discussion of what is meant by properties [58, 104].
Suffice it here to state that properties are what we can model in terms of types, values (including functions)
and axioms.
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Definition 38 – Mereology: Mereology is the theory of parthood relations: of the relations of
part to whole and the relations of part to part within a whole.

We shall exemplify the above in the following, abstract example.s280

Example 42 – Mereology: Parts and Wholes (1): We speak of systems as assemblies. From an
assembly we can immediately observe a set of parts. Parts are either assemblies or units. For the time
being we do not further define what units are.

type
S = A, A, U, P = A | U

value
obs Ps: A → P-set

s281
Parts observed from an assembly are said to be immediately embedded in that assembly.

"outermost" Assembly
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System = Environment

Fig. 6.1. Assemblies and Units “embedded” in an Environment

Figure 6.1 is not our way of modelling a composite simple entity. The formulas above and below is
our way of modelling simple entities. Figure 6.1 is just an illustration, a diagrammatic interpretation,
of what the formulas describe. (The same remarks apply also to that of Fig. 6.2 on the facing page.)s282

For the time being we omit any reference to an environment.
Embeddedness generalises to a transitive relation. All parts thus observable from a system are

distinct.
Given obs Ps we can define a function, xtr Ps, which applies to an assembly, a, and which extracts

all parts embedded in a. The functions obs Ps and xtr Ps define the meaning of embeddedness.

value
xtr Ps: A → P-set
xtr Ps(a) ≡

let ps = obs Ps(a) in ps ∪ ∪{xtr Ps(a′)|a′:A•a′ ∈ ps} end

s283

Parts have unique identifiers.

type
AUI
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value
obs AUI: P → AUI

axiom
∀ a:A •

let ps = obs Ps(a) in
∀ p′,p′′:P • {p′,p′′}⊆ps ∧ p′6=p′′ ⇒ obs AUI(p′)6=obs AUI(p′′) ∧
∀ a′,a′′:A • {a′,a′′}⊆ps ∧ a′6=a′′ ⇒ xtr Ps(a′)∩ xtr Ps(a′′)={} end

s284
We shall now add to this a rather general notion of parts being otherwise related. That notion is one
of connectors.

Connectors may, and usually do provide for connections — between parts. A connector is an ability
be be connected. A connection is the actual fulfillment of that ability. Connections are relations between
two parts. Connections “cut across” the “classical” parts being part of the (or a) whole and parts being
related by embeddedness or adjacency. s285
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Fig. 6.2. Assembly and Unit Connectors: Internal and External

s286

Figure 6.2 “repeats” Fig. 6.1 on the facing page but “adds” connectors. The idea is that connectors
allow an assembly to be connected to any embedded part, and allow two adjacent parts to be connected.

In Fig. 6.2 assembly A is connected, by K2, (without, as we shall later see, interfering with assembly
B1), to part C11; the “external world” is connected, by K1 to B1, etcetera. Thus we make, to begin with,
a distinction between internal connectors that connect two identified parts, and external connectors
that connect an identified part with an external world. Later we shall discuss more general forms of
connectors. s287

From a system we can observe all its connectors. From a connector we can observe its unique
connector identifier and the set of part identifiers of the parts that the connector connects, two if it
is an internal connectors, one if it is an external connector. All part identifiers of system connectors
identify parts of the system. All observable connector identifiers of parts identify connectors of the
system. s288

type
K

value
obs Ks: S → K-set
obs KI: K → KI
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obs Is: K → AUI-set
obs KIs: P → KI-set

axiom
∀ k:K • 1≤card obs Is(k)≤2,
∀ s:S,k:K • k ∈ obs Ks(s) ⇒ ∃ p:P • p ∈ xtr Ps(s) ⇒ obs AUI(p) ∈ obs Is(k),
∀ s:S,p:P • ∀ ki:KI • ki ∈ obs KIs(p) ⇒ ∃! k:K • k ∈ obs Ks(s) ∧ ki=obs KI(k)

This model allows for a rather “free-wheeling” notion of connectors one that allows internal connectors
to “cut across” embedded and adjacent parts; and one that allows external connectors to “penetrate”
from an outside to any embedded part.s289

For Example 44 on page 64 we need define an auxiliary function. xtr∀KIs(p) applies to a system
and yields all its connector identifiers.

value
xtr∀KIs: S → KI-set
xtr∀Ks(s) ≡ {obs KI(k)|k:K•k ∈ obs Ks(s)}

s290
This ends our first model of a concept of mereology. The parts are those of assemblies and units. The
relations between parts and the whole are, on one hand, those of embeddedness and adjacency, and on
the other hand, those expressed by connectors: relations between arbitrary parts and between arbitrary
parts and the exterior.s291

A number of extensions are possible: one can add “mobile” parts and “free” connectors, and one
can further add operations that allow such mobile parts to move from one assembly to another along
routes of connectors. Free connectors and mobility assumes static versus dynamic parts and connectors:
a free connector is one which allows a mobile part to be connected to another part, fixed or mobile; and
the potentiality of a move of a mobile part introduces a further dimension of dynamics of a mereology.

s292
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Fig. 6.3. Mobile Parts and Free Connectors

s293

We shall leave the modelling of free connectors and mobile parts to another time. Suffice it now to
indicate that the mereology model given so far is relevant: that it applies to a somewhat wide range
of application domain structures, and that it thus affords a uniform treatment of proper formal models
of these application domain structures.

This ends Example 42
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s294

Summarising we find, for discrete simple entities, that atomic entities are characterisable by their
attributes (as well as by the operations that apply to entity arguments); and that composite
entities are characterisable by their attributes, the sub-entities from which they are made up and
the mereology, i.e., the part-whole relations between these sub-entities (as well as by the operations
that apply to entity arguments). Continuous entities we treat almost as we treat atomic entities
except that we can speak of, i.e., define, functions that decompose a continuous entity of kind
C into an arbitrary number of continuous entities of the same kind C, and vice-versa: compose a
continuous entity of kind C from an arbitrary number of continuous entities of the same kind C.

6.3.2 Behaviours s295

Behaviours can be simple, sequential, and behaviours can be highly composite. To define be-
haviours we need notions of states and actions: By a domain state we mean any collection of simple
entities — so designated by the domain engineer. By a domain action we mean the invocation of
an operation which “changes” the state.6 s296

Definition 39 – Behaviours: (i) By a behaviour we shall understand either a simple, sequential
behaviour, or a simple parallel (or concurrent) behaviour, or a communicating behaviour. (ii) By
a simple, sequential behaviour we shall understand a sequence of actions and events (the latter
to be defined shortly). (iii) By a simple parallel (or concurrent) behaviour we shall understand a
set of simple, sequential behaviours. (iv) By a communicating behaviour we shall understand a set
of simple parallel behaviours which in addition (to being simple parallel behaviours) communicate
messages between one-another.

s297

We shall base our formal specification of behaviours on the use of CSP (Hoare’s Communicating
Sequential Processes [81,82,130,134]). Other concurrency formalisms can, of course, be used: Petri
nets [91,115,123–125], Message Sequence Charts (MSCs) [86–88], Statecharts [71–74,76], or other.

Communication, between two behaviours (CSP processes), P and Q is in CSP expressed by the
CSP output and input clauses: ch ! e, respectively ch ? where ch designates a CSP channel. s298

type
A, B, M

channel
ch:M

value
av:A, bv:B
S = P(av) ‖ Q(bv)
P: A → out ch Unit
P(a) ≡ ... ch!E(a) ... P(a′)
Q: B → in ch Unit
Q(b) ≡ ... let v = ch? in ... Q(b′) end

P Q

ch ?

V

ch ! E(a)
s299

where a, a′ and b, b′ designate process P, respectively process Q state values provided to process
invocations (with a′ and b′ resulting from “calculations” not shown in the bodies of the definitions
of P and Q. av and bv are initial entities. S is the overall system behaviour of two communicating
behaviours operating in parallel (‖). M designates the type of the messages sent over channel ch.

We shall now show a duality between entities and behaviours. The background for this duality
is the following: In everyday parlance we speak of some domain phenomena both as being entities
and as embodying behaviours. s300

Example 43 – Entities and Behaviours: A train is the composite entity of one or more engines
(i.e., locomotives) and one or more passenger and/or freight cars.

6Since we shall be expressing our formalisations in a pure, functional language, state changes are
expressed by functions whose signature include state entity types both as arguments and as results.
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type
Train, Engine, PassCar, FreightCar
Car = PassCar|FreightCar

value
obs Engine: Train → Engine
obs Carl: Train → Car∗

axiom
∀ tr:Train • card obs Carl(tr)>0

s301
A train is also the behaviour whose state include the time dependent train location and the states of
these engines and cars and whose sequence of actions comprise the arrival and stop of the train at
stations, the unloading and loading of passengers and freight at stations, the start-up and departure
of trains from stations and the continuous movement, initially at accelerated speeds, then constant
speed, finally at decelerating speeds along the rail track between stations — occasionally allowing for
stops at track segment blocking signals. A train behaviour event could be that a cow presence of the
track causes interrupt of scheduled train behaviour. Et cetera.s302

type
T, Loc,
TrainBehaviour = T →m Train

channel
net channel (is at station|Bool)

value
obs Loc: Train → Loc
train: Train → T → out,in net channel → Unit
train(tr)(t) ≡

if is at Station(obs Loc(tr))
then

let (tr′,t′) = stop train(tr)(t);
let (tr′′,t′′) = load unload passengers and freight(tr′)(t′) in
let (tr′′′,t′′′) = move train(tr′′)(t′′) in

[ assert: ∼is at Station(obs Loc(tr′′′)) ]
train(eσ′′,(el′,pfl′),loc′)(t′) end end end

else
let (tr′,t′) = move train(tr)(t) in train(tr′)(t′) end

end
s303

Here we leave undefined a number of auxiliary functions:

value
is at Station: Loc → out,in net channel Bool
stop train: Train → T → Train × T
load unload passengers and freight: Train → T → Train × T
move train: Train → T → Train × T

The above “model” of a train behaviour is really not of the kind (of models) that we shall eventually
seek. The predicate is at Station communicates with the net behaviour (not shown). The function
load unload passengers and freight communicates with the net behaviour (platforms, marshalling
yards, etc., not shown). It is a rough sketch meant only to illustrate the process behaviour.

s304

Example 42 illustrated a very general class of mereologies. The next example, Example 44 will
show how the duality between entities and behaviours can be “drawn” to an ultimate conclusion !

s305

Example 44 – Mereology: Parts and Wholes (2): The model of mereology presented in Exam-
ple 42 on page 60 (Pages 60–62) focused on the following simple entities
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• the assemblies,
• the units and
• the connectors.

To assemblies and units we associate CSP processes, and to connectors we associate CSP channels,
one-by-one [81, 82, 130,134]. s306

The connectors form the mereological attributes of the model.
To each connection we associate a CSP channel, it is “anchored” in two parts: if a part is a unit then

in “its corresponding” unit process, and if a part is an assembly then in “its corresponding” assembly
process.

From a system assembly we can extract all connector identifiers. They become indexes into an array
of channels. Each of the connector channel identifiers is mentioned in exactly one unit or one assembly
process. s307

From a system which is an assembly, we can extract all the connector identifiers as well as all
the internal connector identifiers. They become indexes into an array of channels. Each of the external
connector channels is mentioned in exactly one unit or one assembly process; and each of these internal
connection channels is a mentioned in exactly two unit or assembly processes. The xtr∀KIs(s) below
was defined in Example 42 (Page 62). s308

value
s:S
kis:KI-set = xtr∀KIs(s)

type
ChMap = AUI →m KI-set

value
cm:ChMap = [ obs AUI(p)7→obs KIs(p)|p:P•p ∈ xtr Ps(s) ]

channel
ch[ i|i:KI•i ∈ kis ] MSG

value
system: S → Process
system(s) ≡ assembly(s)

s309

value
assembly: a:A→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process
assembly(a) ≡
MA(a)(obs AΣ(a)) ‖
‖ {assembly(a′)|a′:A•a′ ∈ obs Ps(a)} ‖
‖ {unit(u)|u:U•u ∈ obs Ps(a)}

obs AΣ: A → AΣ

MA: a:A→AΣ→in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs AUI(a))} process
MA(a)(aσ) ≡ MA(a)(AF(a)(aσ))

AF : a:A → AΣ → in,out {ch[ em(i) ]|i:KI•i ∈ cm(obs AUI(a))}×AΣ

s310
The unit process is defined in terms of the recursive meaning function MU function which requires
access to all the same channels as the unit process.

value
unit: u:U → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process
unit(u) ≡ MU (u)(obs UΣ(u))
obs UΣ: U → UΣ

MU : u:U → UΣ → in,out {ch[ cm(i) ]|i:KI•i ∈ cm(obs UI(u))} process



66 6 A Specification Ontology

MU (u)(uσ) ≡ MU(u)(UF(u)(uσ))

UF : U → UΣ → in,out {ch[ em(i) ]|i:KI • i ∈ cm(obs AUI(u))} UΣ

s311
The meaning processesMU andMA are generic. Their sôle purpose is to provide a never ending recur-
sions. “In-between” they “makes use” of assembly, respectively unit specific functions here symbolised
by AF and UF .s312

The assembly function “first” “functions” as a compiler. The ‘compiler’ translates an assembly
structure into three process expressions: the MA(a)(aσ, aρ) invocation, the parallel composition of
assembly processes, a′, one for each sub-assembly of a, and the parallel composition of unit processes,
one for each unit of assembly a — with these three process expressions “being put in parallel”. The
recursion in assembly ends when a sub-. . . -assembly consists of no sub-sub-. . . -assemblies. Then the
compiling task ends and the many generatedMA(a)(aσ, aρ) andMU(u)(uσ, uρ) process expressions
are invoked.s313

We can refine the meaning of connectors. Each connector, so far, was modelled by a CSP channel.
CSP channels serve both as a synchronisation and as a communication medium. We now suggest to
model it by a process. A channel process can be thought of as having four channels and a buffering
process. Connector, κ:K, may connect parts πi, πj . The four channels could be thought of as indexed
by (κ, πi), (πi, κ), (κ, πj) and (πj , κ). The process buffer could, depending on parts pi, pj , be either
queues, sets, bags, stacks, or other. This ends Example 44

s314

The duality between simple entities and behaviours has the attributes of atomic as well as of
composite entities become the state in which the entity behaviours evolve.

Whereas — in principle — the mereology of how sub-entities compose into entities are modelled
as in Example 42, namely in terms of sorts, observer functions and axioms over unique identifiers
of simple entities, their attributes are usually modelled in a more model-oriented way, in terms of
mathematical sets, Cartesians, sequences and maps.

6.4 Functions and Events s315

We shall consider events to be special cases of function invocations.

6.4.1 Functions

Definition 40 – Function: By a function we shall understand something (a functional entity)
which when applied to an entity, which we shall call an argument of the function, yields a result
which is also an entity.

We shall refer to the application of a function to an argument as an invocation. Functions are
characterised by the function signature or just signature and by their function definition. We show
a number of function (and process) signatures:s316

type
A, B, M1, M2

channel
chi:MI, cho:MO

The above type definitions and channel declarations are used below:

value
f0: A → B
f1: Unit → B
f2: Unit → Unit
f3: A → Unit
f4: A → in chi B

f5: A → in chi out cho B
f6: A → out cho B
f7: A → in chi Unit
f8: A → in chi out cho Unit
f9: A → out cho Unit



6.4 Functions and Events 67

In Example 44 we used the literal process where we now, and in future, shall use the more proper
RSL term Unit. The reason for using process in the example was that the term ‘unit’ was used to
name a sort of simple entities. s317

• f0 designates a (“pure, applicative”) function from A into B.
• f1 designates a constant function: takes no argument, i.e., invocation is expressed by f1(), but

yields a (constant) value in B.
• f2 designates a process (i.e., a process function, one that never terminates). Invocation is

expressed by f2(),
• f3 designates a process, accepting arguments in A and otherwise never terminating.
• f4 designates a function, accepting arguments in A and inputs, of type MI, on channel chi and

otherwise terminating yielding a value of type B.
• f5 designates a function, accepting arguments in A, and inputs, of type MI, on channel chi,

offers outputs, of type MO, on channel cho, and otherwise terminating yielding a value of type
B. s318

• f6 designates a function, accepting arguments in A, offers outputs, of type MO, on channel cho,
and otherwise terminating yielding a value of type B.

• f7 designates a function, accepting arguments in A, and inputs, of type MI, on channel chi and
otherwise never terminating.

• f8 f7 designates a function, accepting arguments in A, inputs, of type MI, on channel chi, offers
outputs, of type MO, on channel cho, and otherwise never terminating.

• f9 designates a function, accepting arguments in A, offers outputs, of type MO, on channel cho,
and otherwise never terminating.

s319

For functions f4–f9 you may replace A by Unit to obtain further signatures. Thus the literal Unit,
to the left of the→ designates that no input is to be provided, and to the right of the→ designates
a never ending process. s320

We show a number of function signatures exemplifying “Currying”:

type
A, B, C, D

value
f′: A × B × C → D
f′′: A × B → C → D
f′′′: A → B → C → D

invocation examples:
f′(a,b,c)
f′′(a,b)(c)
f′′′(a)(b)(c)

s321

We show two forms of function definitions:

type
A, B

value

f: A
∼→ B

f(a) as b
pre P(a)
post Q(a,b)

type
A, B

value

g: A → B [ A
∼→ B ]

g(a) ≡ E(a)
[ pre P(a) ]

s322

f is defined by a pair of pre/post conditions expressed by the predicates P(a) and Q(a,b) re-
spectively. The clause ‘as b’ expresses that the result is named b g and allows Q to refer to the
result.

g is defined by an explicit (“abstract algorithmic”) expression E(a). To avoid cluttering E(a)
with basically a test on P(a) (should g not be total on A, that test is brought as a pre condition.
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6.4.2 Events s323

Definition 41 – Event: By an event we shall generally understand a state change that satisfies
a given predicate:

type
Σ

value
eventi: Σ × Σ → Bool

Given two states: σ, σ′, if eventi(σ,σ′) holds then we say that event eventi has occurred.
s324

This definition of an event is much too general. Of course, the domain (or requirements or software
design) engineer is the one who decides which events to describe. But we shall accept it on formal
grounds. More pragmatically we shall introduces the notions of internal event and external event.
Most actions cause events — and they are all internal events. And most of these internal events
are (usually) “uninteresting”.s325

A few internal events are interesting, that is, cause state changes “over-and-above” those
primarily intended by the action.

Example 45 – Interesting Internal Events: Examples of what we would term interesting internal
events are: Banking: A bank changes its interest rates; Train Traffic: a train is cancelled, etc.; Oil
Pipeline: a pipeline runs dry of oil (due, for example, to valve and pump settings); and Health Care: a
patient is give a wrong medicine (a form of medical malpractice).

s326

External events are events cause by “functions” beyond “our” control. That is, we postulate that
some, maybe we could call it “demonic” function caused an event.

Example 46 – External Events: Examples of external events are: Banking: a major debitor defaults
on a loan; Train Traffic: a train runes off the tracks; Oil Pipeline: a pipeline bursts; and Health Care:
a patient dies.

s327

Internal events are typically modelled by providing the usual function, that is, action definitions
with a suitable case distinction based on the eventi predicate.

value
function: A → Σ → Σ × B
function(a)(σ) ≡

let (σ′,b) = action(a)(σ) in
if eventi(σ,σ′)

then cope with internal event(a)(σ,σ′)
else (σ′,b) end end

action: A → Σ → Σ × B
cope with internal event: A → (Σ×Σ) → Σ × B

s328
We may model external events as inputs on channels that can thus be said to “originate” in the
environments — but for which functions definitions set aside an alternative choice of accepting
such inputs from the environment.

type
A, B, Σ, Event

channel
x ch:Event

value
function: A → Σ → in x ch Σ B
function(a)(σ) ≡

action(a)(σ)
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⌈⌉
let event = x ch ? in cope with external event(a)(event)(σ) end

action: A → Σ → Σ × B
cope with external event: A → Event → Σ → Σ × B

6.5 On Descriptions s329

We refer to the subsections of Sect. 2.1, Pages 5–7.
The discussion of this section amounts to establishing a meta-theory of domains, that is, a

theory of the abstract, conceptual laws of describing domains in contrast to a theory of any one
specific domain, that is, a theory of the concrete, physical and human laws of the described domain.

In our discussion we will rely on understanding specifically referenced examples. This under-
standing might very well be improved as a result of understanding the message of this section.

6.5.1 What Is It that We Describe ? s330

What is it that our descriptions denote ?7 The answer is: the “things” that the nouns of our
description “points to” are the actual things, “out there”, in the domain. The denoted individuals
are not “figs of our imagination”8. They are ‘real’, ‘actual’, can be pointed to, seen, heard, touched,
smelled, or otherwise measured by physical, including chemical/physical apparatus(es) !

Therefore there can be no “identical” copies. If two sensed or measured phenomena are “equal”
then they are the same phenomenon.

6.5.2 Phenomena Identification s331

We have in various examples, as from Example 10 on page 9 introduced the abstract concept
of unique identifiers: of hubs and links (Example 10 on page 9), of parts (assemblies and units)
(Example 42 on page 60), and in many later examples. These unique identifications are, in a sense,
a mere technicality. We need the unique identifications when we wish to express mereological
properties such a “part of”, “next to”, “connected to”, etcetera. Therefore, if two sensed or s332

measured and described phenomena are “equal”, except for their postulated unique identification,
then they are still the same phenomenon, and there is a problem of description. We next turn to
such ’problems of description’.

6.5.3 Problems of Description s333

We can illustrate a number of ‘problems of description’. (i) Unique identifications: two (or more)
hubs that are claimed to have distinct hub identifiers, cf. Example 10 on page 9, but otherwise
have identical values for all conceivable attributes, including spatial location must be the same
hub, i.e., have identical hub identifier; (ii) Observability: if from a hub, cf. Example 10 on page 9,
we can observe a link, hence all its connected links, and, vice versa, from a link we can observe
its connected hubs, and not merely their identifiers, but the ‘real’ phenomena, then we can argue
that we can observe, from any hub the entire net: all hubs and all links, and that is counter to our
intuition, we claim, of how we observe.

7This question is just another way of expressing the question of the title of this subsection (i.e.,
Sect. 6.5.1).

8I apologize to more philosophically inclined readers: ours is not a discourse on ontology in the philo-
sophical sense: What may exists ? etcetera. Our setting is computing science and software engineering
— so we have no qualms about postulating that what I can sense, every person in full control of all her
senses can sense and in an identical way !
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6.5.4 Observability s334

That is: we reject the dogma: “The Universe in a Single Atom”9, that is, that all can be observed
from a single “position”.

But this rejection begs the issue “What Do We Mean by Observability ?”
In the following we shall treat observability of simple entities and their attributes on par, that

is, not make a distinction. Later we shall make a distinction between observing simple entities and
observing attributes.

Simple Observability s335

The simple part of an answer to this question, and, mind you, it is an answer that is based on
our computing science and software engineering viewpoint, concerns that which can be physically
observed of any domain phenomenon “itself”, that is, of the phenomenon observed in isolation.
That part of the answer goes like this: of a physically manifested phenomenon we can observe all
that can be physically sensed: seen, heard, smelled, tasted, and touched; as well as measured by
physical/chemical apparatus(es).

Not-so-Simple, Simple Entity Observability s336

The not-so-simple part of an answer focuses on simple entities and concerns that which can be
physically observed of the “immediate” mereology of the simple entity “itself”, that is, of the
parts to which that simple entity is connected. Here the answer is: One can observe immediates337

phenomenological and conceptual connections, that is, the simple entity parts that are connected
to the entity under review, and by reference to their identity — hence the need for the identity
concept; and similarly for operations, event and behaviours: which operations directly invoke other
operations, directly cause events, and, in general, directly participate in behaviours; which events
“trigger” operations, other events, and, in general, directly participate in behaviours; and which
behaviours synchronise and/or communicate with other behaviours.

6.5.5 On Denoting s338

Yes, we do know that Bertrand Russel wrote a famous paper with this title [131]. But our in-
tention here is less ‘lofty’, and, perhaps not ! When, above, we write: the denoted individuals
are not “figs of our imagination” and they are ‘real’, ‘actual’, can be pointed to, seen, heard,
touched, smelled, or otherwise measured by physical, including chemical/physical apparatus(es),
then it is our intention that we express. We can make that claim as far as the informal narrative
description is concerned. But when our description is formalised, then what ? Our formal descrip-
tion language has a semantics. That semantics ascribes to our formalisation some mathematical
values, structures. That is, our narrative is of the ‘real thing’, and our formalisation is a model of
the real thing. So there are two notions of ‘denoting’ at play here. an informal one: the relations339

between the narrative description and the physical (incl. human) phenomena and a formal one:
the relation between the syntax of our formal description and its semantics, i.e., ‘the model’. The
two notions relate, but only informally: enumerated lines of the narrative has been “syntactically”,
that is informally, related to “identically” numbered formula lines, with the informal claim that a
numbered narrative line “means” the same as the same-numbered formula line !

9Also the title of a book by HH The 14thDalai Lama: ‘The Universe in a Single Atom’: Reason and
Faith
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6.5.6 A Dichotomy s340

Example 42 (Pages 60–63), we now claim, has the narrative denote classes of real phenomena and
has the formalisation model the syntax and syntactic well-formedness of a large class of such real
phenomena. Later, in Example 44, (Pages 64–66), we now claim, has the (the same) narrative (as
in Example 42) indicate conceptual semantic models of with the formalisation explicitly designat-
ing classes of such semantics models. So the transition between the two examples, Example 42 s341

and Example 44, signal a reasonably profound “shift” from (informally) designating actual phe-
nomena and (formally) denoting their algebraic structures, to, informally and formally, referring
to semantic models in terms of behaviours and states. There is no dichotomy here, just a shift of
abstraction.

6.5.7 Suppression of Unique Identification s342

When comparing, for example, two simple entities one is comparing not only their attributes but
also, when the entities are composite, their sub-entities. Concerning unique identifiers of simple
entities we have this to say: We can decide to either include unique identifiers as an entity attribute,
or we can decide that such identifiers form a third kind of observable property of a simple entity
the two others being (“other”) attributes — as we see fit to define and the possible sub-entities of
composite entities. Either way, we need to introduce a meta-linguistic operator10, say s343

SI : Simple observable entity value → Anonymous simple entity value

The concept of an anonymous value is also meta-linguistic. The anonymous value is basically “the
same, i.e., “identical” value as is the simple entity value (from which, through SI

11, it derives) with
the single exception that the simple entity value “possesses” the unique identifier of the observable
entity value and the anonymous entity value does not.

6.5.8 Laws of Domain Descriptions s344

Preliminaries

When we wish to distinguish one simple entity phenomenon from another then we say that the
two (“the one and the other”) are distinct. To be distinct to us means that the two phenomena
have distinct, that is, unique identifiers. Being simple entity phenomena, separately observable
in the domain, means that their spatial (positional) properties are distinct. That is their anony-
mous values are distinct. Meta-linguistically, that is, going outside the RSL framework12, we can
“formalise” this: s345

type
A [ A models a type of simple entity phenomena ]
I13 [ I models the type of unique A identifiers ]

value
obs I: A → I

axiom
∀ a,a′:A • obs I(a)6=obs I(a′) ⇒ SI(a)6=SI(a

′)

s346

10The operator SI is meta-linguistic with respect to RSL: it is not part of RSL, but applies to RSL values.
11The S stands for “suppress” and the I for the suppressed unique identifier.
12but staying within a proper mathematical framework — once we have understood the mathematical

properties of SI and proper RSL values and ‘anonymous’ values (which, by the way, are also RSL values)
13We have here emphasized I , the type name of the type of unique A identifiers. Elsewhere in this book

we treat types of unique identifiers of different types of observable simple entities as “ordinary” RSL types.
Perhaps we should have “singled” such unique identifier type names out with a special font ? Well, we’ll
leave it as is !



72 6 A Specification Ontology

The above applies to any kind of observable simple entity phenomenon A. It does not necessarily
apply to simple entity concepts.

Example: Two uniquely identified timetables may have their anonymous values be the exact
same value. 2s347

Simple entity phenomena, in our ontology, are closely tied to space/time “co-ordinates” —
with no two simple entity phenomena sharing overlapping space. Concepts are, in our ontology,
not so constrained, that is, we allow “copies” although uniquely named ! That is, two seemingly
distinct concepts may be the same when “stripped” of their unique names !

Some Domain Description Laws s348

We shall just bring a few domain description laws here. Enough, we hope, to spur further research
into ‘laws of description’.s349

Domain Description Law 1 – Unique Identifiers: If two observable simple entities have the same
unique identifier then they are the same simple entity.

Any domain description must satisfy this law. The domain describer must, typically through
axioms, secure that the domain description satisfy this law. Thus there is a proof obligation to be
dispensed, namely that the unique identifier law holds of a domain description.s350

Domain Description Law 2 – Unique Phenomena: If two observable simple entities have different
unique identifiers then their values, “stripped” of their unique identifiers are different.

Any domain description must satisfy this law. The domain describer must, typically through
axioms, secure that the domain description satisfy this law. Thus there is a proof obligation to be
dispensed, namely that the unique phenomena law holds of a domain description.s351

Domain Description Law 3 – Space Phenomena Consistency: Two otherwise unique, and hence
distinctly observable phenomena can, spatially, not overlap.

s352

We can express the Space/Time Phenomena Consistency Law meta-linguistically, yet in a proper
mathematical manner:

type
E [ E is the type name of a class of observable simple entity phenomena ]
I [ I is the type name of unique E identifiers ]
L [ L is the type name of E locations ]

value
obs I: E → I
obs L: E → L

axiom
∀ e,e′:E • obs I(e)6=obs I(e′) ⇒ obs L(e) ⊓ obs L(e′) = ∅

We can assume that this law always holds for otherwise unique, and hence distinctly observable
phenomena.s353

Domain Description Law 4 – Space/Time Phenomena Consistency: If a simple entity (that has
the location property), at time t is at location ℓ, and at time t′ (larger than t) is at location ℓ′ (different
from ℓ), then it moves monotonically from ℓ to ℓ′ during the interval (t, t′).

Specialisations of this law are, for example, that if the movement is of two simple entities, like
two trains, along a single rail track and in the same direction, then where train si is in front of
train sj at time t, train sj cannot be in front of train si at time t′ (where t′− t is some small time
interval).
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Discussion s354

There are more domain description laws. And there are most likely laws that have yet to be
“discovered” ! Any set of laws must be proven consistent. And any domain description must be
proven to adhere to these (and “the” other) laws. We decided to bring this selection of laws because
they are a part of the emerging ‘domain science’. Laws 3 on the preceding page and 4 on the facing
page are also mentioned, in some other form, in [132].

Are these domain description laws laws of the domain or of their descriptions, that is, are they
domain laws ? We leave the reader to ponder on this !

6.6 Exercises

See Items 7–10 (of Appendix D, starting Page 230).
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Domain Engineering

s355 acm-tsode-1

7.1 The Core Stages of Domain Engineering

The core stages of domain engineering are those of modelling the following domain facets: intrinsics
(Sect. 7.3), support technologies (Sect. 7.4), management and organisation (Sect. 7.5),rules and
regulations (Sect. 7.6), scripts (contracts and licenses) (Sect. 7.7) and human behaviour (Sect. 7.8)
of the domain. s356

An important stage of domain engineering is that of rough sketching the business processes.
This stage is “sandwiched” in-between the opening stages of domain acquisition and domain
analysis. s357

The decomposition of these core stages into exactly these facet description stages is one of
pragmatics. Experience has shown that this decomposition into modelling stages leads to a suitable
base for a final model. That is, the domain engineers may follow, more-or-less strictly the facet
stage sequence hinted at above but the domain engineers may, very well, in the end, present the
final domain description without clear delineations, in the description, between these facets. In
other words, the decomposition and the principles of each individual facet stage, we think, provides
a good set of guidelines for the domain engineers on how to proceed. s358

These core stages are preceded by a number of opening stages and succeeded by a number of
closing stages.

The opening and closing stages, cf. Sects. 7.9.1 on page 128 and 7.9.2 on page 128, except for
the business process sketching stage, are here considered less germane to the proper understanding
of the domain concept.

7.2 Business Processes s359

The rough-sketching of business processes shall serve as an “easiest”, informal way of starting the
more systematic domain acquisition process.

Definition 42 – Business Process: By a business process we understand the procedurally de-
scribable aspects, of one or more of the ways in which a business, an enterprise, a factory, etc.,
conducts its yearly, quarterly, monthly, weekly and daily processes, that is, regularly occurring
chores. The business processes may include strategic, tactical and operational management and s360

work-flow planning and decision activities; and the administrative, and where applicable, the mar-
keting, the research and development, the production planning and execution, the sales and the
service (work-flow) activities — to name some.
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7.2.1 General Remarks s361

A domain is often known to its stakeholders by the various actions they play in that domain. That
is, the domain is known by the various sequences of entities, functions and events the stakeholders
are exposed to, are performing and are influenced by. Such sequences are what we shall here
understand as business processes.s362

In our ongoing example, that of railway systems, informal examples of business processes are:
for a potential passenger to plan, buy tickets for, and undergo a journey. For the driver of the
locomotive the sequence of undergoing a briefing of the train journey plan, taking possession of
the train, checking some basic properties of that train, negotiating its start, driving it down the
line, obeying signals and the plan, and, finally entering the next station, stopping at a platform,
and concluding a trip of the train journey — all that constitutes a business process. For a train
dispatcher, the monitoring and control of trains and signals during a work shift constitutes a
business process.s363

Describing domain intrinsics focuses on the very essentials of a domain. It can sometimes be a
bit hard for a domain engineer, in collaboration with stakeholders, to decide which are the domain
intrinsics. It can often help (the process of identifying the domain intrinsics) if one alternatively, or
hand in hand analyses and describes what is known as the business processes. From a description
of business processes one can then analyse which parts of such a description designate, i.e., are
about or relate to, which facets.

7.2.2 Rough Sketching s364

Initially the domain engineer proceeds by sketching. We use the term rough sketching1 to em-
phasise that a rough sketch is just a preparatory document. A roughly sketched business process
appears easier to make, that is, gets one started more easily. A rough sketch business process does
not have to conform to specific principles about what to describe first, whether to first describe
phenomena or concepts; whether to first describe discrete facts or continuous; whether to first
describe atomic facts or composite; whether to first describe informally or formally; etcetera.s365

Principle 1 – Describing Domain Business Process Facets: As part of understanding any (at
least human-made) domain it is important to delineate and describe its business processes. Initially
that should preferably be done in the form of rough sketches. These rough sketches should —
again initially — focus on identifiable simple entities, functions, events and behaviours. Naturally,
being business processes, identification of behaviours comes first. Then be prepared to rework these
descriptions as the modelling of domain facets starts in earnest.

s366

Roughly sketched business processes help the domain engineer in the more general domain acqui-
sition effort. Domain stakeholders can be asked to sketch the business processes they are part of.
The domain engineer, interacting with the domain stakeholder can clarify open points about a
sketched business process. And the domain engineer can elicit facts about the domain as inspired
by someone else’s sketch.

7.2.3 Examples (I) s367

Example 47 – A Business Plan Business Process: The board of any company instructs its chief
executive officer (CEO) to formulate revised business plans.2 Briefly, a business plan is a plan for how
the company — strategically, tactically and, to some extent, operationally — wishes to conduct its
business: what it strives for, product-wise, image-wise, market-share-wise, financially, etc. The CEO
develops a business plan in consultation with executive layers of (i.e., with strategic) management.
Strategic management (in-between) discusses the plan (which the CEO wishes to submit to the Board)
with tactical management, etc. Once generally agreed upon, the CEO submits the plan to the Board.

s368

1To both say ‘rough’ and ‘sketching’ may, perhaps be saying the same thing twice: sketches usually
are rough.

2A business plan is not the same as a description of the business’ processes.
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Example 48 – A Purchase Regulation Business Process: In our “example company”, purchase of
equipment must adhere to the following — roughly sketched — process: Once the need for acquisition
of one or more units of a certain equipment, or a related set of equipment, has been identified, the staff
most relevant to take responsibility for the use of this equipment issues a purchase inquiry request. The
purchase inquiry request is sent to the purchasing department. The purchasing department investigates
the market and reports back to the person who issued the request with a purchase inquiry report
containing facts about zero, one or more possible equipment choices, their prices, and their purchase
(i.e., payment), delivery, service and guarantee conditions. The person who issued the purchase inquiry s369

request may now proceed to issue a purchase request order, attach the purchase inquiry report and
send this to the relevant budget controlling manager for acceptance. If purchase is approved then the
purchasing department is instructed to issue, to the chosen supplier, a purchase request order. Once
the supplier delivers the ordered equipment, the purchasing department inspects the delivery and issues
an equipment inspection report. An invoice from the supplier for the above-mentioned equipment is
only paid if the equipment inspection report recommends to do so. Otherwise the delivered equipment
is returned to the supplier.

s370

Example 49 – A Comprehensive Set of Administrative Business Processes: The University
of California at Irvine (UCI), had their Administrative and Business Services department suggest, as a
learning example, the description of a number of business processes. The “learning” had to do, actually,
with business process re-engineering (BPR). So we really should bring the below example into Sect. 8.5!
We quote from their home Web page [142]: s371

1. Human Resources: “Examine the hiring business process of the University, including the applicant
process. Special emphasis should be given to simplifying the process, identifying those parts where
there is no value added — i.e., where those parts of the process which one considers simplifying
“away” add no value. Increase speed of response to applicant and units, and reduce process costs
while achieving high quality.” s372

2. Renovation: “Review the campus’ remodelling and alterations business process, and develop rec-
ommendations to improve Facilities Management services to UCI departments for small projects
(under $50,000) and minor capital projects (up to $250,000). Special emphasis should be given
to simplifying the process; identifying those parts where there is no value added to the customer’s
product; to increase speed and flexibility of response; and to reduce process costs while achieving
high quality.” s373

3. Procurement: “Review the campus procurement business process and develop recommendations/-
solutions for process improvement. The redesigned process should provide “hassle-free” purchasing,
give a quick response time to the purchaser, be economical in terms of all costs, be reasonably
error-free and be compliant with (US) Federal procurement standards.” s374

4. Travel: “Study the travel business process from the stage when a staff member identifies the need
to travel to the time when reimbursement is received. Analyze and redesign the process through a
six step program based on the following business process improvement (BPI) principles: (i) simplify
the process, (ii) identify those parts where there is no value added to the customer, increase (iii)
speed and (iv) flexibility of response, (v) improve clarity for responsibilities and (vi) reduce process
costs while meeting customer expectations from travel services. The redesign should reflectcustomer
needs, service, economy of operation and be in compliance with applicable regulations.” s375

5. Accounts payable: “Redesign the accounts payable business process to meet the following func-
tional objectives (in addition to BPI measures): Payment for goods and services must assure that
vendors receive remittance in a timely manner for all goods and services provided to the University.
Significantly improve the operation’s ability to serve campus customers while maintaining financial
solvency and adequate internal controls.” s376

6. Parking: “Review how parking permits are sold to students, faculty and staff with the intent of
omitting unnecessary steps and redundant data collection. The redesigned process should achieve
a dramatic reduction in time spent by people standing in line to purchase a permit, and reduce
administrative time (and cost) in recording and tracking permit sales.”
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Please observe that the above examples illustrate requests for possible business process re-engineering
— but that they also give rough-sketch glimpses of underlying business processes.

