
198 4.

4. Lecture 4: Domain Descriptions — Perdurants
4.1. States

4.1.1. General

• The characterisation of the concept of perdurant

⋄⋄ mentioned time,

⋄⋄ but implied a concept that we shall call state.

• In this version of this seminar

⋄⋄ we shall not cover the modelling of time phenomena —

⋄⋄ but we shall model that some actions occur before others.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 198 Domain Science & Engineering

199
4. Lecture 4: Domain Descriptions — Perdurants 4.1. States4.1.1. General

• By a state we shall understand a collection of parts

⋄⋄ such that each of these parts have dynamic attributes.

• We can characterise the state

⋄⋄ by giving it a type,

⋄⋄ for example, Σ, where the state type definition

⋄⋄ Σ = S1×S2×· · · ×Ss

⋄⋄ assembles the types of the parts making up the state —

⋄⋄ where we assume that types S1, S2, . . . , Ss

◦◦ are types of parts

◦◦ such that no Si is a sub-part (of a subpart, . . .) of some Sj,

◦◦ and such that each part has dynamic attributes.

Lectures at BeiDa and ECNU 199 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

200
4. Lecture 4: Domain Descriptions — Perdurants 4.1. States4.1.1. General

Example: 33 Net and Vessel States.

• We may consider a transport net, n:N, to represent a state (subject
to the actions of maintaining a net: adding or removing a hub,
adding or removing a link, etc.).

• We may also consider a hub, h:H, to represent a state (subject to
the changing of a hub traffic signal: from red to green, etc., for
specific directions through the hub).

• We may consider a container vessel to represent a state (subject to
adding or removing containers from, respectively onto the top of
stacks).

Thus the context determines how wide a scope the domain designer
chooses for the state concept.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 200 Domain Science & Engineering

201
4. Lecture 4: Domain Descriptions — Perdurants 4.1. States4.1.2. State Invariants

4.1.2. State Invariants

• States are subject to invariants.

Example: 34 State Invariants: Transport Nets.

• Net hubs and links may be inserted into and removed from nets.

• Thus is also introduced changes to the net mereology.

• Yet, the axioms, as illustrated in Example 26, must remain
invariant.

• Likewise changes to dynamic attributes may well be subject to the
holding of certain well-formedness constraints.

• We will illustrate this claim.

Lectures at BeiDa and ECNU 201 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

202
4. Lecture 4: Domain Descriptions — Perdurants 4.1. States4.1.2. State Invariants

With each hub we associate a hub [link] state and a hub [link] state
space.

79. A hub [link] state models the permissible routes from hub input
links to (same) hub output links [respectively through a link].

80. A hub [link] state space models the possible set of hub [link] states
that a hub [link] is intended to “occupy”.

type

79. HΣ = (LI × LI)-set, LΣ = HI-set
80. HΩ = HΣ-set, LΩ = LΣ-set

value

79. attr HΣ: H → HΣ, attr LΣ: L → LΣ
80. attr HΩ: H → HΩ, attr LΩ: L → LΩ

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 202 Domain Science & Engineering

2034. Lecture 4: Domain Descriptions — Perdurants 4.1. States4.1.2. State Invariants

81. For any given hub, h, with links, l1, l2, ..., ln incident upon (i.e., also
emanating from) that hub, each hub state in the hub state space

82. must only contain such pairs of (not necessarily distinct) link
identifiers that are identifiers of l1, l2, ..., ln .

value

81. wf HΩ: H → Bool

81. wf HΩ(h) ≡ ∀ hσ:HΣ • hσ ∈ attr HΩ(h) ⇒ wf HΣ(h)

81. wf HΣ: H → Bool

81. wf HΣ(h) ≡
82. ∀ (li,li′):(LI×LI)•(li,li′)∈ attr HΣ(h) ⇒ {li,li′} ⊆ mereo H(h)

Lectures at BeiDa and ECNU 203 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

204 4. Lecture 4: Domain Descriptions — Perdurants 4.1. States4.1.2. State Invariants

• This well-formedness criterion is part of the state invariant over
nets.

⋄⋄ We never write down the full state invariant for nets.

⋄⋄ It is tacitly assume to be the collection of all the axioms and
well-formedness predicates over net parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 204 Domain Science & Engineering

205
4. Lecture 4: Domain Descriptions — Perdurants 4.2. A Final Note on Endurant Properties

4.2. A Final Note on Endurant Properties

• The properties of parts and materials are fully captured by

⋄⋄ (i) the unique part identifiers,

⋄⋄ (ii) the part mereology and

⋄⋄ (iii) the full set ofpart attributes and material attributes

• We therefore postulate a property function

⋄⋄ when when applied to a part or a material

⋄⋄ yield this triplet, (i–iii), of properties

⋄⋄ in a suitable structure.

type

Props = {|PI|nil|} × {|(PI-set×...×PI-set)|nil|} × Attrs
value

props: Part|Material → Props

Lectures at BeiDa and ECNU 205 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

206 4. Lecture 4: Domain Descriptions — Perdurants 4.2. A Final Note on Endurant Properties

• where

⋄⋄ Part stands for a part type,

⋄⋄ Material stands for a material type,

⋄⋄ PI stand for unique part identifiers and

⋄⋄ PI-set×...×PI-set for part mereologies.