7.2.4 Methodology s377

Definition 43 – Business Process Engineering: By business process engineering we understand
the identification of which business processes should be subject to precise description, describing
these and securing their general adoption (acceptance) in the business, and enacting these business
process descriptions

s378

Principle 2 – Business Processes: Human-made universes of discourse3 entail the concept
of business processes. The principle of business processes states that the description of business
processes is indispensable in any description of a human-made universe of discourse. The principle
of business processes also states that describing these is not sufficient: all facets must be described

s379

Principle 3 – Describing Domain Business Process Facets: As part of understanding any
(at least human-made) domain it is important to delineate and describe its business processes.
Initially that should preferably be done in the form of rough sketches. These rough sketches should
— again initially — focus on identifiable entities, functions, events and behaviours. Naturally,
being business processes, identification of behaviours comes first. Then be prepared to rework these
descriptions as other facets are being described in depth

s380

Technique 1 – Business Processes: The basic technique of describing a human-made uni-
verse of discourse involves: (i) identification and description of a suitably comprehensive set of
behaviours: the behaviours of interest and the environment; (ii) identification and description, for
each behaviour, of the entities characteristic of this behaviour; (iii) identification and description,
for each entity, of the functions that apply to entities, or from which entities are yielded; (iv)
identification and description, for each behaviour, of the events that it shares — either with other
specifically identified behaviours of interest, or with a further, abstract, environment

s381

Tool 1 – Business Processes: Further techniques and the basic tools for describing business
processes include: (1) RSL/CSP definition of processes, where one suitably defines their input/output
signatures, associated channel names and types, and their process definition bodies;4 (2) Petris382

nets;5 (3) message and live sequence charts for the definition of interaction between behaviours;6

(4) statecharts for the definition of highly complex, typically interwoven behaviours;7 and (5) the
usual, full complement of RSL’s type, function value, and axiom constructs and their abstract
techniques for modelling entities and functions

7.2.5 Examples (II) s383

We rough-sketch a number of examples. In each example we start, according to the principles and
techniques enunciated above, with identifying behaviours, events, and hence channels and the type
of entities communicated over channels, i.e. participating in events. Hence we shall emphasise, in
these examples, the behaviour, or process diagrams. We leave it to other examples to present
other aspects, so that their totality yields the principles, the techniques and the tools of domain
description.s384

3Examples of human-made universes of discourse are: public administration, manufacturing industries
(mechanical, chemical, medical, woodworking, etc.), transportation, the financial service industry (banks,
insurance companies, securities instrument brokers, traders and exchanges, portfolio management, etc.),
agriculture, fisheries, mining, etc.

4RSL/CSP [81,82,130,134] was covered in detail in Vol. 1, Chap. 21.
5Petri Nets [91,115,123–125] were covered in detail in Vol. 2, Chap. 12.
6Message [86–88] and live sequence charts [39,75,95] were covered in detail in Vol. 2, Chap. 13.
7Statecharts [71–74,76] were covered in detail in Vol. 2, Chap. 14.
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Example 50 – Air Traffic Business Processes: The main business process behaviours of an air
traffic system are the following: (i) the aircraft, (ii) the ground control towers, (iii) the terminal control
towers, (iv) the area control centres and (v) the continental control centres (Fig. 7.1). We describe s385
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Fig. 7.1. An air traffic behavioural system abstraction

s386

each of these behaviours separately:
(i) Aircraft get permission from ground control towers to depart; proceed to fly according to a flight

plan (an entity); keep in contact with area control centres along the route, (upon approach) contacting
terminal control towers from which they, simplifying, get permission to land; and upon touchdown,
changing over from terminal control tower to ground control tower guidance. s387

(ii) The ground control towers, on one hand, take over monitoring and control of landing aircraft
from terminal control towers; and, on the other hand, hand over monitoring and control of departing
aircraft to area control centres. Ground control towers, on behalf of a requesting aircraft, negotiate with
destination ground control tower and (simplifying) with continental control centres when a departing
aircraft can actually start in order to satisfy certain “slot” rules and regulations (as one business
process). Ground control towers, on behalf of the associated airport, assign gates to landing aircraft,
and guide them from the spot of touchdown to that gate, etc. (as another business process). s388

(iii) The terminal control towers play their major rôle in handling aircraft approaching airports with
intention to land. They may direct these to temporarily wait in a holding area. They — eventually
— guide the aircraft down, usually “stringing” them into an ordered landing queue. In doing this the
terminal control towers take over the monitoring and control of landing aircraft from regional control
centres, and pass their monitoring and control on to the ground control towers. s389

(iv) The area control centres handle aircraft flying over their territory: taking over their monitoring
and control either from ground control towers, or from neighbouring area control centres. Area control
centres shall help ensure smooth flight, that aircraft are allotted to appropriate air corridors, if and
when needed (as one business process), and are otherwise kept informed of “neighbouring” aircraft and
weather conditions en route (other business processes). Area control centres hand over aircraft either
to terminal control towers (as yet another business process), or to neighbouring area control centres
(as yet another business process). s390

(v) The continental control centres monitor and control, in collaboration with regional and ground
control centres, overall traffic in an area comprising several regional control centres (as a major business
process), and can thus monitor and control whether contracted (landing) slot allocations and schedules
can be honoured, and, if not, reschedule these (landing) slots (as another major business process). s391

From the above rough sketches of behaviours the domain engineer then goes on to describe types
of messages (i.e., entities) between behaviours, types of entities specific to the behaviours, and the
functions that apply to or yield those entities.

s392
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Example 51 – Freight Logistics Business Processes:
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Fig. 7.2. A freight logistics behavioural system abstraction

s393

The main business process behaviours of a freight logistics system are the following: (i) the senders of
freight, (ii) the logistics firms which plan and coordinate freight transport, (iii) the transport companies
on whose conveyors freight is being transported, (iv) the hubs between which freight conveyors “ply
their trade”, (v) the conveyors themselves and (vi) the receivers of freight (Fig. 7.2).

A detailed description for each of the freight logistics business process behaviours listed above
should now follow. We leave this as an exercise to the reader to complete.

s394

Example 52 – Harbour Business Processes: The main business process behaviours of a harbour
system are the following: (i) the ships who seek harbour to unload and load cargo at a harbour quay,
(ii) the harbour-master who allocates and schedules ships to quays, (iii) the quays at which ships berth
and unload and load cargo (to and from a container area) and (iv) the container area which temporarily
stores (“houses”) containers (Fig. 7.3 on the next page).s395

s396 There may be other parts of a harbour: a holding area for ships to wait before being allowed to
properly enter the harbour and be berthed at a buoy or a quay, or for ships to rest before proceeding;
as well as buoys at which ships may be anchored while unloading and loading. We shall assume that
the reader can properly complete an appropriate, realistic harbour domain.

A detailed description for each of the harbour business process behaviours listed above should now
follow. We leave this as an exercise to the reader to complete.

s397

Example 53 – Financial Service Industry Business Processes: The main business process be-
haviours of a financial service system are the following: (i) clients, (ii) banks, (iii) securities instrument
brokers and traders, (iv) portfolio managers, (v) (the, or a, or several) stock exchange(s), (vi) stock
incorporated enterprises and (vii) the financial service industry “watchdog”. We rough-sketch the be-
haviour of a number of business processes of the financial service industry.s398

s399 (i) Clients engage in a number of business processes: (i.1) they open, deposit into, withdraw from,
obtain statements about, transfer sums between and close demand/deposit, mortgage and other ac-
counts; (i.2) they request brokers to buy or sell, or to withdraw buy/sell orders for securities instruments
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Fig. 7.4. A financial behavioural system abstraction

(bonds, stocks, futures, etc.); and (i.3) they arrange with portfolio managers to look after their bank
and securities instrument assets, and occasionally they re-instruct portfolio managers in those respects.

s400

(ii) Banks engage with clients, portfolio managers, and brokers and traders in exchanges related to
client transactions with banks, portfolio managers, and brokers and traders, as well as with these on
their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio managers and the stock
exchange(s) in exchanges related to client transactions with brokers and traders, and, for traders, as
well as with the stock exchange(s) on their own behalf, as clients. s401

(iv) Portfolio managers engage with clients, banks, and brokers and traders in exchanges related to
client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog, with brokers and traders,
and with the stock listed enterprises, reinforcing trading practices, possibly suspending trading of stocks
of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They send reports, according
to law, of possible major acquisitions, business developments, and quarterly and annual stockholder
and other reports.

(vii) The financial industry watchdog engages with banks, portfolio managers, brokers and traders
and with the stock exchanges.

s402

Example 54 – Railway and Train Business Processes: This example emphasises the simple
entities that enable specific business processes. The net of lines and stations, cf. Fig. 7.5 on the
following page[A], made up from simple units, cf. Fig. 7.5 on the next page[B], enable train traffic.
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And train traffic gives rise to a number of business processes: train journies (say, according to a
timetable) [13]; the selling of train tickets including reservation of seats; the controlling of signals such
that trains can move in and out of stations and along tracks between stations [15]; track and train
maintenance [120]; staff rostering [140]; et cetera.s403
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/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

[B]

Fig. 7.5. [A] A “model” railway net. An Assembly of four Assemblies:
Two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 7.5[B].
There were 66 connections at last count and three “dangling” connectors

7.2.6 Discussion s404

We shall take up the concept of business processes in Sect. 8 where, in Sect. 8.5 we introduce the
important topic of ‘business process re-engineering’.

7.3 Domain Intrinsics s405

Definition 44 – Domain Intrinsics: By domain intrinsics we shall understand the very basics
upon which a domain is based, the very essence of that domain, the simple entities, operations,
events and behaviours without which none of the other facets of the domain can be described.

The choice as to which simple entities, operations, events and behaviours “belong” to intrinsics
is a pragmatic choice. It is taken, by the domain engineers, based on those persons’ choice of
abstraction and modelling techniques and tools. It is a choice that requires quite some experience,
quite some years of training, including studying other persons’ domain descriptions of similar or
other domains.s406

Example 55 – An Oil Pipeline System:
Statics of Pipeliness407

86. From an oil pipeline system, cf. Fig. 7.6 on the facing page, one can observe units and connectors.
87. Units are either pipe, or (flow, not extraction) pump, or valve, or join or fork units.
88. Units and connectors have unique identifiers.
89. From a connector one can observe the ordered pair of the identity of two (actual or pseudo) from-,

respectively to-units that the connector connects.
s408

type
86 OPLS, U, K
value
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Fig. 7.6. An oil pipeline system with 23 units (19 pipes) and 26 connectors

86 obs Us: OPLS → U-set, obs Ks: OPLS → K-set
87 is PiU, is PuU, is VaU, is JoU, is FoU: U → Bool [ mutually exclusive ]
type
88 UI, KI
value
88 obs UI: U → UI, obs KI: K → KI
axiom [ uniqueness of identifiers ]
88 ∀ opls:OPLS,u,u′:U,k,k′:K •

{u,u′}⊆obs Us(opls)∧{k,k′}⊆obs Ks(opls)∧u 6=u′∧k 6=k′⇒
obs UI(u)6=obs UI(u′)∧obs KI(u)6=obs KI(u′)

value
89 obs UIp: K → (UI|{nil}) × (UI|{nil})

s409
A pseudo unit identity is here modelled by nil. nil shall indicate that connector from, respectively
to-unit does not exist, that is, that the unit is an input, or an output, or both an input and an output
of the oil pipeline system.

90. From a unit one can observe the identity of the connectors that provide input to, respectively that
provide output from that unit — the two sets of identities are disjoint.

91. From a pipe, pump and valve units we can observe one input and one output connector identifier.
From join units we can observe one output and two or more input connector identifiers, and from
a fork unit the “reverse”: one input and two or more output connector identifiers.

92. Given an oil pipeline system and a connector of that system, the observable ordered pair of actual
identities of from- and to-units indeed do identify distinct units of that oil pipeline system.

93. No two connectors connect the same pair of units.
s410

value
90 obs iKIs, obs oKIs: U → KI-set
axiom
90 ∀ u:U • obs iKIs(u) ∩ obs oKIs(u) = {}
91 ∀ u:U •

is PiU(u)∨is VaU(u)∨is PuU(u) ⇒ card obs iKIs(u)=1=card obs oKIs(u) ∧
is JoU(u) ⇒ card obs iKIs(u)≥2 ∧ card obs oKIs(u)=1 ∧
is FoU(u) ⇒ card obs oKIs(u)≥2 ∧ card obs iKIs(u)=1

92 ∀ opls:OPLS,k:K: k ∈ obs Ks(opls) ⇒
let (fui,tui) = obs UIp(k) in
fui 6=nil ⇒ exist!u:U •

u ∈ obs Us(opls)∧fui=obs UI(u)∧obs KI(k)∈ obs oKIs(u) ∧
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tui 6=nil ⇒ exist!u:U •

u ∈ obs Us(opls)∧tui=obs UI(u)∧obs KI(k)∈ obs iKIs(u) end
93 ∀ ols:OPLS,k,k′:K • {k,k′}⊆obs Ks(opls)∧k 6=k′⇒

let ((fui,tui),(fui′,tui′)) = (obs UIp(k),obs UIp(k′)) in
nil 6=fui∧fui=fui′⇒tui 6=tui′∧ nil 6=tui∧tui=tui′⇒fui 6=fui′ end

s411

94. An oil pipeline system thus has a set of input units, a set of output units and a set of routes from
input to output units.

95. It follows from the above definitions that two two sets are non-empty.

value
94 iUs,oUs: OPLS → U-set
94 iUs(opls) ≡

{u|u:U•u ∈ obs Us(opls)∧
let ikis = obs iKIs(u) in
∼∃ u′:U•u′isin obs Us(opls)∧ikis ∩ obs oKIs(u′)6={} end}

94 oUs(opls) ≡
{u|u:U•u ∈ obs Us(opls)∧

let okis = obs oKIs(u) in
∼∃ u′:U•u′isin obs Us(opls)∧okis ∩ obs iKIs(u′)6={} end}

lemma:
95 ∀ opls:OPLS • iUs(opls) 6= {} ∧ oUs(opls) 6= {}

s412

96. We introduce the concept of a route being a special sequence of units.
97. Basis Clause: A unit, u, provides a route, < u >, of the oil pipeline system.
98. Inductive Clause: If r and r′ are routes of the oil pipeline system

a) and the last unit, u of r, has an output connector identifier
b) which is an output connector identifier of the first unit, u′ of r′,
then their concatenation is a route of the oil pipeline system.

99. Extremal Clause: Only such sequences of units are routes if that follows from a finite set of
applications of clauses 97 and 98.

s413

type
96 R′ = U∗

96 R = {| r:R′
• wfR(r) |}

value
96 wfR: R′ → Bool
96 wfR(r) ≡

case r of
97 〈u〉 → true,
98 r′̂r′′ → wfR(r′) ∧ wfR(r′′)
98a-98b ∧ obs oKIs(len r′)∩ obs iKIS(hd r′′)6={}

end
96 routes: U-set → R-set
96 routes(us) ≡
97 let urs = {〈u〉|u:U•u ∈ us} in
97 let rs = urs ∪
98 {r′̂r′′|r′,r′′:R•{r′,r′′}⊆rs ∧
98a-98b obs oKIs(len r′) = obs iKIs(hd r′′)}
99 rs end end

s414

100. An oil pipeline system is well-formed, if — in addition to the earlier mentioned constraints —
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a) there is a route from any input unit to some output unit,
b) there is a route leading to any output unit from some input unit and
c) the system of units and connectors “hang together”, that is, there is not a partition of these

such that the sum of their routes equals the routes of the whole.
s415

axiom
100 ∀ opls:OPLS •

100a ∀ iu:U • iu ∈ obs iUs(opls) ⇒
100a ∃ ou:U • ou ∈ obs oUs(opls) ∧
100a ∃ r:R • r ∈ routes(opls) ∧
100a hd r = iu ∧ r(len r) = ou ∧
100b ∀ ou:U • ou ∈ obs oUs(opls) ⇒
100b ∃ iu:U • iu ∈ obs iUs(opls) ∧
100b ∃ r:R • r ∈ routes(opls) ∧
100b hd r = iu ∧ r(len r) = ou ∧
100c ∼∃ us,us′:U-set • us⊂obs Us(opls) ∧ us′⊂obs Us(opls)
100c ∧ us ∩ us′ = {} ∧ us ∪ us′ = obs Us(opls)
100c ⇒ routes(us)∪ rotes(us′)

s416
Dynamics of Pipelines

101. There is oil, o : O, and there is oil flow, f : F . We do not bother how oil volume is measured, but
all oil is measured with the same measuring unit. Oil flow is measured by that measuring unit per
some time units (for example, barrels per second).

102. One can observe the oil contained in oil pipeline units.
103. One can observe the oil flowing into and out of connectors of oil pipeline units.
104. Units leak oil.
105. The sum of the oil flowing into a unit minus its leak equals the sum of the oil flowing out of the

unit.
s417

type
101 O, F
value
102 obs O: U → O
103 obs ioFs: U → (KI→m F)×(KI→m F)
104 obs Leak: U → F
axiom
103 ∀ u:U •

let (ikis,okis) = (obs iKIs(u),obs iKIs(u)), (iflow,oflow) = obs ioFs(u) in
dom iflow = ikis ∧ dom oflow = okis end

105 ∀ u:U • in F(u) − obs Leak(u) = out F(u)
value

in F,out F: KI→m F → F
in F(fm),out F(fm) ≡ case fm of [ ]→f0,[ ki 7→f ]∪ fm′→f⊕in F(fm′) end

⊕: F × F → F
f0:F

f0 is our way of designating the ‘zero’ flow, and ⊕ is our way of adding two flows. s418

106. Valve units can be in either of two states: closed or open.
107. Valves, when closed, also leak – in addition to “the usual” leak of units.
108. Pump units can be in either of two states: pumping or not pumping.
109. If a valve unit is closed then the flows into and out from the unit are characterised by two leak

flows.
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110. If a pump unit is not pumping then the flows into and out from the unit are characterised to be
the same minus the leak of the pump unit.

111. If a pump unit is pumping then the flows into and out from the unit a characterised to still be the
same minus the leak of the pump unit.

s419

value
106 is open: U → Bool
107 obs Valve Leak: U → F
108 is pumping: U → Bool
axiom
109 ∀ u:U • is VaU(u) ∧ ∼is open(u) ⇒

in F(u) = obs Leak(u) ∧ out F(u) = obs Valve Leak(u)
110-111 ∀ u:U • is PuU(u) ⇒ in F(u) − obs Leak(u) = out F(u)

s420

112. One can speak of the total leak of an oil pipeline system.
113. And one can speak of the total flow of oil into and the total flow of oil out from an oil pipeline

system.
114. And, consequently one can conjecture a ‘law’ of oil pipeline systems: “what flows in is either lost

to leaks or flows out”.
s421

value
112 total Leak: U-set → F
112 total Leak(us) ≡ case us of {}→f0,{u}∪ us′→obs Leak(u) ∪ total Leak(us′) end
113 total in F, total out F: OPLS → F
113 total in F(opls) ≡ tot in F(obs iUs(opls))
113 total out F(opls) ≡ tot out F(obs oUs(opls))
113 tot io F: U-set → F
113 tot in F(us) ≡ case us of {}→f0,{u}∪ us′→in F(u) ∪ tot in F(us′) end
113 tot out F(us) ≡ case us of {}→f0,{u}∪ us′→out F(u) ∪ tot out F(us′) end
lemma:
114 ∀ opls:OPLS • total in F(opls) − total Leak(obs Us(opls) = total in F(opls)

This ends Example 55

7.3.1 Principles s422

7.3.2 Discussion s423

7.4 Domain Support Technologies s424

acm-tsode-2

Definition 45 – Domain Support Technology: By domain support technology we mean a human
or man-made technological device for the support of entities and behaviours, operations and events
of the domain — with such a support thus enabling the existence of such phenomena and concepts
in the domain.

s425

Example 56 – Railway Switch Support Technology: In “ye olde” days a railway switch (point
machine [British], turn-out [US English], aguielette [French], sporskifte [Danish], weiche [German]) was
operated by a human, a railroad staff member; later, when quality of steel wires and pullers improved, the
switch position could be controlled from the station cabin house; further on, in time, such mechanical
gear was replaced by electro-mechanical gears, and, most recently, the monitoring and control of groups
of switched could be (interlock) done with electronics interfacing to the electro-mechanics.

Usually, as hinted at in Example 56, several technologies may co-exist.s426
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Example 57 – Air Traffic (II): By air traffic we mean the time and position continuous movement
of aircraft in and out of airports and in airspace, that is, for every time point there is a set of aircraft in
airspace each with their (not necessarily) distinct positions where an aircraft position is some triple of
latitude (φ), longitude (λ) and (true, indicated, height, pressure, or density) altitude (above sea level,
above the terrain over which aircraft flying, etc.). s427

type
Time, Aircraft, Position
cAirTraffic = Time → (Aircraft →m Position)

How do we know the position of aircraft at any one time ? That is, can we record the continuous
movement ? In the above model time is assumed to be a linear, dense point set. But can we record,
measure, that ? The answer is: no we cannot ! s428

We, on the ground, can observe with our eyes, with binoculars, and with the aid of some radar
(support) technology. The aircraft pilots can record altitude with a pressure altimeter (an aneroid barom-
eter), and LORAN or a Global Navigation Satellite System (together with an aircraft chronome-
ter) for determination of latitude and longitude.

In any case, whether human or physical instrument-aided observation, one cannot record continu-
ously. Instead any human or instrument awareness of movement is time and position discretised.

type
Time, Aircraft, Position
cAirTraffic = Time →m (Aircraft →m Position)

s429
The difference between continuous and discretised air traffic, that is, between dAirTraffic and cAirTraf-
fic, is the discretisation of Time.

The way we get from cAirTraffic to dAirTraffic is by applying some SupportTechnology:

value
SupportTechnology: cAirTraffic → dAirTraffic

illustration:
axiom
∀ cmvnt:cAirTraffic •

∃ dmvnt:dAirTraffic • dmvnt=SupportTechnology(cmvnt)

This ends Example 57

Example 57 just hints at the concept of ‘support technology’. Section 7.4.1 on page 92 enlarges
upon the class of support technologies that enable the observation and recording of movement. s430

Example 58 – Street Intersection Signalling: In this example of a support technology we shall acm-sis

illustrate an abstraction of the kind of semaphore signalling one encounters at road intersections, that
is, hubs.

The example is indeed an abstraction: we do not model the actual “machinery” of road sensors,
hub-side monitoring & control boxes, and the actuators of the green/yellow/red semaphore lamps. But,
eventually, one has to, all of it, as part of domain modelling.

To model signalling we need to model hub and link states. s431

We claim that the concept of hub and link states is an intrinsics facet of transport nets. We now
introduce the notions ofhub and link states and state spaces and hub and link state changing operations.
A hub (link) state is the set of all traversals that the hub (link) allows.A hub traversal is a triple of
identifiers: of the link from where the hub traversal starts, of the hub being traversed, and of the link
to where the hub traversal ends. A link traversal is a triple of identifiers: of the hub from where the
link traversal starts, of the link being traversed, and of the hub to where the link traversal ends. A hub
(link) state space is the set of all states that the hub (link) may be in. A hub (link) state changing
operation can be designated by the hub and a possibly new hub state (the link and a possibly new link
state). s432



90 7 Domain Engineering

type
LΣ′ = L Trav-set
L Trav = (HI × LI × HI)
LΣ = {| lnkσ:LΣ′

• syn wf LΣ{lnkσ} |}
value

syn wf LΣ: LΣ′ → Bool
syn wf LΣ(lnkσ) ≡
∀ (hi′,li,hi′′),(hi′′′,li′,hi′′′′):L Trav • ⇒

({(hi′,li,hi′′),(hi′′′,li′,hi′′′′)} ∈ lnkσ ⇒ li = li′ ∧
hi′6=hi′′ ∧ hi′′′6=hi′′′′ ∧ {hi′,hi′′} = {hi′′′,hi′′′′})

type
HΣ′ = H Trav-set
H Trav = (LI × HI × LI)
HΣ = {| hubσ:HΣ′

• wf HΣ{hubσ} |}
value

syn wf HΣ: HΣ′ → Bool
syn wf HΣ(hubσ) ≡
∀ (li′,hi,li′′),(li′′′,hi′,li′′′′):H Trav •

{(li′,hi,li′′),(li′′′,hi′,li′′′′)}⊆hubσ ⇒ hi = hi′

s433
The above well-formedness only checks syntactic well-formedness, that is well-formedness when only
considering the traversal designator, not when considering the “underlying” net. Semantic well-
formedness takes into account that link identifiers designate existing links and that hub identifiers
designate existing hub.s434

value
sem wf LΣ: LΣ → N → Bool
sem wf HΣ: HΣ → N → Bool
sem wf LΣ(lnkσ)(ls,hs) ≡ lnkσ 6={}⇒
∀ (hi,li,hi′): LΣ • (hi,li,hi′) ∈ lnkσ ⇒
∃ h,h′:H • {h,h′}⊆hs ∧ obs HI(h)=hi ∧ obs HI(h′)=hi′

∃ l:L • l ∈ ls ∧ obs LI(l)=li
pre syn wf LΣ(lnkσ)

sem wf HΣ(hubσ)(ls,hs) ≡ hubσ 6={}⇒
∀ (li,hi,li′): HΣ • (li,hi,li′) ∈ hubσ ⇒
∃ l,l′:L • {l,l′}⊆ls ∧ obs LI(l)=li ∧ obs LI(l′)=li′

∃ h:H • h ∈ hs ∧ obs HI(l)=hi
pre syn wf HΣ(hubσ)

xtr LIs: HΣ → LI-set
xtr LIs(hubσ) ≡ {li,li′|(li,hi,li′):H Trav • (li,hi,li′) ∈ hubσ}
xtr HI: HΣ → HI
xtr HI(hubσ) ≡ let (li,hi,li′):H Trav • (li,hi,li′) ∈ hubσ in hi end
pre: hubσ 6={}
xtr LI: LΣ → LI
xtr LIs(lnkσ) ≡ let (hi,li,hi′):L Trav • (hi,li,hi′) ∈ hubσ in li end
pre: lnkσ 6={}

s435
xtr HIs: LΣ → HI-set
xtr HIs(lnkσ) as his
pre: lnkσ 6={}
post his={hi,hi′|(hi,li,hi′):L Trav • (hi,li,hi′) ∈ hubσ}∧ card his=2

type
HΩ = HΣ-set, LΩ = LΣ-set

value
obs HΩ: H → HΩ, obs LΩ: L → LΩ
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axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

value
chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ

s436
Well, so far we have indicated that there is an operation that can change hub and link states. But one
may debate whether those operations shown are really examples of a support technology. (That is, one
could equally well claim that they remain examples of intrinsic facets.) We may accept that and then
ask the question: How to effect the described state changing functions ? In a simple street crossing
a semaphore does not instantaneously change from red to green in one direction while changing from
green to red in the cross direction. Rather there is are intermediate sequences of, for example, not
necessarily synchronised green/yellow/red and red/yellow/green states to help avoid vehicle crashes
and to prepare vehicle drivers. Our “solution” is to modify the hub state notion. s437

type
Colour == red | yellow | green
X = LI×HI×LI×Colour [ crossings of a hub ]
HΣ = X-set [ hub states ]

value
obs HΣ: H → HΣ, xtr Xs: H → X-set
xtr Xs(h) ≡
{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}

axiom
∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

s438
We consider the colouring, or any such scheme, an aspect of a support technology facet. There remains,
however, a description of how the technology that supports the intermediate sequences of colour
changing hub states.

We can think of each hub being provided with a mapping from pairs of “stable” (that is non-
yellow coloured) hub states (hσi,hσf ) to well-ordered sequences of intermediate “un-stable’ (that is
yellow coloured) hub states paired with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . ,
(hσ′···′, tδ′···′)〉 and so that each of these intermediate states can be set, according to the time interval
information,8 before the final hub state (hσf ) is set. s439

type
TI [ time interval ]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema,
chg HΣ: H × HΣ → H,
chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg HΣ Seq(h,hσ) ≡

let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end
sig seq: H → Signalling → H

8Hub state hσ′′ is set tδ′ time unites after hub state hσ′ was set.
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sig seq(h)(sigseq) ≡
if sigseq=〈〉 then h else
let (hσ,tδ) = hd sigseq in let h′ = chg HΣ(h,hσ);
wait tδ;
sig seq(h′)(tl sigseq) end end end

This ends Example 58

Example 58 hinted at another class of support technologies, a class whose members illustrate how
abstract concepts (of phenomena) are ‘implemented’.

7.4.1 A Formal Characterisation of a Class of Support Technologies s440
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We have presented an abstraction of the physical phenomenon of a road intersection semaphore.
That abstraction has to be further concretised. The electronic, electro-mechanical or other and the
data communication monitoring of incoming street traffic and the semaphore control box control
of when to start and end semaphore switching, etcetera, must all be detailed.s441

Schema 1 – A Support Technology Evaluation Scheme: Let the support technology be one for
observing and recording the movement of cars along roads, trains along rail tracks, aircraft in airspace
(along air-lanes), or “some such thing”. We can evaluate the quality of “some such” support technology
by interpreting the following specification pattern:

Let is close be a predicate which holds if two positions are close to one-another. Proximity is a
fuzzy notion, so let the is close predicate be “tunable”, i.e., by set to “any degree” of closeness.s442

type
Vehicle, Position
continuous Movement = Time → (Vehicle →m Position)
discrete Movement = Time →m (Vehicle →m Position)

value
obs and record Mvmt: continuous Movement → discrete Movement
is close: Position × Position → Bool
quality Support Technology: is close → Bool
quality Support Technology(is close) ≡
∀ cmvt:continuous Movement •

let dmvt = obs and record Mvmt(cvmt) in
dom dvmt ⊆ DOMAIN cvmt ∧
∀ t:Time • t ∈ dom dvmt
∀ v:Vehicle • v ∈ dom dvmt(t) ⇒ is close(((cvmt)(t))(v),((dvmt)(t))(v)) end

s443
The above scheme can be interpreted as follows: For any given sub-domain of movement, be it road
traffic, train traffic, air traffic or other, there is a set of technologies that enable observation and
recording of such traffic. For a given such technology and a given such traffic, that is, a traffic along a
specific route, the predicate is close has to be “instantiated”, i.e., “tuned”. Then, to test whether the
technology delivers an acceptable observation and recording, that is, is of a necessary and sufficient
quality, a laboratory experiment — usually quite a resource (equipment, cost and time) consuming
affair — has to be carried out before accepting acquisition and installation of that technology for
that route. The experiment ideally compares the actual traffic to that observed and recorded by thes444

contemplated technology. But the actual traffic “does not exist in any recorded form”. Hence a “highest
possible” movement recording (reference) support technology must first be (experimentally) developed
and made available. We then say that whatever that reference technology represents is the actual, but
discretised movement. It is that reference movement which is now compared — using is close — to
the discretised movement recorded by the support technology being tested.
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7.4.2 Discussion s445

For more detailed modelling of specific support technologies, including more concrete models of
movement sensors and recorders and of street intersection signals, one will undoubtedly need
use other formalisms than the ones mainly used in this paper, for example: Message and Live
Sequence Charts, MSCs and LSCs [86–88] and [39,75,95], Petri nets [91,115,123–125], Statecharts
[71–74, 76], SCs, Duration Calculus [148, 149], DC, Temporal Logic of Actions [96, 97, 105, 106],
TLA+, Temporal Logic of Reactive Systems [53, 100,101,113,117], STeP [29,99], etcetera

7.4.3 Principles s446

7.5 Domain Management and Organisation s447

The term management usually conjures an image of an institution of owners, two or three layers
of (hierarchical or matrix) stratified management, workers, and of clients. s448

Management is about resources and resources come in many shapes and forms: manifest equip-
ment, buildings, land, services and/or production goods, financial assets (liquid cash, bonds, stocks,
etc.), staff (personnel), customer allegiance, and goodwill9. s449

Management decisions as to the monitoring and controlling of resources are often, for pragmatic
reasons, classified as strategic, tactical and operational monitor and control decisions and actions.

The borderlines between strategic and tactical, and between tactical and operational monitor
and control decisions and actions is set by pragmatic concerns, that is, are hard to characterise
precisely. But we shall try anyway. s450

Definition 46 – Strategy: By strategy we shall understand the science and art of formulating
the goals of an enterprise and of employing the political, economic, psychological, and institutional
resources of that enterprise to achieve those goals.

s451

Definition 47 – Tactics: By tactics we shall understand the art or skill of employing available
resources to accomplish strategic goals.

s452

We introduce three kinds of entities to model an essence of strategic, tactical and operational
management. Let RES (for resources) designate an indexed set of resources; let ENV (for environ-
ment) designate a binding of resource names to resource locations and some of their more static
properties — such a schedules, and let Σ (for state) designate the association of resource locations
to the more dynamic properties (attributes) of resources, then we might be able to delineate the
three major kinds of actions: s453

type
A, B, C, RES, ENV, Σ

value
strategic action: A → RES → ENV → Σ → RES
tactical action: B → RES → ENV → Σ → ENV
operational action: C → RES → ENV → Σ → Σ

A, B and C are “inputs” chosen by management to reflect strategic or tactical decisions.
Sometimes tactical actions also change the state:

type
tactical action: B → RES → ENV → Σ → Σ × ENV

s454
A strategic action, strategic action(a)(res)(ρ)(σ) as res′, in principle does not change the environ-
ment and state but sets up a new set of resources, res′, for which “future” business is transacted.

9Goodwill: the favor or advantage that a business has acquired especially through its brands and its
good reputation
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A tactical action, tactical action(a)(res)(ρ)(σ) as ρ′, changes the environment — typically the
scheduling and allocation components of environments.

Operational actions, operational action(a)(res)(ρ)(σ) as σ′, changes the state.
The above strategy/tactics/operations “abstraction” is an idealised “story”.s455

Definition 48 – Resource Monitoring: By the monitoring of resources we mean the regular
keeping track of these resources: their current value, state-of-quality, location, usage, etc. — in-
cluding changes in these (i.e., trends).

s456

Definition 49 – Resource Control: By the controlling of resources we mean the acquisition
(usually as the result of converting one resources into another), regular scheduling and allocation
and final disposal (sale, renewal or “letting go”) of these resources.

s457

Definition 50 – Management: By management we mean the strategic, tactical and operational
monitoring and controlling of resources .

Definition 51 – Organisation: By organisation we mean the stratification (arranging into graded
classes) of management and enterprise actions.

s458
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Example 59 – Management and Organisation: We continue Examples 42 (Pages 60–62) and 44
(Pages 64–66).

We can claim that the set of models of the description given in Example 42 includes that of
enterprise management and organisation. We refer to Fig. 7.7.s459
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Fig. 7.7. Conventional hierarchical organigram and its mereology diagram

The small, quadratic round-corner boxes of Fig. 7.7 can be thought of as designating staff or other
(atomic) resources.s460

We will now define a number of strategic/tactical operations on the organisation of an enterprise.
For simplicity, bit without any loss of generality, we assume a notion of void parts, that is parts with no
connections and, if assemblies, then with no sub-parts. The operations to be defined can be considered
‘primitive’ only in the sense that more realistic operations on non-void parts can be defined in terms
of these primitive operations.

Given this interpretation we can now postulate a number of management operations (over a given
system s).s461

115. Assign a new, void resource p, to a given assembly (i.e., division or department) identified by i.
116. Move a given, void resource identified by i, from an assembly identified by fi to another assembly

identified by tj .
117. Delete a given, void resource identified by i.

We ignore, for the time, the issue of connectors. In order to model these operations we need first
introduce some concepts:s462
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118. Given a system, s, and a part, p, of that system,
119. the sequence 〈π1, π2, ..., πn−1, π〉
120. is the sequence of part identifiers such that π1 is that of the assembly that s is,
121. that is, is the 1st level part that embraces p, πn

122. is the identifier of p, and ıi, for 1<i<n,
123. is the i’th level part embracing p.

s463

value
void P: P → Bool
void P(p) ≡ obs KIs(p)={} ∧ is A(p) ⇒ obs Ps(p)={}

type
Path = AUI∗

value

gen Path: P → A
∼→ Path

gen Path(p)(a) ≡
〈obs AUI(a)〉̂
if p=a then 〈〉
else let a′:A • a′ ∈ obs Ps(a)∧p ∈ xtr Ps(a′) in gen Path(p)(a′) end end
pre: p ∈ {a} ∪ xtr Ps(a)

gen all Paths: A → Path-set
gen all Paths(a) ≡ {gen Path(p)(a)|p:P•p ∈ xtr Ps(a)}

s464

124. Assigning a new, void part, p, to a system, s, results in a new system, s′. p is in this new system.
Let the path to p be πℓ. Let the set of all paths of s be pths. Then the set of all paths of s′ is
pths ∪ {πℓ}. Thus it follows that the set, ps′, of all parts of s′, is p together with the set, ps, of
all parts of s : ps′ = ps ∪ {p}.

125. Moving a given, void part, p, of a system, s, results in a new system s′. Let the path to p in s be
πℓ, and let the path to p in s′ be πℓ′. Then the set of paths of the two systems relate as follows:
pths \ {πℓ} = pths′ \ {πℓ′} and ps′ = ps ∪ {p}.

126. Deleting a given, void part, p, from a system, s, results in a new system, s′. The new system
has exactly one less path than the set of all paths of s. And we have: pths \ {πℓ} = pths′ and
ps′ = ps \ {p}.

s465

semantic types
S, A, U, P=A|U

value

get P: S → (AI|UI)
∼→ P

get P(s)(i) ≡ let p:P • p ∈ xtr Ps(s)∧obs AUI(p)=i in p end
pre ∃ p:P • p ∈ xtr Ps(s)∧obs AUI(p)=i

syntactic types
MgtOp = AP | MP | DP | MA | CA
AP == AsgP(pt:P,ai:AI)
MP == MovP(ai:AI,fai:AI,tai:AI)
DP == DelP(ai:AI)

s466

value

int MgtOp: MgtOp
∼→ S

∼→ S

int MgtOp(AsgP(p,i))(s) as s′

pre void P(p) ∧ obs AUI(p)6∈ xtr AUIs(s)
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post obs Ps(s) ∪ {u} = obs Ps(s′) ∧ obs Ks(s)=obs Ks(s′) ∧
gen all Paths(s)∪{gen Path(p)(s′)}=gen all Paths(s′)

int MgtOp(MovP(i,fi,ti))(s) as s′

pre void P(get P(s)(i)) ∧ i 6=fi∧i 6=ti∧fi 6=ti∧{i,fi,ti}⊆xtr AUIs(s)
post obs Ps(s) = obs Ps(s′) ∧ obs Ks(s)=obs Ks(s′) ∧

gen all Paths(s)\{gen Path(p)(s)} = gen all Paths(s′)\{gen Path(p)(s′)}

int MgtOp(DelP(i))(s) as s′

pre void P(get P(s)(i)) ∧ i ∈ xtr AUIs(s)
post obs Ps(s′) = obs Ps(s)\{get P(s)(i)} ∧ obs Ks(s)=obs Ks(s′) ∧

gen all Paths(s′)=gen all Paths(s)\{gen Path(p)(s)}
s467

Similar connector operations can be postulated (narrated and formalised):

127. Insert a new (internal or external) connector, k, in a system s between parts i and j, or just
emanating from (incident upon) part i;

128. Move a given connector’s connections from parts {i, j} to parts {i, k}, {ℓ, k} or {k, j}; and
129. Delete a given connector.

These operations would have to suitably update connected parts’ connector identifier attributes.
The hierarchical organigram of Fig. 7.7 on page 94 portrays one organisation form. So-called matrix-

organisations, cf. Fig. 7.8 are likewise modelled by the mereology concept introduced in Examples 42
and 44.s468
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Fig. 7.8. Conventional matrix organigram; mereology diagram is hinted at.

We see, in Fig. 7.8, the use of connectors to underscore the two hierarchies: the strategic and tactical
(B1 and B2) and the matrix-sharing of production and service facilities (F, Ga, . . . , Gf ).

This ends Example 59

7.5.1 Principles s469
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7.5.2 Discussion s470

7.6 Domain Rules and Regulations s471

Definition 52 – Domain Rule: By a domain rule we understand a text which prescribes how
humans and/or technology are expected to behave, respectively function. A domain rule text thus
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denotes a predicate over states, the state before, σβ, and the state after, σα, a human or a technology
action. If the predicate is satisfied, then the rule has been adhered to, i.e., the rule has not been
“broken”. The ‘after’ state, σα, following a rule that has been broken in some ‘before’ state will be
referred to as a ‘rule-braking state’.

s472

Definition 53 – Domain Regulation: By a domain regulation we understand a text which pre-
scribes [remedial] actions to be taken in case a domain rule has been “broken”. A domain reg-
ulation text thus denotes an action, i.e., a state-to-state transformation, one that transforms a
‘rule-braking state’ σα into a (new ‘after’) state, σoκ, in which the rule now appears to not have
been broken.

s473

Example 60 – Trains Entering and/or Leaving Stations: For some train stations there is the rule
that no two trains may enter and/or leave that station within any (sliding “window”) n minute interval
— where n typically is 2. If train engine men disregard this rule they may be subject to disciplinary
action — as determined by some subsequent audit — and the train may be otherwise diverted through
actions from the train station cabin tower.

s474

Example 61 – Rail Track Train Blocking: Usually rail tracks, that is, longer sequences of linear
rail units connecting two train stations are composed of two or more blocks (also sequences of linear
rail units). The train blocking rule for trains moving along such rail tracks (obviously in the same
direction) is that there must always be an empty block between any two ‘neighbouring’ trains. (We
may consider the connecting stations to serve the rôle of such blocks.) Again, if the rule is broken by
some train engine man, then that person may be subject to disciplinary action — as determined by
some subsequent audit — et cetera.

7.6.1 A Formal Characterisation of Rules and Regulations s475

Schema 2 – A Rules and Regulations Specification Pattern:
Let Σ designate the state space of a domain; let Rule designate the syntax category of rules; let

RULE designate the semantic type of rules, that is, the denotation of Rules: predicates over pairs of
(before and after) states; let Stimulus designate the syntax category of stimuli that cause actions, hence
state changes, that is, let STIMULUS finally designate the semantic type of Stimuli. valid stimulus is
now a predicate which “tests” whether a given stimulus and a given rule in a given state, σ, leads to
a not-been-broken state. s476

type
Rule, Stimulus, Σ
RULE = Σ × Σ → Bool
STIMULUS = Σ → Σ

value
Mrule: Rule → RULE
Mstimulus: Stimulus → STIMULUS
Valid stimulus: Stimulus → Rule → Σ → Bool
Valid stimulus(stimulus)(rule)(σ) ≡

((Mrule)(rule))(σ,(Mstimulus(stimulus))(σ))

s477
Let Rule and Regulation designate the syntax category of pairs of rules and related regulations; let
Regulation designate the semantic type of regulations, that is, the denotation of Regulations: state
transformers from broken to ok states. s478

type
Regulation
Rule and Regulation = Rule × Regulation
REGULATION = Σ → Σ



98 7 Domain Engineering

value
Mregulation: Regulation → REGULATION

axiom
∀ (rule syntax,regulation syntax):Rule and Regulation, stimulus:Stimulus, σ:Σ •

∼Valid stimulus(stimulus)(rule syntax)(σ) ⇒
∃ σ′:Σ •

(Mregulation(regulation syntax))(σ)=σ′

∧ (Mrule(rule syntax))(σ,σ′)

The formal characterisation expresses, in its last lines, that for every rule that may be broken
there must be a regulation which “brings” the enterprise “back-on-track”, back to an acceptable
state in which the rule is no longer broken.

7.6.2 Principles s479

Rules and regulations are best treated by separately describinging their pragmatics, their seman-
tics, and their syntax — the latter two were hinted at in Sect. 7.6.1.

7.6.3 Discussion s480

Many more examples could be given, and also formalised. We leave that to the next section,
Sect. 7.7.

7.7 Domain Scripts, Licenses and Contracts s481
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Definition 54 – Script: By a domain script we shall understand a structured text which can be
interpreted as a set of rules (“in disguise”).

s482
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Example 62 – Timetables: We shall view timetables as scripts.
In this example (that is, Pages 98–102) we shall first narrate and formalise the syntax, including the

well-formedness of timetable scripts, then we consider the pragmatics of timetable scripts, including
the bus routes prescribed by these journey descriptions and timetables marked with the status of its
currently active routes, and finally we consider the semantics of timetable, that is, the traffic they
denote.

In Example. 65 on contracts for bus traffic, we shall assume the timetable scripts of this section.s483

We all have some image of how a timetable may manifest itself. Figure 7.9 shows some such images.

Fig. 7.9. Some bus timetables: Italy, India and Norway

s484
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What we shall capture is, of course, an abstraction of “such timetables”. We claim that the enumerated
narrative which now follows and its accompanying formalisation represents an adequate description.
Adequate in the sense that the reader “gets the idea”, that is, is shown how to narrate and formalise
when faced with an actual task of describing a concept of timetables.

In the following we distinguish between bus lines and bus rides. A bus line description is basically a
sequence of two or more bus stop descriptions. A bus ride is basically a sequence of two or more time
designators.10 A bus line description may cover several bus rides. The former have unique identifications
and so has the latter. The times of the latter are the approximate times at which the bus of that bus line
and bus identification is supposed to be at respective stops. You may think of the bus line identification
to express something like “The Flying Scotsman”, and the bus ride identification something like “The
4.50 From Paddington”.

The Syntax of Timetable Scripts

130. Time is a concept covered earlier. Bus lines and bus rides have unique names (across any set of
time tables). Hub and link identifiers, HI, LI, were treated from the very beginning.

131. A TimeTable associates to Bus Line Identifiers a set of Journies.
132. Journies are designated by a pair of a BusRoute and a set of BusRides.
133. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more intermediate Bus Stops

and a destination Bus Stop.
134. A set of BusRides associates, to each of a number of Bus Identifiers a Bus Schedule.
135. A Bus Schedule a triple of the initial departure Time, a list of zero, one or more intermediate bus

stop Times and a destination arrival Time.
136. A Bus Stop (i.e., its position) is a Fraction of the distance along a link (identified by a Link

Identifier) from an identified hub to an identified hub.
137. A Fraction is a Real properly between 0 and 1.
138. The Journies must be well formed in the context of some net.

s485

type
130. T, BLId, BId
131. TT = BLId →m Journies
132. Journies′ = BusRoute × BusRides
133. BusRoute = BusStop × BusStop∗ × BusStop
134. BusRides = BId →m BusSched
135. BusSched = T × T∗ × T
136. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
137. Frac = {|r:Real•0<r<1|}
138. Journies = {|j:Journies′•∃ n:N • wf Journies(j)(n)|}

The free n in ∃ n:N • wf Journies(j)(n) is the net given in the license. s486

Well-formedness of Journies

139. A set of journies is well-formed
140. if the bus stops are all different11,
141. if a defined notion of a bus line is embedded in some line of the net, and
142. if all defined bus trips (see below) of a bus line are commensurable.

value
139. wf Journies: Journies → N → Bool
139. wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡

10We do not distinguish between a time and a time description. That is, when we say August 30, 2009,
13: 10 we mean it either as a description of the time at which this text that you are now reading was
LATEX compiled, and as “that time !”.

11This restriction is, strictly speaking, not a necessary domain property. But it simplifies our subsequent
formulations.
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140. diff bus stops(bs1,bsl,bsn) ∧
141. is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
142. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

s487

143. The bus stops of a journey are all different
144. if the number of elements in the list of these equals the length of the list.

value
143. diff bus stops: BusStop × BusStop∗ × BusStop → Bool
143. diff bus stops(bs1,bsl,bsn) ≡
144. card elems 〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉

s488
We shall refer to the (concatenated) list (〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉) of all bus stops as
the bus line.

145. To explain that a bus line is embedded in a line of the net
146. let us introduce the notion of all lines of the net, lns,
147. and the notion of projecting the bus line on link sector descriptors.
148. For a bus line to be embedded in a net then means that there exists a line, ln, in the net, such

that a compressed version of the projected bus line is amongst the set of projections of that line
on link sector descriptors.

s489

value
145. is net embedded bus line: BusStop∗ → N → Bool
145. is net embedded bus line(bsl)(hs,ls)
146. let lns = lines(hs,ls),
147. cbln = compress(proj on links(bsl)(elems bsl)) in
148. ∃ ln:Line • ln ∈ lns ∧ cbln ∈ projs on links(ln) end

s490

149. Projecting a list (∗) of BusStop descriptors (mkBS(hi,li,f,hi′)) onto a list of Sector Descriptors
((hi,li,hi′))

150. we recursively unravel the list from the front:
151. if there is no front, that is, if the whole list is empty, then we get the empty list of sector descriptors,
152. else we obtain a first sector descriptor followed by those of the remaining bus stop descriptors.

value
149. proj on links: BusStop∗ → SectDescr∗

149. proj on links(bsl) ≡
150. case bsl of
151. 〈〉 → 〈〉,
152. 〈mkBS(hi,li,f,hi′)〉̂bsl′ → 〈(hi,li,hi′)〉̂proj on links(bsl′)
152. end

s491

153. By compression of an argument sector descriptor list we mean a result sector descriptor list with
no duplicates.

154. The compress function, as a technicality, is expressed over a diminishing argument list and a
diminishing argument set of sector descriptors.

155. We express the function recursively.
156. If the argument sector descriptor list an empty result sector descriptor list is yielded;
157. else
158. if the front argument sector descriptor has not yet been inserted in the result sector descriptor list

it is inserted else an empty list is “inserted”
159. in front of the compression of the rest of the argument sector descriptor list.
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s492

153. compress: SectDescr∗ → SectDescr-set → SectDescr∗

154. compress(sdl)(sds) ≡
155. case sdl of
156. 〈〉 → 〈〉,
157. 〈sd〉̂sdl′ →
158. (if sd ∈ sds then 〈sd〉 else 〈〉 end)
159. ̂compress(sdl′)(sds\{sd}) end

In the last recursion iteration (line 159.) the continuation argument sds\{sd} can be shown to be
empty: {}. s493

160. We recapitulate the definition of lines as sequences of sector descriptions.
161. Projections of a line generate a set of lists of sector descriptors.
162. Each list in such a set is some arbitrary, but ordered selection of sector descriptions. The arbitrariness

is expressed by the “ranged” selection of arbitrary subsets isx of indices, isx⊆inds ln, into the line
ln. The “ordered-ness” is expressed by making that arbitrary subset isx into an ordered list isl,
isl=sort(isx).

type
160. Line′ = (HI×LI×HI)∗ axiom ... type Line = ...
value
161. projs on links: Line → Line′-set
161. projs on links(ln) ≡
162. {〈isl(i)|i:〈1..len isl〉〉|isx:Nat-set•isx⊆inds ln∧isl=sort(isx)}

s494

163. sorting a set of natural numbers into an ordered list, isl, of these is expressed by a post-condition
relation between the argument, isx, and the result, isl.

164. The result list of (arbitrary) indices must contain all the members of the argument set;
165. and “earlier”elements of the list must precede, in value, those of “later” elements of the list.

value
163. sort: Nat-set → Nat∗

163. sort(isx) as isl
164. post card isx = lsn isl ∧ isx = elems isl ∧
165. ∀ i:Nat • {i,i+1}⊆inds isl ⇒ isl(i)<isl(i+1)

s495

166. The bus trips of a bus schedule are commensurable with the list of bus stop descriptions if the
following holds:

167. All the intermediate bus stop times must equal in number that of the bus stop list.
168. We then express, by case distinction, the reality (i.e., existence) and timeliness of the bus stop

descriptors and their corresponding time descriptors – and as follows.
169. If the list of intermediate bus stops is empty, then there is only the bus stops of origin and

destination, and they must be exist and must fit time-wise. s496

170. If the list of intermediate bus stops is just a singleton list, then the bus stop of origin and the
singleton intermediate bus stop must exist and must fit time-wise. And likewise for the bus stop of
destination and the the singleton intermediate bus stop.

171. If the list is more than a singleton list, then the first bus stop of this list must exist and must fit
time-wise with the bus stop of origin.

172. As for Item 171 but now with respect to last, resp. destination bus stop.
173. And, finally, for each pair of adjacent bus stops in the list of intermediate bus stops
174. they must exist and fit time-wise.

s497
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value
166. commensurable bus trips: Journies → N → Bool
166. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)
167. ∀ (t1,til,tn):BusSched•(t1,til,tn)∈ rng js∧len til=len bsl∧
168. case len til of
169. 0 → real and fit((t1,t2),(bs1,bs2))(hs,ls),
170. 1 → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧fit((til(1),t2),(bsl(1),bsn))(hs,ls),
171. → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧
172. real and fit((til(len til),t2),(bsl(len bsl),bsn))(hs,ls)∧
173. ∀ i:Nat•{i,i+1}⊆inds til ⇒
174. real and fit((til(i),til(i+1)),(bsl(i),bsl(i+1)))(hs,ls) end

s498

175. A pair of (adjacent) bus stops exists and a pair of times, that is the time interval between them,
fit with the bus stops if the following conditions hold:

176. All the hub identifiers of bus stops must be those of net hubs (i.e., exists, are real).
177. There exists links, l, l′, for the identified bus stop links, li, li′,
178. such that these links connect the identified bus stop hubs.
179. Finally the time interval between the adjacent bus stops must approximate fit the distance between

the bus stops
180. The distance between two bus stops is a loose concept as there may be many routes, short or long,

between them.
181. So we leave it as an exercise to the reader to change/augment the description, in order to be able

to ascertain a plausible measure of distance.
182. The approximate fit between a time interval and a distance must build on some notion of average

bus velocity, etc., etc.
183. So we leave also this as an exercise to the reader to complete.

s499

175. real and fit: (T×T)×(BusStop×BusStop) → N → Bool
175. real and fit((t,t′),(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′)))(hs,ls) ≡
176. {hi,hi′,hi′′,hi′′′}⊆his(hs)∧
177. ∃ l,l′:L•{l,l′}⊆ls∧(obs LI(l)=li∧obs(l′)=li′)∧
178. obs HIs(l)={hi,hi′}∧obs HIs(l′)={hi′′,hi′′′}∧
179. afit(t′−t)(distance(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′))(hs,ls))

180. distance: BusStop × BusStop → N → Distance
181. distance(bs1,bs2)(n) ≡ ... [ left as an exercise ! ] ...

182. afit: TI → Distance → Bool
183. [ time interval fits distance between bus stops ]

This ends Example 62
s500
acm-tsode-3

Definition 55 – Licenses: By a domain license we shall understand a right or permission granted
in accordance with law by a competent authority to engage in some business or occupation, to do
some act, or to engage in some transaction which but for such license would be unlawful Merriam
Webster On-line [139].

s501

Definition 56 – Contract: By a domain contract we shall understand very much the same thing
as a license: a binding agreement between two or more persons or parties — one which is legally
enforceable.
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s502

The concepts of licenses and licensing express relations between actors (licensors (the authority)
and licensees), simple entities (artistic works, hospital patients, public administration and citizen
documents) and operations (on simple entities), and as performed by actors. By issuing a license
to a licensee, a licensor wishes to express and enforce certain permissions and obligations: which
operations on which entities the licensee is allowed (is licensed, is permitted) to perform. As such
a license denotes a possibly infinite set of allowable behaviours. s503

We shall consider four kinds of entities: (i) digital recordings of artistic and intellectual nature:
music, movies, readings (“audio books”), and the like, (ii) patients in a hospital: as represented also
by their patient medical records, (iii) documents related to public government: citizen petitions,
law drafts, laws, administrative forms, letters between state and local government adminsitrators
and between these and citizens, court verdicts, etc., and (iv) bus timetables, as part of contracts
for a company to provide bus servises. s504

The permissions and obligations issues are: (i) for the owner (agent) of some intellectual prop-
erty to be paid (i.e., an obligation) by users when they perform permitted operations (rendering,
copying, editing, sub-licensing) on their works; (ii) for the patient to be professionally treated —
by medical staff who are basically obliged to try to cure the patient; (iii) for public administrators
and citizens to enjoy good governance: transparency in law making (national parliaments and
local prefectures and city councils), in law enforcement (i.e., the daily administration of laws),
and law interpretation (the judiciary) — by agents who are basically obliged to produce certain
documents while being permitted to consult (i.e., read, perhaps copy) other documents; (iv) for
citizens to enjoy timely and reliable bus services and the local government to secure adequate
price-performance standards. s505

cacm-hcll

Example 63 – A Health Care License Language:
Citizens go to hospitals in order to be treated for some calamity (disease or other), and by doing so

these citizens become patients. At hospitals patients, in a sense, issue a request to be treated with the
aim of full or partial restitution. This request is directed at medical staff, that is, the patient authorises
medical staff to perform a set of actions upon the patient. One could claim, as we shall, that the
patient issues a license. s506

Patients and Patient Medical Records So patients and their attendant patient medical records (PMRs)
are the main entities, the “works” of this domain. We shall treat them synonymously: PMRs as surro-
gates for patients. Typical actions on patients — and hence on PMRs — involve admitting patients,
interviewing patients, analysing patients, diagnosing patients, planning treatment for patients, actually
treating patients, and, under normal circumstance, to finally release patients. s507

Medical Staff Medical staff may request (‘refer’ to) other medical staff to perform some of these
actions. One can conceive of describing action sequences (and ‘referrals’) in the form of hospitalisation
(not treatment) plans. We shall call such scripts for licenses. s508

Professional Health Care The issue is now, given that we record these licenses, their being issued and
being honoured, whether the handling of patients at hospitals follow, or does not follow properly issued
licenses.

We refer to the abstract syntax formalised below (that is, formulas 1.–5.). The work on the specific
form of the syntax has been facilitated by the work reported in [8].12 s509

A Notion of License Execution State In the context of the Artistic License Language licensees could
basically perform licensed actions in any sequence and as often as they so desired. There were, of
course, some obvious constraints. Operations on local works could not be done before these had been
created — say by copying. Editing could only be done on local works and hence required a prior action
of, for example, copying a licensed work. In the context of hospital health care most of the actions
can only be performed if the patient has reached a suitable state in the hospitalisation. We refer to
Fig. 7.10 on the next page for an idealised hospitalisation plan.

s510

12As this work, [8], has yet to be completed the syntax and annotations given here may change.
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Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Fig. 7.10. An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

s511

We therefore suggest to join to the licensed commands an indicator which prescribe the (set of) state(s)
of the hospitalisation plan in which the command action may be performed.

Two or more medical staff may now be licensed to perform different (or even same !) actions in
same or different states. If licensed to perform same action(s) in same state(s) — well that may be
“bad license programming” if and only if it is bad medical practice ! One cannot design a language
and prevent it being misused!s512

The License Language The syntax has two parts. One for licenses being issued by licensors. And one
for the actions that licensees may wish to perform.

type
0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(staff1:Mn,mandate:ML,pat:Pn)
3. ML == mkML(staff2:Mn,to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt
5. Cmd == mkCmd(σs:Σ-set,stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

s513

The above syntax is correct RSL. But it is decorated! The subtypes {|boldface keyword|} are inserted
for readability.

(0.) Licenses, medical staff and patients have names.
(1.) Licenses further consist of license bodies (Lic).
(2.) A license body names the licensee (Mn), the patient (Pn), and,
(3.) through the “mandated” licence part (ML), it names the licensor (Mn) and which set of

commands (C) or (o) implicit licenses (L, for CoL) the licensor is mandated to issue.
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(4.) An explicit command or licensing (CoL) is either a command (Cmd), or a sub-license (ML) or
an alternative.

s514

(5.) A command (Cmd) is a state-labelled statement.
(3.) A sub-license just states the command set that the sub-license licenses. As for the Artistic

License Language the licensee chooses an appropriate subset of commands. The context “inherits” the
name of the patient. But the sub-licensee is explicitly mandated in the license!

(6.) An alternative is also just a set of commands. The meaning is that either the licensee choose
to perform the designated actions or, as for ML, but now freely choosing the sub-licensee, the licensee
(now new licensor) chooses to confer actions to other staff.

s515

(7.) A statement is either an admit, an interview, a plan analysis, an analysis, a diagnose, a plan
treatment, a treatment, a transfer, or a release directive Information given in the patient medical report
for the designated state inform medical staff as to the details of analysis, what to base a diagnosis on,
of treatment, etc.

s516

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

(8.) Each action actually attempted by a medical staff refers to the license, and hence the patient
name.

(9.) Actions are either of an admit, an interview, a plan analysis, an analysis, a diagnose, a plan
treatment, a treatment, a transfer, or a release actions. s517Each individual action is
only allowed in a state σ if the action directive appears in the named license and the patient (medical
record) designates state σ.

(10.) Or an action can be a sub-licensing action. Either the sub-licensing action that the licensee
is attempting is explicitly mandated by the license (4. ML), or is an alternative one thus implicitly
mandated (6.). The full sub-license, as defined in (1.–3.) is compiled from contextual information.

This ends Example 63
s518
cacm-pall

Example 64 – A Public Administration License Language:

The Three Branches of Government By public government we shall, following Charles de Secondat,
baron de Montesquieu (1689–1755)13, understand a composition of three powers: the law-making
(legislative), the law-enforcing and the law-interpreting parts of public government. Typically national
parliament and local (province and city) councils are part of law-making government, law-enforcing
government is called the executive (the administration), and law-interpreting government is called the
judiciary [system] (including lawyers etc.). s519

Documents A crucial means of expressing public administration is through documents.14 We shall
therefore provide a brief domain analysis of a concept of documents. (This document domain description
also applies to patient medical records and, by some “light” interpretation, also to artistic works —
insofar as they also are documents.)

s520

Documents are created, edited and read ; and documents can be copied, distributed, the subject of
calculations (interpretations) and be shared and shredded . s521

Document Attributes With documents one can associate, as attributes of documents, the actors who
created, edited, read, copied, distributed (and to whom distributed),shared, performed calculations and
shredded documents.

With these operations on documents, and hence as attributes of documents one can, again con-
ceptually, associate the location and time of these operations. s522

13De l’esprit des lois (The Spirit of the Laws), published 1748
14Documents are, for the case of public government to be the “equivalent” of artistic works.
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Actor Attributes and Licenses With actors (whether agents of public government or citizens) one
can associate the authority (i.e., the rights) these actors have with respect to performing actions on
documents. We now intend to express these authorisations as licenses.s523

Document Tracing An issue of public government is whether citizens and agents of public government
act in accordance with the laws — with actions and laws reflected in documents such that the action
documents enables a trace from the actions to the laws “governing” these actions.

We shall therefore assume that every document can be traced back to its law-origin as well as to
all the documents any one document-creation or -editing was based on.s524

A Document License Language The syntax has two parts. One for licenses being issued by licensors.
And one for the actions that licensees may wish to perform.

type
0. Ln, An, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(license:Ln,licensor:An,granted ops:Op-set,licensee:An)
3. Extend == mkE(licensor:An,licensee:An,license:Ln,with ops:Op-set)
4. Restrict == mkR(licensor:An,licensee:An,license:Ln,to ops:Op-set)
5. Withdraw == mkW(licensor:An,licensee:An,license:Ln)
6. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

s525

type
7. Dn, DCn, UDI
8. Crea == mkCr(dn:Dn,doc class:DCn,based on:UDI-set)
9. Edit == mkEd(doc:UDI,based on:UDI-set)
10. Read == mkRd(doc:UDI)
11. Copy == mkCp(doc:UDI)
12a. Licn == mkLi(kind:LiTy)
12b. LiTy == grant | extend | restrict | withdraw
13. Shar == mkSh(doc:UDI,with:An-set)
14. Rvok == mkRv(doc:UDI,from:An-set)
15. Rlea == mkRl(dn:Dn)
16. Rtur == mkRt(dn:Dn)
17. Calc == mkCa(fcts:CFn-set,docs:UDI-set)
18. Shrd == mkSh(doc:UDI)

s526
(0.) The are names of licenses (Ln), actors (An), documents (UDI), document classes (DCn) and
calculation functions (Cfn).

(1.) There are four kinds of licenses: granting, extending, restricting and withdrawing.
(2.) Actors (licensors) grant licenses to other actors (licensees). An actor is constrained to always

grant distinctly named licenses. No two actors grant identically named licenses.15 A set of operations
on (named) documents are granted.s527

(3.–5.) Actors who have issued named licenses may extend, restrict or withdraw the license rights
(wrt. operations, or fully).

(6.) There are nine kinds of operation authorisations. Some of the next explications also explain
parts of some of the corresponding actions (see (16.–24.).

(7.) There are names of documents (Dn), names of classes of documents (DCn), and there are
unique document identifiers (UDI).s528

(8.) Creation results in an initially void document which is
not necessarily uniquely named (dn:Dn) (but that name is uniquely associated with the unique doc-

ument identifier created when the document is created16) typed by a document class name (dcn:DCn)

15This constraint can be enforced by letting the actor name be part of the license name.
16— hence there is an assumption here that the create operation is invoked by the licensee exactly (or

at most) once.
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and possibly based on one or more identified documents (over which the licensee (at least) has reading
rights). We can presently omit consideration of the document class concept. “based on” means that
the initially void document contains references to those (zero, one or more) documents.17 The “based
on” documents are moved from licensor to licensee. s529

(9.) Editing a document may be based on “inspiration” from, that is, with reference to a number
of other documents (over which the licensee (at least) has reading rights). What this “be based on”
means is simply that the edited document contains those references. (They can therefore be traced.)
The “based on” documents are moved from licensor to licensee if not already so moved as the result
of the specification of other authorised actions. s530

(10.) Reading a document only changes its “having been read” status (etc.) — as per [16]. The
read document, if not the result of a copy, is moved from licensor to licensee — if not already so moved
as the result of the specification of other authorised actions. s531

(11.) Copying a document increases the document population by exactly one document. All pre-
viously existing documents remain unchanged except that the document which served as a master
for the copy has been so marked. The copied document is like the master document except that the
copied document is marked to be a copy (etc.) — as per [16]. The master document, if not the result
of a create or copy, is moved from licensor to licensee if not already so moved as the result of the
specification of other authorised actions. s532

(12a.) A licensee can sub-license (sL) certain operations to be performed by other actors.
(12b.) The granting, extending, restricting or withdrawing permissions, cannot name a license (the

user has to do that), do not need to refer to the licensor (the licensee issuing the sub-license), and
leaves it open to the licensor to freely choose a licensee. One could, instead, for example, constrain
the licensor to choose from a certain class of actors. The licensor (the licensee issuing the sub-license)
must choose a unique license name. s533

(13.) A document can be shared between two or more actors. One of these is the licensee, the
others are implicitly given read authorisations. (One could think of extending, instead the licensing
actions with a shared attribute.) The shared document, if not the result of a create and edit or copy,
is moved from licensor to licensee — if not already so moved as the result of the specification of other
authorised actions. Sharing a document does not move nor copy it. s534

(14.) Sharing documents can be revoked. That is, the reading rights are removed.
(15.) The release operation: if a licensor has authorised a licensee to create a document (and that

document, when created got the unique document identifier udi:UDI) then that licensee can release
the created, and possibly edited document (by that identification) to the licensor, say, for comments.
The licensor thus obtains the master copy. s535

(16.) The return operation: if a licensor has authorised a licensee to create a document (and that
document, when created got the unique document identifier udi:UDI) then that licensee can return
the created, and possibly edited document (by that identification) to the licensor — “for good”! The
licensee relinquishes all control over that document. s536

(17.) Two or more documents can be subjected to any one of a set of permitted calculation
functions. These documents, if not the result of a creates and edits or copies, are moved from licensor
to licensee — if not already so moved as the result of the specification of other authorised actions.
Observe that there can be many calculation permissions, over overlapping documents and functions.

(18.) A document can be shredded. It seems pointless to shred a document if that was the only
right granted wrt. document. s537

17. Action = Ln × Clause
18. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
19. Cre == mkCre(dcn:DCn,based on docs:UID-set)
20. Edt == mkEdt(uid:UID,based on docs:UID-set)
21. Rea == mkRea(uid:UID)
22. Cop == mkCop(uid:UID)
23. Lic == mkLic(license:L)

17They can therefore be traced (etc.) — as per [16].
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24. Sha == mkSha(uid:UID,with:An-set)
25. Rvk == mkRvk(uid:UID,from:An-set)
25. Rev == mkRev(uid:UID,from:An-set)
26. Rel == mkRel(dn:Dn,uid:UID)
27. Ret == mkRet(dn:Dn,uid:UID)
28. Cal == mkCal(fct:Cfn,over docs:UID-set)
29. Shr == mkShr(uid:UID)

s538
A clause elaborates to a state change and usually some value. The value yielded by elaboration of the
above create, copy, and calculation clauses are unique document identifiers. These are chosen by
the “system”.s539

(17.) Actions are tagged by the name of the license with respect to which their authorisation and
document names has to be checked. No action can be performed by a licensee unless it is so authorised
by the named license, both as concerns the operation (create, edit, read, copy, license, share, revoke,
calculate and shred) and the documents actually named in the action. They must have been mentioned
in the license, or, created or copies of downloaded (and possibly edited) documents or copies of these
— in which cases operations are inherited.s540

(19.) A licensee may create documents if so licensed — and obtains all operation authorisations
to this document.

(20.) A licensee may edit “downloaded” (edited and/or copied) or created documents.
(21.) A licensee may read “downloaded” (edited and/or copied) or created and edited documents.
(22.) A licensee may (conditionally) copy “downloaded” (edited and/or copied) or created and

edited documents. The licensee decides which name to give the new document, i.e., the copy. All rights
of the master are inherited to the copy.s541

(23.) A licensee may issue licenses of the kind permitted. The licensee decides whether to do so
or not. The licensee decides to whom, over which, if any, documents, and for which operations. The
licensee looks after a proper ordering of licensing commands: first grant, then sequences of zero, one
or more either extensions or restrictions, and finally, perhaps, a withdrawal.s542

(24.) A “downloaded” (possibly edited or copied) document may (conditionally) be shared with
one or more other actors. Sharing, in a digital world, for example, means that any edits done after the
opening of the sharing session, can be read by all so-granted other actors.s543

(25.) Sharing may (conditionally) be revoked, partially or fully, that is, wrt. original “sharers”.
(26.) A document may be released. It means that the licensor who originally requested a document

(named dn:Dn) to be created now is being able to see the results — and is expected to comment on
this document and eventually to re-license the licensee to further work.s544

(27.) A document may be returned. It means that the licensor who originally requested a document
(named dn:Dn) to be created is now given back the full control over this document. The licensee will
no longer operate on it.s545

(28.) A license may (conditionally) apply any of a licensed set of calculation functions to “down-
loaded” (edited, copied, etc.) documents, or can (unconditionally) apply any of a licensed set of calcu-
lation functions to created (etc.) documents. The result of a calculation is a document. The licensee
obtains all operation authorisations to this document (— as for created documents).

(29.) A license may (conditionally) shred a “downloaded” (etc.) document.
This ends Example 64

acm-tsode-3

s546
cacm-bscl Example 65 – A Bus Services Contract Language:

In a number of steps (‘A Synopsis’, ‘A Pragmatics and Semantics Analysis’, and ‘Contracted Op-
erations, An Overview’) we arrive at a sound basis from which to formulate the narrative. We shall,
however, forego such a detailed narrative. Instead we leave that detailed narrative to the reader. (The
detailed narrative can be “derived” from the formalisation.)

A Synopsis :s547

Contracts obligate transport companies to deliver bus traffic according to a timetable. The timetable
is part of the contract. A contractor may sub-contract (other) transport companies to deliver bus traffic
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according to timetables that are sub-parts of their own timetable. Contractors are either public transport
authorities or contracted transport companies. Contracted transport companies may cancel a subset of
bus rides provided the total amount of cancellations per 24 hours for each bus line does not exceed a
contracted upper limit18. The cancellation rights are spelled out in the contract19. A sub-contractor
cannot increase a contracted upper limit for cancellations above what the sub-contractor was told (in
its contract) by its contractor20. Etcetera.

A Pragmatics and Semantics Analysis : s548

The “works” of the bus transport contracts are two: the timetables and, implicitly, the designated
(and obligated) bus traffic. A bus timetable appears to define one or more bus lines, with each bus line
giving rise to one or more bus rides. We assume a timetable description along the lines of Sect. 62.
Nothing is (otherwise) said about regularity of bus rides. It appears that bus ride cancellations must
be reported back to the contractor. And we assume that cancellations by a sub-contractor is fur-
ther reported back also to the sub-contractor’s contractor. Hence eventually that the public transport
authority is notified. s549

Nothing is said, in the contracts, such as we shall model them, about passenger fees for bus rides
nor of percentages of profits (i.e., royalties) to be paid back from a sub-contractor to the contractor.
So we shall not bother, in this example, about transport costs nor transport subsidies. But will leave
that necessary aspect as an exercise.

The opposite of cancellations appears to be ‘insertion’ of extra bus rides, that is, bus rides not
listed in the time table, but, perhaps, mandated by special events21 We assume that such insertions
must also be reported back to the contractor. s550

We assume concepts of acceptable and unacceptable bus ride delays. Details of delay acceptability
may be given in contracts, but we ignore further descriptions of delay acceptability. but assume that
unacceptable bus ride delays are also to be (iteratively) reported back to contractors.

We finally assume that sub-contractors cannot (otherwise) change timetables. (A timetable change
can only occur after, or at, the expiration of a license.) Thus we find that contracts have definite period
of validity. (Expired contracts may be replaced by new contracts, possibly with new timetables.) s551

Contracted Operations, An Overview So these are the operations that are allowed by a contractor
according to a contract: (i) start: to perform, i.e., to start, a bus ride (obligated); (ii) cancel: to
cancel a bus ride (allowed, with restrictions); (iii) insert: to insert a bus ride; and (iv) subcontract: to
sub-contract part or all of a contract. s552

Syntax We treat separately, the syntax of contracts (for a schematised example see Page 109) and the
syntax of the actions implied by contracts (for schematised examples see Page 110).

Contracts

An example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee
to perform operations

{"start","cancel","insert","subcontract"}
with respect to timetable tt.

s553

We assume a context (a global state) in which all contract actions (including contracting) takes place
and in which the implicit net is defined. s554

184. contracts, contractors and sub-contractors have unique identifiers CId, CNm, CNm.
185. A contract has a unique identification, names the contractor and the sub-contractor (and we assume

the contractor and sub-contractor names to be distinct). A contract also specifies a contract body.

18We do not treat this aspect further in this book.
19See Footnote 18.
20See Footnote 18.
21Special events: breakdown (that is, cancellations) of other bus rides, sports event (soccer matches),

etc.
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186. A contract body stipulates a timetable and the set of operations that are mandated or allowed by
the contractor.

187. An Operation is either a "start" (i.e., start a bus ride), a bus ride "cancel"lation, a bus ride
"insert", or a "subcontract"ing operation.

s555

type
184. CId, CNm
185. Contract = CId × CNm × CNm × Body
186. Body = Op-set × TT
187. Op == ′′start′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

An abstract example contract:
(cid,cnmi,cnmj,({′′start′′,′′cancel′′,′′insert′′,′′sublicense′′},tt))

s556

Actions

Concrete example actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license (Page 109) shown earlier is almost like an action; here is the action form:

(d) cid: sub-contractor cnm′ is granted a contract cid′

to perform operations {”conduct”,”cancel”,”insert”,sublicense”}
with respect to timetable tt′.

s557

All actions are being performed by a sub-contractor in a context which defines that sub-contractor cnm,
the relevant net, say n, the base contract, referred here to by cid (from which this is a sublicense),
and a timetable tt of which tt′ is a subset. contract name cnm′ is new and is to be unique. The
subcontracting action can (thus) be simply transformed into a contract as shown on Page 109.s558

type
Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Start | Cancel | Insert
Conduct == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

examples:
(a) (cnm,cid,mkSta(blid,id),t)
(b) (cnm,cid,mkCan(blid,id),t)
(c) (cnm,cid,mkIns(blid,id),t)
(d) (cnm,cid,mkCon(cid′,({′′conduct′′,′′cancel′′,′′insert′′,′′sublicense′′},tt′),t))

where: cid′ = generate CId(cid,cnm,t) See Item/Line 190 on the facing page

s559
We observe that the essential information given in the start, cancel and insert action prescriptions is
the same; and that the RSL record-constructors (mkSta, mkCan, mkIns) make them distinct.s560

Uniqueness and Traceability of Contract Identifications

188. There is a “root” contract name, rcid.
189. There is a “root” contractor name, rcnm.
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value
188 rcid:CId
189 rcnm:CNm

s561
All other contract names are derived from the root name. Any contractor can at most generate one
contract name per time unit. Any, but the root, sub-contractor obtains contracts from other sub-
contractors, i.e., the contractor. Eventually all sub-contractors, hence contract identifications can be
referred back to the root contractor. s562

190. Such a contract name generator is a function which given a contract identifier, a sub-contractor
name and the time at which the new contract identifier is generated, yields the unique new contract
identifier.

191. From any but the root contract identifier one can observe the contract identifier, the sub-contractor
name and the time that “went into” its creation.

value
190 gen CId: CId × CNm × Time → CId

191 obs CId: CId
∼→ CIdL [pre obs CId(cid):cid 6=rcid ]

191 obs CNm: CId
∼→ CNm [pre obs CNm(cid):cid 6=rcid ]

191 obs Time: CId
∼→ Time [pre obs Time(cid):cid 6=rcid ]

s563

192. All contract names are unique.

axiom
192 ∀ cid,cid′:CId•cid 6=cid′⇒
192 obs CId(cid)6=obs CId(cid′) ∨ obs CNm(cid)6=obs CNm(cid′)
192 ∨ obs LicNm(cid)=obs CId(cid′)∧obs CNm(cid)=obs CNm(cid′)
192 ⇒ obs Time(cid)6=obs Time(cid′)

s564

193. Thus a contract name defines a trace of license name, sub-contractor name and time triple, “all
the way back” to “creation”.

type
CIdCNmTTrace = TraceTriple∗

TraceTriple == mkTrTr(CId,CNm,s t:Time)
value
193 contract trace: CId → LCIdCNmTTrace
193 contract trace(cid) ≡
193 case cid of
193 rcid → 〈〉,
193 → contract trace(obs LicNm(cid))̂〈obs TraceTriple(cid)〉
193 end

193 obs TraceTriple: CId → TraceTriple
193 obs TraceTriple(cid) ≡
193 mkTrTr(obs CId(cid),obs CNm(cid),obs Time(cid))

s565
The trace is generated in the chronological order: most recent contract name generation times last.

Well, there is a theorem to be proven once we have outlined the full formal model of this contract
language: namely that time entries in contract name traces increase with increasing indices.

theorem
∀ licn:LicNm •

∀ trace:LicNmLeeNmTimeTrace • trace ∈ license trace(licn) ⇒
∀ i:Nat • {i,i+1}⊆inds trace ⇒ s t(trace(i))<s t(trace(i+1))

s566
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Execution State

Local and Global States

Each sub-contractor has an own local state and has access to a global state. All sub-contractors access
the same global state. The global state is the bus traffic on the net. There is, in addition, a notion
of running-state. It is a meta-state notion. The running state “is made up” from the fact that there
are n sub-contractors, each communicating, as contractors, over channels with other sub-contractors.
The global state is distinct from sub-contractor to sub-contractor – no sharing of local states between
sub-contractors. We now examine, in some detail, what the states consist of.s567

Global State

The net is part of the global state (and of bus traffics). We consider just the bus traffic.

194. Bus traffic is a modelled as a discrete function from densely positioned time points to a pair of the
(possibly dynamically changing) net and the position of busses. Bus positions map bus numbers
to the physical entity of busses and their position.

195. A bus is positioned either
196. at a hub (coming from some link heading for some link), or
197. on a link, some fraction of the distance from a hub towards a hub, or
198. at a bus stop, some fraction of the distance from a hub towards a hub.

s568

type
136. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

194. BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
195. BPos = atHub | onLnk | atBS
196. atHub == mkAtHub(s fl:LI,s hi:HI,s tl:LI)
197. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
198. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

Frac = {|f:Real•0<f<1|}

We shall consider BusTraffic (with its Net) to reflect the global state.s569

Local Sub-contractor Contract States: Semantic Types

A sub-contractor state contains, as a state component, the zero, one or more contracts that the
sub-contractor has received and that the sub-contractor has sublicensed.

type
Body = Op-set × TT
LicΣ = RcvLicΣ×SubLicΣ×LorBusΣ
RcvLicΣ = LorNm→m (LicNm→m (Body×TT))
SubLicΣ = LeeNm→m (LicNm→m Body)
LorBusΣ ... [ see ′′Local sub-contractor Bus States: Semantic Types′′ next ] ...