• The {|...|} denotes a proper specification language sub-type and
nil denotes the empty type.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 206 Domain Science & Engineering

207
5. Lecture 4: Domain Descriptions — Perdurants

5. Discrete Perdurants
5.1. General

• From Wikipedia:

⋄⋄ Perdurant: Also known as occurrent, accident or happening.

⋄⋄ Perdurants are those entities for which only a fragment exists if

we look at them at any given snapshot in time.

⋄⋄ When we freeze time we can only see a fragment of the perdurant.

⋄⋄ Perdurants are often what we know as processes, for example

’running’.

⋄⋄ If we freeze time then we only see a fragment of the running,

without any previous knowledge one might not even be able to

determine the actual process as being a process of running.

⋄⋄ Other examples include an activation, a kiss, or a procedure.

Lectures at BeiDa and ECNU 207 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

208
5. Discrete Perdurants 5.1. General

• We shall consider actions and events

⋄⋄ to occur instantaneously,

⋄⋄ that is, in time, but taking no time

• Therefore we shall consider actions and events to be perdurants.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 208 Domain Science & Engineering

209
5. Discrete Perdurants 5.2. Discrete Actions

5.2. Discrete Actions

• By a function we understand

⋄⋄ a thing

⋄⋄ which when applied to a value, called its argument,

⋄⋄ yields a value, called its result.

• An action is

⋄⋄ a function

⋄⋄ invoked on a state value

⋄⋄ and is one that potentially changes that value.

Lectures at BeiDa and ECNU 209 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

210
5. Discrete Perdurants 5.2. Discrete Actions

Example: 35 Transport Net and Container Vessel Actions.

• Inserting and removing hubs and links in a net are considered
actions.

• Setting the traffic signals for a hub (which has such signals) is
considered an action.

• Loading and unloading containers from or unto the top of a
container stack are considered actions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 210 Domain Science & Engineering

211
5. Discrete Perdurants 5.2. Discrete Actions5.2.1. Action Signatures

5.2.1. Action Signatures

• By an action signature we understand a quadruple:

⋄⋄ a function name,

⋄⋄ a function definition set type expression,

⋄⋄ a total or partial function designator (→, respectively
∼
→), and

⋄⋄ a function image set type expression:
fct name: A → Σ (→|

∼
→) Σ [× R],

where (X | Y) means either X or Y , and [Z] means optional Z.

Example: 36 Action Signatures: Nets and Vessels.

insert Hub: N→H
∼
→N;

remove Hub: N→HI
∼
→N;

set Hub Signal: N→HI
∼
→HΣ

∼
→N

load Container: V→C→StackId
∼
→V; and

unload Container: V→StackId
∼
→(V×C).

Lectures at BeiDa and ECNU 211 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

212 5. Discrete Perdurants 5.2. Discrete Actions5.2.2. Action Definitions

5.2.2. Action Definitions

• There are a number of ways in which to characterise an action.

• One way is to characterise its underlying function
by a pair of predicates:

⋄⋄ precondition: a predicate over function arguments — which
includes the state, and

⋄⋄ postcondition: a predicate over function arguments, a proper
argument state and the desired result state.

⋄⋄ If the precondition holds, i.e., is true, then the arguments,
including the argument state, forms a proper ‘input’ to the
action.

⋄⋄ If the postcondition holds, assuming that the precondition held,
then the resulting state [and possibly a yielded, additional
“result” (R)] is as they would be had the function been applied.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 212 Domain Science & Engineering

2135. Discrete Perdurants 5.2. Discrete Actions5.2.2. Action Definitions

Example: 37 Transport Nets: Insert Hub Action.

83. The insert action applies to a net and a hub and conditionally
yields an updated net.

a The condition is that there must not be a hub in the “argument”
net with the same unique hub identifier as that of the hub to be
inserted and

b the hub to be inserted does not initially designate links with
which it is to be connected.

c The updated net contains all the hubs of the initial net “plus”
the new hub.

d and the same links.