(Recall that LorNm and LeeNm are the same.)
In RecvLics we have that LorNm is the name of the contractor by whom the contract has been

granted, LicNm is the name of the contract assigned by the contractor to that license, Body is the body
of that license, and TT is that part of the timetable of the Body which has not (yet) been sublicensed.

In DespLics we have that LeeNm is the name of the sub-contractor to whom the contract has been
despatched, the first (left-to-right) LicNm is the name of the contract on which that sublicense is based
, the second (left-to-right) LicNm is the name of the sublicense, and License is the contract named by
the second LicNm.s570

Local Sub-contractor Bus States: Semantic Types
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The sub-contractor state further contains a bus status state component which records which buses
are free, FreeBusΣ, that is, available for dispatch, and where “garaged”, which are in active use,
ActvBusΣ, and on which bus ride, and a bus history for that bus ride, and histories of all past bus
rides, BusHistΣ. A trace of a bus ride is a list of zero, one or more pairs of times and bus stops. A bus
history, BusHistory, associates a bus trace to a quadruple of bus line identifiers, bus ride identifiers,
contract names and sub-contractor name.22 s571

type
BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×LicNm×LeeNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

LorBusΣ = LeeNm →m (LicNm →m ((BLId×BId)→m (BNo×BusTrace)))

A bus is identified by its unique number (i.e., registration) plate (BusNo). We could model a bus by
further attributes: its capacity, etc., for for the sake of modelling contracts this is enough. The two
components are modified whenever a bus is commissioned into action or returned from duty, that is,
twice per bus ride. s572

Local Sub-contractor Bus States: Update Functions

value
update BusΣ: Bno×(T×BusStop) → ActBusΣ → ActBusΣ
update BusΣ(bno,(t,bs))(actσ) ≡

let (blid,bid,licn,leen,trace) = actσ(bno) in
actσ†[ bno 7→(licn,leen,blid,bid,tracê〈(t,bs)〉) ] end
pre bno ∈ dom actσ

update FreeΣ ActΣ:
BNo×BusStop→BusΣ→BusΣ

update FreeΣ ActΣ(bno,bs)(freeσ,actvσ) ≡
let ( , , , ,trace) = actσ(b) in
let freeσ′ = freeσ†[ bs 7→ (freeσ(bs))∪{b} ] in
(freeσ′,actσ\{b}) end end
pre bno 6∈ freeσ(bs) ∧ bno ∈ dom actσ

s573

update LorBusΣ:
LorNm×LicNm×lee:LeeNm×(BLId×BId)×(BNo×Trace)
→LorBusΣ→out {l to l[ leen,lorn ]|lorn:LorNm•lorn ∈ leenms\{leen}} LorΣ

update LorBusΣ(lorn,licn,leen,(blid,bid),(bno,tr))(lbσ) ≡
l to l[ leenm,lornm ]!Licensor BusHistΣMsg(bno,blid,bid,libn,leen,tr) ;
lbσ†[ leen 7→(lbσ(leen))†[ licn 7→((lbσ(leen))(licn))†[ (blid,bid)7→(bno,trace) ] ] ]
pre leen ∈ dom lbσ ∧ licn ∈ dom (lbσ(leen))

update ActΣ FreeΣ:
LeeNm×LicNm×BusStop×(BLId×BId)→BusΣ→BusΣ×BNo

update ActΣ FreeΣ(leen,licn,bs,(blid,bid))(freeσ,actvσ) ≡
let bno:Bno • bno ∈ freeσ(bs) in

22In this way one can, from the bus history component ascertain for any bus which for whom (sub-
contractor), with respect to which license, it carried out a further bus line and bus ride identified tour and
its trace.
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((freeσ\{bno},actvσ ∪ [ bno 7→(blid,bid,licnm,leenm,〈〉) ]),bno) end
pre bs ∈ dom freeσ ∧ bno ∈ freeσ(bs) ∧ bno 6∈ dom actvσ ∧ [ bs exists ... ]

s574

Constant State Values

There are a number of constant values, of various types, which characterise the “business of contract
holders”. We define some of these now.

199. For simplicity we assume a constant net — constant, that is, only with respect to the set of
identifiers links and hubs. These links and hubs obviously change state over time.

200. We also assume a constant set, leens, of sub-contractors. In reality sub-contractors, that is, trans-
port companies, come and go, are established and go out of business. But assuming constancy
does not materially invalidate our model. Its emphasis is on contracts and their implied actions —
and these are unchanged wrt. constancy or variability of contract holders.s575

201. There is an initial bus traffic, tr.
202. There is an initial time, t0, which is equal to or larger than the start of the bus traffic tr.
203. To maintain the bus traffic “spelled out”, in total, by timetable tt one needs a number of buses.
204. The various bus companies (that is, sub-contractors) each have a number of buses. Each bus,

independent of ownership, has a unique (car number plate) bus number (BusNo).
These buses have distinct bus (number [registration] plate) numbers.

205. We leave it to the reader to define a function which ascertain the minimum number of buses needed
to implement traffic tr.

s576

value
199. net : N,
200. leens : LeeNm-set,
201. tr : BusTraffic, axiom wf Traffic(tr)(net)
202. t0 : T • t0 ≥ min dom tr,
203. min no of buses : Nat • necessary no of buses(itt),
204. busnos : BusNo-set • card busnos ≥ min no of buses
205. necessary no of buses: TT → Nat

s577

206. To “bootstrap” the whole contract system we need a distinguished contractor, named init leen,
whose only license originates with a “ghost” contractor, named root leen (o, for outside [the
system]).

207. The initial, i.e., the distinguished, contract has a name, root licn.
208. The initial contract can only perform the "sublicense" operation.
209. The initial contract has a timetable, tt.
210. The initial contract can thus be made up from the above.

s578

value
206. root leen,init ln : LeeNm • root leen 6∈ leens ∧ initi leen ∈ leens,
207. root licn : LicNm
208. iops : Op-set = {′′sublicense′′},
209. itt : TT,
210. init lic:License = (root licn,root leen,(iops,itt),init leen)

s579

Initial Sub-contractor Contract States

type
InitLicΣs = LeeNm →m LicΣ

value
ilσ:LicΣ=([ init leen 7→ [ root leen 7→ [ iln 7→ init lic ] ] ]

∪ [ leen 7→ [ ] | leen:LeeNm • leen ∈ leenms\{init leen} ],[ ],[ ])
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s580

Initial Sub-contractor Bus States

211. Initially each sub-contractor possesses a number of buses.
212. No two sub-contractors share buses.
213. We assume an initial assignment of buses to bus stops of the free buses state component and for

respective contracts.
214. We do not prescribe a “satisfiable and practical” such initial assignment (ibσs).
215. But we can constrain ibσs.
216. The sub-contractor names of initial assignments must match those of initial bus assignments,

allbuses.
217. Active bus states must be empty.
218. No two free bus states must share buses.
219. All bus histories are void.

s581

type
211. AllBuses′ = LeeNm →m BusNo-set
212. AllBuses = {|ab:AllBuses′•∀ {bs,bs′}⊆rng ab∧bns 6=bns′⇒bns ∩ bns′={}|}
213. InitBusΣs = LeeNm →m BusΣ
value
212. allbuses:Allbuses • dom allbuses = leenms ∪ {root leen} ∧ ∪ rng allbuses = busnos

213. ibσs:InitBusΣs
214. wf InitBusΣs: InitBusΣs → Bool
215. wf InitBusΣs(iσs) ≡
216. dom iσs = leenms ∧
217. ∀ ( ,abσ, ):BusΣ•( ,abσ, ) ∈ rng iσs ⇒ abσ=[ ] ∧
218. ∀ (fbiσ,abiσ),(fbjσ,abjσ):BusΣ •

218. {(fbiσ,abiσ),(fbjσ,abjσ)}⊆rng iσs
218. ⇒ (fbiσ,actiσ)6=(fbjσ,actjσ)
218. ⇒ rng fbiσ ∩ rng fbjσ = {}
219. ∧ actiσ=[ ]=actjσ

Communication Channels : s582

The running state is a meta notion. It reflects the channels over which contracts are issued; messages
about committed, cancelled and inserted bus rides are communicated, and fund transfers take place. s583

Sub-Contractor↔Sub-Contractor Channels

Consider each sub-contractor (same as contractor) to be modelled as a behaviour. Each sub-contractor
(licensor) behaviour has a unique name, the LeeNm. Each sub-contractor can potentially communicate
with every other sub-contractor. We model each such communication potential by a channel. For n
sub-contractors there are thus n× (n− 1) channels.

channel { l to l[ fi,ti ] | fi:LeeNm,ti:LeeNm • {fi,ti}⊆leens ∧ fi 6=ti } LLMSG
type LLMSG = ...

We explain the declaration: channel { l to l[ fi,ti ] | fi:LeeNm, ti:LeeNm • fi 6=ti } LLMSG. It prescribes
n × (n − 1) channels (where n is the cardinality of the sub-contractor name sets). Each channel is
prescribed to be capable of communicating messages of type MSG. The square brackets [...] defines
l to l (sub-contractor-to-sub-contractor) as an array.

We shall later detail the BusRideNote, CancelNote, InsertNote and FundXfer message types. s584

Sub-Contractor↔Bus Channels
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Each sub-contractor has a set of buses. That set may vary. So we allow for any sub-contractor to
potentially communicate with any bus. In reality only the buses allocated and scheduled by a sub-
contractor can be “reached” by that sub-contractor.

channel { l to b[ l,b ] | l:LeeNm,b:BNo • l ∈ leens ∧ b ∈ busnos } LBMSG
type LBMSG = ...

s585

Sub-Contractor↔Time Channels

Whenever a sub-contractor wishes to perform a contract operation that sub-contractor needs know the
time. There is just one, the global time, modelled as one behaviour: time clock.

channel { l to t[ l ] | l:LeeNm • l ∈ leens } LTMSG
type LTMSG = ...

s586

Bus↔Traffic Channels

Each bus is able, at any (known) time to ascertain where in the traffic it is. We model bus behaviours
as processes, one for each bus. And we model global bus traffic as a single, separate behaviour.

channel { b to tr[ b ] | b:BusNo • b ∈ busnos } LTrMSG
type BTrMSG == reqBusAndPos(s bno:BNo,s t:Time) | (Bus×BusPos)

s587

Buses↔Time Channel

Each bus needs to know what time it is.

channel { b to t[ b ] | b:BNo • b ∈ busnos } BTMSG
type BTMSG ...

s588

Run-time Environment :
So we shall be modelling the transport contract domain as follows: As for behaviours we have this to
say. There will be n sub-contractors. One sub-contractor will be initialised to one given license. You
may think of this sub-contractor being the transport authority. Each sub-contractor is modelled, in
RSL, as a CSP-like process. With each sub-contractor, li, there will be a number, bi, of buses. That
number may vary from sub-contractor to sub-contractor. There will be bi channels of communication
between a sub-contractor and that sub-contractor’s buses, for each sub-contractor. There is one global
process, the traffic. There is one channel of communication between a sub-contractor and the traffic.
Thus there are n such channels.s589

As for operations, including behaviour interactions we assume the following. All operations of all
processes are to be thought of as instantaneous, that is, taking nil time ! Most such operations are
the result of channel communications either just one-way notifications, or inquiry requests. Both the
former (the one-way notifications) and the latter (inquiry requests) must not be indefinitely barred from
receipt, otherwise holding up the notifier. The latter (inquiry requests) should lead to rather immediate
responses, thus must not lead to dead-locks.

The System Behaviour :s590

The system behaviour starts by establishing a number of licenseholder and bus ride behaviours and
the single time clock and bus traffic behaviourss591

value
system: Unit → Unit
system() ≡

licenseholder(init leen)(ilσ(init leen),ibσ(init leen))
‖ (‖ {licenseholder(leen)(ilσ(leen),ibσ(leen))

| leen:LeeNm•leen ∈ leens\{init leen}})



7.7 Domain Scripts, Licenses and Contracts 117

‖ (‖ {bus ride(b,leen)(root lorn,′′nil′′)
| leen:LeeNm,b:BusNo •leen ∈ dom allbuses ∧ b ∈ allbuses(leen)})

‖ time clock(t0) ‖ bus traffic(tr)
s592

The initial licenseholder behaviour states are individually initialised with basically empty license states
and by means of the global state entity bus states. The initial bus behaviours need no initial state other
than their bus registration number, a “nil” route prescription, and their allocation to contract holders
as noted in their bus states.

Only a designated licenseholder behaviour is initialised to a single, received license. s593

Semantic Elaboration Functions

The Licenseholder Behaviour

220. The licenseholder behaviour is a sequential, but internally non-deterministic behaviour.
221. It internally non-deterministically (⌈⌉) alternates between

a) performing the licensed operations (on the net and with buses),
b) receiving information about the whereabouts of these buses, and informing contractors of its

(and its subsub-contractors’) handling of the contracts (i.e., the bus traffic), and
c) negotiating new, or renewing old contracts.

220. licenseholder: LeeNm → (LicΣ×BusΣ) → Unit
221. licenseholder(leen)(licσ,busσ) ≡
221. licenseholder(leen)((lic ops⌈⌉bus mon⌈⌉neg licenses)(leen)(licσ,busσ))

s594

The Bus Behaviour

222. Buses ply the network following a timed bus route description.
A timed bus route description is a list of timed bus stop visits.

223. A timed bus stop visit is a pair: a time and a bus stop.
224. Given a bus route and a bus schedule one can construct a timed bus route description.

a) The first result element is the first bus stop and origin departure time.
b) Intermediate result elements are pairs of respective intermediate schedule elements and inter-

mediate bus route elements.
c) The last result element is the last bus stop and final destination arrival time.

225. Bus behaviours start with a “nil” bus route description.
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type
222. TBR = TBSV∗

223. TBSV = Time × BusStop
value
224. conTBR: BusRoute × BusSched → TBR
224. conTBR((dt,til,at),(bs1,bsl,bsn)) ≡
224a) 〈(dt,bs1)〉
224b) ̂ 〈(til[ i ],bsl[ i ])|i:Nat•i:〈1..len til〉〉
224c) ̂ 〈(at,bsn)〉

pre: len til = len bsl
type
225. BRD == ′′nil′′ | TBR

s596

226. The bus behaviour is here abstracted to only communicate with some contract holder, time and
traffic,

227. The bus repeatedly observes the time, t, and its position, po, in the traffic.
228. There are now four case distinctions to be made.
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229. If the bus is idle (and a a bus stop) then it waits for a next route, brd′ on which to engage.
230. If the bus is at the destination of its journey then it so informs its owner (i.e., the sub-contractor)

and resumes being idle.
231. If the bus is ‘en route’, at a bus stop, then it so informs its owner and continues the journey.
232. In all other cases the bus continues its journey
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value
226. bus ride: leen:LeeNm × bno:Bno → (LicNm × BRD) →
226. in,out l to b[ leen,bno ], in,out b to tr[ bno ], in b to t[ bno ] Unit
226. bus ride(leen,bno)(licn,brd) ≡
227. let t = b to t[ bno ]? in
227. let (bus,pos) = (b to tr[ bno ]!reqBusAndPos(bno,t) ; b to tr[ bno ]?) in
228. case (brd,pos) of
229. (′′nil′′,mkAtBS( , , , )) →
229. let (licn,brd′) = (l to b[ leen,bno ]!reqBusRid(pos);l to b[ leen,bno ]?) in
229. bus ride(leen,bno)(licn,brd′) end
230. (〈(at,pos)〉,mkAtBS( , , , )) →
230s l to b[ l,b ]!BusΣMsg(t,pos);
230 l to b[ l,b ]!BusHistΣMsg(licn,bno);
230 l to b[ l,b ]!FreeΣ ActΣMsg(licn,bno) ;
230 bus ride(leen,bno)(ilicn,′′nil′′),
231. (〈(t,pos),(t′,bs′)〉̂brd′,mkAtBS( , , , )) →
231s l to b[ l,b ]!BusΣMsg(t,pos) ;
231 bus ride(licn,bno)(〈(t′,bs′)〉̂brd′),
232. → bus ride(leen,bno)(licn,brd) end end end
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In formula line 227 of bus ride we obtained the bus. But we did not use “that” bus ! We we may
wish to record, somehow, number of passengers alighting and boarding at bus stops, bus fees paid,
one way or another, etc. The bus, which is a time-dependent entity, gives us that information. Thus
we can revise formula lines 230s and 231s:

Simple: 230s l to b[ l,b ]!BusΣMsg(pos);
Revised: 230r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

Simple: 231s l to b[ l,b ]!BusΣMsg(pos);
Revised: 231r l to b[ l,b ]!BusΣMsg(pos,bus info(bus));

type
Bus Info = Passengers × Passengers × Cash × ...

value
bus info: Bus → Bus Info
bus info(bus) ≡ (obs alighted(bus),obs boarded(bus),obs till(bus),...)

It is time to discuss our description (here we choose the bus ride behaviour) in the light of our claim
of modeling “the domain”. These are our comments:

• First one should recognise, i.e., be reminded, that the narrative and formal descriptions are always
abstractions. That is, they leave out few or many things. We, you and I, shall never be able to
describe everything there is to describe about even the simplest entity, operation, event or behaviour.

•
•
•

s599

The Global Time Behaviour
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233. The time clock is a never ending behaviour — started at some time t0.
234. The time can be inquired at any moment by any of the licenseholder behaviours and by any of the

bus behaviours.
235. At any moment the time clock behaviour may not be inquired.
236. After a skip of the clock or an inquiry the time clock behaviour continues, non-deterministically

either maintaining the time or advancing the clock!
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value
233. time clock: T →
233. in,out {l to t[ leen ] | leen:LeeNm • leen ∈ leenms}
233. in,out {b to t[ bno ] | bno:BusNo • bno ∈ busnos} Unit
233. time clock:(t) ≡
235. (skip ⌈⌉
234. (⌈⌉⌊⌋{l to t[ leen ]? ; l to t[ leen ]!t | leen:LeeNm•leen ∈ leens})
234. ⌈⌉ (⌈⌉⌊⌋{b to t[ bno ]? ; b to t[ bno ]!t | bno:BusNo•bno ∈ busnos})) ;
236. (time clock:(t) ⌈⌉ time clock(t+δt))
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The Bus Traffic Behaviour

237. There is a single bus traffic behaviour. It is, “mysteriously”, given a constant argument, “the”
traffic, tr.

238. At any moment it is ready to inform of the position, bps(b), of a bus, b, assumed to be in the
traffic at time t.

239. The request for a bus position comes from some bus.
240. The bus positions are part of the traffic at time t.
241. The bus traffic behaviour, after informing of a bus position reverts to “itself”.
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value
237. bus traffic: TR → in,out {b to tr[ bno ]|bno:BusNo•bno ∈ busnos} Unit
237. bus traffic(tr) ≡
239. ⌈⌉⌊⌋ { let reqBusAndPos(bno,time) = b to tr[ b ]? in assert b=bno
238. if time 6∈ dom tr then chaos else
240. let ( ,bps) = tr(t) in
238. if bno 6∈ dom tr(t) then chaos else
238. b to tr[ bno ]!bps(bno) end end end end | b:BusNo•b ∈ busnos} ;
241. bus traffic(tr)
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License Operations

242. The lic ops function models the contract holder choosing between and performing licensed oper-
ations.
We remind the reader of the four actions that licensed operations may give rise to; cf. the abstract
syntax of actions, Page 110.

243. To perform any licensed operation the sub-contractor needs to know the time and
244. must choose amongst the four kinds of operations that are licensed. The choice function, which we

do not define, makes a basically non-deterministic choice among licensed alternatives. The choice
yields the contract number of a received contract and, based on its set of licensed operations, it
yields either a simple action or a sub-contracting action.

245. Thus there is a case distinction amongst four alternatives.
246. This case distinction is expressed in the four lines identified by: 246.
247. All the auxiliary functions, besides the action arguments, require the same state arguments.

s604
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value
242. lic ops: LeeNm → (LicΣ×BusΣ) → (LicΣ×BusΣ)
242. lic ops(leen)(licσ,busσ) ≡
243. let t = (time channel(leen)!req Time;time channel(leen)?) in
244. let (licn,act) = choice(licσ)(busσ)(t) in
245. (case act of
246. mkCon(blid,bid) → cndct(licn,leenm,t,act),
246. mkCan(blid,bid) → cancl(licn,leenm,t,act),
246. mkIns(blid,bid) → insrt(licn,leenm,t,act),
246. mkLic(leenm′,bo) → sublic(licn,leenm,t,act) end)(licσ,busσ) end end

cndct,cancl,insert: SmpAct→(LicΣ×BusΣ)→(LicΣ×BusΣ)
sublic: SubLic→(LicΣ×BusΣ)→(LicΣ×BusΣ)
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Bus Monitoring

Like for the bus ride behaviour we decompose the bus monitoring behaviour into two behaviours.
The local bus monitoring behaviour monitors the buses that are commissioned by the sub-contractor.
The licensor bus monitoring behaviour monitors the buses that are commissioned by sub-contractors
sub-contractd by the contractor.

value
bus mon: l:LeeNm → (LicΣ×BusΣ)

→ in {l to b[ l,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
bus mon(l)(licσ,busσ) ≡

local bus mon(l)(licσ,busσ) ⌈⌉ licensor bus mon(l)(licσ,busσ)
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248. The local bus monitoring function models all the interaction between a contract holder and its
despatched buses.

249. We show only the communications from buses to contract holders.
250.
251.
252.
253.
254.
255.
256.
257.
258.
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248. local bus mon: leen:LeeNm → (LicΣ×BusΣ)
249. → in {l to b[ leen,b ]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
248. local bus mon(leen)(licσ:(rlσ,slσ,lbσ),busσ:(fbσ,abσ)) ≡
250. let (bno,msg) = ⌈⌉⌊⌋{(b,l to b[ l,b ]?)|b:BNo•b ∈ allbuses(leen)} in
254. let (blid,bid,licn,lorn,trace) = abσ(bno) in
251. case msg of
252. BusΣMsg(t,bs) →
256. let abσ′ = update BusΣ(bno)(licn,leen,blid,bid)(t,bs)(abσ) in
256. (licσ,(fbσ,abσ′,histσ)) end,
258. BusHistΣMsg(licn,bno) →
258. let lbσ′ =
258. update LorBusΣ(obs LorNm(licn),licn,leen,(blid,bid),(b,trace))(lbσ) in
258. l to l[ leen,obs LorNm(licn) ]!Licensor BusHistΣMsg(licn,leen,bno,blid,bid,tr);
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258. ((rlσ,slσ,lbσ′),busσ) end
257. FreeΣ ActΣMsg(licn,bno)→
258. let (fbσ′,abσ′) = update FreeΣ ActΣ(bno,bs)(fbσ,abσ) in
258. (licσ,(fbσ′,abσ′)) end
258. end end end
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259.
260.
261.
262.
263.
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259. licensor bus mon: lorn:LorNm → (LicΣ×BusΣ)
259. → in {l to l[ lorn,leen ]|leen:LeeNm•leen ∈ leenms\{lorn}} (LicΣ×BusΣ)
259. licensor bus mon(lorn)(licσ,busσ) ≡
259. let (rlσ,slσ,lbhσ) = licσ in
259. let (leen,Licensor BusHistΣMsg(licn,leen′′,bno,blid,bid,tr))

= ⌈⌉⌊⌋{(leen′,l to l[ lorn,leen′ ]?)|leen′:LeeNm•leen′ ∈ leenms\{lorn}} in
259. let lbhσ′ =
259. update BusHistΣ(obs LorNm(licn),licn,leen′′,(blid,bid),(bno,trace))(lbhσ) in
259. l to l[ leenm,obs LorNm(licnm) ]!Licensor BusHistΣMsg(b,blid,bid,lin,lee,tr);
259. ((rlσ,slσ,lbhσ′),busσ)
259. end end end

s610

License Negotiation

264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
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264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.

s612

The Conduct Bus Ride Action
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276. The conduct bus ride action prescribed by (ln,mkCon(bli,bi,t′) takes place in a context and shall
have the following effect:
a) The action is performed by contractor li and at time t. This is known from the context.
b) First it is checked that the timetable in the contract named ln does indeed provide a journey,

j, indexed by bli and (then) bi, and that that journey starts (approximately) at time t′ which
is the same as or later than t.

c) Being so the action results in the contractor, whose name is “embedded” in ln, receiving
notification of the bus ride commitment. s613

d) Then a bus, selected from a pool of available buses at the bust stop of origin of journey j,
is given j as its journey script, whereupon that bus, as a behaviour separate from that of
sub-contractor li, commences its ride.

e) The bus is to report back to sub-contractor li the times at which it stops at en route bus stops
as well as the number (and kind) of passengers alighting and boarding the bus at these stops.

f) Finally the bus reaches its destination, as prescribed in j, and this is reported back to sub-
contractor li.

g) Finally sub-contractor li, upon receiving this ‘end-of-journey’ notification, records the bus as
no longer in actions but available at the destination bus stop.
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276.
276a)
276b)
276c)
276d)
276e)
276f)
276g)
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The Cancel Bus Ride Action

277. The cancel bus ride action prescribed by (ln,mkCan(bli,bi,t′) takes place in a context and shall
have the following effect:
a) The action is performed by contractor li and at time t. This is known from the context.
b) First a check like that prescribed in Item 276b) is performed.
c) If the check is OK, then the action results in the contractor, whose name is “embedded” in ln,

receiving notification of the bus ride cancellation.
That’s all !
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277.
277a)
277b)
277c)
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The Insert Bus Ride Action

278. The insert bus ride action prescribed by (ln,mkIns(bli,bi,t′) takes place in a context and shall have
the following effect:
a) The action is performed by contractor li and at time t. This is known from the context.
b) First a check like that prescribed in Item 276b) is performed.
c) If the check is OK, then the action results in the contractor, whose name is “embedded” in ln,

receiving notification of the new bus ride commitment.
d) The rest of the effect is like that prescribed in Items 276d)–276g).

s618
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278.
278a)
278b)
278c)
278d)
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The Contracting Action

279. The subcontracting action prescribed by (ln,mkLic(li′,(pe′,ops′,tt′))) takes place in a context and
shall have the following effect:
a) The action is performed by contractor li and at time t. This is known from the context.
b) First it is checked that timetable tt is a subset of the timetable contained in, and that the

operations ops are a subset of those granted by, the contract named ln.
c) Being so the action gives rise to a contract of the form (ln′,li,(pe′,ops′,tt′),li′). ln′ is a unique

new contract name computed on the basis of ln, li, and t. li′ is a sub-contractor name chosen
by contractor li. tt′ is a timetable chosen by contractor li. ops′ is a set of operations likewise
chosen by contractor li.

d) This contract is communicated by contractor li to sub-contractor li′.
e) The receipt of that contract is recorded in the license state.
f) The fact that the contractor has sublicensed part (or all) of its obligation to conduct bus rides

is recorded in the modified component of its received contracts.
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279.
279a)
279b)
279c)
279d)
279e)
279f)
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Discussion This ends Example 65
acm-tsode-3

7.7.1 Principles s622

7.7.2 Discussion s623

7.8 Domain Human Behaviour s624

acm-tsode-4

Definition 57 – Human Behaviour: By human behaviour we mean any of a quality spectrum
of carrying out assigned work: from (i) careful, diligent and accurate, via (ii) sloppy dispatch,
and (iii) delinquent work, to (iv) outright criminal pursuit.
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Example 66 – A Casually Described Bank Script: Our formulation amounts to just a (casual)
rough sketch. It is followed by a series of three larger examples (Examples 67–69). Each of these
elaborate on the theme of (bank) scripts.

The problem area is that of how repayments of mortgage loans are to be calculated. At any one
time a mortgage loan has a balance, a most recent previous date of repayment, an interest rate and a
handling fee. When a repayment occurs, then the following calculations shall take place: (i) the interest s626

on the balance of the loan since the most recent repayment, (ii) the handling fee, normally considered
fixed, (iii) the effective repayment — being the difference between the repayment and the sum of the
interest and the handling fee — and the new balance, being the difference between the old balance
and the effective repayment. s627
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We assume repayments to occur from a designated account, say a demand/deposit account. We
assume that bank to have designated fee and interest income accounts.

(i) The interest is subtracted from the mortgage holder’s demand/deposit account and added to
the bank’s interest (income) account. (ii) The handling fee is subtracted from the mortgage holder’s
demand/deposit account and added to the bank’s fee (income) account. (iii) The effective repayment
is subtracted from the mortgage holder’s demand/deposit account and also from the mortgage bal-
ance. Finally, one must also describe deviations such as overdue repayments, too large, or too smalls628

repayments, and so on. This ends Example 66
s629

Example 67 – A Formally Described Bank Script: First we must informally and formally define
the bank state:

There are clients (c:C), account numbers (a:A), mortgage numbers (m:M), account yields (ay:AY)
and mortgage interest rates (mi:MI). The bank registers, by client, all accounts (ρ:A Register) and
all mortgages (µ:M Register). To each account number there is a balance (α:Accounts). To each
mortgage number there is a loan (ℓ:Loans). To each loan is attached the last date that interest was
paid on the loan.
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value
r, r′:Real axiom ...

type
C, A, M, Date
AY′ = Real, AY = {| ay:AY′

• 0<ay≤r |}
MI′ = Real, MI = {| mi:MI′ • 0<mi≤r′ |}
Bank′ = A Register × Accounts × M Register × Loans
Bank = {| β:Bank′ • wf Bank(β)|}
A Register = C →m A-set
Accounts = A →m Balance
M Register = C →m M-set
Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat
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Then we must define well-formedness of the bank state:

value
ay:AY, mi:MI

wf Bank: Bank → Bool
wf Bank(ρ,α,µ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ

axiom
ay<mi [ ∧ ... ]
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We — perhaps too rigidly — assume that mortgage interest rates are higher than demand/deposit
account interest rates: ay<mi.

Operations on banks are denoted by the commands of the bank script language. First the syntax:

type
Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P,d:Date)
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CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

value
period: Date × Date → Days [ for calculating interest ]
before: Date × Date → Bool [ first date is earlier than last date ]
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And then the semantics:

int Cmd(mkPM(c,a,m,p,d))(ρ,α,µ,ℓ) ≡
let (b,d′) = ℓ(m) in
if α(a)≥p

then
let i = interest(mi,b,period(d,d′)),

ℓ′ = ℓ † [ m 7→ℓ(m)−(p−i) ]
α′ = α † [ a 7→α(a)−p,ai 7→α(ai)+i ] in

((ρ,α′,µ,ℓ′),ok) end
else

((ρ,α′,µ,ℓ),nok)
end end
pre c ∈ dom µ ∧ a ∈ dom α ∧ m ∈ µ(c)
post before(d,d′)

interest: MI × Loan × Days → P

This ends Example 67
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Example 68 – Bank Staff or Programmer Behaviour: Let us assume a bank clerk, “in ye olde”
days, when calculating, say mortgage repayments (cf. Example 67).

We would characterise such a clerk as being diligent, etc., if that person carefully follows the
mortgage calculation rules, and checks and double-checks that calculations “tally up”, or lets others do
so. We would characterise a clerk as being sloppy if that person occasionally forgets the checks alluded
to above. We would characterise a clerk as being delinquent if that person systematically forgets these
checks. And we would call such a person a criminal if that person intentionally miscalculates in such a
way that the bank (and/or the mortgage client) is cheated out of funds which, instead, may be diverted
to the cheater. s635

Let us, instead of a bank clerk, assume a software programmer charged with implementing an
automatic routine for effecting mortgage repayments (cf. Example 67).

We would characterise the programmer as being diligent if that person carefully follows the mort-
gage calculation rules, and throughout the development verifies and tests that the calculations are
correct with respect to the rules. We would characterise the programmer as being sloppy if that person
forgets certain checks and tests when otherwise correcting the computing program under development.
We would characterise the programmer as being delinquent if that person systematically forgets these
checks and tests. And we would characterise the programmer as being a criminal if that person in-
tentionally provides a program which miscalculates the mortgage interest, etc., in such a way that the
bank (and/or the mortgage client) is cheated out of funds. This ends Example 68
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Example 69 – A Human Behaviour Mortgage Calculation: Example 67 gave a semantics to the
mortgage calculation request (i.e., command) as would a diligent bank clerk be expected to perform
it. To express, that is, to model, how sloppy, delinquent, or outright criminal persons (staff?) could
behave we must modify the int Cmd(mkPM(c,a,m,p,d′))(ρ,α,µ,ℓ) definition.

int Cmd(mkPM(c,a,m,p,d))(ρ,α,µ,ℓ) ≡
let (b,d′) = ℓ(m) in
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if q(α(a),p) /∗ α(a)≤p∨α(a)=p∨α(a)≤p∨... ∗/
then

let i = f1(interest(mi,b,period(d,d′))),
ℓ′ = ℓ † [ m 7→f2(ℓ(m)−(p−i)) ]
α′ = α † [ a 7→f3(α(a)−p),ai 7→f4(α(ai)+i),

a“staff” 7→f“staff”(α(a“staff”)+i) ] in
((ρ,α′,µ,ℓ′),ok) end

else
((ρ,α′,µ,ℓ),nok)

end end
pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼→ Bool

f1,f2,f3,f4,f“staff”: P
∼→ P [ typically: f“staff” = λp.p ]
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The predicate q and the functions f1, f2, f3, f4 and f“staff” of Example 67 are deliberately left un-
defined. They are being defined by the “staffer” when performing (incl., programming) the mortgage
calculation routine.

The point of Example 67 is that one must first define the mortgage calculation script precisely as
one would like to see the diligent staff (programmer) to perform (incl., correctly program) it before one
can “pinpoint” all the places where lack of diligence may “set in”. The invocations of q, f1, f2, f3, f4

and f“staff” designate those places.
The point of Example 67 is also that we must first domain-define, “to the best of our ability” all

the places where human behaviour may play other than a desirable role. If we cannot, then we cannot
claim that some requirements aim at countering undesirable human behaviour. This ends
Example 69

s638

Example 70 – Transport Net Building:
We show the example in two stages: First we show a description of a diligent operation; then of a

less careful operation.

Sub-example 1 (of Example 70 – ) A Diligent Operation: The int Insert operation of Example 10
Page 11 was expressed without stating necessary pre-conditions:

11 23 The insert operation takes an Insert command and a net and yields either a new net or chaos for
the case where the insertion command “is at odds” with, that is, is not semantically well-formed
with respect to the net. s639

12 We characterise the “is not at odds”, i.e., is semantically well-formed, that is: pre int Insert(op)(hs,ls),
as follows: it is a propositional function which applies to Insert actions, op, and nets, (hs.ls), and
yields a truth value if the below relation between the command arguments and the net is satisfied.
Let (hs,ls) be a value of type N.

13 If the command is of the form 2oldH(hi′,l,hi′) then
⋆1 hi′ must be the identifier of a hub in hs,
⋆2 l must not be in ls and its identifier must (also) not be observable in ls, and
⋆3 hi′′ must be the identifier of a(nother) hub in hs.
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14 If the command is of the form 1oldH1newH(hi,l,h) then
⋆1 hi must be the identifier of a hub in hs,
⋆2 l must not be in ls and its identifier must (also) not be observable in ls, and
⋆3 h must not be in hs and its identifier must (also) not be observable in hs.

15 If the command is of the form 2newH(h′,l,h′′) then
⋆1 h′ — left to the reader as an exercise (see formalisation !),

23See Page 13 for Item 11 et cetera.
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⋆2 l — left to the reader as an exercise (see formalisation !), and
⋆3 h′′ — left to the reader as an exercise (see formalisation !).
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value
12′ pre int Insert: Ins → N → Bool
12′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
13 2oldH(hi′,l,hi′′) → {hi′,hi′′}⊆iohs(hs),
14 1oldH1newH(hi,l,h)→ hi ∈ iohs(hs)∧h 6∈ hs∧obs HI(h)6∈ iohs(hs),
15 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∧{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

These must be carefully expressed and adhered to in order for staff to be said to carry out the link
insertion operation accurately. This ends Sub-example 70.1
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Sub-example 2 (of Example 70 – ) A Sloppy via Delinquent to Criminal Operation: We replace
systematic checks (∧) with partial checks (∨), etcetera, and obtain various degrees of sloppy to
delinquent, or even criminal behaviour.

value
12′ pre int Insert: Ins → N → Bool
12′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op)6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of
13 2oldH(hi′,l,hi′′) → hi′ ∈ iohs(hs)∨hi′′isin iohs(hs),
14 1oldH1newH(hi,l,h)→ hi ∈ iohs(hs)∨h 6∈ hs∨obs HI(h)6∈ iohs(hs),
15 2newH(h′,l,h′′) → {h′,h′′}∩ hs={}∨{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

This ends Sub-example 70.2

This ends Example 70

7.8.1 A Meta Characteristic of Human Behaviour s643

Commensurate with the above, humans interpret rules and regulations differently, and not always
consistently — in the sense of repeatedly applying the same interpretations. s644

Schema 3 – A Human Behaviour Specification Pattern:

type

[ 1 ] α: Action = Σ
∼→ Σ-infset

value
[ 2 ] hum int: Rule → Σ → RUL-infset
[ 3 ] action: Stimulus → Σ → Σ

[ 4 ] hum beha: Stimulus × Rules → Action → Σ
∼→ Σ-infset

[ 5 ] hum beha(sy sti,sy rul)(α)(σ) as σset
[ 6 ] post
[ 7 ] σset = α(σ) ∧ action(sy sti)(θ) ∈ θset
[ 8 ] ∧ ∀ σ′:Σ•σ′ ∈ σset ⇒
[ 9 ] ∃ se rul:RUL•se rul ∈ hum int(sy rul)(σ)⇒se rul(σ,σ′)
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s645

The above is, necessarily, sketchy: [1] There is a possibly infinite variety of ways of interpreting
some rules. [2] A human, in carrying out an action, interprets applicable rules and chooses one
which that person believes suits some (professional, sloppy, delinquent or criminal) intent. “Suits”
means that it satisfies the intent, i.e., yields true on the pre/post-configuration pair, when the
action is performed — whether as intended by the ones who issued the rules and regulations or
not. We do not cover the case of whether an appropriate regulation is applied or not.

The above-stated axioms express how it is in the domain, not how we would like it to be. For
that we have to establish requirements.

7.8.2 Principles s646

7.8.3 Discussion s647

7.9 Opening and Closing Stages s648

acm-tsode-e

We cover in this section the following aspects of domain engineering:

• opening stages (Sect. 7.9.1);
• closing stages (Sect. 7.9.2); and
• domain engineering documentation — (Sect. 7.9.3).

Sections

7.9.1 Opening Stages s649

For completeness, we shall briefly list the opening stages of domain engineering. They are:

1. domain stake-holder identification (and subsequent liaison);
2. rough sketching of business processes;
3. domain acquisition literature study, Internet study, on-site interviews, questionnaire prepara-

tion, questionnaire fill-in, and questionnaire handling — resulting in a great number of domain
description units;

4. domain analysis (based on domain description units) and concept formation, and
5. domain “terminologisation”.

Stakeholder Identification and Liaison s650

Domain Acquisition s651

Domain Analysis s652

Terminoligisation s653

7.9.2 Closing Stages s654

For completeness, we shall, as in Sect. 7.9.1, briefly list the closing stages of domain engineering.
They are:

1. domain verification, model checking and testing – the assurance of properties of the formalisation
of the domain model (Sect. 7.9.2);

2. domain validation – the assurance of the veracity of the informal, i.e., the narrative domain
description (Sect. 7.9.2); and

3. domain theory formation (Sect. 7.9.2).

Other than this brief mentioning we shall not cover these, from an engineering view-point rather
important stages — but refer to [19].
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Verification, Model Checking and Testing s655

Domain Validation s656

Domain Theory s657

7.9.3 Domain Engineering Documentation s658

7.9.4 Conclusion s659

7.10 Exercises

See Items 11–18 (of Appendix D, starting Page 231).
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Requirements Engineering

s660 acm-rtre-a

8.1 Characterisations

Definition 58 – IEEE Definition of ‘Requirements’: By a requirements we understand (cf.
IEEE Standard 610.12 [85]): “A condition or capability needed by a user to solve a problem or
achieve an objective”.

s661

Principle 4 – Requirements Engineering [1]: Prescribe only those requirements that can be
objectively shown to hold for the designed software.

Principle 5 – Requirements Engineering [2]: When prescribing requirements, formulate, at
the same time, tests (theorems, properties for model checking) whose actualisation should show
adherence to the requirements

s662

Definition 59 – Requirements: By requirements we shall understand a document which pre-
scribes desired properties of a machine: (i) what entities the machine shall “maintain”, and what
the machine shall (must; not should) offer of (ii) functions and of (iii) behaviours (iv) while also
expressing which events the machine shall “handle”.

s663

A requirements prescription ideally specifies externally observable properties of simple entities,
functions, events and behaviours of the machine such as the requirements stake-holders wish
them to be. s664

Above we used the term ‘ideally’. Even in good practice the requirements engineer may, here
and there in the requirements prescription, resort to prescribe the requirements more by how it
effects the what rather than only (i.e., ‘ideally’) prescribe the requirements by what the machine
is to offer. s665

The machine is what is required, that is, the hardware and software that is to be designed
and which are to satisfy the requirements.

It is a highlight of this document that requirements engineering has a scientific foundation
and that that scientific foundation is the domain theory, that is the properties of the domain as
modelled by a domain description. s666

Conventional requirements engineering, as covered in a great number of software engineering
textbooks [65, 116, 118, 136, 143], does not have (such) a scientific foundation. This foundation
allows us to pursue requirements engineering in quite a new manner.

The key idea of the kind of requirements engineering that we shall present is that a major part
of the requirements can be systematically “derived” from a description of the domain in which the
requirements ‘reside’.
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8.2 The Core Stages of Requirements Engineering s667

The core stages of requirements engineering are therefore those of ‘deriving’ the following re-
quirements facets: business process re-engineering (Sect. 8.5), domain requirements1 (Sect. 8.6 on
page 141), interface requirements2 (Sect. 8.8 on page 153) and machine requirements3 (Sect. 8.9
on page 165).

8.3 On Opening and Closing Requirements Engineering Stages s668

We refer to Sect. 8.10.

8.4 Requirements Acquisition s669

acm-rtre-a

Requirements ‘reside’ in the domain. That means: one can not possibly utter a reasonably com-
prehensive set of requirements without stating the domain “to which they apply”. Therefore we
first describe the domain before we next prescribe the requirements. And therefore we shall “base
our requirements acquisition” on a supposedly existing domain description.s670

To ‘base our requirements acquisition . . . etc.’ shall mean that we carefully go through the
domain description (found most appropriate for the requirements at hand) with the requirements
stake-holders asking them a number of questions. Which these questions are will be dealt with
soon.

For domain acquisition there were, in principle, no prior domain description documents, really,
to refer to. Hence an elaborate set of procedures had to be followed in order to solicit and elicit
domain acquisition units. Before such elicitation could be done in any systematic fashion the
domain engineer had to study the domain, by whatever informal means available. Now there is
the domain description.s671

From a purely linguistic point of view we can think of decomposing requirements acquisition
relative to the domain description along three axes: the first axis of domain requirements — being
those which can be expressed sôlely using terms from the domain; the second axis of machine
requirements — being those which can be expressed sôlely using terms from the machine; and the
third axis of interface requirements — being those which can be expressed using terms from both
the domain and the machine.

The next three sections, Sects. 8.6–8.9, shall therefore be structured into two parts: the respec-
tive requirements acquisition part and the corresponding requirements modelling part.acm-bpr

8.5 Business Process Re-Engineering s672

We remind the reader of Sect. 7.2 (in which we covered the concept of ‘business processes’).

Definition 60 – Business Process Re-Engineering: By business process re-engineering we un-
derstand the reformulation of previously adopted business process descriptions, together with ad-
ditional business process engineering work.

s673

Business process re-engineering (BPR) is about change, and hence BPR is also about change
management. The concept of workflow is one of these “hyped” as well as “hijacked” terms: They
sound good, and they make you “feel” good. But they are often applied to widely different subjects,
albeit having some phenomena in common. By workflow we shall, very loosely, understand the
physical movement of people, materials, information and “centre (‘locus’) of control” in some
organisation (be it a factory, a hospital or other).

1Domain requirements are in conventional textbooks referred to as functional requirements
2Interface requirements are in conventional textbooks referred, more-or-less, to as user requirements.
3Machine requirements are in conventional textbooks referred, more-or-less, to as system requirements.
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8.5.1 Michael Hammer’s Ideas on BPR s674

Michael Hammer, a guru of the business process re-engineering “movement”, states [69]:

1. Understand a method of re-engineering before you do it for serious.

So that is what this section is about.

2. One can only re-engineer processes.

Clearly Hammer utters an untenable dogma. We ma-u also need to re-engineer such phenomena
as simple entities and functions.

3. Understanding the process is an essential first step in re-engineering.

And then he goes on to say: “but an analysis of those processes is a waste of time. You must
place strict limits, both on time you take to develop this understanding and on the length of the
description you make.” Needless to say we question this latter part of the third item.

4. If you proceed to re-engineer without the proper leadership, you are making a fatal mistake.
If your leadership is nominal rather than serious, and isn’t prepared to make the required
commitment, your efforts are doomed to failure.

By leadership is basically meant: “upper, executive management”.

5. Re-Engineering requires radical, breakthrough ideas about process design. Re-Engineering
leaders must encourage people to pursue stretch goals4 and to think out of the box; to this
end, leadership must reward creative thinking and be willing to consider any new idea. s675

This is clearly an example of the US guru, “new management”-type ‘speak’ !

6. Before implementing a process in the real world create a laboratory version in order to test
whether your ideas work. . . . Proceeding directly from idea to real-world implementation is
(usually) a recipe for disaster.

Our careful both informal and formal description of the existing domain processes, as covered in
Sect. 7, as well as the similarly careful prescription of the re-engineered business processes shall,
in a sense, make up for this otherwise vague term “laboratory version”.

7. You must re-engineer quickly. If you can’t show some tangible results within a year, you will
lose the support and momentum necessary to make the effort successful. To this end “scope
creep” must be avoided at all cost. Stay focused and narrow the scope if necessary in order to
get results fast.

We obviously do not agree, in principle and in general, with this statement.

8. You cannot re-engineer a process in isolation. Everything must be on the table. Any attempts
to set limits, to preserve a piece of the old system, will doom your efforts to failure.

We can only agree. But the wording is like mantras. As a software engineer, founded in science,
such statements as the above are not technical, are not scientific. They are “management speak”.

9. Re-Engineering needs its own style of implementation: fast, improvisational, and iterative.

We are not so sure about this statement either! Professional engineering work is something one
neither does fast nor improvisational.

10. Any successful re-engineering effort must take into account the personal needs of the individuals
it will affect. The new process must offer some benefit to the people who are, after all, being
asked to embrace enormous change, and the transition from the old process to the new one
must be made with great sensitivity as to their feelings.

4A ‘stretch goal’ is a goal, an objective, for which, if one wishes to achieve that goal, one has to stretch
oneself.
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This is nothing but a politically correct, pat statement! It would not pass the negation test: Nobody
would claim the opposite. Real benefits of re-engineering often come from not requiring as many
people, i.e., workers and management, in the corporation as before re-engineering. Hence: What
about the “feelings” of those laid off?

8.5.2 What Are BPR Requirements? s676

Two “paths” lead to business process re-engineering:

• A client wishes to improve enterprise operations by deploying new computing systems (i.e.,
new software). In the course of formulating requirements for this new computing system a
need arises to also re-engineer the human operations within and without the enterprise.

• An enterprise wishes to improve operations by redesigning the way staff operates within the en-
terprise and the way in which customers and staff operate across the enterprise-to-environment
interface. In the course of formulating re-engineering directives a need arises to also deploy new
software, for which requirements therefore have to be enunciated.

One way or the other, business process re-engineering is an integral component in deploying new
computing systems.

8.5.3 Overview of BPR Operations s677

We suggest six domain-to-business process re-engineering operations. They are based on the facets
that were prominent in the process of constructing a domain description.

1. introduction of some new and removal of some old intrinsics;
2. introduction of some new and removal of some old support technologies;
3. introduction of some new and removal of some old management and organisation substruc-

tures;
4. introduction of some new and removal of some old rules and regulations;
5. related scripting; and
6. introduction of some new and removal of some old work practices (relating to human be-

haviours);

8.5.4 BPR and the Requirements Document s678

Requirements for New Business Processes

The reader must be duly “warned”: The BPR requirements are not for a computing system, but
for the people who “surround” that (future) system. The BPR requirements state, unequivocally,
how those people are to act, i.e., to use that system properly. Any implications, by the BPR
requirements, as to concepts and facilities of the new computing system must be prescribed (also)
in the domain and interface requirements.

Place in Narrative Document s679

We shall thus, in Sects. 8.5.5–8.5.9, treat a number of BPR facets. Each of whatever you decide
to focus on, in any one requirements development, must be prescribed. And the prescription must
be put into the overall requirements prescription document.s680

As the BPR requirements “rebuilds” the business process description part of the domain de-
scription5, and as the BPR requirements are not directly requirements for the machine, we find
that they (the BPR requirements texts) can be simply put in a separate section.s681

5— Even if that business process description part of the domain description is “empty” or nearly so!
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There are basically two ways of “rebuilding” the domain description’s business process’s de-
scription part (DBP ) into the requirements prescription part’s BPR requirements (RBPR). Either
you keep all of D as a base part in RBPR, and then you follow that part (i.e., RBPR) with state-
ments, R′

BPR, that express the new business process’s “differences” with respect to the “old”
(DBP ). Call the result RBPR. Or you simply rewrite (in a sense, the whole of) DBP directly into s682

RBPR, copying all of DBP , and editing wherever necessary.

Place in Formalisation Document s683

The above statements as how to express the “merging” of BPR requirements into the overall
requirements document apply to the narrative as well as to the formalised prescriptions.

Principle 6 – Documentation: We may assume that there is a formal domain description, DBP ,
(of business processes) from which we develop the formal prescription of the BPR requirements.
We may then decide to either develop entirely new descriptions of the new business processes, s684

i.e., actually prescriptions for the business re-engineered processes, RBPR; or develop, from DBP ,
using a suitable schema calculus, such as the one in RSL, the requirements prescription RBPR, by
suitable parameterisation, extension, hiding, etc., of the domain description DBP .

8.5.5 Intrinsics Review and Replacement s685

Definition 61 – Intrinsics Review and Replacement: By intrinsics review and replacement we
understand an evaluation as to whether current intrinsics stays or goes, and as to whether newer
intrinsics need to be introduced.

s686

Example 71 – Intrinsics Replacement: A railway net owner changes its business from owning,
operating and maintaining railway nets (lines, stations and signals) to operating trains. Hence the
more detailed state changing notions of rail units need no longer be part of that new company’s
intrinsics while the notions of trains and passengers need be introduced as relevant intrinsics.

Replacement of intrinsics usually point to dramatic changes of the business and are usually not
done in connection with subsequent and related software requirements development.

8.5.6 Support Technology Review and Replacement s687

Definition 62 – Support Technology Review and Replacement: By support technology review
and replacement we understand an evaluation as to whether current support technology as used in
the enterprise is adequate, and as to whether other (newer) support technology can better perform
the desired services.

s688

Example 72 – Support Technology Review and Replacement: Currently the main information
flow of an enterprise is taken care of by printed paper, copying machines and physical distribution. All
such documents, whether originals (masters), copies, or annotated versions of originals or copies, are
subject to confidentiality. As part of a computerised system for handling the future information flow,
it is specified, by some domain requirements, that document confidentiality is to be taken care of by
encryption, public and private keys, and digital signatures. However, it is realised that there can be
a need for taking physical, not just electronic, copies of documents. The following business process s689

re-engineering proposal is therefore considered:Specially made printing paper and printing and copying
machines are to be procured, and so are printers and copiers whose use requires the insertion of special
signature cards which, when used, check that the person printing or copying is the person identified
on the card, and that that person may print the desired document. All copiers will refuse to copy
such copied documents — hence the special paper. Such paper copies can thus be read at, but not
carried outside the premises (of the printers and copiers). And such printers and copiers can register
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who printed, respectively who tried to copy, which documents. Thus people are now responsible for
the security (whereabouts) of possible paper copies (not the required computing system). The above, s690

somewhat construed example, shows the “division of labour” between the contemplated (required,
desired) computing system (the “machine”) and the “business re-engineered” persons authorised to
print and possess confidential documents.

It is implied in the above that the re-engineered handling of documents would not be feasible
without proper computing support. Thus there is a “spill-off” from the business re-engineered world
to the world of computing systems requirements.

8.5.7 Management and Organisation Re-Engineering s691

Definition 63 – Management and Organisation Re-Engineering: By management and organ-
isation re-engineering we understand an evaluation as to whether current management principles
and organisation structures as used in the enterprise are adequate, and as to whether other man-
agement principles and organisation structures can better monitor and control the enterprise.

s692

Example 73 – Management and Organisation Re-Engineering: A rather complete comput-
erisation of the procurement practices of a company is being contemplated. Previously procurement
was manifested in the following physically separate as well as designwise differently formatted paper
documents: requisition form, order form, purchase order, delivery inspection form, rejection and return
form, and payment form. The supplier had corresponding forms: order acceptance and quotation form,
delivery form, return acceptance form, invoice form, return verification form, and payment acceptance
form. The current concern is only the procurement forms, not the supplier forms. The proposed domains693

requirements are mandating that all procurer forms disappear in their paper version, that basically only
one, the procurement document, represents all phases of procurement, and that order, rejection and
return notification slips, and payment authorisation notes, be effected by electronically communicated
and duly digitally signed messages that represent appropriate subparts of the one, now electronic pro-
curement document. The business process re-engineering part may now “short-circuit” previous staff’ss694

review and acceptance/rejection of former forms, in favour of fewer staff interventions.
The new business procedures, in this case, subsequently find their way into proper domain require-

ments: those that support, that is monitor and control all stages of the re-engineered procurement
process.

8.5.8 Rules and Regulations Re-Engineering s695

Definition 64 – Rules and Regulation Re-Engineering: By rules and regulations re-engineering
we understand an evaluation as to whether current rules and regulations as used in the enterprise
are adequate, and as to whether other rules and regulations can better guide and regulate the
enterprise.

Here it should be remembered that rules and regulations principally stipulate business engineering
processes. That is, they are — i.e., were — usually not computerised.s696

Example 74 – Rules and Regulations Re-Engineering: Our example continues that of Example 60
on page 97. We kindly remind the reader to re-study that example. Assume now, due to re-engineered
support technologies, that interlock signalling can be made magnitudes safer than before, without
interlocking. Thence it makes sense to re-engineer the rule of Example 60 from: In any three-minute
interval at most one train may either arrive to or depart from a railway station into: In any 20-second
interval at most two trains may either arrive to or depart from a railway station.

This re-engineered rule is subsequently made into a domain requirements, namely that the software
system for interlocking is bound by that rule.
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8.5.9 Script Re-Engineering s697

On one hand, there is the engineering of the contents of rules and regulations, and, on another
hand, there are the people (management, staff) who script these rules and regulations, and the
way in which these rules and regulations are communicated to managers and staff concerned. s698

Definition 65 – Script Re-Engineering: By script re-engineering we understand evaluation as
to whether the way in which rules and regulations are scripted and made known (i.e., posted) to
stakeholders in and of the enterprise is adequate, and as to whether other ways of scripting and
posting are more suitable for the enterprise.

s699

Example 75 – Health-care Script Re-Engineering: We refer to Example 63 (Pages 103–105). Let
us assume that the situation before this business re-engineering process starts, in relation to hospital
health-care, was that there was no physically visible notion of a health-care license language, but the the
requirements now calls for such a language to be introduced with as much computer & communication
support as is reasonable and that the hospital(s) in question are to become “paper-less”. Now we can
foresee a number of business process re-engineering based on the concept that such a health-care license
language has been designed. For every action performed by a medical staff, whether an admittance, s700

annamnese, planning analysis, carrying out our analysis, diagnostics, treatment planning, treatment
(in all forms), et cetera, action (cf. Fig. 7.10 on page 104), there now has to be prescribed, by and
for the hospital health-care staff a BPR prescription, which outlines what the staff members must do
in preparation of the action, the action (probably nothing new here), and in concluding the action so
that the medical staff performs the necessary “chores” assumed by the health-care license language
software.

8.5.10 Human Behaviour Re-Engineering s701

Definition 66 – Human Behaviour Re-Engineering: By human behaviour re-engineering we
understand an evaluation as to whether current human behaviour as experienced in the enterprise
is acceptable, and as to whether partially changed human behaviours are more suitable for the
enterprise.

s702

Example 76 – Human Behaviour Re-Engineering: A company has experienced certain lax atti-
tudes among members of a certain category of staff. The progress of certain work procedures therefore
is re-engineered, implying that members of another category of staff are henceforth expected to follow
up on the progress of “that” work.

In a subsequent domain requirements stage the above re-engineering leads to a number of require-
ments for computerised monitoring of the two groups of staff.

8.5.11 A Specific Example of BPR s703

Example 77 – A Toll-road System (I):
Example 10 (Pages 9–17) outline a generic model of a domain of roads (links) and their intersections

(hubs). We shall base some of the requirements examples of Sect. 8 on an instantiation of that domain
model (Example 10) to a specific toll-road system. In this example we shall rough sketch that toll-road
system. First we refer to Fig. 8.1 on the following page. s704

s705We first explain the kind of toll-roads semi-generically hinted at by Fig. 8.1 on the next page.
The core of the (semi-generic) toll-road is the “linear” stretch of pairs of one-way links (ℓjj+1

, ℓj+1j
)

between adjacent hubs hj and hj+1. This is the actual toll-road. In order to enter and leave the toll-road
there are entries and exits. These are in the form of toll plazas tpi. Simple two-way links, ℓj, connect
toll plaza tpj (via toll plaza intersection tij to toll-road intersection hj . s706

We must here state that toll plazas are equipped with toll booths for cars entering the toll-road
system and for cars leaving the toll-road system.
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Fig. 8.1. A simple, linear toll road net:
tpi: tboll plaza i,
ti1, tin: terminal (or toll plaza) intersection k,
hk: intermediate intersection (hub) k, 1<k<n
ℓi: toll plaza link i,
lxy: toll-way link from ix to iy , y=x+1 or y=x-1 and 1≤x<n.

The basic business process of this toll-road system includes (i) the maintenance of all roads, inter-
sections and toll plaza toll booths; (ii) the travel, through the toll-road system of a toll-paying car; and
(iii) the monitoring and control of toll-paying car traffic within the toll-road system. s707

We shall only summarise the travel (i) business process: (1) A car enters the toll-road system at toll
plaza tpi. (2) A toll booth gate prevents the car from fully entering the system. (3) The car is issued
a toll slip by an entry toll-booth at toll plaza tpi. (4) The toll-booth gate allows the car from entering
the system. (5) The car travels along toll plaza link ℓj to toll-road hub hj . [Let, in the following hj

now be hi.] (6) At toll-road hub hi the car decides whether to continue driving along the toll-roads708

proper or to leave the toll-road system along toll plaza link ℓj to toll plaza tpi. In the latter case the
business process description continues with Item (8). (7) The car travels, along toll-road link either
ℓii+1

or ℓii−1
, between toll-road hub hi and hub hi+1 respectively hub hi+−. [Let, in the following this

target hub now be hi.] The next business process step is now described in Item (6). (8) At toll plaza
tpi the car enters an exit toll-booth. (9) A toll-booth gate prevents the car from leaving the toll-road
system. (10) The previously issued toll slip is now presented at the toll-booth. (11) The toll-booths709

calculates the fare from entry plaza to exit plaza6. (13) The car (driver) somehow7 (14) The toll-booth
gate allows the car to leave the toll-road system. (15) The car leaves the toll-road system.

This ends Example 77

8.5.12 Discussion: Business Process Re-Engineering s710

Who Should Do the Business Process Re-Engineering?

It is not in our power, as software engineers, to make the kind of business process re-engineering
decisions implied above. Rather it is, perhaps, more the prerogative of appropriately educated,
trained and skilled (i.e., gifted) other kinds of engineers or business people to make the kinds of
decisions implied above. Once the BP re-engineering has been made, it then behooves the client
stakeholders to further decide whether the BP re-engineering shall imply some requirements, or
not.s711

Once that last decision has been made in the affirmative, we, as software engineers, can then
apply our abstraction and modelling skills, and, while collaborating with the former kinds of
professionals, make the appropriate prescriptions for the BPR requirements. These will typically
be in the form of domain requirements, which are covered extensively in Sect. 8.6.

6We shall not detail this calculation. Its proper calculation may involve that the system has traced the
car’s passage through all hubs.

7We shall not detail that “somehow”: whether it is by cash payment, via credit card, or by means of
a toll-road system credit mechanism “built-into” the car.
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General s712

Business process re-engineering is based on the premise that corporations must change their way
of operating, and, hence, must “reinvent” themselves. Some corporations (enterprises, businesses,
etc.) are “vertically” structured along functions, products or geographical regions. This often
means that business processes “cut across” vertical units. Others are “horizontally” structured
along coherent business processes. This often means that business processes “cut across” functions,
products or geographical regions. In either case adjustments may need to be made as the business
(i.e., products, sales, markets, etc.) changes. We otherwise refer to currently leading books on
business process re-engineering: [68, 69, 84, 89].

8.6 Domain Requirements s713

acm-rtre-b

8.6.1 A Small Domain Example

In exemplifying several of the very many kinds of domain and machine requirements we need a
small domain description. This small domain description will be that of a timetable, cf. Exam-
ple 78. The sequence of machine requirements examples based on Example 78 will, furthermore,
be expressed using the scheme and class modularisation constructs of RSL. s714

tt0

Example 78 – A Domain Example: an ‘Airline Timetable System’:
We choose a very simple domain: that of a traffic timetable, say flight timetable. In the domain

you could, in “ye olde days”, hold such a timetable in your hand, you could browse it, you could look
up a special flight, you could tear pages out of it, etc. There was no end as to what you could do to
such a timetable. So we will just postulate a sort, TT, of timetables. s715

Airline customers, clients, in general, only wish to inquire a timetable (so we will here omit treatment
of more or less “malicious” or destructive acts). But you could still count the number of digits “7” in
the timetable, and other such ridiculous things. So we postulate a broadest variety of inquiry functions,
qu:QU, that apply to timetables, tt:TT, and yield values, val:VAL. s716

Specifically designated airline staff may, however, in addition to what a client can do, update the
timetable. But, recalling human behaviours, all we can ascertain for sure is that update functions,
up:UP, apply to timetables and yield two things: another, replacement timetable, tt:TT, and a result,
res:RES, such as: “your update succeeded”, or “your update did not succeed”, etc. In essence this is
all we can say for sure about the domain of timetable creations and uses. s717

We can view the domain of the timetable, clients and staff as a behaviour which nondeterministically
alternates (⌈⌉) between the client querying the timetable client 0(tt), and the staff updating the same
staff 0(tt). s718

scheme TI TBL 0 =
class

type
TT, VAL, RES
QU = TT → VAL
UP = TT → TT × RES

value
client 0: TT → VAL, client 0(tt) ≡ let q:QU in q(tt) end
staff 0: TT → TT × RES, staff 0(tt) ≡ let u:UP in u(tt) end

tim tbl 0: TT → Unit
tim tbl 0(tt) ≡

(let v = client 0(tt) in tim tbl 0(tt) end)
⌈⌉ (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

end
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The timetable function, tim tbl, is here seen as a never ending process, hence the type Unit. It
nondeterministically8 alternates between “serving” the clients and the staff. Either of these two non-
deterministically chooses from a possibly very large set of queries, respectively updates.

This ends Example 78

8.6.2 Acquisition s719

acm-rtre-b

Common to the acquisition and modelling of domain requirements are the following sub-stages:

• projection,

• instantiation,

• determination,

• extension and

• fitting.

sub-stages.

With each and every stake-holder group the domain engineer(s) go through the domain de-
scription and asks the following questions:

• Which of the simple entities, functions, events and behaviour (parts) of the domain do you
wish to be represented somehow in, i.e., projected onto the machine ?s720

• Which of the simple entities, functions, events and behaviour (parts) of the domain do you
wish to be less generic, more instantiated in the machine ?

• Which of the simple entities, functions, events and behaviour (parts) of the domain do you
wish to appear more deterministic in the machine ?

• Are there simple entities, functions, events and behaviours that could be in the domain but are
not there because their “existence” is not feasible — if so, with computing and communication
are they now feasible and should the domain thus be extended ?

• Given that there may be several, parallel ongoing requirements development for related parts
of the domain, should they be fitted ?

s721

For each of these five sub-stages of domain requirements the acquisition consists in asking these
questions and marking the domain description cum emerging domain requirements document with
the answers:

• circling-in the domain description parts that are to be part of the domain requirements (i.e.,
projection)

• marking those parts with possible directives as to instantiation and determination;
• making adequate notes on possible extensions
• and fittings.

Once this domain requirements acquisition has taken place for all groups of stake-holders the
requirements engineers can proceed to interface requirements acquisition, Sect. 8.8.1.

8.6.3 Projection s722

Definition 67 – Projection: By domain projection we understand an operation that applies
to a domain description and yields a domain requirements prescription. The latter represents a
projection of the former in which only those parts of the domain are present that shall be of interest
in the ongoing requirements development

s723
arms-projection

Example 79 – Projection: A Road Maintenance System: The requirements are for a road main-
tenance system. That is, maintenance of link and hub (road segment and road intersection) surfaces,
the monitoring of their quality and road repair.

8The nondeterminism referred to is internal in the sense that no outside behaviour influences the
choice.

9Formula numbers refer to narrative text items as from Page 9 etc.
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Instead of listing all the phenomena and concepts of the domain that are “projected away”, we list
those few that remain: hubs, links, hub identifiers and link identifiers; nets, corresponding observer
functions, and corresponding axioms.

s724

type
1: H, L,9

2: N = H-set × L-set
axiom

2: ∀ (hs,ls):N • card hs≥2 ∧ card ks≥1
type

3: HI, LI
value

4a: obs HI: H → HI, obs LI: L → LI
axiom

4b: ∀ h,h′:H, l,l′:L • h 6=h′

⇒ obs HI(h)6=obs HI(h′) ∧ l 6=l′⇒obs LI(l)6=obs LI(l′)

s725

value
5a: obs HIs: L → HI-set
6a: obs LIs: H → LI-set
5b: ∀ l:L • card obs HIs(l)=2 ∧
6b: ∀ h:H • card obs LIs(h)≥1 ∧
5a: ∀ (hs,ls):N • ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒

∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧
6a: ∀ l:L • l ∈ ls ⇒

∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}
7: ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
8: ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

This ends Example 79
s726
acm-rtre-b

atrs-projectionExample 80 – Projection: A Toll-road System: For the ‘Toll-road System’, as outlined in Ex-
ample 77, in addition to what was projected for the ‘Road Maintenance System’ of Example 79, the
following entities and most related functions are projected: hubs, links, hub and link identifiers; nets,
that is, hub state and hub state spaces and link states and link state spaces, corresponding observer
functions, corresponding axioms and syntactic and semantic wellformedness predicates.

s727

type
LΣ′ = L Trav-set
L Trav = (HI × LI × HI)
LΣ = {| lnkσ:LΣ′

• syn wf LΣ{lnkσ} |}
HΣ′ = H Trav-set
H Trav = (LI × HI × LI)
HΣ = {| hubσ:HΣ′

• wf HΣ{hubσ} |}
HΩ = HΣ-set, LΩ = LΣ-set

value
obs HΣ: H → HΣ, obs LΣ: L → LΣ
obs HΩ: H → HΩ, obs LΩ: L → LΩ
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axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

For hubs, links, hub identifiers and link identifiers and nets see the above projection; and for the missing
axioms and wellformedness predicates see Example 58 (Pages 89–91).

This ends Example 80

8.6.4 Instantiation s728

acm-rtre-b

Definition 68 – Instantiation: By domain instantiation we understand an operation that applies
to a (projected and possibly determined) domain description, i.e., a requirements prescription, and
yields a domain requirements prescription, where the latter has been made more specific, usually
by constraining a domain description

s729
arms-

instantiation Example 81 – Instantiation: A Road Maintenance System: We continue Example 79.

11. The road net consist of a sequence of one or more road segments.
12. A road segment can be characterised by a pair of hubs and a pair of links connected to these hubs.
13. Neighbouring road segments share a hub.
14. All hubs are otherwise distinct.
15. All links are distinct.
16. The two links of a road segment connects to the hubs of the road segment.
17. We can show that road nets are specific instances of concretisations of the former, thus more

abstract road nets.

s730

type
11 RN = RS∗,
12 RS = H × (L × L) × H
axiom
∀ rn:RN •

13 ∀ i:Nat • {i,i+1}⊆inds rn ⇒ let ( , ,h)=rn(i),(h′, , )=rn(i+1) in h=h′ end ∧
14 len rn + 1 = card{h,h′|h,h′:H•(h, ,h′)∈ elems rn} ∧
15 2∗(len rn) = card{l,l′|l,l′:L•( ,(l,l′), )∈ elems rn} ∧
16 ∀ (h,(l,l′),h′):RS • (h,(l,l′),h′) ∈ elems rn ⇒

obs Σ(l)={(obs HI(h),obs HI(h′))} ∧ obs Σ(l′)={(obs HI(h′),obs HI(h))}
value
17 abs N: RN → N

abs N(rsl) ≡
({h,h′|(h, ,h′):RS • (h, ,h′) ∈ elems rsl},{l,l′|( ,(,l,l′), ):RS • ( .(l,l′), ) ∈ elems rsl})

This ends Example 81
s731
acm-rtre-b

atrs-instantiation Example 82 – Instantiation: A Toll-road System: We continue Example 80. The 1st version
domain requirements prescription, Example 80, is now updated with respect to the properties of the
toll-road net: We refer to Fig. 8.1 on page 140 and the preliminary description given in Example 77.
There are three kinds of hubs: tollgate hubs and intersection hubs: terminal intersection hubs and
proper, intermediate intersection hubs. Tollgate hubs have one connecting two way link. linking the
tollgate hub to its associated intersection hub. s732Terminal intersection hubs have three
connecting links: (i) one, a two-way link, to a tollgate hub, (ii) one one-way link emanating to a next
up (or down) intersection hub, and (iii) one one-way link incident upon this hub from a next up (or
down) intersection hub. Proper intersection hubs have five connecting links: one, a two way link, to a
tollgate hub, two one way links emanating to next up and down intersection hubs, and two one way
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links incident upon this hub from next up and down intersection hub. (Much more need be narrated.)
As a result we obtain a 2nd version domain requirements prescription.

s733

type
TN = ((H × L) × (H × L × L))∗ × H × (L × H)

value
abs N: TN → N
abs N(tn) ≡ (tn hubs(tn),tn hubs(tn))
pre wf TN(tn)

tn hubs: TN → H-set,
tn hubs(hll,h,( ,hn)) ≡
{h,hn} ∪ {thj,hj|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

tn links: TN → L-set
tn links(hll, ,(ln, )) ≡
{ln} ∪ {tlj,lj,lj′|((thj,tlj),(hj,lj,lj′)):((H×L)×(H×L×L))•((thj,tlj),(hj,lj,lj′))∈ elems hlll}

theorem ∀ tn:TN • wf TN(tn) ⇒ wf N(abs N(tn))

s734

type
LnkM == plaza | way

value
wf TN: TN → Bool
wf TN(tn:(hll,h,(ln,hn))) ≡

wf Toll Lnk(h,ln,hn)(plaza) ∧ wf Toll Ways(hll,h) ∧
wf State Spaces(tn) [ to be defined under Determination ]

wf Toll Ways: ((H×L)×(H×L×L))∗ × H → Bool
wf Toll Ways(hll,h) ≡
∀ j:Nat • {j,j+1}⊆inds hll ⇒

let ((thj,tlj),(hj,ljj′,lj′j)) = hll(j),( ,(hj′, , )) = hll(j+1) in
wf Toll Lnk(thj,tlj,hj)(plaza) ∧
wf Toll Lnk(hj,ljj′,hj′)(way) ∧ wf Toll Lnk(hj′,lj′j,hj)(way) end ∧
let ((thk,tlk),(hk,lk,lk′)) = hll(len hll) in
wf Toll Lnk(thk,tlk,hk)(plaza) ∧
wf Toll Lnk(hk,lk,hk′)(way) ∧ wf Toll Lnk(hk′,lk′,hk)(way) end

s735

wf Toll Lnk: (H×L×H) → LnkM → Bool
wf Toll Lnk(h,l,h′)(m) ≡

obs Ps(l)={(obs HI(h),obs LI(l),obs HI(h′)),(obs HI(h′),obs LI(l),obs HI(h))} ∧
obs Σ(l) = case m of

plaza → obs Ps(l),
way → {(obs HI(h),obs LI(l),obs HI(h′))} end

This ends Example 82

8.6.5 Determination s736
acm-rtre-b

Definition 69 – Determination: By domain determination we understand an operation that
applies to a (projected) domain description, i.e., a requirements prescription, and yields a domain
requirements prescription, where the latter has made deterministic, or specific, some function
results or some behaviours of the former
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s737
tt1-dd

Example 83 – Timetable System Determination: We make airline timetables more specific,tt0-dd

more deterministic. There are given notions of departure and arrival times, and of airports, and of
airline flight numbers.s738

scheme TI TBL 2 =
extend TI TBL 1 with

class
type

T, An, Fn
end

s739
A timetable consists of a number of air flight journey entries. Each entry has a flight number, and a
list of two or more airport visits. an airport visit consists of three parts: An airport name, and a pair of
(gate) arrival and departure times.s740

scheme TI TBL 3 =
extend TI TBL 2 with

class
type

JR′ = (T × An × T)∗

JR = {| jr:JR′
• len jr ≥ 2 ∧ ... |}

TT = Fn →m JR
end

We illustrate just one, simple form of airline timetable queries. A simple airline timetable query either
just browses all of an airline timetable, or inquires of the journey of a specific flight. The simple browses741

query thus need not provide specific argument data, whereas the flight journey query needs to provide
a flight number. A simple update query inserts a new pairing of a flight number and a journey to the
timetable, whereas a delete query need just provide the number of the flight to be deleted.s742

The result of a query is a value: the specific journey inquired, or the entire timetable browsed. The
result of an update is a possible timetable change and either an “OK” response if the update could
be made, or a “Not OK” response if the update could not be made: Either the flight number of the
journey to be inserted was already present in the timetable, or the flight number of the journey to be
deleted was not present in the timetable.s743

That is, we assume above that simple airline timetable queries only designate simple flights, with
one aircraft. For more complex air flights, with stopovers and changes of flights, see Sect. 86 on
page 149.

You may skip the rest of the example, its formalisation, if your reading of this paper does not
include the various formalisations. First, we formalise the syntactic and the semantic types:

scheme TI TBL 3Q =
extend TI TBL 3 with

class
type

Query == mk brow() | mk jour(fn:Fn)
Update == mk inst(fn:Fn,jr:JR) | mk delt(fn:Fn)
VAL = TT
RES == ok | not ok

end

Then we define the semantics of the query commands:s744

scheme TI TBL 3U =
extend TI TBL 3 with

class
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value
Mq: Query → QU
Mq(qu) ≡

case qu of
mk brow() → λtt:TT•tt,
mk jour(fn)
→ λtt:TT • if fn ∈ dom tt

then [ fn 7→tt(fn) ] else [ ] end
end end

And, finally, we define the semantics of the update commands: s745

scheme TI TBL 3U =
extend TI TBL 3 with

class
Mu: Update → UP
Mu(up) ≡

case qu of
mk inst(fn,jr) → λtt:TT •

if fn ∈ dom tt
then (tt,not ok) else (tt ∪ [ fn 7→jr ],ok) end,

mk delt(fn) → λtt:TT •

if fn ∈ dom tt
then (tt \ {fn},ok) else (tt,not ok) end

end end

We can “assemble” the above into the timetable function — calling the new function the timetable
system, or just the system function. s746

Before we had:

value
tim tbl 0: TT → Unit
tim tbl 0(tt) ≡

(let v = client 0(tt) in tim tbl 0(tt) end)
⌈⌉ (let (tt′,r) = staff 0(tt) in tim tbl 0(tt′) end)

Now we get:

value
system: TT → Unit
system() ≡

(let q:Query in let v =Mq(q)(tt) in system(tt) end end)
⌈⌉ (let u:Update in let (r,tt′) =Mu(q)(tt) in system(tt′) end end)

s747
Or, for use in Example 99:

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
client(tt) ≡

let q:Query in let v =Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) =Mu(q)(tt) in system(tt′) end end
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We remind the reader that the above example can be fully understood by just reading the rough-
sketch texts, that is, without reading their formalisations.

This ends Example 83
s748
acm-rtre-b

arms-

determination

Example 84 – Determination: A Road Maintenance System: We continue Example 81.We
shall, in this example, claim that the following items constitute issues of more determinate nature of
the ‘Road Management System’ under development. fixing the states of links and hubs; endowing links
and hubs with such attributes as road surface material (concrete, asphalt, etc.), state of road surface
wear-and-tear, hub and link areas, say in m2, time units needed for and cost of ordinary cleaning of
m2s of hub and link surface; time units needed for and cost of ordinary repairs of m2s of hub and link
surface; etcetera.s749

18. The two links of a road segment are open for traffic in one direction and in opposite directions
only.

19. Hubs are always in the same state, namely one that allows traffic from incoming links to continue
onto all outgoing links.

20. Hubs and Links have a number of attributes that allow for the monitoring and planning of hub and
link surface conditions, i.e., whether in ordinary or urgent need of cleaning and/or repair.

s750

axiom
∀ rn:RN •

18 ∀ (h,(l,l′),h′):RS • (h,(l,l′),h′) ∈ elems rn ⇒
obs LΣl(l) = {(obs HI(h),obs LI(l),obs HI(h′))} ∧
obs LΣl(l′) = {(obs HI(h′),obs LI(l′),obs HI(h))} ∧

19 ∀ i:Nat • {i,i+1}⊆inds rn •

let ((h,(l,l′),h′),(h′,(l′′,l′′′),h′′)) = (rn(i),rn(i+1)) in
case i of

1 → obs HΣ(h) = {(obs LI(l),obs HI(h),obs LI(l′))},
len rn → obs HΣ(h′) = {(obs LI(l′),obs HI(h′),obs LI(l))},
→ obs HΣ(h′)

= {(obs LI(l),obs HI(h′),obs LI(l′)),(obs LI(l),obs HI(h′),obs LI(l′))}
end end

type
20 Surface, WearTear, Area, OrdTime, OrdCost, RepTime, RepCost, ...
value
20 obs Surface: (H|L)→Surface, obs WearTear: (H|L)→WearTear, ...