Lectures at BeiDa and ECNU 213 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

214
5. Discrete Perdurants 5.2. Discrete Actions5.2.2. Action Definitions

value

83. insert H: N → H
∼
→ N

83. insert H(n)(h) as n′, pre: pre insert H(n)(h), post: post insert H(n)(h)

83a. pre insert H(n)(h) ≡
83a. ∼∃ h′:H • h′ ∈ obs Hs(n) ∧ uid HI(h)=uid HI(h′)
83b. ∧ mereo H(h) = {}

83c. post insert H(n)(h)(n′) ≡
83c. obs Hs(n) ∪ {h} = obs Hs(n′)
83d. ∧ obs Ls(n) = obs Ls(n′)

• We refer to the notes accompanying these lectures.

• There you will find definitions of insert link, remove hub and
remove link action functions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 214 Domain Science & Engineering

215
5. Discrete Perdurants 5.2. Discrete Actions5.2.2. Action Definitions

Modelling Actions, I/III

• The domain describer has decided that an entity is a perdurant and
is, or represents an action: was “done by an agent and intentionally

under some description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed ac-
tion is of a class of actions — of the “same kind” — that need be
described.

⋄⋄ By actions of the ‘same kind’ is meant that these can be described
by the same function signature and function definition.

Lectures at BeiDa and ECNU 215 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

216
5. Discrete Perdurants 5.2. Discrete Actions5.2.2. Action Definitions

Modelling Actions, II/III

• First the domain describer must decide on the underlying function
signature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts and/or materials,

◦◦ unique part identifiers, and/or

◦◦ attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 216 Domain Science & Engineering

217
5. Discrete Perdurants 5.2. Discrete Actions5.2.2. Action Definitions

Modelling Actions, III/III

• Sooner or later the domain describer must decide on the function
definition.

⋄⋄ The form must be decided upon.

⋄⋄ For pre/post-condition forms it appears to be convenient to have
developed, “on the side”, a theory of mereology for the part types
involved in the function signature.

Lectures at BeiDa and ECNU 217 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

218
5. Discrete Perdurants 5.3. Discrete Events

5.3. Discrete Events

• By an event we understand

⋄⋄ a state change

⋄⋄ resulting indirectly from an
unexpected application of a function,

⋄⋄ that is, that function was performed “surreptitiously”.

• Events can be characterised by a pair of (before and after) states, a
predicate over these and, optionally, a time or time interval.

• Events are thus like actions:

⋄⋄ change states,

⋄⋄ but are usually

◦◦ either caused by “previous” actions,

◦◦ or caused by “an outside action”.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 218 Domain Science & Engineering

219
5. Discrete Perdurants 5.3. Discrete Events

Example: 38 Events.

• Container vessel: A container falls overboard
sometimes between times t and t′.

• Financial service industry: A bank goes bankrupt
sometimes between times t and t′.

• Health care: A patient dies
sometimes between times t and t′.

• Pipeline system: A pipe breaks
sometimes between times t and t′.

• Transportation: A link “disappears”
sometimes between times t and t′.

Lectures at BeiDa and ECNU 219 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

220
5. Discrete Perdurants 5.3. Discrete Events5.3.1. Event Signatures

5.3.1. Event Signatures

• An event signature

⋄⋄ is a predicate signature

⋄⋄ having an event name,

⋄⋄ a pair of state types (Σ × Σ),

⋄⋄ a total function space operator (→)

⋄⋄ and a Boolean type constant:

⋄⋄ evt: (Σ×Σ) → Bool.

• Sometimes there may be a good reason

⋄⋄ for indicating the type, ET, of an event cause value,

⋄⋄ if such a value can be identified:

⋄⋄ evt: ET × (Σ × Σ) → Bool.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 220 Domain Science & Engineering

2215. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

5.3.2. Event Definitions

• An event definition takes the form of a predicate definition:

⋄⋄ A predicate name and argument list, usually just a state pair,

⋄⋄ an existential quantification

◦◦ over some part (of the state) or

◦◦ over some dynamic attribute of some part (of the state)

◦◦ or combinations of the above

⋄⋄ a pre-condition expression over the input argument(s),

⋄⋄ an implication symbol (⇒), and

⋄⋄ a post-condition expression over the argument(s).

• evt(σ, σ′) = ∃ (ev:ET) • pre evt(ev)(σ) ⇒ post evt(ev)(σ, σ′).

• There may be variations to the above form.

Lectures at BeiDa and ECNU 221 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

222
5. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

Example: 39 Narrative of Link Event. The disappearance of a
link in a net, for example due to a mud slide, or a bridge falling down,
or a fire in a road tunnel, can, for example be described as follows:

84. Link disappearance is expressed as a predicate on the “before” and
“after” states of the net. The predicate identifies the “missing”
ℓink (!).