This ends Example 84
s751
acm-rtre-b

atrs-

determination

Example 85 – Determination: A Toll-road System: We continue Example 82. We single out only
two ’determinations’: The link state spaces. There is only one link state: the set of all paths through
the link, thus any link state space is the singleton set of its only link state. The hub state spaces are
the singleton sets of the “current” hub states which allow these crossings: (i) from terminal link back
to terminal link, (ii) from terminal link to emanating tollway link, (iii) from incident tollway link to
terminal link, and (iv) from incident tollway link to emanating tollway link. Special provision must be
made for expressing the entering from the outside and leaving toll plazas to the outside.s752

wf State Spaces: TN → Bool
wf State Spaces(hll,hn,(thn,tln)) ≡

let ((th1,tl1),(h1,l12,l21)) = hll(1),
((thk,ljk),(hk,lkn,lnk)) = hll(len hll) in

wf Plaza(th1,tl1,h1) ∧ wf Plaza(thn,tln,hn) ∧
wf End(h1,tl1,l12,l21,h2) ∧ wf End(hk,tln,lkn,lnk,hn) ∧
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∀ j:Nat • {j,j+1,j+2}⊆inds hll ⇒
let (,(hj,ljj,lj′j)) = hll(j),((thj′,tlj′),(hj′,ljj′,lj′j′)) = hll(j+1) in
wf Plaza(thj′,tlj′,hj′) ∧ wf Interm(ljj,lj′j,hj′,tlj′,ljj′,lj′j′) end end

wf Plaza(th,tl,h) ≡
obs HΣ(th) = [ crossings at toll plazas ]
{(external,obs HI(th),obs LI(tl)),

(obs LI(tl),obs HI(th),external),
(obs LI(tl),obs HI(th),obs LI(tl))} ∧

obs HΩ(th)={obs HΣ(th)} ∧
obs LΩ(tl) = {obs LΣ(tl)}

s753

wf End(h,tl,l,l′) ≡
obs HΣ(h) = [ crossings at 3−link end hubs ]
{(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(l)),
(obs LI(l′),obs HI(h),obs LI(tl)),(obs LI(l′),obs HI(h),obs LI(l))} ∧

obs HΩ(h) = {obs HΣ(h)} ∧
obs LΩ(l) = {obs LΣ(l)} ∧ obs LΩ(l′) = {obs LΣ(l′)}

wf Interm(ul 1,dl 1,h,tl,ul,dl) ≡
obs HΣ(h) = {[ crossings at properly intermediate, 5−link hubs ]

(obs LI(tl),obs HI(h),obs LI(tl)),(obs LI(tl),obs HI(h),obs LI(dl 1)),
(obs LI(tl),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(tl)),
(obs LI(ul 1),obs HI(h),obs LI(ul)),(obs LI(ul 1),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(tl)),(obs LI(dl),obs HI(h),obs LI(dl 1)),
(obs LI(dl),obs HI(h),obs LI(ul))} ∧
obs HΩ(h) = {obs HΣ(h)} ∧ obs LΩ(tl) = {obs LΣ(tl)} ∧
obs LΩ(ul) = {obs LΣ(ul)} ∧ obs LΩ(dl) = {obs LΣ(dl)}

Not all determinism issues above have been fully explained. But for now we should — in principle —
be satisfied. This ends Example 85

8.6.6 Extension s754

acm-rtre-b

Definition 70 – Extension: By domain extension we understand an operation that applies to a
(projected and possibly determined and instantiated) domain description, i.e., a (domain) require-
ments prescription, and yields a (domain) requirements prescription. The latter prescribes that
a software system is to support, partially or fully, an operation that is not only feasible but also
computable in reasonable time

s755
tt1-de

Example 86 – Timetable System Extension:
We assume a projected and instantiated timetable (see Sect. 83 on page 146).
A query of a timetable may, syntactically, specify an airport of origin, ao, an airport of destination,

ad, and a maximum number, n, of intermediate stops. The query semantically designates the set of all
those trips of one up to n direct air journeys between ao and ad, i.e., trips where the passenger may
change flights (up to n− 1 times) at intermediate airports. s756

scheme TI TBL 3C =
extend TI TBL 3 with

class
type

Query′ == Query | mk conn(fa:An,ta:An,n:Nat)
VAL′ = VAL | CNS
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CNS = (JR∗)-set
value
Mq(mk conn(fa,ta,n)) as
pre ...
post ...

end

Here we leave it to the reader to define the “connections” function! At present you need not be
concerned with the fact that TI TBL 3C does not include the timetable initialisation command. To
secure that we need to “juggle” some of the previously defined TI TBL x schemes. We omit showing
this.

This ends Example 86
s757
atrs-extension

Example 87 – Extension: A Toll-road System: We continue Examples 77 and 85. In the rough
sketch of the toll-road business processes (Example 77) references were made to a concept of a toll-
booth.

The domain extension is that of the controlled access of vehicles to and departure from the toll road
net: the entry to (and departure from) tollgates from (respectively to) an "an external" net — which
we do not describe; the new entities of tollgates with all their machinery; the user/machine functions:s758

upon entry: driver pressing entry button, tollgate delivering ticket; upon exit: driver presenting ticket,
tollgate requesting payment, driver providing payment, etc.

One added (extended) domain requirements: as vehicles are allowed to cruise the entire net payment
is a function of the totality of links traversed, possibly multiple times. This requires, in our case, thats759

tickets be made such as to be sensed somewhat remotely, and that intersections be equipped with
sensors which can record and transmit information about vehicle intersection crossings. (When exiting
the tollgate machine can then access the exiting vehicles sequence of intersection crossings — based
on which a payment fee calculation can be done.)

All this to be described in detail — including all the thinks that can go wrong (in the domain) and
how drivers and tollgates are expected to react.

We suggest only some signatures:s760

type
Mach, Ticket, Cash, Payment, Map TN

value
obs Cash: Mach → Cash, obs Tickets: M → Ticket-set
obs Entry, obs Exit: Ticket → HI, obs Ticket: V → (Ticket|nil)
calculate Payment: (HI×HI) → Map TN → Payment
press Entry: M → M × Ticket [ gate up ]
press Exit: M × Ticket → M × Payment
payment: M × Payment → M × Cash [ gate up ]

This ends Example 87

8.6.7 Fitting s761
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Definition 71 – Fitting: By domain requirements fitting we understand an operation that ap-
plies to two or more, say m, projected and possibly determined, instantiated and extended domain
descriptions, i.e., to two or more, say m, original domain requirements prescriptions, and yields
m + n (resulting, revised original plus new, shared) domain requirements prescriptions. The m
revised original domain requirements prescriptions resulting from the fitting prescribe most of the
original (m) domain requirements. The n (new, shared) domain requirements prescriptions result-
ing from the fitting prescribe requirements that are shared between two or more of the m revised
original domain requirements

s762
arms+atrs-fitting
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Example 88 – Fitting: Road Maintenance and Toll-road Systems: We end the series of examples
that illustrate requirements for a road maintenance respectively a toll-road system (Examples 77–87).
We postulate two domain requirements: We have outlined a domain requirements development for
software support for road maintenance; and we have outlined a domain requirements development for
software support for a toll-road system. s763

We can therefore postulate that there are two domain requirements developments, both based
on the transport domain: one, drroad-maint., for a toll road computing system monitoring and controlling
vehicle flow in and out of toll plazas, and another, drtoll-road, for a toll link and intersection (i.e., hub)
building and maintenance system monitoring and controlling link and hub quality and for development. s764

The fitting procedure now identifies the shared of awareness of the net by both drroad-maint. and
drtoll-road of nets (N), hubs (H) and links (L). We conclude from this that we can single out a common
requirements for software that manages net, hubs and links. Such software requirements basically
amounts to requirements for a database system. A suitable such system, say a relational database
management system, DBrel, may already be available with the customer. s765

In any case, where there before were two requirements (drroad-maint., drtoll-road) there are now four:
(i) d′rroad-maint., a modification of drroad-maint. which omits the description parts pertaining to the net; (ii)
d′rtoll-road

, a modification of drtoll-road which likewise omits the description parts pertaining to the net; (iii)
drnet, which contains what was basically omitted in d′rroad-maint.

and d′rtoll-road; and (iv) drdb:i/f (for database
interface) which prescribes a mapping between type names of drnet and relation and attribute names of
DBrel.

Much more can and should be said, but this suffices as an example. This ends Example 88

8.7 A Caveat: Domain Descriptions versus Requirements Prescriptions s766

acm-rtre-b

8.7.1 Domain Phenomena

When in the domain we describe simple entities by:

type L, H, N

then we mean that L, H and N denote types of real, actually in the domain occurring phenomena
l:L, h:H and n:N (as here, from Example 10, links, hubs and nets).

8.7.2 Requirements Concepts s767

When, however, in the requirements, we describe simple entities by the same identifiers then we
mean that L, H and N denote types of representation of domain phenomena l:L, h:H and n:N, not
the “the real thing”, but “only” representations thereof.

8.7.3 A Possible Source of Confusion s768

We have decided not to make a syntactic distinction between these two kinds of (simple entity,
operation, event and behaviour) names. The context, that is, the fact that such names occur in
a section on requirements, is enough, we think, to make the distinction clear. When there can be
doubt, as we shall see in the next section, on Interface Requirements (Sect. 8.8), then we shall
“spell out” the difference, viz., L (domain) versus LINK (requirements).

8.7.4 Relations of Requirements Concepts to Domain Phenomena s769

We did not bother to warn the reader, in Sects. 8.6.3–8.6.7, about the possible source of confu-
sion that lies in mistaking a requirements concepts for “the real thing”: its domain phenomena
“counterpart”. But we find that it is high time now, before we enter the section on ‘Interface Re-
quirements’ (just below), to highlight that the simple entities, operations, events and behaviours
referred to in requirements are concept whereas those of domains are phenomena. s770
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The reason (for now emphasising the difference) is simple: interface requirements are about
the relations between phenomena of the domain and concepts of the software (being required).

When, in the domain, we name a (simple entity, operation, event or behaviour) phenomena
D, and when in the requirements, we name a corresponding (simple entity, operation, event or
behaviour) R; then, by corresponding, we mean that there is an unprovable relation

R |= D.
s771

We cannot possibly formally claim that

R = D or even R ≃ D,

The R is a mathematical model of some requirements concept whereas D is thought of as “the
real thing”. Let us understand the above, seemingly contradictory statement: The D is expressed
mathematically, so it must be conceptual, as is R. Therefore they ought be comparable. If we
take this view that both are mathematical models, then all is OK and we can compare them.
If, however, we take the view that the names (of what is assumed, or claimed, to be domain
phenomena in D) denote “the real things, out there in the actual world”, then we cannot compare
them.s772

How do we, in the following, reconcile these two views ? We do so as follows: On one hand we
write

R |= D
to mean that the requirements abstractly models the domain, while, when we write

R abstractly refines D

or abs D(Req) = Dom we mean that the mathematical model of the requirements is a refinement
of the mathematical model of the domain — in which latter phenomena names are considered
names of mathematical concepts.

8.7.5 Sort versus Type Definitions s773

As a principle we prefer to use sorts and observer functions:

Example 89 – Domain Types and Observer Functions:

type
N, L, H, LI, HI, Location, Length

value
obs Ls: N → L-set, obs Hs: N → H-set
obs LI: L → LI, obs HI: H → HI
obs LIs: H → LI-set, obs HIs: L → HI-set
obs Location: L → Location, obs Length: L → Real

rather then type definitions:s774

Example 90 – Requirements Types and Decompositions:

type
LI, HI, Location, Length
N = L-set × H-set
L = LI × (HI×HI) × Location × Length × ...
H = HI × LI-set × Length × ...

value
(ls,hs):N, (li,(fhi,thi),loc,len,...):L, (hi,lis,len,...):H
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when defining simple domain entities. The type definitions are then typically introduced in re-
quirements prescriptions. As shown in the last formula line of Example 90 on the preceding page,
the observer functions of domain descriptions can then be simply effected by decompositions.

Discussion s775

8.8 Interface Requirements s776

acm-rtre-c

8.8.1 Acquisition s777

Interface requirements acquisition evolves around a notion of shared phenomena and concepts of
the domain. These are listed now.

• Shared Simple Entities: The shared simple entities are those simple entities that ‘occur’ in
the domain but must also be represented by the machine.

• Shared Operations: The shared operations are those operations of the domain that can only
be partially ‘executed’ by the machine.

• Shared Events: The shared events are those events of the domain that must be brought to
the attention of the machine.

• Shared Behaviours: The shared behaviours are those behaviours of the domain that can
only be partially ‘processed’ by the machine.

s778

Again the requirements engineers “walk” through the domain description together with each group
of requirements stake-holders marking up all the shared phenomena and concepts, and decides their
basic principles resolution, which are duly noted in the evolving interface requirements document.

8.8.2 Shared Simple Entity Requirements s779

Definition 72 – Shared Simple Entity: By a shared simple entity we understand a simple entity
that ‘occurs’ in the domain but must also be represented by the machine.

s780
shared-se-ru

Example 91 – Shared Simple Entities: Railway Units: We may think of a train traffic monitoring
and control system being interface requirements developed. The following phenomena are then identified
as among those being shared: rail units, signals, road level crossing gates, train sensors (optical sensor
sensing passing trains) and trains. This ends Example 91

s781
shared-se-tru

Example 92 – Shared Simple Entities: Toll-road Units: We may think of a toll-road traffic
monitoring and control system being interface requirements developed. The following phenomena are
identified as among those being shared: links, hubs, cars, (optical sensors sensing passing cars) toll-
both gates, toll-booth externally arriving car sensor, toll-booth internally arriving car sensor, toll-booth
request slip sensor and toll-booth accept slip sensor. This ends Example 92

acm-rtre

s782
shared-tndrExample 93 – Shared Simple Entities: Transport Net Data Representation: We deliberately

formulated Examples 91: “Shared Simple Entities: Railway Units” and 92: “Shared Simple Entities:
Toll-road Units” so as to conjure the image of two very similar set of requirements. These are now
made into one set. In this example we focus on the machine representation of simple entities. We now
continue these examples as well as Example 84. s783

21. The shared simple entities are the links and the hubs. In the domain we referred to these by the
sort names L and H, in the machine they will be represented by the types LINK and HUB

22. Now we must make sure that we can abstract LINK s and HUBs “back” into L and H.
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23. A number of properties that could be observed of links and hubs in the domain must be represented,
somehow, in the machine. (Again we refer to Example 84.) Some properties are:link and hub
Location, link Length, road (link and hub) Surface material (concrete, macadamised, dirt road,
etc.), road (link and hub) WearTear (surface quality), Date last surveyed (i.e., monitored) Date
last maintained (i.e., controlled) with respect to surface quality, next scheduled Date of survey,
etc.s784

24. Let us call the pair of sets of representations of LINK s and HUBs for NET. We omit, in this
example, the modelling of net attributes.

25. We postulate an abstraction function, abs N, which from a concretely represented net:NET ab-
stracts the abstract n(et) in N(et).

26. Tentatively we might impose the following representation theorem (a relation) between concrete
and abstract nets: the links [hubs] (in L [in H ]) that can be abstracted from any concrete net net
must be those observable in the abstracted net.

s785

type
21 Length, Surface, WearTear, Date, L Location, H Location
23 LINK = LI×(HI×HI)×L Location×Length×Surface×WearTear×(Date×Date×Date)× ...
23 HUB = HI×H Location×Surface×WearTear×(Date×Date×Date)× ...
24 NET = LINK-set × HUB-set
value
22 abs L: LINK → L, abs H: HUB → L
25 abs N: NET → N
theorems:
25 ∀ (links,hubs):NET, ∃ n:N •

25 (links,hubs) |= n ∧
25 abs N(links,hubs) abstractly refines n ∧
26 let ls = {abs L(link)|link:LINK • link ∈ links}
26 hs = {abs H(hub)|hub:HUB • hub ∈ hubs} in
26 obs Ls(abs N(net))|=ls ∧ obs Hs(abs N(net))|=hs end

We shall discuss the representation of concrete hubs in Example 94. This ends Example 93
s786
acm-rtre-c In Example 93 (“Shared Simple Entities: Transport Net Data Representation”) we kept an abstract

representation of links and hubs. At some time in the software development process we are forced
to decide on a concrete type representation of links and hubs so that we can implement those types
through the use of a practical programming language. Here we shall choose, as already hinted at in
Example 88, to represent links and hubs as tuples in relations of a relational database management
system.s787

shared-tnhs

Example 94 – Representation of Transport Net Hubs:
We continue Example 93 (“Shared Simple Entities: Transport Net Data Representation”).
With the hints given in the text paragraph just preceding this example we are now ready to suggest

a concrete type for LINK s and HUBs, namely as tuples or respective relations, but with the twist that
we do not endow a concrete hub representation with the set of link identifiers that, in the domain, can
be observed from that hub since, as we shall shortly show, that information can be calculated from
the set of links having the same hub identifiers as that of the hub. You may now object, if you dids788

not already wonder way back in Example 10, as to why we did not already include this in the domain
model of the net. The answer is: Yes, we could have done that, but we prefer to have modelled links
and hubs, as we did it in Example 10, since we think that that is a most abstract, “no tricks” model.
The “tricks” we refer to is represented below by the xtr LIs function.s789

type
L Location, H Location
LINK = LI×(HI×HI)×L Location×Length×Surface×WearTear×(Date×Date×Date)× ...
HUB = HI×H Location×Surface×WearTear×(Date×Date×Date)× ...
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RDB = LINK-set × HUB-set
value

xtr LIs: HUB → RDB → LI-set
xtr LIs(hi,hl,s,wt,(ld,md,nd),...)(ls,hs) ≡
{li|li:LI•

∃ link:(li′,(hi′,hi′′),ll,lgt,s,wt,(d′,d′′,d′′′),...):LINK•

link ∈ ls ∧ (hi=hi′ ∨ hi=hi′′)}

This ends Example 94
s790
acm-rtre-cThe requirements example that now follows to some extent deviate from the ideal of expressing

requirements: rather than expressing properties, the what, these requirements express an abstract
design, the how. One might very well claim that the example that now follows really should be
moved to a section on Software Design since it can be said to be such an abstract design. Be that as
it may, we have chosen to place the next example here, under shared entity data initialisation, as
it illustrates that concept rather well. The point is that the more we include considerations of the
machine the the more operational, that is, the less what the more how the interface requirements
becomes.

s791 shared-tndi

Example 95 – Shared Simple Entities: Transport Net Data Initialisation: We continue Exam-
ple 93 (“Shared Simple Entities: Transport Net Data Representation”). We now focus on the initiali-
sation of simple entity data.

27. Input of representations of simple transport net entities, that is, representations of links and hubs,
is by means of a software package, call it NetDataInput.

28. NetDataInput assumes a rather old-fashioned constellation of a graphic user interface (GUI),
NetDataGUI, in-data and a conventional relational database NetDataRDB.

29. The NetDataRDB is here thought of as just consisting of two relations ls:LINKS and hs:HUBS. s792

30. Each relation consists of a set of LINK, respectively HUB “tupleisations” of links and hubs — which,
to repeat, are representations of links and hubs .

31. When NetDataInput is invoked, the NetDataInput GUI shall open in a window with a click-able,
simple either/or choice icon: Road Net or Rail Net.

32. Clicking one of these shall result in replacing the either/or window being replaced by a window for
the input of net units for the selected choice of net. s793

In the following we shall treat only the Road Net variant of this interface requirements.
33. The Road Net (GUI) window has the following alternative click-able choice icons: link and hub.
34. Clicking the Road Net link icon shall result in replacing the Road Net window being replaced by

a window for the input of representations of road links. Similarly for clicking the Road Net link

icon.
In the following we shall treat only the Road Net link icon variant of this interface requirements.

s794

35. The Road Net link window has the following named fields:

• link identifier fill in

• hub identifier 1 fill in

• hub identifier 2 fill in

• link location fill in

• link surface fill in

• link wear & tear fill in

• a triple of link dates:
⋆ last survey fill in

⋆ last maintenance fill in

⋆ next survey fill in

• et cetera.
• submit

Each field, except for the submit icon, consists of a name part and an input, fill in , part. (In
the formalisation below the type names “cover” both parts.) The system shall assign unique link
identifiers, i.e., “fill-in” the link identifier automatically. s795

36. Clicking the submit icon shall result in the following checks:
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• The composite in-data, keyed into the input parts of the Road Net link window fields are
vetted:
⋆ Is the link identifier already defined ?
⋆ Do the location co-ordinates conflict with earlier input ?
⋆ Are the dates in an appropriate chronological order ?
⋆ Et cetera.

• If checks are OK, then the following actions are performed:
⋆ The NetDataRDB link relation is updated to reflect the new link tuple.
⋆ The Road Net system then reverts to the Road Net link window, allowing, however, the

input staff to select the alternative (i) Road Net hub window, or (ii) to request a partial
or full vetting of the state of the NetDataRDB link and hub relations, (iii) or to conclude
the input on net data.

s796

Here we stop our ‘abstract’ narrative of interface requirements for data (i.e., simple entity) initialisation.
We next rough-sketch the beginnings of a formalisation.

Rail / Road Link / Hub

Road Net Link

Link Id:
Hub 1: 
Location:

Wear&Tear:
Last Survey
Last Maintenance
Next Survey

Surface:

Dates:

Hub 2:

Net Initialisation Road Net

...
vet concluderoad net hub ...

Fig. 8.2. Three snapshots of NetDataInput

s797

type
27 NDI
29 RDB = Links × Hubs
30 Links = LINK-set
30 Hubs = HUB-set
31 GUI == EitherOrW | RoadNetW | RailNetW
31 EitherOrW == roadnet | railnet
33 RoadNetW == link | hub
35 LINK = LI×(HI×HI)×L Location×Surface×WearTear×(Date×Date×Date)× ...
35 HUB = HI×H Location×Surface×WearTear×(Date×Date×Date)× ...

Response == ok | (not ok × Error Msg)
Error Msg

value
28 obs GUI: NDI → GUI, obs RDB: NDI → RDB
32 select RoadOrRail: GUI → GUI
34 select Link or Hub: GUI → GUI
36 submit Link input: GUI → GUI × Response

We leave it to the reader to complete the interface requirements for shared simple entity initialisation.
A similar set of interface requirements can be established for for shared simple entity refreshment.

This ends Example 95
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8.8.3 Shared Operation Requirements s798
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Definition 73 – Shared Operation: By a shared operation we understand an operation of the
domain that can only be partially ‘executed’ by the machine — with the remaining operation parts
being “executed” by a human or some “gadget” of the domain “outside” of our concern.

We start by giving a consolidated domain description of a fragment of a financial services
industry, in other words: Example 96 is not a requirements prescription. But it will be the basis
for a shared operations interface requirements prescription. s799

pfm-shrd-tops

Example 96 – Shared Operations: Personal Financial Transactions: With the advent of the
Internet,i.e., computing and communications, and with the merging of in-numerous functionalities of
the financial service sector, we are witnessing the ability of some clients of the financial service industry
to handle most of their transactions “themselves”.

In the first part, Items 37–45 of this example, we rough-sketch the state and the signatures of some
of the client operations of a financial service industry. In the second part, Items 50–62, we rough sketch
client states and behaviours. s800

37. The financial service industry includes one or mare banking and securities instrument trading
services.
a) Banks are uniquely identified (BId).
b) Banks offer accounts:

i. a client may have one or more demand/deposit accounts and
ii. one or more mortgage accounts, identified by account numbers;

accounts, in this simplified example, holds a balance of (deposited or mortgaged) money.
c) Two or more clients may share accounts and bank registers correlate client names (C ) to

account and (A) mortage (M) account numbers.
d) We do not describe bank identifiers, client names, demand/deposit account numbers, mortgage

account numbers,
s801

type
37 Banks, SecTrad
37a Banks = BId →m Bank
37b Bank = Registers × Accounts × Mortgages × ...
37(b)i Accounts = A →m Account
37(b)ii Mortgages = M →m Mortgage
37c Registers = C →m (A|M)-set
37d C, A, BId, Account, Mortgage, Account, Mortgage, OrdNr

s802

38. Bank clients
a) open account and
b) close (demand/deposit and mortgage) accounts,
c) deposit money into accounts,
d) transfer money to (possibly other client) accounts (possibly in other banks and to/from security

traders’ bank accounts — the latter reference also to buy and sell offer order numbers, OrdNr),
and

e) withdraw (cash) money (say, through an ATM).
39. Client supplied arguments to and
40. responses from these banking operations are also not further described.

s803

value
38a openacct: Arg∗ → Banks → Banks × Response
38b closeacct: Arg∗ → Banks → Banks × Response
38c deposit: Arg∗ → Banks → Banks × Response



158 8 Requirements Engineering

38d transfer: Arg∗ → Banks → Banks × Response
38e withdraw: Arg∗ → Banks → Banks × Response
type
39 Arg = BId | C | A | M | OrdNr | Amount | Cash | Date | Time
40 Response = (A | M | Cash | ... | Date | Time)-set

s804

41. A securities exchange keeps track of buy and sell offers, of suspended such offerings and of trans-
acted trading.

42. Basic concepts of trading, apart from buying, selling, suspension and concluded trading, are
a) securities instrument identifications (SId);
b) quantities offered for selling or buying, or traded (Quant);
c) the order numbers of placed offers (OrdNr),
d) prices (Price),
e) dates (Date) and
f) times (Time).

type
41 SecTrad = BuyOfrs × SellOfrs × Suspension × Tradings
42 SId, Quant, OrdNr, Price, Date, Time, ...

s805

43. Securities trading allows clients
a) to place buy and
b) sell offers,
giving their client and bank identification, their bank demand/deposit account number (from which
to withdraw [i.e., demand], resp. into which to deposit) buying or selling prices), the securities
instrument [e.g., stock] identifier, quantity to be bought or sold, the high, respectively the low
price acceptable, and the last date of the offer.

44. Clients may inquire as to the trading status of their offer.
45. We can therefore think of the following kinds of client transaction “codes” (Cmd): omkt (observe

the market), open (some kind of bank or securities trading account: demand/deposit, mortgage,
trading, etc.), deposit, withdraw, transfer, close, buy offer, sell offer, inquire, et cetera.

s806

value
43a int buyofr: Arg∗ → SecTrad → SecTrad × Response
43b int sellofr: Arg∗ → SecTrad → SecTrad × Response
44 trading: SecTrad → SecTrad × Response

type
45 Cmd == obsmkt|analmkt|openacct|deposit|withdraw|transfer|closeacct|...|buyofr|sellofr|trading|...

s807
We can, finally, suggest crucial components of the securities exchange state:

46. BuyOfrs map client names, C, into (client) bank identifiers, BId, and client account numbers, A,
which then map into OrdNrs, which (then again) map into a quadruple of securities instrument
identifications, SId,Quantity of instrument to be bought, the preferred lowest Price and the Date
of placement or order.

47. SellOfrs have same components as buy offers — but now the Price designate a highest price.
48. Suspensions just list order number and date and time of suspension.
49. Tradings list pertinent information.

type
46 BuyOfr = OrdNr →m (C × BId × A) →m (SId × Quant × Price × Date)
47 SellOfr = OrdNr →m (C × BId × A) →m (SId × Quant × Price × Date)
48 Suspension = OrdNr →m (C × Date × Time)
49 Tradings = OrdNr →m SId × Quant × Price × (C×Bid×A×(Date×Time))
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s808
We now rough-sketch a concept of ‘personal finance management’ operations. It is in this part, not
the first, that this example reveals that it is an example of an operation that is shared between the
domain and the machine. We maintain, however, that the example is still that of a domain description.
The operation is that of a client managing own, personal finances. This ‘personal finance management’ s809

operation is a composite operation. It is a sequence of ”one-step” operations, each operation being a
banking or a securities trading. (For simplicity, but without any loss of generality, we limit the example
to just these two sets of operations.) Each such operation results in a date- and time-stamped response
(Item 40 on page 157). Each response is studied by the client. The client may then decide to proceed
with further ‘one-step’ operations or end this sequence “at this time” — allowing, of course, the client
to resume ‘personal finance management’ at a later ‘personal finance management session’. s810

40. Each of the banking and securities instrument operations result in a response.
50. This response becomes part of the client’s ‘finance management’ state, ΠΦΣ.
51. We refer to the global financial service industry state as Ω.

Besides the banks and securities trading, the global financial service industry state (ω:Ω)
is thought of as including all those aspects of the clients of this industry which affects
and/or reflects the financial situation.

52. A ‘personal finance management (pfm) session’ is now a conditional iteration (formula Line 56
below) of personal finance management operations. s811

53. A client can always observe the dated and timed responses received as a result of past personal
f inance management operations.

54. An iteration of ‘personal finance management’ starts with the client analysing (ω anal mkt) the
market based on past responses;

55. followed by an analysis (cli anal mkt) of the personal financial situation based on the market
response.

56. If the analysis advises some ‘personal finance management’
57. then the client inquires, what to do, past responses and as to which transaction, cmd, and with

which arguments, argl, such a transaction should be performed.
This operation, what to do, is not computable. It is an operation performed basically by
the client. s812

58. The client then performs (Int Cmd) this (i.e., the cmd) transaction. The transaction usually
transforms the finance industry state (ω) into a next state (ω′) and always yields a date- and

59. Once the transaction has been concluded the client reverts to the ‘personal finance management
(pfm) session’ with an updated “past responses” (merge pfm) and in the new global state, ω′.

60. Else, that is, if the analysis “advises” no transactions, the ‘personal finance management’ state,
πφσ and the global financial state, ω, is left unchanged and the (i.e., this) session ends.

61. To perform a transaction depends on which kind of transaction, cmd, has been advised.
62. We leave the interpretation of Int Cmd to the reader.

π The lines, below, marked π designate actions that are performed by the client or jointly between
the client and the financial system (designated by an ω or ω′ argument).

s813

type
50–51 ΠΦΣ, Ω
53 Responses = (Date×Time) →m Response
45 Cmd == obsmkt|analmkt|openacct|deposit|withdraw|transfer|closeacct|...|buyofr|sellofr|trading|...
value
53 obs Responses: ΠΦΣ → Responses
52 pfm session: ΠΦΣ → Ω → Ω × ΠΦΣ
52 pfm session(πφσ)(ω) ≡
53π let past responses = obs Responses(πφσ) in
54π let ω response = ω anal mkt(past responses)(ω) in
55π let πφσ response = cli anal mkt(response)(πφσ) in
56π if advice pfm action(πφσ response)
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57π then let (cmd,argl) = what to do(πφσ response)(ω) in
58 let (response,ω′) = Int Cmd(cmd,argl)(ω) in
59π pfm session(merge pfm(response,date,time)(πφσ))(ω′) end end end
60 else (ω,πφσ) end end end
54 ω anal mkt: Responses → Ω → Response
55π cli anal mkt: Response → ΠΦΣ → Response
56 advice pfm action: Response → Bool
57π what to do: Responses → Ω → Cmd × Arg∗

59π merge pfm: Responses → ΠΦΣ → Ω → Ω × ΠΦΣ

s814

61. To perform a transaction depends on which kind of transaction, cmd, has been advised.
63. A case distinction is made between the very many kinds of transactions (listed in Item 45).
64. The obs mkt and anal pfm operations do not change the state of the financial industry.

We think of these operations as not being computable functions. Rather we think of them
as a more-or-less “informed” study, by the client of the market of financial instruments
including the status of those enterprises whose stocks are traded.

65. The argument l ist of the open transaction indicates which kind of account is to be established
(demand/deposit, mortgage, etc.).

66. The argument l ist of the buy of fer transaction indicates which kind of securities (stocks, oil,
metals, or other commodities) is sought, in which quantity, at which price level, up till which date,
et cetera.

s815

value
61 Int Cmd: (Cmd × Arg∗) → Ω → Ω × Response
61 Int Cmd(cmd,argl)(ω) ≡
63 case cmd of
64π obsmkt → (ω,eval obs mkt(argl)(ω)),
64π analmkt → (ω,ω anal mkt(argl)(ω)),

...
65π openacct → int open acct(argl)(ω),

...
66π buyofr → int buyofr(argl)(ω),

...
63 end

64π eval obs mkt: Arg∗ → Ω → Response
64π ω anal mkt: Arg∗ → Ω → Response
65 int open acct: Arg∗ → Ω → Ω × Response
66 int buyofr: Arg∗ → Ω → Ω × Response

This ends Example 96
s816
acm-rtre-c The reader may well ask: What in Example 96 illustrates the shared operations interface require-

ments ? We have already indicated part of the answer to this question by the π annotations. Why is
this a reasonable question ? It is a reasonable question because we have not made that abundantly
clear. That is, we have not discussed the placement of π annotations in much detail. Example 96
could really be construed as a domain description based in the intrinsics, support technology,
management and organisation and human behaviour regime.

8.8.4 Shared Event Requirements s817

acm-rtre-c

Definition 74 – Shared Event: By a shared event we understand an event of the domain that
must be brought to the attention of the machine.
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We defer the exemplification of shared events till our treatment of ‘shared behaviour’. In
Sect. 8.8.5 we exemplify ‘shared behaviours’. The ‘step of development’, from the specification of
Example 96 (Shared Operations) to the specification of Example 97 (Shared Behaviours) is not a
formal refinement: but it can be made into such a formally verifiable refinement. So we pose that
as a relevant MSc Thesis topic.

8.8.5 Shared Behaviour Requirements s818

Definition 75 – Shared Behaviour: By a shared behaviours we understand a behaviour of the
domain that can only be partially ‘processed’ by the machine — with the remaining behaviour being
provided by humans or some “gadgets” of the domain,“outside” of our concern.

s819
pfm-shrd-bhvs

Example 97 – Shared Behaviours: Personal Financial Transactions:

67. There is an index set, CI, of clients.
68. For each client there is an “own”
69. ‘personal finance management’ state πφσci : ΠΦΣ (cf. 50 on page 159).
70. The finance industry “grand state” ω : Ω is as before (cf. Item and formula line 51 on page 159).
71. The system consists of

a) an indexed set of client behaviours
b) and one finance industry “grand state” behaviour omega.

72. We model communications between clients and the financial industry to occur over client-industry
channels.

73. We model communications over these channels as being of type M. M will be “revealed” as we go
on.

s820

type
67 CI
68 ΠΦΣs = CI →m ΠΦΣ
69 ΠΦΣ
70 Ω = Banks × SecTrad × ...
value
67 cis:CI-set
68 πφσs:ΠΦΣs
70 ω:Ω
71 system: Unit → Unit
71 system() ≡
71a ‖ {client(ci)(πφσs(ci))|ci:CI•ci ∈ cis}
71b ‖ omega(ω)
channel
72 {c ω ch[ ci ]|ci:CI•ci ∈ cis} M
type
73 M

s821
Let us first consider the issue of events. First the events arise in “the market”, here symbolised with
the global state ω : Ω.

74. The omega(ω) behaviour and the client(ci)(πφσs(ci)) behaviours, for all clients, are cyclic —
expressed through ‘tail recursion’ over possibly updated states.

75. To model events we let the omega(ω) behaviour alternate between either
a) inquiring its state as to unusual situations in, the status status of, “the market”, and,
b) if so, inform an arbitrary subsets of clients of such “events” and
c) continuing in an unchanged global financial system state

or
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76. servicing client requests — from any client.
s822

type
Event

value
omega: Ω → in,out {c ω ch[ ci ]|ci:CI•ci ∈ cis} Unit
omega(ω) ≡

75b (let scis:CI-set • scis⊆cis in
75a let event = ωstatus(ωsnapshot(ω)) in
75b if nok status(event) then {c ω ch[ ci ]!event|ci:CI•ci ∈ scis} end;
75c omega(ω) end end)
75 ⌈⌉
76 ⌈⌉⌊⌋ {let req = c ω ch[ ci ] ? in ... see Items81–88b ... end | ci:CI • ci ∈ cis}
75a ωsnapshot: Ω → Ω
75a ωstatus: Ω → Event
75b nok status: Event → Bool

s823
Then we consider how clients respondto becoming aware of unusual events in “the market”.s824

77. Clients alternate between handling events:
78. first deciding (76–78) to “listen to the market”,

a) then updating an own personal finance state (πφσ),
b) and then coming a client behaviour in that new personal finance state,
and

79. handling ordinary, that is, personal finance management (pfm) or
80. just idling.

s825

value
77 client: ci:CI → ΠΦΣ → in,out c ω ch[ ci ] Unit
77 client(ci)(πφσ) ≡
78 (let event = c ω ch[ ci ]? in
78a let πφσ′ = update πφσ(πφσ)(event) in
78b client(ci)(πφσ′) end end)
77 ⌈⌉
79 client(ci)(pfm session(ci)(πφσ))
77 ⌈⌉
80 client(ci)(πφσ)

s826
Let us now turn to the treatment of usual financial transactions. The main functions, in Example 96, are
pfm session (Items 52–60 and formulas on Pages 159–160) and Int Cmd (Items 63–66 and formulas
on Pages 160–160) We now analyse these two functions. We refer, in the following to the formula lines
on Pages 159–160 and Pages 160–160. The analysis is with respect to what actions, π, are expected to
occur in the client behaviour and what actions are expected from the financial industry (i.e., to occur
in the omega behaviour).s827

In pfm session (Pages 159–160), formula lines

• 53π: obs Responses(πφσ),
• 55π: cli anal mkt(response)(πφσ),

• 56π: if ok or nok = ok and
• 59π: merge pfm(response,date,time)(πφσ)

are expected from the client behaviour, all others from the industry, i.e., the omega behaviour.
In Int Cmd (Pages 160–160), formula lines
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• 64π: eval obs mkt(argl)(ω),
• 64π: ω anal mkt(argl)(ω),
• 65π: int open acct(argl)(ω),

• . . . ,
• 66π: int buyofr(argl)(ω),
• . . . ,

are expected from the client behaviour. s828

Of the functions itemised above, the

81. (54π) ω anal mkt(past responses)(ω),
82. (64π) eval obs mkt(ω),
83. (65π) int open acct(argl)(ω),

84. . . . ,
85. (66π) int buyofr(argl)(ω),
86. . . . ,

functions — as invoked by the client, in the pfm session and the Int Cmd behaviours — require
access to the global financial service industry state ω.

The idea is now, for the client, in its Int Cmd (see Formula lines 61.0 onwards [Page 164]) to
communicate these functions, as function named argument lists, cf. Formula lines 81–86 below.

s829

type
FCT == Anal mkt|Obs mkt|...|Open aact|...|Buy Ofr|...

81 Anal mkt = mkAnalMkt(argl:Arg∗)
82 Obs mkt = mkObsMkt(argl:Arg∗)
83 Open acct = mkOpenAcct(argl:Arg∗)
84 ...
85 Buy Ofr = mkBuyOfr(argl:Arg∗)
86 ...
channel
72 {c ω ch[ ci ]|ci:CI•ci ∈ cis}: Event | FCT | Response

s830

87. The omega behaviour thus alternates
a) between accepting and responding to either of the many forms of functions, FCT
b) or generating event notifications.

88. If the omega behaviour of its own will, that is, internally non-deterministically chooses to accept a
client initiate request it externally non-deterministically chooses which client request to serve.
a) The omega behaviour deciphers the request;
b) applies the communicated function to (possibly communicated arguments) and the ω”grand

state”; and communicates the result back to the chosen client.

s831

value
omega: Ω → in,out {c ω ch[ ci ]|ci:CI•ci ∈ cis} Unit
omega(ω) ≡

87b (let scis:CI-set • scis⊆cis in
87b let event = ωstatus(ωsnapshot(ω)) in
87b if nok status(event) then {c ω ch[ ci ]!event|ci:CI•ci ∈ scis} end;
87b omega(ω) end end)
87 ⌈⌉
88 ⌈⌉⌊⌋ {let req = c ω ch[ ci ] ? in
88a case req of
87a mkObsMkt(argl) → c ω ch[ ci ] ! eval obs mkt(argl)(ω) ; omega(ω),
87a mkAnalMkt(argl) → c ω ch[ ci ] ! ω anal mkt(argl)(ω) ; omega(ω),
87a mkOpenAcct(argl) →
88a let (ω′,res) = int open acct(argl)(ω) in c ω ch[ ci ] ! res ; omega(ω′) end,
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87a ...
87a mkBuyOfr(argl) →
88a let (ω′,res) = int buyofr(argl)(ω) in c ω ch[ ci ] ! res ; omega(ω′) end,
87a ...
88a end end | ci:CI • ci ∈ cis}

Some auxiliary functions:s832

value
64π eval obs mkt: Arg∗ → Ω → Response
64π ω anal mkt: Arg∗ → Ω → Response
65 int open acct: Arg∗ → Ω → Ω × Response
66 int buyofr: Arg∗ → Ω → Ω × Response

There is only minor changes, marked
√

, to pfm session: (52) an additional argument, ci:CI and (58)
an additional argument, (ci) to Int Cmd(ci)(cmd,argl).s833

value
52
√

pfm session: ci:CI → ΠΦΣ → in,out ωch ΠΦΣ
52
√

pfm session(ci)(πφσ) ≡
53 let past responses = obs Responses(πφσ) in
54 let response = ωch[ ci ]!mkObsMkt(past responses); ωch[ ci ] ? in
55 let response = analyse pfm(past responses)(πφσ) in
56 if advice pfm action(response)
57 then (let (cmd,argl) = what pfm to do(response) in
58
√

let response = Int Cmd(ci)(cmd,argl) in
59
√

pfm session(ci)(merge pfm(response)(πφσ)) end end) end
60 else πφσ end end end

56 advice pfm action: Response → Bool
55 analyse pfm: Responses → ({|ok|}|Event) → {|ok|nok|}

Similarly the changes to Int Cmd are obvious and marked, as before, with .i, i = 0, 1, 2, 3:s834

value
61.0 Int Cmd: ci:CI × (Cmd × Arg∗) → in,out ωch Response
61 Int Cmd(ci)(cmd,argl) ≡
61 case cmd of
61.2 obsmkt → ωch[ ci ]!mkObsMkt(argl) ; ωch[ ci ]?
61.2 analpfm → ωch[ ci ]!mkAnalMkt(argl) ; ωch[ ci ]?
61 ...
61.2 openacct → ωch[ ci ]!mkOpenAcct(argl) ; ωch[ ci ]?
61 ...
61.3 buyofr → ωch[ ci ]!mkBuyOfr(argl) ; ωch[ ci ]?
61 ...
61 end

This ends Example 97

Discussion s835

acm-rtre-c

to be written
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8.9 Machine Requirements s836

acm-rtre-d

Definition 76 – Machine Requirements: By machine requirements we understand those re-
quirements that can be expressed sôlely in terms of (or with prime reference to) machine concepts

8.9.1 An Enumeration of Machine Requirements Issues s837

There are many separable machine requirements. To find one’s way around all these separable
machine requirements we shall start by enumerating the very many that we shall overview.

s838

1. Performance Requirements from Page 166

a) Storage Requirements from Page 167
b) Machine Cycle Requirements from Page 167
c) Other Resource Consumption Requirements from Page 167

2. Dependability Requirements from Page 167

a) Accesability Requirements from Page 168
b) Availability Requirements from Page 169
c) Integrity Requirements from Page 169
d) Reliability Requirements from Page 169
e) Safety Requirements from Page 169
f) Security Requirements from Page 170

s839

3. Maintenance Requirements from Page 170

a) Adaptive Maintenance Requirements from Page 171
b) Corrective Maintenance Requirements from Page 171
c) Perfective Maintenance Requirements from Page 171
d) Preventive Maintenance Requirements from Page 171

4. Platform Requirements from Page 172

a) Development Platform Requirements from Page 172
b) Execution Platform Requirements from Page 172
c) Maintenance Platform Requirements from Page 172
d) Demonstration Platform Requirements from Page 172

5. Documentation Requirements from Page 173

8.9.2 Performance Requirements s840

Definition 77 – Performance Requirements: By performance requirements we understand ma-
chine requirements that prescribe storage consumption, (execution, access, etc.) time consumption,
as well as consumption of any other machine resource: number of CPU units (incl. their quanti-
tative characteristics such as cost, etc.), number of printers, displays, etc., terminals (incl. their
quantitative characteristics), number of “other”, ancillary software packages (incl. their quantita-
tive characteristics), of data communication bandwidth, etcetera.

s841

Pragmatically speaking, performance requirements translate into financial resources spent, or to
be spent.

Example 98 – Timetable System Performance: We continue Example 86 on page 149. The
machine shall serve 1000 users and 1 staff simultaneously. Average response time shall be at most 1.5
seconds, when the system is fully utilised. This ends Example 98
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General s842

Till now we may have expressed certain (functions and) behaviours as generic (functions and)
behaviours. From now on we may have to “split” a specified behaviour into an indexed family of
behaviours, all “near identical” save for the unique index. And we may have to separate out, as a
special behaviour, (those of) shared entities.

s843

Example 99 – Timetable System Users and Staff: We continue Example 83 on page 146 and
Example 98 on the previous page. In Example 83 the sharing of the timetable between users and staff
was expressed parametrically.

system(tt) ≡ client(tt) ⌈⌉ staff(tt)

client: TT → Unit
client(tt) ≡ let q:Query in let v =Mq(q)(tt) in system(tt) end end

staff: TT → Unit
staff(tt) ≡

let u:Update in let (r,tt′) =Mu(u)(tt) in system(tt′) end end

s844
We now factor the timetable entity out as a separate behaviour, accessible, via indexed communications,
i.e., channels, by a family of client behaviours and the staff behaviour.

type
CIdx /∗ Index set of, say 1000 terminals ∗/

channel
{ ct[ i ]:QU,tc[ i ]:VAL | i:CIdx }
st:UP,ts:RES

value
system: TT → Unit
system(tt) ≡ time table(tt) ‖ (‖ {client(i)|i:CIdx}) ‖ staff()

s845

client: i:CIdx → out ct[ i ] in tc[ i ] Unit
client(i) ≡ let qc:Query in ct[ i ]!Mq(qc) end tc[ i ]?;client(i)

staff: Unit → out st in ts Unit
staff() ≡ let uc:Update in st!Mu(uc) end let res = ts? in staff() end

time table: TT → in {ct[ i ]|i:CIdx},st out {tc[ i ]|i:CIdx},ts Unit
time table(tt) ≡
⌈⌉⌊⌋ {let qf = ct[ i ]? in tc[ i ]!qf(tt) end | i:CIdx}
⌈⌉⌊⌋ let uf = st? in let (tt′,r)=uf(tt) in ts!r; time table(tt′) end end

s846
Please observe the “shift” from using ⌈⌉ in system earlier in this example to ⌈⌉⌊⌋ just above. The former
expresses nondeterministic internal choice. The latter expresses nondeterministic external choice. The
change can be justified as follows: The former, the nondeterministic internal choice, was “between”
two expressions which express no external possibility of influencing the choice. The latter, the non-
deterministic external choice, is “between” two expressions where both express the possibility of an
external input, i.e., a choice. The latter is thus acceptable as an implementation of the former.

This ends Example 99
s847

The next example, Example 100, continues the performance requirements expressed just above.
Those two requirements could have been put in one phrase, i.e., as one prescription unit. But we
prefer to separate them, as they pertain to different kinds (types, categories) of resources: terminal
+ data communication equipment facilities versus time and space.s848
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Example 100 – Storage and Speed for n-Transfer Travel Inquiries: We continue Example 86
on page 149. When performing the n-Transfer Travel Inquiry (rough sketch) prescribed above, the first
— of an expected many — result shall be communicated back to the inquirer in less than 5 seconds
after the inquiry has been submitted, and, at no time during the calculation of the “next” results must
the storage buffer needed to calculate these exceed around 100,000 bytes.

Storage Requirements s849

Machine Cycle Requirements s850

Other Resource Consumption s851

8.9.3 Dependability Requirements s852

To properly define the concept of dependability we need first introduce and define the concepts
of failure, error, and fault.

s853

Definition 78 – Failure: A machine failure occurs when the delivered service deviates from
fulfilling the machine function, the latter being what the machine is aimed at [122].

s854

Definition 79 – Error: An error is that part of a machine state which is liable to lead to
subsequent failure. An error affecting the service is an indication that a failure occurs or has
occurred [122].

s855

Definition 80 – Fault: The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an error is
a fault [122].

The term hazard is here taken to mean the same as the term fault.
One should read the phrase: “adjudged or hypothesised cause” carefully: In order to avoid an

unending trace backward as to the cause,10 we stop at the cause which is intended to be prevented
or tolerated.

s856

Definition 81 – Machine Service: The service delivered by a machine is its behaviour as it is
perceptible by its user(s), where a user is a human, another machine or a(nother) system which
interacts with it [122].

Definition 82 – Dependability: Dependability is defined as the property of a machine such that
reliance can justifiably be placed on the service it delivers [122].

s857

We continue, less formally, by characterising the above defined concepts [122]. “A given machine,
operating in some particular environment (a wider system), may fail in the sense that some other
machine (or system) makes, or could in principle have made, a judgement that the activity or
inactivity of the given machine constitutes a failure”.

The concept of dependability can be simply defined as “the quality or the characteristic of
being dependable”, where the adjective ‘dependable’ is attributed to a machine whose failures are
judged sufficiently rare or insignificant.

Impairments to dependability are the unavoidably expectable circumstances causing or result-
ing from “undependability”: faults, errors and failures. Means for dependability are the techniques
enabling one to provide the ability to deliver a service on which reliance can be placed, and to reach
confidence in this ability. Attributes of dependability enable the properties which are expected from
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the system to be expressed, and allow the machine quality resulting from the impairments and
the means opposing them to be assessed. s858

Having already discussed the “threats” aspect, we shall therefore discuss the “means” aspect
of the dependability tree.

• Attributes:
⋆ Accessibility
⋆ Availability
⋆ Integrity
⋆ Reliability
⋆ Safety
⋆ Securitys859

• Means:
⋆ Procurement
· Fault prevention
· Fault tolerance

⋆ Validation
· Fault removal
· Fault forecasting

• Threats:
⋆ Faults
⋆ Errors
⋆ Failures

s860

Despite all the principles, techniques and tools aimed at fault prevention, faults are created. Hence
the need for fault removal. Fault removal is itself imperfect. Hence the need for fault forecasting.
Our increasing dependence on computing systems in the end brings in the need for fault tolerance.s861

Definition 83 – Dependability Attribute: By a dependability attribute we shall mean either one
of the following: accessibility, availability, integrity, reliability, robustness, safety and security. Thats862

is, a machine is dependable if it satisfies some degree of “mixture” of being accessible, available,
having integrity, and being reliable, safe and secure.

The crucial term above is “satisfies”. The issue is: To what “degree”? As we shall see — in a later
section — to cope properly with dependability requirements and their resolution requires that
we deploy mathematical formulation techniques, including analysis and simulation, from statistics
(stochastics, etc.).

In the next seven subsections we shall characterise the dependability attributes further. In
doing so we have found it useful to consult [98].

Accesability Requirements s863

Usually a desired, i.e., the required, computing system, i.e., the machine, will be used by many
users — over “near-identical” time intervals. Their being granted access to computing time is
usually specified, at an abstract level, as being determined by some internal nondeterministic
choice, that is: essentially by “tossing a coin”! If such internal nondeterminism was carried over,
into an implementation, some “coin tossers” might never get access to the machine.s864

Definition 84 – Accessibility: A system being accessible — in the context of a machine being
dependable — means that some form of “fairness” is achieved in guaranteeing users “equal” access
to machine resources, notably computing time (and what derives from that).

s865

10An example: “The reason the computer went down was the current supply did not deliver sufficient
voltage, and the reason for the drop in voltage was that a transformer station was overheated, and the
reason for the overheating was a short circuit in a plant nearby, and the reason for the short circuit in the
plant was that . . . , etc.”
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Example 101 – Timetable Accessibility: Based on Examples 83 on page 146 and 86 on page 149,
we can express: The timetable (system) shall be “inquirable” by any number of users, and shall be
update-able by a few, so authorised, airline staff. At any time it is expected that up towards a thousand
users are directing queries at the timetable (system). And at regular times, say at midnights between
Saturdays and Sundays, airline staff are making updates to the timetable (system). No matter how
many users are “on line” with the timetable (system), each user shall be given the appearance that
that user has exclusive access to the timetable (system).

Availability Requirements s866

Usually a desired, i.e., the required, computing system, i.e., the machine, will be used by many
users — over “near-identical” time intervals. Once a user has been granted access to machine
resources, usually computing time, that user’s computation may effectively make the machine
unavailable to other users — by “going on and on and on”! s867

Definition 85 – Availability: By availability — in the context of a machine being dependable —
we mean its readiness for usage. That is, that some form of “guaranteed percentage of computing
time” per time interval (or percentage of some other computing resource consumption) is achieved
— hence some form of “time slicing” is to be effected.

s868

Example 102 – Timetable Availability: We continue Examples 83 on page 146, 86 on page 149
and 101: No matter which query composition any number of (up to a thousand) users are directing
at the timetable (system), each such user shall be given a reasonable amount of compute time per
maximum of three seconds, so as to give the psychological appearance that each user — in principle —
“possesses” the timetable (system). If the timetable system can predict that this will not be possible,
then the system shall so advise all (relevant) users.

Integrity Requirements s869

Definition 86 – Integrity: A system has integrity, in the context of a machine being dependable,
if it is and remains unimpaired, i.e., has no faults, errors and failures, and remains so even in the
situations where the environment of the machine has faults, errors and failures.

Integrity seems to be a highest form of dependability, i.e., a machine having integrity is 100%
dependable! The machine is sound and is incorruptible.

Reliability Requirements s870

Definition 87 – Reliability: A system being reliable, in the context of a machine being depend-
able, means some measure of continuous correct service, that is, measure of time to failure.

Example 103 – Timetable Reliability: Mean time between failures shall be at least 30 days, and
downtime due to failure (i.e., an availability requirements) shall, for 90% of such cases, be less than 2
hours.

Safety Requirements s871

Definition 88 – Safety: By safety — in the context of a machine being dependable — we mean
some measure of continuous delivery of service of either correct service, or incorrect service after
benign failure, that is: Measure of time to catastrophic failure.

Example 104 – Timetable Safety: Mean time between failures whose resulting downtime is more
than 4 hours shall be at least 120 days.
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Security Requirements s872

We shall take a rather limited view of security. We are not including any consideration of security
against brute-force terrorist attacks. We consider that an issue properly outside the realm of
software engineering.

Security, then, in our limited view, requires a notion of authorised user, with authorised users
being fine-grained authorised to access only a well-defined subset of system resources (data, func-
tions, etc.). An un-authorised user (for a resource) is anyone who is not authorised access to that
resource.

A terrorist, posing as a user, should normally fail the authorisation criterion. A terrorist, posing
as a brute-force user, is here assumed to be able to capture, somehow, some authorisation status.
We refrain from elaborating on how a terrorist might gain such status (keys, passwords, etc.)!s873

Definition 89 – Security: A system being secure — in the context of a machine being dependable
— means that an un-authorised user, after believing that he or she has had access to a requested
system resource: (i) cannot find out what the system resource is doing, (ii) cannot find out how the
system resource is working and (iii) does not know that he/she does not know! That is, prevention
of un-authorised access to computing and/or handling of information (i.e., data).

s874

The characterisation of security is rather abstract. As such it is really no good as an a priori design
guide. That is, the characterisation gives no hints as how to implement a secure system. But, once
a system is implemented, and claimed secure, the characterisation is useful as a guide on how to
test for security!s875

Example 105 – Timetable Security: We continue Examples 83 on page 146, 86 on page 149, 101
on the preceding page, and 102 on the previous page. Timetable users can be any airline client logging
in as a user, and such (logged-in) users may inquire the timetable. The timetable machine shall be
secure against timetable updates from any user. Airline staff shall be authorised to both update and
inquire, in a same session.

s876

Example 106 – Hospital Information System Security: General access to (including copying
rights of) specially designated parts of a(ny) hospital patient’s medical journals is granted, in principle,
only to correspondingly specially designated hospital staff. In certain forms of (otherwise well-defined)
emergency situations any hospital paramedic, nurse or medical doctor may “hit a panic button”, getting
access to a hospital patient’s medical journal, but with only viewing, not copying rights. Such incidents
shall be duly and properly recorded and reported, such that proper post-processing (i.e., evaluation) of
such “panic button” accesses can take take place.

Robustness Requirements s877

Definition 90 – Robustness: A system is robust — in the context of dependability — if it retains
its attributes after failure, and after maintenance.

Thus a robust system is “stable” across failures and “across” possibly intervening “repairs” and
“across” other forms of maintenance.

• • •

8.9.4 Maintenance Requirements s878

Definition 91 – Maintenance Requirements: By maintenance requirements we understand a
combination of requirements: (i) adaptive maintenance, (iii) corrective maintenance, (ii) perfective
maintenance, (iv) preventive maintenance and (v) extensional maintenance.

s879

Maintenance of building, mechanical, electro-technical and electronic artifacts — i.e., of artifacts
based on the natural sciences — is based both on documents and on the presence of the physical
artifacts. Maintenance of software is based just on software, that is, on all the documents (including
tests) entailed by software.
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Adaptive Maintenance Requirements s880

Definition 92 – Adaptive Maintenance: By adaptive maintenance we understand such mainte-
nance that changes a part of that software so as to also, or instead, fit to some other software, or
some other hardware equipment (i.e., other software or hardware which provides new, respectively
replacement, functions)

s881

Example 107 – Timetable System Adaptability: The timetable system is expected to be imple-
mented in terms of a number of components that implement respective domain and interface require-
ments, as well as some (other) machine requirements. The overall timetable system shall have these
components connected, i.e., interfaced with one another — where they need to be interfaced — in
such a way that any component can later be replaced by another component ostensibly delivering the
same service, i.e., functionalities and behaviour.

Corrective Maintenance Requirements s882

Definition 93 – Corrective Maintenance: By corrective maintenance we understand such main-
tenance which corrects a software error.

Example 108 – Timetable System Correct-ability: Corrective maintenance shall be done re-
motely: from a developer site, via secure Internet connections.

Perfective Maintenance Requirements s883

Definition 94 – Perfective Maintenance: By perfective maintenance we understand such main-
tenance which helps improve (i.e., lower) the need for hardware (storage, time, equipment), as well
as software

s884

Example 109 – Timetable System Perfectability: The system shall be designed in such a way
as to clearly be able to monitor the use of “scratch” (i.e., buffer) storage and compute time for any
instance of any query command.

Preventive Maintenance Requirements s885

Definition 95 – Preventive Maintenance: By preventive maintenance we understand such
maintenance which helps detect, i.e., forestall, future occurrence of software or hardware errors

Preventive maintenance — in connection with software — is usually mandated to take place at
the conclusion of any of the other three forms of (software) maintenance.

Extensional Maintenance Requirements s886

Definition 96 – Extensional Maintenance: By extensional maintenance we understand such
maintenance which adds new functionalities to the software, i.e., which implements additional
requirements

s887

Example 110 – Timetable System Extendability: Assume a release of a timetable software system
to implement a requirements that, for example, expresses that shortest routes but not that fastest routes
be found in response to a travel query. If a subsequent release of that software is now expected to also
calculate fastest routes in response to a travel query, then we say that the implementation of that last
requirements constitutes extensional maintenance.

• • •
s888

Whenever a maintenance job has been concluded, the software system is to undergo an extensive
acceptance test: a predetermined, large set of (typically thousands of) test programs has to be
successfully executed.
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8.9.5 Platform Requirements s889

Definition 97 – Platform: By a [computing] platform is here understood a combination of hard-
ware and systems software — so equipped as to be able to execute the software being requirements
prescribed — and ‘more’

What the ‘more’ is should transpire from the next characterisations.

Definition 98 – Platform Requirements: By platform requirements we mean a combination of
the following: (i) development platform requirements, (ii) execution platform requirements, (iii)
maintenance platform requirements and (iv) demonstration platform requirements

s890

Example 111 – Space Satellite Software Platforms: Elsewhere prescribed software for some
space satellite function is to satisfy the following platform requirements: shall be developed on a
Sun workstation under Sun UNIX, shall execute on the military MI1750 hardware computer running its
proprietary MI1750 Operating System, shall be maintained at the NASA Houston, TX installation of
MI1750 Emulating Sun Sparc Stations, and shall be demonstrated on ordinary Sun workstations
under Sun UNIX.

Development Platform Requirements s891

Definition 99 – Development Platform Requirements: By development platform requirements
we shall understand such machine requirements which detail the specific software and hardware for
the platform on which the software is to be developed

Execution Platform Requirements s892

Definition 100 – Execution Platform Requirements: By execution platform requirements we
shall understand such machine requirements which detail the specific (other) software and hardware
for the platform on which the software is to be executed

Maintenance Platform Requirements s893

Definition 101 – Maintenance Platform Requirements: By maintenance platform require-
ments we shall understand such machine requirements which detail the specific (other) software
and hardware for the platform on which the software is to be maintained

Demonstration Platform Requirements s894

Definition 102 – Demonstration Platform Requirements: By demonstration platform require-
ments we shall understand such machine requirements which detail the specific (other) software
and hardware for the platform on which the software is to be demonstrated to the customer — say
for acceptance tests, or for management demos, or for user training

Discussion s895

Example 111 is rather superficial. And we do not give examples for each of the specific four
platforms. More realistic examples would go into rather extensive details, listing hardware and
software product names, versions, releases, etc.
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8.9.6 Documentation Requirements s896

Definition 103 – Documentation Requirements: By documentation requirements we mean re-
quirements of any of the software documents that together make up software: (i) not only code
that may be the basis for executions by a computer, (ii) but also its full development documenta-
tion: (ii.1) the stages and steps of application domain description, (ii.2) the stages and steps of
requirements prescription, and (ii.3) the stages and steps of software design prior to code, with
all of the above including all validation and verification (incl., test) documents. In addition, ass897

part of our wider concept of software, we also include (iii) a comprehensive collection of support-
ing documents: (iii.1) training manuals, (iii.2) installation manuals, (iii.3) user manuals, (iii.4)
maintenance manuals, and (iii.5–6) development and maintenance logbooks.

s898

We do not attempt, in our characterisation, to detail what such documentation requirements could
be. Such requirements could cover a spectrum from the simple presence, as a delivery, of specific
ones, to detailed directions as to their contents, informal or formal.

• • •

8.9.7 Discussion: Machine Requirements s899

We have — at long last — ended an extensive enumeration, explication and, in many, but not all
cases, exemplification, of machine requirements. When examples were left out it was because the
reader should, by now, be able to easily conjure up such examples.

The enumeration is not claimed exhaustive. But, we think, it is rather representative. It is
good enough to serve as a basis for professional software engineering. And it is better, by far, than
what we have seen in “standard” software engineering textbooks.

8.10 Opening and Closing Stages s900

acm-rtre-e

8.10.1 Opening Stages s901

Stakeholder Identification and Liaison s902

Requirements Acquisition s903

Requirements Analysis s904

Terminoligisation s905

8.10.2 Closing Stages s906

For completeness, we shall, as in Sects. 7.9.2 on page 128 and 8.10.1, briefly list the closing stages
of requirements engineering. They are:

1. requirements verification, model checking and testing – the assurance of properties of the for-
malisation of the requirements model (Sect. 8.10.2);

2. requirements validation – the validation of the veracity of the informal, i.e., the narrative re-
quirements prescription (Sect. 8.10.2);

3. requirements feasibility and satisfiability (Sect. 8.10.2); and
4. requirements theory formation (Sect. 8.10.2).
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Verification, Model Checking and Testing s907

Requirements Validation s908

Requirements Satisfiability & Feasibility s909

Requirements Theory s910

8.10.3 Requirements Engineering Documentation s911

8.10.4 Conclusion s912

8.11 Exercises

See Items 19–22 (of Appendix D, starting Page 231).
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Conclusion

s913 acm-c

9.1 What Have We Achieved ? s914

9.2 What Have We Omitted ? s915

9.3 What Have We Not Been Able to Cover ? s916

9.4 What Is Next ? s917

9.5 How Do You Now Proceed ? s918
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A

An RSL Primer

s923

This is an ultra-short introduction to the RAISE Specification Language, RSL.

A.1 Types

The reader is kindly asked to study first the decomposition of this section into its sub-parts and
sub-sub-parts.

A.1.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite sets of values (of
“that” type).

Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper constituent
(sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers,
reals, characters, and texts.

s924

Basic Types

type
[ 1 ] Bool
[ 2 ] Int
[ 3 ] Nat
[ 4 ] Real
[ 5 ] Char
[ 6 ] Text

Composite Types

Composite types have composite values. That is, values which we consider to have proper con-
stituent (sub-)values, i.e., can, to us, be meaningfully “taken apart”.

s925
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From these one can form type expressions: finite sets, infinite sets, Cartesian products, lists,
maps, etc.

Let A, B and C be any type names or type expressions, then:

Composite Type Expressions

[ 7 ] A-set
[ 8 ] A-infset
[ 9 ] A × B × ... × C
[ 10 ] A∗

[ 11 ] Aω

[ 12 ] A →m B
[ 13 ] A → B

[ 14 ] A
∼→ B

[ 15 ] (A)
[ 16 ] A | B | ... | C
[ 17 ] mk id(sel a:A,...,sel b:B)
[ 18 ] sel a:A ... sel b:B

The following are generic type expressions:

1. The Boolean type of truth values false and true.
2. The integer type on integers ..., –2, –1, 0, 1, 2, ... .
3. The natural number type of positive integer values 0, 1, 2, ...
4. The real number type of real values, i.e., values whose numerals can be written as an integer,

followed by a period (“.”), followed by a natural number (the fraction).
5. The character type of character values ′′a′′, ′′b′′, ...
6. The text type of character string values ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...
7. The set type of finite cardinality set values.
8. The set type of infinite and finite cardinality set values.
9. The Cartesian type of Cartesian values.

10. The list type of finite length list values.
11. The list type of infinite and finite length list values.
12. The map type of finite definition set map values.
13. The function type of total function values.
14. The function type of partial function values.
15. In (A) A is constrained to be:
• either a Cartesian B × C × ... × D, in which case it is identical to type expression kind 9,
• or not to be the name of a built-in type (cf., 1–6) or of a type, in which case the paren-

theses serve as simple delimiters, e.g., (A →m B), or (A∗)-set, or (A-set)list, or (A|B) →m
(C|D|(E→m F)), etc.

16. The postulated disjoint union of types A, B, . . . , and C.
17. The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values

of respective types. The distinct identifiers sel a, etc., designate selector functions.
18. The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective

types. The distinct identifiers sel a, etc., designate selector functions.
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A.1.2 Type Definitions s926

Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

Type Definition

type
A = Type expr

s927
Some schematic type definitions are:

Variety of Type Definitions

[ 1 ] Type name = Type expr /∗ without | s or subtypes ∗/
[ 2 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[ 3 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[ 4 ] Type name :: sel a:Type name a ... sel z:Type name z
[ 5 ] Type name = {| v:Type name′ • P(v) |}

s928
where a form of [2–3] is provided by combining the types:

Record Types

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due
to the use of the disjoint record type constructor ==.

axiom
∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in
a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

s929

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates.
The set of values b which have type B and which satisfy the predicate P , constitute the subtype
A:

Subtypes

type
A = {| b:B • P(b) |}
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s930

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type
A, B, ..., C

A.2 The RSL Predicate Calculus s931

A.2.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or
chaos]). Then:

Propositional Expressions

false, true
a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a 6=b

are propositional expressions having Boolean values. ∼, ∧, ∨,⇒, = and 6= are Boolean connectives
(i.e., operators). They can be read as: not, and, or, if then (or implies), equal and not equal.s932

A.2.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or
term expressions) designate non-Boolean values and let i, j, . . ., k designate number values, then:

Simple Predicate Expressions

false, true
a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.s933

A.3 Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) andR(z) designate predicate
expressions in which x, y and z are free. Then:

Quantified Expressions

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)
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are quantified expressions — also being predicate expressions.
They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at

least) one y (value in type Y ) such that the predicate Q(y) holds; and there exists a unique z
(value in type Z) such that the predicate R(z) holds.

A.4 Concrete RSL Types: Values and Operations s934

A.4.1 Arithmetic

Arithmetic

type
Nat, Int, Real

value
+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼→Nat | Int×Int

∼→Int | Real×Real
∼→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

s935

A.4.2 Set Expressions

Set Enumerations

Let the below a’s denote values of type A, then the below designate simple set enumerations:

Set Enumerations

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set
{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

s936

Set Comprehension

The expression, last line below, to the right of the ≡, expresses set comprehension. The expression
“builds” the set of values satisfying the given predicate. It is abstract in the sense that it does not
do so by following a concrete algorithm.

Set Comprehension

type
A, B
P = A → Bool

Q = A
∼→ B

value
comprehend: A-infset × P × Q → B-infset
comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

s937
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A.4.3 Cartesian Expressions

Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the below expressions are
simple Cartesian enumerations:

Cartesian Enumerations

type
A, B, ..., C
A × B × ... × C

value
(e1,e2,...,en)

s938

A.4.4 List Expressions

List Enumerations

Let a range over values of type A, then the below expressions are simple list enumerations:

List Enumerations

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and aj to be integer-valued expressions. It then expresses the set
of integers from the value of ei to and including the value of ej. If the latter is smaller than the
former, then the list is empty.s939

List Comprehension

The last line below expresses list comprehension.

List Comprehension

type

A, B, P = A → Bool, Q = A
∼→ B

value

comprehend: Aω × P × Q
∼→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

s940

A.4.5 Map Expressions

Map Enumerations

Let (possibly indexed) u and v range over values of type T 1 and T 2, respectively, then the below
expressions are simple map enumerations:

Map Enumerations

type
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T1, T2
M = T1 →m T2

value
u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[ ], [ u7→v ], ..., [ u1 7→v1,u2 7→v2,...,un7→vn ] ∀ ∈ M

s941

Map Comprehension

The last line below expresses map comprehension:

Map Comprehension

type
U, V, X, Y
M = U →m V

F = U
∼→ X

G = V
∼→ Y

P = U → Bool
value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[ F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u) ]

s942

A.4.6 Set Operations

Set Operator Signatures

Set Operations

value
19 ∈: A × A-infset → Bool
20 6∈: A × A-infset → Bool
21 ∪: A-infset × A-infset → A-infset
22 ∪: (A-infset)-infset → A-infset
23 ∩: A-infset × A-infset → A-infset
24 ∩: (A-infset)-infset → A-infset
25 \: A-infset × A-infset → A-infset
26 ⊂: A-infset × A-infset → Bool
27 ⊆: A-infset × A-infset → Bool
28 =: A-infset × A-infset → Bool
29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼→ Nat

s943

Set Examples

Set Examples

examples
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a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

s944

Informal Explication

19. ∈: The membership operator expresses that an element is a member of a set.
20. 6∈: The nonmembership operator expresses that an element is not a member of a set.
21. ∪: The infix union operator. When applied to two sets, the operator gives the set whose

members are in either or both of the two operand sets.
22. ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the

set whose members are in some of the operand sets.
23. ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose

members are in both of the two operand sets.
24. ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator

gives the set whose members are in some of the operand sets.s945

25. \: The set complement (or set subtraction) operator. When applied to two sets, the operator
gives the set whose members are those of the left operand set which are not in the right
operand set.

26. ⊆: The proper subset operator expresses that all members of the left operand set are also in
the right operand set.

27. ⊂: The proper subset operator expresses that all members of the left operand set are also in
the right operand set, and that the two sets are not identical.

28. =: The equal operator expresses that the two operand sets are identical.
29. 6=: The nonequal operator expresses that the two operand sets are not identical.
30. card: The cardinality operator gives the number of elements in a finite set.
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Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

Set Operation Definitions

value
s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡

if s = {} then 0 else
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let a:A • a ∈ s in 1 + card (s \ {a}) end end
pre s /∗ is a finite set ∗/

card s ≡ chaos /∗ tests for infinity of s ∗/

s947

A.5 Cartesian Operations

Cartesian Operations

type
A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value
va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions
let (a1,b1,c1) = g0,

(a1′,b1′,c1′) = g1 in .. end
let ((a2,b2),c2) = g2 in .. end
let (a3,(b3,c3)) = g3 in .. end

s948

A.5.1 List Operations

List Operator Signatures

List Operations

value

hd: Aω ∼→ A

tl: Aω ∼→ Aω

len: Aω ∼→ Nat
inds: Aω → Nat-infset
elems: Aω → A-infset

.(.): Aω × Nat
∼→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool
6=: Aω × Aω → Bool

s949

List Operation Examples

List Examples

examples
hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
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〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

s950

Informal Explication

• hd: Head gives the first element in a nonempty list.
• tl: Tail gives the remaining list of a nonempty list when Head is removed.
• len: Length gives the number of elements in a finite list.
• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists,

this set is the empty set as well.
• elems: Elements gives the possibly infinite set of all distinct elements in a list.
• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements

larger than or equal to i, gives the ith element of the list.s951

• ̂: Concatenates two operand lists into one. The elements of the left operand list are followed
by the elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.
• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:s952

List Operator Definitions

List Operator Definitions

value
is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then
if q 6=〈〉

then let a:A,q′:Q • q=〈a〉̂q′ in a end
else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end
| i:Nat • if len iq 6=chaos then i ≤ len fq+len end 〉
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pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

s953

A.5.2 Map Operations

Map Operator Signatures and Map Operation Examples

Map Operations

value

m(a): M → A
∼→ B, m(a) = b

dom: M → A-infset [ domain of map ]
dom [ a1 7→b1,a2 7→b2,...,an7→bn ] = {a1,a2,...,an}

rng: M → B-infset [ range of map ]
rng [ a1 7→b1,a2 7→b2,...,an7→bn ] = {b1,b2,...,bn}

†: M × M → M [ override extension ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ] † [ a′7→b′′,a′′7→b′ ] = [ a 7→b,a′7→b′′,a′′7→b′ ]

∪: M × M → M [ merge ∪ ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ] ∪ [ a′′′7→b′′′ ] = [ a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′ ]

\: M × A-infset → M [ restriction by ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ]\{a} = [ a′7→b′,a′′ 7→b′′ ]

/: M × A-infset → M [ restriction to ]
[ a 7→b,a′7→b′,a′′ 7→b′′ ]/{a′,a′′} = [ a′7→b′,a′′ 7→b′′ ]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [ composition ]
[ a 7→b,a′7→b′ ] ◦ [ b7→c,b′7→c′,b′′7→c′′ ] = [ a 7→c,a′7→c′ ]
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Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.
• dom: Domain/Definition Set gives the set of values which maps to in a map.
• rng: Range/Image Set gives the set of values which are mapped to in a map.
• †: Override/Extend. When applied to two operand maps, it gives the map which is like an

override of the left operand map by all or some “pairings” of the right operand map.
• ∪: Merge. When applied to two operand maps, it gives a merge of these maps. s955

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of
the left operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of
the left operand map to the elements of the right operand set.
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• =: The equal operator expresses that the two operand maps are identical.
• 6=: The nonequal operator expresses that the two operand maps are not identical.
• ◦: Composition. When applied to two operand maps, it gives the map from definition set

elements of the left operand map, m1, to the range elements of the right operand map, m2,
such that if a is in the definition set of m1 and maps into b, and if b is in the definition set of
m2 and maps into c, then a, in the composition, maps into c.

s956

Map Operation Redefinitions

The map operations can also be defined as follows:

Map Operation Redefinitions

value
rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m1 ∪ m2 ≡ [ a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m \ s ≡ [ a 7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a 7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

A.6 λ-Calculus + Functions s957

A.6.1 The λ-Calculus Syntax

λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

s958
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A.6.2 Free and Bound Variables

Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.
• 〈F〉: x is free in λy •e if x 6= y and x is free in e.
• 〈A〉: x is free in f(e) if it is free in either f or e (i.e., also in both).

s959

A.6.3 Substitution

In RSL, the following rules for substitution apply:

Substitution

• subst([N/x]x) ≡ N;
• subst([N/x]a) ≡ a,

for all variables a 6= x;
• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λx•P )) ≡ λ y•P;
• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;
• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P
(where z is not free in (N P)).

s960

A.6.4 α-Renaming and β-Reduction

α and β Conversions

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We
can rename the formal parameter of a λ-function expression provided that no free variables
of its body M thereby become bound.

• β-reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided that no free variables
of N thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

s961

A.6.5 Function Signatures

For sorts we may want to postulate some functions:

Sorts and Function Signatures

type
A, B, C

value
obs B: A → B,
obs C: A → C,
gen A: B×C → A

s962
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A.6.6 Function Definitions

Functions can be defined explicitly:

Explicit Function Definitions

value
f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

s963
Or functions can be defined implicitly:

Implicit Function Definitions

value
f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼→ indicates that the function is partial and thus not defined for all arguments. Partial

functions should be assisted by preconditions stating the criteria for arguments to be meaningful
to the function.

A.7 Other Applicative Expressions s964

A.7.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

Let Expressions

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

s965

A.7.2 Recursive let Expressions

Recursive let expressions are written as:

Recursive let Expressions

let f = λa:A • E(f) in B(f,a) end
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is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

s966

A.7.3 Predicative let Expressions

Predicative let expressions:

Predicative let Expressions

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the
body B(a).

s967

A.7.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

Patterns

let {a} ∪ s = set in ... end
let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end
let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end
let 〈a, ,b〉̂ℓ = list in ... end

let [ a 7→b ] ∪ m = map in ... end
let [ a 7→b, ] ∪ m = map in ... end

s968

A.7.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
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elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of
choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

s969

A.7.6 Operator/Operand Expressions

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

A.8 Imperative Constructs s970

A.8.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative
constructs which, through stages of refinements, are turned into concrete and imperative con-
structs. Imperative constructs are thus inevitable in RSL.

Statements and State Change

Unit
value

stmt: Unit → Unit
stmt()

• Statements accept no arguments.
• Statement execution changes the state (of declared variables).
• Unit → Unit designates a function from states to states.
• Statements, stmt, denote state-to-state changing functions.
• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

s971
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A.8.2 Variables and Assignment

Variables and Assignment

0. variable v:Type := expression
1. v := expr

A.8.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or
side-effect.

Statement Sequences and skip

2. skip
3. stm 1;stm 2;...;stm n

A.8.4 Imperative Conditionals

Imperative Conditionals

4. if expr then stm c else stm a end
5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

s972

A.8.5 Iterative Conditionals

Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

A.8.6 Iterative Sequencing

Iterative Sequencing

8. for e in list expr • P(b) do S(b) end
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A.9 Process Constructs s973

A.9.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

Process Channels

channel c:A
channel { k[ i ]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the
designated types (A and B).s974

A.9.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to
engage in input and/or output events, thereby communicating over declared channels. Let P() and
Q stand for process expressions, then:

Process Composition

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes:
either external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two processes
are forced to communicate only with one another, until one of them terminates.s975

A.9.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c ?, k[ i ] ? Input
c ! e, k[ i ] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively
“writes” an output.s976

A.9.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow
express, in their signature, via which channels they wish to engage in input and output events.