85. Before the disappearance of link ℓ in net n

a the hubs h′ and h′′ connected to link ℓ

b were connected to links identified by {l′1, l
′
2, . . . , l

′
p} respectively

{l′′1 , l′′2 , . . . , l′′q}

c where, for example, l′i, l
′′
j are the same and equal to uid Π(ℓ).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 222 Domain Science & Engineering

2235. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

86. After link ℓ disappearance there are instead

a two separate links, ℓi and ℓj, “truncations” of ℓ

b and two new hubs h′′′ and h′′′′

c such that ℓi connects h′ and h′′′ and

d ℓj connects h′′ and h′′′′;

e Existing hubs h′ and h′′ now have mereology

i. {l′1, l
′
2, . . . , l

′
p} \ {uid Π(ℓ)} ∪ {uid Π(ℓi)} respectively

ii. {l′′1 , l′′2 , . . . , l′′q} \ {uid Π(ℓ)} ∪ {uid Π(ℓj)}

87. All other hubs and links of n are unaffected.

Lectures at BeiDa and ECNU 223 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

224
5. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

Example: 40 Formalisation of Link Event. Continuing
Example 39 above:

84. link disappearance: N × N → Bool

84. link disappearance(n,n′) ≡
84. ∃ ℓ:L • pre link dis(n,ℓ) ⇒ post link dis(n,ℓ,n′)

85. pre link dis: N × L → Bool

85. pre link dis(n,ℓ) ≡ ℓ ∈ obs Ls(n)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 224 Domain Science & Engineering

2255. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

88. We shall “explain” link disappearance as the combined,
instantaneous effect of

a first a remove link “event” where the removed link connected
hubs hij and hik;

b then the insertion of two new, “fresh” hubs, hα and hβ;

c “followed” by the insertion of two new, “fresh” links ljα and lkβ

such that

i. ljα connects hij and hα and

ii. lkβ connects hik and hkβ

Lectures at BeiDa and ECNU 225 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

226 5. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

value

88. post link dis(n,ℓ,n′) ≡
88a. let n′′ = remove L(n)(uid L(ℓ)) in

88b. let hα,hβ:H • {hα,hβ}∩ obs Hs(n)={} in

88b. let n′′′ = insert H(n′′)(hα) in

88b. let n′′′′ = insert H(n′′′)(hβ) in

88c. let ljα,lkβ:L • {ljα,lkβ}∩ obs Ls(n)={} in

88(c)i. let n′′′′′ = insert L(n′′′′)(ljα) in

88(c)ii. n′ = insert L(n′′′′′)(lkβ) end end end end end end

• We refer to the notes accompanying these lectures.

• There you will find definitions of insert link, remove hub and
remove link action functions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 226 Domain Science & Engineering

227
5. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

Modelling Events I/II

• The domain describer has decided that an entity is a perdurant and
is, or represents an event: occurred surreptitiously, that is, was not
an action that was “done by an agent and intentionally under some

description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed event
is of a class of events — of the “same kind” — that need be
described.

⋄⋄ By events of the ‘same kind’ is meant that these can be described
by the same predicate function signature and predicate function
definition.

Lectures at BeiDa and ECNU 227 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

228
5. Discrete Perdurants 5.3. Discrete Events5.3.2. Event Definitions

Modelling Events, II/II

• First the domain describer must decide on the underlying predicate
function signature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts,

◦◦ unique part identifiers, or

◦◦ attributes.

• Sooner or later the domain describer must decide on the predicate
function definition.

⋄⋄ For predicate function definitions it appears to be convenient to
have developed, “on the side”, a theory of mereology for the part
types involved in the function signature.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 228 Domain Science & Engineering

229
5. Discrete Perdurants 5.4. Discrete Behaviours

5.4. Discrete Behaviours

• We shall distinguish between

⋄⋄ discrete behaviours (this section) and

⋄⋄ continuous behaviours (Sect. 12).

• Roughly discrete behaviours

⋄⋄ proceed in discrete (time) steps —

⋄⋄ where, in this seminar, we omit considerations of time.

⋄⋄ Each step corresponds to an action or an event or a time interval
between these.

⋄⋄ Actions and events may take some (usually inconsiderable time),

⋄⋄ but the domain analyser has decided that it is not of interest to
understand what goes on in the domain during that time
(interval).

⋄⋄ Hence the behaviour is considered discrete.

Lectures at BeiDa and ECNU 229 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

230
5. Discrete Perdurants 5.4. Discrete Behaviours

• Continuous behaviours

⋄⋄ are continuous in the sense of the calculus of mathematical;

⋄⋄ to qualify as a continuous behaviour time must be an essential
aspect of the behaviour.

⋄⋄ We shall treat continuous behaviours in Sect. 9.

• Discrete behaviours can be modelled in many ways, for example
using

⋄⋄ CSP [Hoare85+2004].

⋄⋄ MSC [MSCall],

⋄⋄ Petri Nets [m:petri:wr09] and

⋄⋄ Statechart [Harel87].

• We refer to Chaps. 12–14 of [TheSEBook2wo].

• In this seminar we shall use RSL/CSP.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 230 Domain Science & Engineering

231
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.1. What is Meant by ‘Behaviour’ ?

5.4.1. What is Meant by ‘Behaviour’ ?

• We give two characterisations of the concept of ‘behaviour’.

⋄⋄ a “loose” one and

⋄⋄ a “slanted one.

• A loose characterisation runs as follows:

⋄⋄ by a behaviour we understand

◦◦ a set of sequences of

◦◦ actions, events and behaviours.

Lectures at BeiDa and ECNU 231 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

232
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.1. What is Meant by ‘Behaviour’ ?

• A “slanted” characterisation runs as follows:

⋄⋄ by a behaviour we shall understand

◦◦ either a sequential behaviour consisting of a possibly infinite
sequence of zero or more actions and events;

◦◦ or one or more communicating behaviours whose output
actions of one behaviour may synchronise and communicate
with input actions of another behaviour; and

◦◦ or two or more behaviours acting either as internal
non-deterministic behaviours (⌈⌉) or as external
non-deterministic behaviours (⌈⌉⌊⌋).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 232 Domain Science & Engineering

2335. Discrete Perdurants 5.4. Discrete Behaviours5.4.1. What is Meant by ‘Behaviour’ ?

• This latter characterisation of behaviours

⋄⋄ is “slanted” in favour of a CSP, i.e., a communicating sequential
behaviour, view of behaviours.

⋄⋄ We could similarly choose to “slant” a behaviour
characterisation in favour of

◦◦ Petri Nets, or

◦◦ MSCs, or

◦◦ Statecharts, or other.

Lectures at BeiDa and ECNU 233 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

234
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives

5.4.2. Behaviour Narratives

• Behaviour narratives may take many forms.

⋄⋄ A behaviour may best be seen as composed from several
interacting behaviours.

◦◦ Instead of narrating each of these,

◦◦ as will be done in Example ??,

◦◦ one may proceed by first narrating the interactions of these
behaviours.

⋄⋄ Or a behaviour may best be seen otherwise,

◦◦ for which, therefore, another style of narration may be called
for,

◦◦ one that “traverses the landscape” differently.

⋄⋄ Narration is an art.

⋄⋄ Studying narrations – and practice – is a good way to learn
effective narration.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 234 Domain Science & Engineering

235
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives

Example: 41 A Road Traffic System. We continue our long line
of examples around transport nets. The present example interprets
these as road nets.

5.4.2.1 Continuous Traffic

• For the road traffic system

⋄⋄ perhaps the most significant example of a behaviour

⋄⋄ is that of its traffic

89. the continuous time varying discrete positions of vehicles,
vp:VP19,

90. where time is taken as a dense set of points.

type

90. cT
89. cRTF = cT → (V →m VP)

19For VP see Item 108a on Slide 243.

Lectures at BeiDa and ECNU 235 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

236 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.2. Discrete Traffic

5.4.2.2 Discrete Traffic

• We shall model, not continuous time varying traffic, but

91. discrete time varying discrete positions of vehicles,

92. where time can be considered a set of linearly ordered points.

92. dT

91. dRTF = dT →m (V →m VP)

93. The road traffic that we shall model is, however, of vehicles referred
to by their unique identifiers.

type

93. RTF = dT →m (VI →m VP)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 236 Domain Science & Engineering

2375. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.3. Time: An Aside

5.4.2.3 Time: An Aside

• We shall take a rather simplistic view of time
[wayne.d.blizard.90,mctaggart-t0,prior68,J.van.Benthem.Logi

94. We consider dT, or just T, to stand for a totally ordered set of time
points.

95. And we consider TI to stand for time intervals based on T.

96. We postulate an infinitesimal small time interval δ.

97. T, in our presentation, has lower and upper bounds.

98. We can compare times and we can compare time intervals.

99. And there are a number of “arithmetics-like” operations on times
and time intervals.

Lectures at BeiDa and ECNU 237 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

238
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.3. Time: An Aside

type

94. T

95. TI

value

96. δ:TI

97. MIN, MAX: T → T

97. <,≤,=,≥,>: (T×T)|(TI×TI) → Bool

98. −: T×T → TI

99. +: T×TI,TI×T → T

99. −,+: TI×TI → TI

99. ∗: TI×Real → TI

99. /: TI×TI → Real

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 238 Domain Science & Engineering

2395. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.3. Time: An Aside

100. We postulate a global clock behaviour which offers the current time.

101. We declare a channel clk ch.

value

100. clock: T → out clk ch Unit

100. clock(t) ≡ ... clk ch!t ... clock(t ⌈⌉ t+δ)
channnel
101. clk ch:T

Lectures at BeiDa and ECNU 239 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

240 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.4. Road Traffic System Behaviours

5.4.2.4 Road Traffic System Behaviours

102. Thus we shall consider our road traffic system, rts, as

a the concurrent behaviour of a number of vehicles and,
to “observe”, or, as we shall call it, to monitor their movements,

b the monitor behaviour.

value

102. trs() =
102a. ‖ {veh(uid V(v))(v)|v:V•v ∈ vs}
102b. ‖ mon(m)([])

• where the “extra” monitor argument ([])

⋄⋄ records the discrete road traffic, RTF,

⋄⋄ initially set to the empty map (of, “so far no road traffic”!).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 240 Domain Science & Engineering

2415. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.5. Globally Observable Parts

5.4.2.5 Globally Observable Parts

• There is given

103. a net, n:N,

104. a set of vehicles, vs:V-set, and

105. a monitor, m:M.

• The n:N, vs:V-set and m:M are observable from the road traffic
system domain.

value

103. n:N = obs N(∆)
103. ls:L-set = obs Ls(obs LS(n)), hs:H-set = obs Hs(obs HS(n)),
103. lis:LI-set = {uid L(l)|l:L•l ∈ ls}, his:HI-set = {uid H(h)|h:H•h ∈ hs}
104. vs:V-set = obs Vs(obs VS(obs F(∆))), vis:V-set = {uid V(v)|v:V•v ∈
105. m:obs M(∆)

Lectures at BeiDa and ECNU 241 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

242 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.6. Channels

5.4.2.6 Channels

• In order for the monitor behaviour to assess the vehicle positions

⋄⋄ these vehicles communicate their positions

⋄⋄ to the monitor

⋄⋄ via a vehicle to monitor channel.

• In order for the monitor to time-stamp these positions

⋄⋄ it must be able to “read” a clock.

106. Thus we declare a set of channels indexed by the unique identifiers
of vehicles and communicating vehicle positions; and

107. a single clock to monitor channel.

channel

106. {vm ch[vi]|vi:VI•vi ∈ vis}:VP
107. clkm ch:dT

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 242 Domain Science & Engineering

2435. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.7. An Aside: Attributes of Vehicles

5.4.2.7 An Aside: Attributes of Vehicles

108. Dynamic attributes of vehicles include

a position

i. at a hub (about to enter the hub — referred to by the link it is coming
from, the hub it is at and the link it is going to, all referred to by their
unique identifiers or

ii. some fraction “down” a link (moving in the direction from a from hub to a
to hub — referred to by their unique identifiers)

iii. where we model fraction as a real between 0 and 1 included.

b velocity, acceleration, etcetera.

type

108a. VP = atH | onL
108(a)i. atH :: fli:LI × hi:HI × tli:LI
108(a)ii. onL :: fhi:HI × li:LI × frac:FRAC × thi:HI
108(a)iii. FRAC = Real, axiom ∀ frac:FRAC • 0 ≤ frac ≤ 1
108b. Vel, Acc, ...

Lectures at BeiDa and ECNU 243 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

244 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.8. Behaviour Signatures

5.4.2.8 Behaviour Signatures

109. The road traffic system behaviour, rts, takes no arguments; and
“behaves”, that is, continues forever.

110. The vehicle behaviours are indexed by the unique identifier,
uid V(v):VI, the vehicle part, v:V and the vehicle position; offers
communication to the monitor behaviour; and behaves “forever”.

111. The monitor behaviour takes monitor part, m:M, as argument and
also the discrete road traffic, drtf:dRTF; the behaviour otherwise
runs forever.

value

109. rts: Unit → Unit

110. veh: vi:VI → v:V → VP → out vm ch[vi] Unit

111. mon: m:M → RTF → in {vm ch[vi]|vi:VI•vi ∈ vis},clkm ch Unit

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 244 Domain Science & Engineering

2455. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.9. The Vehicle Behaviour

5.4.2.9 The Vehicle Behaviour

112. A vehicle process

• is indexed by the unique vehicle identifier vi:VI,

• the vehicle “as such”, v:V and

• the vehicle position, vp:VP.

The vehicle process communicates

• with the monitor process on channel vm[vi]

• (sends, but receives no messages), and

• otherwise evolves “infinitely” (hence Unit).

Lectures at BeiDa and ECNU 245 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

246 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.9. The Vehicle Behaviour

113. We describe here an abstraction of the vehicle behaviour at a Hub
(hi).

a Either the vehicle remains at that hub informing the monitor,

b or, internally non-deterministically,

i. moves onto a link, tli, whose “next” hub, identified by thi, is
obtained from the mereology of the link identified by tli;

ii. informs the monitor, on channel vm[vi], that it is now on the
link identified by tli,

iii. whereupon the vehicle resumes the vehicle behaviour
positioned at the very beginning (0) of that link,

c or, again internally non-deterministically,

d the vehicle “disappears — off the radar” !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 246 Domain Science & Engineering

247
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.9. The Vehicle Behaviour

113. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
113a. vm ch[vi]!vp ; veh(vi)(v)(vp)
113b. ⌈⌉
113(b)i. let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
113(b)ii. vm ch[vi]!onL(tli,hi,0,thi) ;
113(b)iii. veh(vi)(v)(onL(tli,hi,0,thi)) end

113c. ⌈⌉
113d. stop

Lectures at BeiDa and ECNU 247 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

248 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.9. The Vehicle Behaviour

114. We describe here an abstraction of the vehicle behaviour on a Link (ii).
Either

a the vehicle remains at that link position informing the monitor,

b or, internally non-deterministically,

c if the vehicle’s position on the link has not yet reached the hub,

i. then the vehicle moves an arbitrary increment δ along the link informing
the monitor of this, or

ii. else, while obtaining a “next link” from the mereology of the hub (where
that next link could very well be the same as the link the vehicle is about
to leave),

A. the vehicle informs the monitor that it is now at the hub identified by thi,

B. whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

115. or, internally non-deterministically,

116. the vehicle “disappears — off the radar” !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 248 Domain Science & Engineering

2495. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.9. The Vehicle Behaviour

112. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
114a. vm ch[vi]!vp ; veh(vi)(v)(vp)
114b. ⌈⌉
114c. if f + δ<1
114(c)i. then vm ch[vi]!onL(fhi,li,f+δ,thi) ;
114(c)i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
114(c)ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

114(c)iiA. vm ch[vi]!atH(li,thi,li′);
114(c)iiB. veh(vi)(v)(atH(li,thi,li′)) end end

115. ⌈⌉
116. stop

Lectures at BeiDa and ECNU 249 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

250 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10. The Monitor Behaviour

5.4.2.10 The Monitor Behaviour

117. The monitor behaviour evolves around the attributes of an own
“state”, m:M, a table of traces of vehicle positions, while accepting
messages about vehicle positions and otherwise progressing
“in[de]finitely”.

118. Either the monitor “does own work”

119. or, internally non-deterministically accepts messages from vehicles.

a A vehicle position message, vp, may arrive from the vehicle
identified by vi.

b That message is appended to that vehicle’s movement trace,

c whereupon the monitor resumes its behaviour —

d where the communicating vehicles range over all identified
vehicles.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 250 Domain Science & Engineering

251
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10. The Monitor Behaviour

117. mon(m)(rtf) ≡
118. mon(own mon work(m))(rtf)
119. ⌈⌉
119a. ⌈⌉⌊⌋ { let ((vi,vp),t) = (vm ch[vi]?,clkm ch?), in

119b. let rtf′ = rtf † [t 7→ rtf(max dom rtf) † [vi 7→ vp]] in

119c. mon(m)(rtf′) end

119d. end | vi:VI • vi ∈ vis }

118. own mon work: M → TBL → M

• We do not describe the clock behaviour by other than stating that
it continually offers the current time on channel clkm ch.

Lectures at BeiDa and ECNU 251 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

252
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

Example: 42 A Pipeline System Behaviour.

• We consider pipeline system units to represent also the following
behaviours:

⋄⋄ For each kind of unit, cf. Example 29 on Slide 179, there are the
unit processes:

◦◦ unit,

◦◦ well (Item 78c on Slide 180),

◦◦ pipe (Item 78a),

◦◦ pump (Item 78a),

◦◦ valve (Item 78a),

◦◦ fork (Item 78b),

◦◦ join (Item 78b) and

◦◦ sink (Item 78d on Slide 180).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 252 Domain Science & Engineering

2535. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

channel

{ pls u ch[ui]:ui:UI•i ∈ UIs(pls) } MUPLS
{ u u ch[ui,uj]:ui,uj:UI•{ui,uj}⊆UIs(pls) } MUU

type

MUPLS, MUU
value

pipeline system: PLS → in,out { pls u ch[ui]:ui:UI•i ∈ UIs(pls) } Unit

pipeline system(pls) ≡ ‖ { unit(u)|u:U•u ∈ obs Us(pls) }
unit: U → Unit

unit(u) ≡
78c. is We(u) → well(uid U(u))(u),
78a. is Pu(u) → pump(uid U(u))(u),
78a. is Pi(u) → pipe(uid U(u))(u),
78a. is Va(u) → valve(uid U(u))(u),
78b. is Fo(u) → fork(uid U(u))(u),
78b. is Jo(u) → join(uid U(u))(u),
78d. is Si(u) → sink(uid U(u))(u)

Lectures at BeiDa and ECNU 253 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

254 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

• We illustrate essentials of just one of these behaviours.

78b. fork: ui:UI → u:U → out,in pls u ch[ui],
in { u u ch[iui,ui] | iui:UI • iui ∈ sel UIs in(u) }
out { u u ch[ui,oui] | iui:UI • oui ∈ sel UIs out(u) } Unit

78b. fork(ui)(u) ≡
78b. let u′ = core fork behaviour(ui)(u) in

78b. fork(ui)(u′) end

• The core fork behaviour(ui)(u) distributes

⋄⋄ what oil (or gas) in receives,

◦◦ on the one input sel UIs in(u) = {iui},

◦◦ along channel u u ch[iui]

⋄⋄ to its two outlets

◦◦ sel UIs out(u) = {oui1,oui2},

◦◦ along channels u u ch[oui1], u u ch[oui2].

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 254 Domain Science & Engineering

2555. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

• The core fork behaviour(ui)(u) also communicates with the
pipeline system behaviour.

⋄⋄ What we have in mind here is to model a traditional supervisory
control and data acquisition, SCADA system.

Figure 1: A supervisory control and data acquisition system

Lectures at BeiDa and ECNU 255 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

256
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

• SCADA is then part of the pipeline system behaviour.

120.

120. pipeline system: PLS → in,out { pls u ch[ui]:ui:UI•i ∈ UIs(pls) } Unit

120. pipeline system(pls) ≡ scada(props(pls)) ‖ ‖{ unit(u)|u:U•u ∈ obs Us(pls)

• props was defined on Slide 205.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 256 Domain Science & Engineering

257
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

121. scada non-deterministically (internal choice, ⌈⌉), alternates between
continually

a doing own work,

b acquiring data from pipeline units, and

c controlling selected such units.

type

121. Props
value

121. scada: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis } Unit

121. scada(props) ≡
121a. scada(scada own work(props))
121b. ⌈⌉ scada(scada data acqui work(props))
121c. ⌈⌉ scada(scada control work(props))

Lectures at BeiDa and ECNU 257 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

258 5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

• We leave it to the listeners imagination to describe scada own work.

122. The scada data acqui work

a non-deterministically, external choice, ⌈⌉⌊⌋, offers to accept data,

b and scada input updates the scada state —

c from any of the pipeline units.

value

122. scada data acqui work: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis
122. scada data acqui work(props) ≡
122a. ⌈⌉⌊⌋ { let (ui,data) = pls ui ch[ui] ? in

122b. scada input update(ui,data)(props) end

122c. | ui:UI • ui ∈ uis }

122b. scada input update: UI × Data → Props → Props
type

122a. Data

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 258 Domain Science & Engineering

2595. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

123. The scada control work

a analyses the scada state (props) thereby selecting a pipeline unit,
ui, and the controls, ctrl, that it should be subjected to;

b informs the units of this control, and

c scada output updates the scada state.

123. scada control work: Props → in,out { pls ui ch[ui] | ui:UI•ui ∈ ∈ uis }
123. scada control work(props) ≡
123a. let (ui,ctrl) = analyse scada(ui,props) in

123b. pls ui ch[ui] ! ctrl ;
123c. scada output update(ui,ctrl)(props) end

123c. scada output update UI × Ctrl → Props → Props
type

123a. Ctrl

Lectures at BeiDa and ECNU 259 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

260
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

Modelling Behaviours, I/II

• The domain describer has decided that an entity is a perdurant
and is, or represents a behaviour.

⋄⋄ The domain describer has further decided that the observed
behaviour is of a class of behaviours — of the “same kind” —
that need be described.

⋄⋄ By behaviours of the ‘same kind’ is meant that these can be
described by the same channel declarations, function signature
and function definition.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 260 Domain Science & Engineering

261
5. Discrete Perdurants 5.4. Discrete Behaviours5.4.2. Behaviour Narratives5.4.2.10.

Modelling Behaviours, II/II

• First the domain describer must decide on
the underlying function signature.

⋄⋄ It must be decided which synchronisation and communication

◦◦ inputs and

◦◦ outputs

this behaviour requires, i.e., the in,out clause of the signature,

⋄⋄ that also includes the “discovery” of
necessary channel declarations.

• Finally the function definition must be decided upon.

Lectures at BeiDa and ECNU 261 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

262
6. Discrete Perdurants

6. Seminar Conclusion
6.1. Other Work on Domain Analysis

• Our comparison hinges on basically the following two facets:

⋄⋄ domain analysis and

⋄⋄ domain description.

• We shall see that the former term, seen across the surveyed
literature,

⋄⋄ covers techniques that are claimed used in many steps of
software engineering,

⋄⋄ but that they seldom, if ever, involve formal concept analysis
as we understand it.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 262 Domain Science & Engineering

263
6. Seminar Conclusion 6.1. Other Work on Domain Analysis6.1.1. An Enumeration

6.1.1. An Enumeration

• Formal Concept Analysis: Ganter & Will Mathematics

• Miscellaneous Directions Software Engineering

⋄⋄ Business Process [Re-]engineering, BPE, BPRE

⋄