Process Definitions

value
P: Unit → in c out k[ i ]
Unit
Q: i:KIdx → out c in k[ i ] Unit
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P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

A.10 Simple RSL Specifications s977

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as is
often done in RSL. An RSL specification is simply a sequence of one or more types, values (including
functions), variables, channels and axioms:

Simple RSL Specifications

type
...

variable
...

channel
...

value
...

axiom
...

s978
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abstract
syntax

analytic, 44
synthetic, 44

type
syntax, 38, 44

abstraction, 23
model-oriented, 38
property-oriented, 38

accessibility, 168
Ada, 3
adaptive maintenance, 170, 171
algebra, fn 3, 6
alphabet, 39
analogic model, 32
analytic

model, 32, 33
analytic abstract syntax, 44
ASM, 181
atomic

simple entity, 58, 59
attribute, 7

of entity, 7
simple entity

atomic, 58
composite, 58
continuous, 58

attribute, 58
authorised user, 170
auxiliary

function, 28, 29
availability, 168, 169
axiomatic

semantics, 51–52

B, 3, 31

behaviour, 56, 63, 167
communicating, 63
concurrent, 63
human, 136

domain facet, 123–128
parallel, 63
sequential, 63

behavioural
semantics, 49–50

black (opaque) box, 34
black box, 34
BNF, 39

grammar, 38, 39
rule, 39

box
black/opaque, 34
glass/white/transparent, 34

BPI (business process improvement), 79
business

process, 77
engineering, 80
improvement (BPI), 79
re-engineering, 134

processes, 77–84

CafeOBJ, 181
change management, 134
channel, 63

CSP, 63
character, 39
code, 173
composite

simple entity, 58, 59
computer

science, 7
computing
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science, 7
concept, 5
concrete

type
syntax, 38, 41

connotation, 34
continuous

simple entity, 58
contract

domain facet, 98–123
corrective maintenance, 170, 171
CSP, 3

DC
duration calculus, 4, 93, 181, 228

definition
of function, 66

demonstration platform
requirements, 172

demonstration platform requirements, 172
denotation, 34
denotational

semantics, 47–49
dependability, 167

attribute, 168
tree, 168

description
informal, 27
ontology, 56

descriptive
model, 32, 33

determination
of domain, 145

development
document, 173
logbook, 173
platform requirements, 172

discrete
simple entity, 59

document
description, informal, 27
informative

synopsis, 27
documentation

requirements, 173
domain

action, 63
contract

facet, 98–123
description, 173

non-normative, 17
determination, 145
engineering, 20
extension, 149

facet, 77
human behaviour, 77, 123–128
intrinsics, 77, 78
management and organisation, 77, 93–

96
rules and regulations, 77, 96–98
scripts, 77
support technologies, 77
support technology, 88–93

fitting, 150
instantiation, 144
intrinsics, 78, 84–88, 136
license

facet, 98–123
management and organisation

facet, 93–96
ontology, 56
projection, 142
rules and regulations

facet, 96–98
science

versus physics, 6–7
script

facet, 98–123
state, 63
support technology

facet, 88–93
domain

description, 5
science, 5, 7
what is a, 5–18

engineering
business process, 80
rules and regulations, 138

entity, 56
entity

behaviour, 56
event, 56
function, 56
simple, 56

error, 167
event, 56, 68–69
execution platform requirements, 172
extension

of domain, 149
extensional

maintenance, 170, 171
model, 32, 34

facet
contract, 98–123
domain

human behaviour, 123–128
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intrinsics, 77, 78
management and organisation, 77
rules and regulations, 77
scripts, 77
support technologies, 77

domain, human behaviour, 77
intrinsics, 84–88
license, 98–123
management and organisation, 93–96
rules and regulations, 96–98
script, 98–123
support technology, 88–93

failure, 167
fault, 167, 168

forecasting, 168
prevention, 168
removal, 168
tolerance, 168

fitting
of domain requirements, 150

function, 66–67
auxiliary, 28, 29
definition, 66
invocation, 66
signature, 66

glass (transparent) box, 34
glass box, 34
golden rule of requirements, 133
grammar

BNF, 38, 39

human behaviour, 136
domain facet, 77, 123–128
re-engineering, 139

iconic model, 32, 33
ideal rule of requirements, 133
indicative, 33
individual

= entity, 56
informal description, 27
informative document

synopsis, 27
infrastructure, 19
input

CSP, ch ?, 63
installation

manual, 173
instantiation

of domain, 144
integrity, 168, 169
intensional model, 32, 34
intrinsics

domain, 78, 136
domain facet, 77, 84–88
requirements, 136
review and replacement, 137

invocation
of function, 66

knowledge
engineering, 7

license
domain facet, 98–123

location
spatial attribute, 7

logical atomism
Russell, 56

LSC
live sequence charts, 80, 93, 181

machine
requirements, 165

maintenance
adaptive, 170, 171
corrective, 170, 171
extensional, 170, 171
logbook, 173
manual, 173
perfective, 170, 171
preventive, 170, 171
requirements, 170

maintenance platform
requirements, 172

management
and organisation, 136

re-engineering, 138
of change, 134

management and organisation
domain facet, 77, 93–96

manual
installation, 173
maintenance, 173
training, 173
user, 173

mereology, 59
semantic, 64–66
syntactic, 60–63

mereology, 60
metaphysics

Russell, 55
methodology

Russell, 55
model, 31
model-oriented abstraction, 38
modelling, 31
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MSC
message sequence charts, 3, 63, 80, 93,

181, 228

non-terminal, 39
noumenon, fn. 1, 5

ontology
description, 56
domain, 56

ontology, 56
opaque (black) box, 34
operation, 56
organisation

and management, 136
re-engineering, 138

output
CSP, ch

e, 63

particular
= entity, 56

perfective maintenance, 170, 171
performance requirements, 165
Petri net, 3, 63, 80, 93, 181, 228
phenomenon, 5
platform requirements, 172

demonstration, 172
development, 172
execution, 172
maintenance, 172

pragmatics, 52–53
prescriptive model, 32, 33
preventive maintenance, 170, 171
process

CSP, 63
business, 77
channel, 63
engineering, 80
invocation, 63
re-engineering, 134
state, 63

projection
of domain, 142

property-oriented abstraction, 38
putative, 33

RAISE, 3, 18, 31, 55, 181
re-engineering

business process, 134
human behaviour, 139
management and organisation, 138
rules and regulations, 139
script, 139

regulations
and rules, 136

re-engineering, 138, 139
reliability, 168, 169
requirements, 133

demonstration platform, 172
determination, of domain, 145
development

platform, 172
documentation, 173
engineering, 20
execution platform, 172
extension, of domain, 149
fitting, of domain, 150
golden rule, 133
ideal rule, 133
instantiation, of domain, 144
intrinsics, 136
machine, 165
maintenance, 170

platform, 172
performance, 165
platform, 172
prescription, 173
projection, of domain, 142

review and replacement
intrinsics, 137
support technology, 137

robustness, 168, 170
rough sketch

a preparatory document, 78
rough sketching, 77–78
RSL, 3, 18, 31, 55, 181
rule

BNF, 39
rules

and regulations, 136
re-engineering, 138, 139

rules and regulations
domain facet, 77, 96–98

Russell
Logical Atomism, 55–56
logical atomism, 56
metaphysics, 55
methodology, 55

safety, 168, 169
script

domain facet, 98–123
re-engineering, 139

scripting, 136
scripts

domain facet, 77
security, 168, 170
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semantic type, 45
semantics, 46–52

axiomatic, 51–52
behavioural, 49–50
denotational, 47–49
of programming languages, 3

semiotics, 37–53
signature

of function, 66
simple entity, 7, 56, 57

atomic, 58, 59
composite, 58, 59
continuous, 58
discrete, 59

simple use of
CSP, 4
abstract types, 3
concrete types, 3
discrete mathematics, 3
mathematical logic, 3
model-oriented abstractions, 3
pragmatics, 3
property-oriented abstractions, 3
semantics, 3
semiotics, 3
syntax, 3

sketch, rough, 78
software

design, 173
engineering

education, proper, 3
practice of, 3

spatial attribute, 7
state

of a system, 27
of domain, 63

Statechart, 3, 63, 80, 93, 181, 228
sub-entity, 59
support

document, 173
technology, 136

support technologies
domain facet, 77

support technology
domain facet, 88–93
review and replacement, 137

synopsis, 27

syntactic type, 45
syntax, 38–46

abstract
type, 38, 44

concrete
type, 38, 41

synthetic abstract syntax, 44
system

state, 27

technology
support, 136

terminal, 39
test

document, 173
TLA+, temporal logic of actions, 4, 93, 181,

228
tool

of domain science and engineering, 6
training manual, 173
transparent (glass) box, 34
transparent (white) box, 34
type

abstract
syntax, 38, 44

concrete
syntax, 38, 41

semantic, 45
syntactic, 45

un-authorised user, 170
universe of discourse, 31
user

authorised, 170
manual, 173
un-authorised, 170

validation
document, 173

VDM, 3
VDM, 3, 31, 181
verification

document, 173
of programs, 3

white box, 34

Z, 3, 31, 181

B.2 Definition Index
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Abstract Type Syntax, 44
Abstract Type Syntax Definition, 44
abstraction, 23
Accessibility, 168
Adaptive Maintenance, 171
Alphabet, 39
Analogic Model, 32
Analytic Model, 32
Availability, 169
Axiomatic Semantics, 51

Behavioural Semantics, 49
Behaviours, 63
BNF Grammar, 39
BNF Rules, 39
Business Process, 77
Business Process Engineering, 80
Business Process Re-Engineering, 134

Character, 39
Computer Science, 7
Computing Science, 7
Concept, 5
Concrete Type Syntax, 41
Contract, 102
Corrective Maintenance, 171

Demonstration Platform Requirements, 172
Denotational Semantics, 47
Dependability, 167
Dependability Attribute, 168
Descriptive Model, 33
Determination, 145
Development Platform Requirements, 172
Documentation Requirements, 173
Domain, 5
Domain Description, 5
Domain Intrinsics, 84
Domain Regulation, 97
Domain Rule, 96
Domain Support Technology, 88

Entity, 56
Error, 167
Event, 68
Execution Platform Requirements, 172
Extension, 149
Extensional Maintenance, 171
Extensional Model, 34

Failure, 167
Fault, 167
Fitting, 150
Function, 66

Human Behaviour, 123
Human Behaviour Re-Engineering, 139

Iconic Model, 32
IEEE Definition of ‘Requirements’, 133
Instantiation, 144
Integrity, 169
Intensional Model, 34
Intrinsics Review and Replacement, 137

Licenses, 102

Machine Requirements, 165
Machine Service, 167
Maintenance Platform Requirements, 172
Maintenance Requirements, 170
Management, 94
Management and Organisation Re-

Engineering, 138
Meaning of a BNF Grammar, 40
Meaning of Concrete Type Syntax, 42
Mereology, 60
Model, 31
Model-oriented Modelling, 32
Modelling, 31

Non-terminal, 39

Organisation, 94

Perfective Maintenance, 171
Performance Requirements, 165
Phenomenon, 5
Platform, 172
Platform Requirements, 172
Pragmatics, 38
Prescriptive Model, 33
Preventive Maintenance, 171
Projection, 142
Property-oriented Modelling, 32

Reliability, 169
Requirements, 133
Resource Control, 94
Resource Monitoring, 94
Robustness, 170
Rules and Regulation Re-Engineering, 138

Safety, 169
Script, 98
Script Re-Engineering, 139
Security, 170
Semantics, 38
Semiotics, 37
Shared Behaviour, 161
Shared Event, 160
Shared Operation, 157
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Shared Simple Entity, 153
Simple Entity, 57
Strategy, 93
Support Technology Review and Replace-

ment, 137

Syntax, 37

Tactics, 93

Terminal, 39

B.3 Example Index

“The Market”, 8

A Behavioural Semantics, 50
A Bus Services Contract Language, 108
A Business Plan Business Process, 78
A Casually Described Bank Script, 123
A Comprehensive Set of Administrative

Business Processes, 79
A Concrete Type Syntax: Banks, 41
A Denotational Language Semantics: Banks,

47
A Domain Example: an ‘Airline Timetable

System’, 141
A Formally Described Bank Script, 124
A Health Care License Language, 103
A Human Behaviour Mortgage Calculation,

125
A Public Administration License Language,

105
A Purchase Regulation Business Process, 79
A Telephone Exchange, 27
A Toll-road System (I), 139
Air Traffic (I), 8
Air Traffic (II), 89
Air Traffic Business Processes, 81
Alphabet, 39
An Abstract Type Syntax: Arithmetic Ex-

pressions, 44
An Abstract Type Syntax: Banks, 45
An Axiomatic Semantics: Banks, 51
An Oil Pipeline System, 84
Analogic, Analytic and Iconic Models, 32
Atomic Entities, 59
Attributes, 58

Bank Staff or Programmer Behaviour, 125
Banking, 8
BNF Grammar: Banks, 40
BNF Rules, 39

Characters, 39
Comparison: Abstract and Concrete Banks,

46
Composite Entities (1), 59

Composite Entities (2), 59
Container Line Industry, 8
Continuous Entities, 58

Descriptive and Prescriptive Models, 33
Determination: A Road Maintenance Sys-

tem, 148
Determination: A Toll-road System, 148
Discrete Entities, 59
Domain Types and Observer Functions, 152

Entities and Behaviours, 63
Extension: A Toll-road System, 150
Extensional Model Presentations, 34
External Events, 68

Financial Service Industry Business Pro-
cesses, 82

Fitting: Road Maintenance and Toll-road
Systems, 151

Freight Logistics Business Processes, 82

Harbour Business Processes, 82
Health Care, 8
Health-care Script Re-Engineering, 139
Hospital Information System Security, 170
Human Behaviour Re-Engineering, 139

Instantiation: A Road Maintenance System,
144

Instantiation: A Toll-road System, 144
Intensional Model Presentations, 34
Interesting Internal Events, 68
Intrinsics Replacement, 137

Management and Organisation, 94
Management and Organisation Re-

Engineering, 138
Meaning of a BNF Grammar, 41
Mereology: Parts and Wholes (1), 60
Mereology: Parts and Wholes (2), 64
Model-oriented Directory, 24

Networked Social Structures, 24
Non-terminals, 39

Oil Industry, 8



218 B Indexes

Pragmatics: Banks, 52
Projection: A Road Maintenance System, 142
Projection: A Toll-road System, 143
Public Government, 8

Rail Track Train Blocking, 97
Railway and Train Business Processes, 83
Railway Nets, 24
Railway Switch Support Technology, 88
Railways, 9
Representation of Transport Net Hubs, 154
Requirements Types and Decompositions,

152
Road System, 9
Rules and Regulations Re-Engineering, 138

Shared Behaviours: Personal Financial
Transactions, 161

Shared Operations: Personal Financial
Transactions, 157

Shared Simple Entities: Railway Units, 153
Shared Simple Entities: Toll-road Units, 153
Shared Simple Entities: Transport Net Data

Initialisation, 155
Shared Simple Entities: Transport Net Data

Representation, 153
Simple Entities, 57

Space Satellite Software Platforms, 172
Storage and Speed for n-Transfer Travel In-

quiries, 167
Street Intersection Signalling, 89
Support Technology Review and Replace-

ment, 137

Terminals, 39
Timetable Accessibility, 169
Timetable Availability, 169
Timetable Reliability, 169
Timetable Safety, 169
Timetable Security, 170
Timetable System Adaptability, 171
Timetable System Correct-ability, 171
Timetable System Determination, 146
Timetable System Extendability, 171
Timetable System Extension, 149
Timetable System Perfectability, 171
Timetable System Performance, 165
Timetable System Users and Staff, 166
Timetables, 98
Trains Entering and/or Leaving Stations, 97
Transport Net (I), 9
Transport Net (II), 55
Transport Net Building, 126

B.4 Symbol Index

Literals, 199–208
Unit, 208
chaos, 199, 200
false, 192, 194
true, 192, 194

Arithmetic Constructs, 195
ai*aj, 195
ai+aj, 195
ai/aj, 195
ai=aj, 195
ai≥aj, 195
ai>aj, 195
ai≤aj, 195
ai<aj, 195
ai 6=aj, 195
ai−aj, 195

Cartesian Constructs, 196, 199
(e1,e2,...,en), 196

Combinators, 204–207

... elsif ..., 206
do stmt until be end, 207
for e in listexpr • P(b) do stm(e) end, 207
if be then cc else ca end , 205–206
let a:A • P(a) in c end, 205
let pa = e in c end, 205
variable v:Type := expression, 207
while be do stm end, 207
v := expression, 207

Function Constructs, 190
post P(args,result), 190
pre P(args), 190
f(args) as result, 190
f(a), 188
f(args) ≡ expr, 190
f(), 192

List Constructs, 196, 199–201
<Q(l(i))|i in<1..lenl> •P(a)> , 196
e1 <e2,e2,...,en > ,196
<> , 196–201
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ℓ(i) , 199–201
ℓ′ = ℓ′′ , 199–201
ℓ′ 6= ℓ′′ , 199–201
ℓ′̂ℓ′′ , 199–201
elems ℓ , 199–201
hd ℓ , 199–201
inds ℓ , 199–201
len ℓ , 199–201
tl ℓ , 199–201

Logic Constructs, 194–195
∀ a:A • P(a) , 194
∃! a:A • P(a) , 194
∃ a:A • P(a) , 194
∼ b , 194
false, 192, 194
true, 192, 194
bi ⇒ bj , 194
bi ∧ bj , 194
bi ∨ bj , 194

Map Constructs, 196–197, 201–202
domm , 201
rngm , 201
m(e) , 201
[ ] , 197
[F(e)7→G(m(e))|e:E•e∈domm∧P(e)] , 197
Map Constructs, 196–197 201–202

mi ◦ mj , 201–202

mi ΓE30F mj , 201–202

mi / mj , 201–202
dom m , 201–202
rng m , 201–202
mi = mj , 201–202
mi ∪ mj , 201–202
mi † mj , 201–202
mi 6= mj , 201–202
m(e) , 201
[ ] , 197
[u1 7→v1,u2 7→v2,...,un 7→vn] , 197
[F(e)7→G(m(e))|e:E•e∈dom m∧P(e)] , 197

Process Constructs, 208–209
channel c:T , 208
channel {k[i]:T•i:KIdx} , 208
c ! e , 208
c ? , 208
k[i] ! e , 208
k[i] ? , 208
pi⌈⌉⌊⌋pj , 208
pi⌈⌉pj , 208

pi‖pj , 208
pi–‖pj , 208
P: Unit → in c out k[i] Unit , 208
Q: i:KIdx → out c in k[i] Unit, 208

Set Constructs, 195, 197–199
card s, 197
e∈s, 197
e 6∈s, 197
{}, 195
{Q(a)|a:A•a∈s∧P(a)}, 195
∩{s1,s2,...,sn} , 197–198
∪{s1,s2,...,sn} , 197–198
card s , 197–198
e∈s , 197–198
e 6∈s , 197–198
si=sj , 197–198
si∩sj , 197–198
si∪sj , 197–198
si⊂sj , 197–198
si⊆sj , 197–198
si 6=sj , 197–198
si\sj , 197–198
{} , 196
{e1, e2, ..., en} , 196
{Q(a)|a:A•a∈s∧P(a)} , 196

Type Expressions, 191–192
Bool, 191
Char, 191
Int, 191
Nat, 191
Real, 191
Text, 191
Unit, 206
mk id(s1:T1,s2:T2,...,sn:Tn) , 191
s1:T1 s2:T2 ... sn:Tn , 191
T∗ , 191
Tω , 191
T1 × T2 × ... × Tn , 191
T1 | T2 | ... | T1 | Tn , 191
Ti →m Tj , 191

Ti
∼→Tj , 191

Ti→Tj , 191
T-infset, 191
T-set, 191

Type Definitions, 193–194
T = Type Expr, 193
T={| v:T′• P(v)|} , 193
T==TE1 | TE2 | ... | TEn , 193





Part VIII

Lecturers Material

The next two appendices are not part of the book as published, but is provided, in principle, only
to lecturers.
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Lecturers’ Guide to Using This Book

Pages XIII–XIV suggests a 14-18 lectures schedule. Slight variants of this schedule has been lec-
tured over at

• National University of Singapore (NUS), in the spring of 2005 (RSL),
• Japan Advanced Institute of Science and Technology (JAIST), in the fall of 2006 (CafeOBJ),
• University of Henri Poincaré/INRIA at Nancy, France, in the fall of 2007 (Event B),
• Technical University of Graz, Austria, in the fall of 2008 (Alloy),
• University of Saarland, Saarbrücken, Germany, March 2009 (Discrete Mathematics),
• University of Edingburgh, Scotland, September–October 2009 (Discrete Mathematics), and
• Tokyo University, Japan, Nov.–December 2009 (Alloy).

C.1 Narratives and Formalisations

• It is a major characteristic of this textbook and the approach to software engineering that it
advocates that descriptions (of domains), prescriptions (of requirements) and specifications of
software — although we do not cover software design — is expressed both informally, through
carefully crafted narratives, and formally, in this textbook through the use of the RAISE formal
specification language RSL.

• But it is also a — perhaps strange — characteristic of this textbook that we do not “teach”
RSL.
⋆ That is: we do not introduce RSL from “first principles” !
⋆ Instead we just present the formal parts of most examples in the RSL notation.
⋆ To alleviate “the chock” that such formulas as RSL enables us to write, we annotate, that

is, carefully explain these formalisations, line-by-line, RSL-construct-by-RSL-construct.
⋆ This is done in Example 10 (starting Page 9).
⋆ These annotations are there related to the places in the RSL Primer of Appendix A.

• In the courses given around the world in the last five years, and listed above, the student
projects have used various formal notations. These are listed in parentheses above.

• This leaves either a burden on the lecturer or it does not leave such a burden:
⋆ Either the lecturer, with the students, must decide on a formal specification language —

for the case that no such is taught at the lecturer’s institution;
⋆ or the lecturer — for the case that at least one formal notation has been introduced to

students in some earlier courses — chooses such a notation.
• In any case: the students, at the end of a course, based on the present textbook, should have

reasonably strong motivations for and skills in using formal notations.
• These are potentially good such systems of notations:
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⋆ Alloy [90]
⋆ Event B [2]
⋆ RSL [17]

⋆ Spec# [10]
⋆ VDM [57]
⋆ Z [145]

C.2 Use of Textbook

• Since the lecture slides, see next section, Sect. C.3, only present very essentials of the text
lecturers must study the textbook carefully and students should regularly consult the textbook:
the latter by (students) attempting to more-or-less cursorily read the relevant text before the
lecture and by re-reading it after the lecture.

• The textbook provides more than 80 pages of examples scattered all over the text. An ‘Examples
Index’, Sect. B.3 (Pages 217–218), lists all examples by ‘Example Name’. The lecturer need
not cover all these examples.

• Lecturers’ version of the textbook1 provides display line and margin references to the approx-s#i

imately 900 ‘Lecture Slides’: s#i is placed at book text (some of) which also appears on slide
#i.

• Lectures based on — and studies of — the textbook rely on the students and readers also
pursuing one of the projects listed in Sect. D.2. To that end each chapter of the textbook
refers to project exercise items listed in Sect. D.1. There is at least one project exercise item
per lecture. In other words: the lecturer is well advised in making sure to emphasise the
methodology underlying solutions to these project exercise items.

C.3 Use of Lecture Slides

• Textbook Pages XIII–XIV provide a proposal for composing a course of the textbook in the
form of between 14 and 18 lectures.

• Lecturers can obtain, from the publisher, access to “pre-packaged” sets of lecture slides, in
either postscript or pdf form.

• For reasons of copyright it is not possible to provide students with access to electronic versions
of these slides.2

• Some of the proposed lectures may seem a bit long for a session of two 45–50 minute lectures.
The lecturer must decide on this length and may therefore be forced to carefully decide whether
to skip some examples (which is advised) or to skip some methodology text (which may be
possible). In such a case it may be possible for the lecturer to prepare a lecture (.ps or .pdf)
file with just a subset of the pages of the “pre-packaged” lecture files.

• All examples contain both itemized or enumerated narrative, English text and, on subsequent
slides, oftentimes enumerated formulas. In early lectures it is advised to first “read” the nar-
rative texts, then show (or “read)) the formulas. In later lectures the lecturer can skip the
narrative texts and “narrate” the formulas (as if they were their narrative counterparts). Thus
basically half the examples slides can be omitted in most lectures.

• The point to be made here, by the lecturer — since it is being made by the book (and its
author) — is that (even model-oriented) formal specifications can be “naturally” read, that
is, as if they were narratives. (But formalisations can never replace the narratives: the latter
must be expressed in such a way as to provide for easy understanding (i.e., reading) by all
stake-holders.

1This ‘Lecturers Version’ is available, electronically, upon request, from the publisher.
2The author will try persuade the publisher to allow publisher-registered lecturers to give their students

read-access to lecturers’ slides during the lecturing and pre-exam period.
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C.4 A Single or A Two Semester Course

This textbook can be used for

• either a single semester course covering all lectures
• or for two single semester courses

⋆ Basic Concepts and Domain Engineering, Lectures 1-11,
⋆ Requirements Engineering, Lectures 12-18.

• In the latter version the ‘requirements engineering lectures’ can be combined with a course in
some specific problem frame such as outlined in Appendix Sect. D.2.2:

⋆ Reactive Systems
⋆ Workpiece Systems

⋆ Transformation Systems
⋆ Information Systems

or other.

C.5 Lecture-by-Lecture Guide

Each lectures consists of two sessions, A and B. Each should present a well-formed set of a few
topics.

C.5.1 Lecture 1

This lecture is partly for the coverage of the below-listed front- and main-matter pages of the
textbook, partly for the familiarisation of course lecturer and course students, including details
about the course project and formation of course project groups.

A: Opening XII–XIII

Comment, lightly, on the 15–18 lectures ahead.

B: Background 3–4

Spend time on informally discussing with students about the formation of project groups.

C.5.2 Lecture 2

C: What are Domains ? 5–18

D: Motivation for Domain Engineering 19–20

C.5.3 Lecture 3: Abstraction & Modelling (I)

Chapter 4: Lectures 3[A–B] is covered by initial parts of Sect. 4.1.

A: Abstraction 23–24

Cover the definition of abstraction, top of Page 23. Emphasise “omission of details” and “focus on
what is important”.

Discuss the ideas of phenomena and concepts. Discuss the duality of narratives versus formal-
isations.

Go carefully through the narratives and explaining the RSL notation of the formalisation of
Examples 11–12.



226 C Lecturers’ Guide to Using This Book

B: Abstraction 24–27

Go carefully through the narrative and explain the RSL notation of the formalisation of Example 13.
Close by reminding the student of Example 10. Ask them to study the similarity of Example 10
and Example 13.

C.5.4 Lecture 4 Abstraction & Modelling (II)

Chapter 4. Lecture 4[A] is covered by remaining parts of Sect. 4.1. Lecture 4[B] covers Sect. 4.2.

A: Abstraction27–31

B: Modelling31–35

C.5.5 Lecture 5: Semiotics

Chapter 5: Lecture 5[A] is covered by Sects. 5.1–5.2. Lecture 5[B] is covered by Sects. 5.3–5.5.

A: Syntax37–46

B: Semantics and Pragmatics46–53

C.5.6 Lecture 6: A Specification Ontology – I

Chapter 6: Lecture 6[A] is covered by Sects. 6.1–6.3.1, and Lecture 6[B] is covered by Sect. 6.3.2.

A:55–63

B:63–66

C.5.7 Lecture 7: A Specification Ontology – II

Chapter 6: Lectures

A:66–69

B:69–73

C.5.8 Lecture 8: Domain Engineering – I

Chapter 7: Lectures

A: Opening Stages77–84

B: Intrinsics84–88

C.5.9 Lecture 9: Domain Engineering – II

Chapter 7: Lectures

A: Supp.Techns.88–93

B: Mgt. & Org.93–96

C.5.10 Lecture 10: Domain Engineering – III

Chapter 7: Lectures
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A: Rules & Regs.96–98

B: Scripts98–123

C.5.11 Lecture 11: Domain Engineering – IV

Chapter 7: Lectures

A: Human Behaviour 123–128

B: Closing Stages 128–129

C.5.12 Lecture 12: Requirements Engineering – I

Chapter 8: Lectures

A: Opening Stages and Acquisition 133–134

B: Business Processes 134–141

C.5.13 Lecture 13: Requirements Engineering – II

Chapter 8: Lectures

A: Domain Requirements 141–145

B: Domain Requirements 145–153

C.5.14 Lecture 14: Requirements Engineering – III

Chapter 8: Lectures

A: Interface Requirements 153–156

B: Interface Requirements 157–164

C.5.15 Lecture 15: Requirements Engineering – IV

Chapter 8: Lectures A-B-C

A: Machine Requirements 165–173

B: Closing Stages 173–174

A: Closing 177–177

C.6 Commensurate Formalisations

• Natural language narratives have the strength to describe (and prescribe) all that need be so
specified.
⋆ But natural language narratives are apt to be ambiguous,
⋆ that is, not sufficently precise, and do not allow formal proofs of properties.

• Formal specification languages, on the other hand, are not capable of formalising, at least not
elegantly, all that can be narrated.
⋆ Therefore we augment formal specifications given in one, say the “major” notation,
⋆ with formalisations given in other notations.
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⋆ Some examples of such other formalisations are:
· Duration Calculus [148,149] (suitable for the formalisation of real-time [safety critical]

properties),
· Petri Nets [91, 115,123–125] (suitable for the formalisation of concurrent properties),
· Message Sequence Charts (MSC) [86–88] (suitable for the formalisation of concurrent

properties),
· Statecharts [71–74,76] (suitable for the formalisation of concurrent properties), and
· TLA+ [96, 97, 105, 106] (suitable for the formalisation of real-time [safety critical] prop-

erties).
• Oftentimes lecturers are specialists in one or another of these notations.
• The projects (listed in Appendix Sect. D.2) usually require the full spectrum of one of the

specification languages mentioned at the end of Sect. C.1 as well as one or more of the above-
listed notations (which include some very appealing diagrammatic notational systems).



D

Lecturers’ Guide to Projects

This book contains only one exercise. Normally exercises are listed at the end of each chapter.
Instead we shall use this appendix to outline a number of project topics and how the reader
(including course students) might tackle one of these projects.

The purpose of a student project is for student groups to document the degree to which they,
as a group, have understood the lectures cum this textbook.

The form of a student project is a report. That report is to be like the proper development of
a domain description and the proper development of a requirements prescription: Narrative and
formalisation. The formalisation is in some “more-or-less” formal notation chosen by the full set
of course project students.

It may come as a surprise to you: the lecturer and/or the students, namely that we do not
mandate the use of the RAISE specification language RSL. As also mentioned in the textbook: there
are other formal specification languages — and there is always plain old good mathematics !

Which formal specification language do I advocate ?
Well these are potentially good such systems of notations:

• Alloy [90]
• Event B [2]
• RSL [17]

• Spec # [10]
• VDM [57]
• Z [145]

D.1 Project Assignments: Textbook Topic-by-Topic

This section, although part of lecturers material not (usually) contained in students’ material, is
addressed – as if – directly at project students.

There are two ways in which a project makes sense: either, for a self-study, by a motivated
reader, or, as a similarly indispensable part of a course.

The idea is, for students, to first choose one of the project or sub-project topics listed in
Sect. D.2 (take a brief, that is, hasty look at bold-faced terms of that list now); then, as lectures
(and/or your reading of the textbook) progresses, from section-to-section, that is from methodology
topic-to-topic, you, the student, try apply the method covered by these sections to the chosen
project. This means that when you, the student, have studied the referenced sections itemized
below then you, the student, try your hand at the “exercises” written in slanted text next to the
section references:

1. Chapter 2, Sect. 2.2:

Formulate the essence of your chosen, i.e., the project domain.

Cf. Examples 1–9 (Pages 8–9).

2. Chapter 2, Sect. 2.3:
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Enumerate informal, that is natural (i.e., national) language descriptions which ever
phenomena (entities, operations, events, behaviour) comes to your mind.

Try sort your enumerated list such that simplest facts are described first (needing no reference
to facts defined later), etc. — as in Example 10.

3. Chapter 4, Sect. 4.1.3 (Pages 23–31). Even though you may not yet be (fully) capable of
formalising your chosen abstractions:

Identify two or three domain phenomena (or concepts) for each of which you then
conceive of a suitable abstraction and narrate and, however “feebly” formalise it.

Cf. the style of Examples 11–14 of Sect. 4.1.3, Pages 24–31).

4. Chapter 4, Sects. 4.2–4.3:

Discuss, for your chosen two or three examples, resulting from your solution to Item 3,
the following attributes of your solutions:
• model-orientedness versus property-orientedness1,
• analogic, analytic and iconic,
• descriptive (if a domain specification) and prescriptive (if a requirements specifica-

tion), and
• extensional and intentional.

5. Chapter 5, Sect. 5.2:

Narrate and formalise concrete syntax(es) as well as abstract syntax(es) for at least
one syntactic type and at least one semantic type for chosen (however small) and
respective phenomena (or concepts) of your chosen domain.

That is, continue now towards further and further descriptions of your chosen domain.

6. Chapter 5, Sect. 5.3:

Narrate and formalise one denotational and one behavioural semantics for chosen (how-
ever small) and respective phenomena (or concepts) of your chosen domain.

As for Item 5: continue now towards further and further descriptions of your chosen domain.

7. Chapter 6, Sect. 6.3.1:

Identify a small number of (hitherto not already identified) atomic and a small number
of composite simple entities and narrate and formalise these,

while
emphasising, in your narration, which are attributes, which are sub-entities and which
are mereologies of your described composite simple entities — as well as which are the
attributes of atomic simple entities.

Make sure that your enumerated narrative statements “fit, hand-in-glove” with similarly enu-
merated formulas.

8. Chapter 6, Sect. 6.4.1:

Identify a small number of (hitherto not already identified) domain operations, nar-
rate and formalise these, both by explicit model-oriented definitions and by pre/post
conditions.

Make sure that your enumerated narrative statements “fit, hand-in-glove” with similarly enu-
merated formulas.

9. Chapter 6, Sect. 6.4.2:

Identify a small number of (hitherto not already identified) domain events.

Later, as part of your answer to Item 10, you shall then also formalise these events.

10. Chapter 6, Sect. 6.3.2:

Identify a small number of (hitherto not already identified) domain behaviours and
narrate and formalise these

1(that is, try have your solutions to Item 3 questions reflect a suitable combination of these and the
further attributes as covered in Sect. 4.3)
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while including the formalisation of identifier domain events as identified in Item 9.

11. Chapter 7, Sect. 7.2:

Identify a small number of (hitherto not already identified) business processes and
provide rough sketch narratives.

12. Chapter 7, Sect. 7.3:

Identify a small number of (hitherto not already identified) domain intrinsic facets and
narrate and formalise these.

13. Chapter 7, Sect. 7.4:

Identify a small number of (hitherto not already identified) domain support technology
facets and narrate and formalise these.

14. Chapter 7, Sect. 7.5:

Identify a small number of (hitherto not already identified) domain management and
organisation facets and narrate and formalise these.

15. Chapter 7, Sect. 7.6:

Identify a small number of (hitherto not already identified) domain rules and regula-
tions facets and narrate and formalise these.

16. Chapter 7, Sect. 7.7:

Identify a small number of (hitherto not already identified) domain script (license or
contract) facets and narrate and formalise these.

17. Chapter 7, Sect. 7.8:

Identify a small number of (hitherto not already identified) human behaviour facets
and narrate and formalise these.

18. Chapter 7, Sects. 7.1–7.9:

Consolidate your narratives and formalisations of the answers to Items 11–17 into a
nice, clean, well-structured domain description.

It is OK to leave some operations, events and behaviours only “hinted at”, but the idea that
a completion is straightforward should be convincing.

19. Chapter 8, Sect. 8.5:

Rough sketch (i.e., narrate) two reasonably distinct business process re-engineerings.

20. Chapter 8, Sect. 8.6:

Develop, based on the answer to Item 19, and in stages of development, a domain
requirements: projection, instantiation, determination, extension and fitting.

21. Chapter 8, Sect. 8.8:

Identify shared entities, operations, events and behaviours, and suggest, narrate and
formalise

shared entity initialisation and refreshment requirements,
shared operation requirements and
shared event and behaviour requirements.

22. Chapter 8, Sects. 8.1–8.10:

Consolidate your narratives and formalisations of the answers to Items 19–21 into a
nice, clean, well-structured domain description.

It is OK to leave some operations, events and behaviours only “hinted at”, but the idea that
a completion is straightforward should be convincing.

23. Page XI: The Triptych Phases:

Name the three phases of software engineering.

24. Chapter 7, Sect. 7.9: The Domain Engineering Stages:

Name 7–9 of the stages of domain engineering.
Give a 1-3 line characterisation of 5–6 of the domain engineering stages.

25. Chapter 7, Sect. 7.1 (Sects. 7.2–7.8): The Main Facets of Domain Modelling:
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Name 5–6 facets of domain modelling.
Give a 1-3 line characterisation of the domain modelling facets.

26. Chapter 8, Sect. 8.10: The Requirements Engineering Stages:

Name 7–9 of the stages of requirements engineering.
Give a 1-3 line characterisation of 5–6 of the requirements engineering stages.

27. Chapter 8, Sect. 8.2: The Core Stages of Requirements Modelling:

Name the core stages of requirements modelling.
Give a 1-3 line characterisation of these stages of requirements modelling.

28. Chapter 8, Sect. 8.6: The Main Facets of Domain Requirements Modelling:

Name 4–5 facets of domain requirements modelling.
Give a 1-3 line characterisation of each the these facets of domain requirements mod-
elling.

29. Chapter 8, Sect. 8.8: The Three Facets of Interface Requirements Engineering:

Name the three facets of interface requirements modelling.
Give a 1-3 line characterisation of each of the three facets of interface requirements
modelling.

30. Chapter 6, Sects. 6.3–6.4: On A Specification Ontology:

Identity the four aspects of the specification ontology carried forward by this book.
Characterise these.

31. Chapter 6, Sect. 6.3: Atomic and Composite Simple, Discrete Entities

Characterise the concepts of atomic and composite simple, discrete entities.
Characterise the concepts of entity attributes, sub-entities of composite entities and
their mereology.

D.2 Project Topics

We shall list only a few terms from “the languages” of the domains otherwise labelled below. We
leave it to the project participants (i) to significantly extend this terminology, and to classify the
individual terms as designating (ii) simple entities (whether continuous or discrete, and, if discrete,
whether atomic or composite), operations, events and behaviours, or (iii) syntactic or semantic
quantities.

D.2.1 Infrastructure Components

1. Airports: check-in, baggage, baggage handling, baggage conveyour belts, passenger, ticket,
boarding card, security control, gate, aircraft, fuelling, cleaning, passenger unloading and load-
ing, catering, etc.
Airport management as the monitoring and control of flow of passengers, aircraft, baggage
and information (including monitoring and control information) in airports with interfaces to
air traffic control, air lines and passengers.

2. Air Traffic: aircrafts, ground control tower, terminal control tower, regional and continental
control centers, approaching aircraft, landing and take-off, departing aircraft, holding patterns,
communications between aircraft and control towers and centers, etc.
Air Traffic, whether monitored and/or controlled. National and international air flight and
aircraft guidance rules and regulations (GAO).

3. Assembly Manufacturing: products, product parts and sub-parts, (product) bill-of-material,
parts-explosion, machine assembly, parts storage, product warehouse,

4. The Consumer Market & Supply Chain: Can be “decomposed” into sub-group projects:
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a) Consumers: being made aware of merchandise offerings, by retailers, through advertise-
ment and “window-shopping”, making inquiries, receiving offers, ordering merchandise,
inspecting merchandise received, accepting and paying for merchandise, returning reject
offers, returning received and paid-for merchandise for repair or replacement, etc.

b) Retailers: advertising merchandise (aimed at consumers), ordering merchandise (aimed
at wholesalers), replying to consumer inquiries, offering merchandise to consumers, deliv-
ering (packaging and//or sending/posting) merchandise to consumers, billing consumers,
accepting returning, unaccepted goods, accepting returned merchandise for repiar or re-
placement (or refund), receiving ordered goods from wholesalers, warehousing these goods,
updating sales catalogues, paying wholesaler bills, etc.

c) Wholesalers:
d) Payment:
e) Producers:
f) Distribution Chain:

5. Container Line Industry:

a) Containers:
b) Container Vessels:
c) Container Terminal Ports:
d) Bill of Ladings / Way Bills:
e) Container Lines:
f) Sea Routes:
g) Senders and Receivers:
h) Interface to Logistics Firms:

6. The Financial Service Industry:

a) Banks:
b) Commodities Exchange:
c) Portfolio Management:
d) Insurance:
e) Credit Cards:

7. Harbours:
8. Hospitals:
9. Logistics:

10. Pipe Lines:
11. Railways:

D.2.2 Components of Components of ... Infrastructure Components

The emphasis of the below-enumerated project topics is that they reflect the following ‘problem
frames’:

• Reactive systems: Items 12, 13, 18, 19 and 20.
These projects are best pursued in conjunction with a course on real-time, embedded, safety
critical systems.

• Workpiece systems: Items 16, 14, ...
These projects are best pursued in conjunction with a course on computer human interface
systems.

• Transformation systems: Items ...
These projects are best pursued in conjunction with a course on compiler and interpreter
systems.

• Information systems: Items 14.15, 17.
These projects are best pursued in conjunction with a course on database systems.

more to come
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Here is the list:

12. Airport Baggage Handling:
13. Automatic Teller Machine:
14. Container Stowage:
15. Credit Slip Clearance:
16. Document Handling:
17. Library Item Management:
18. Rail-Road Level Crossing:
19. Railway Track Interlocking:
20. Road Intersection Semaphore Monitoring and Control:

more to come

D.3 Project Groups

D.4 Weekly Project Reports

Section D.1 outlined textbook exercises, section-by-section, that is, the lecture-by-lecture assign-
ments that are proposed for the students.

“Answers” to these assignments are to be recorded in a group report. Such a report could,
for example. be structured by chapter and section headings according to those of the itemised
assignments (of Sect. D.1).

This would mean that answers to Items 11-18 and 19-22 together constitute more-or-less proper
domain descriptions, respectively requirements prescriptions.

D.5 Project Tutoring

D.5.1 Weekly “Class” Tutoring Sesssion

D.5.2 Individual Project Group Tutoring Sesssion

D.6 Project Report Format

D.7 Course Project Phases

D.7.1 Introductory Concepts Phase: Lectures 1–7

D.7.2 Domain Engineering Phase: Lectures 8–12

D.7.3 Requirements Engineering Phase: Lectures 13–16

D.7.4 Final Course Phase

D.8 Course Evaluation

D.8.1 Course Exam

D.8.2 Project Evaluation


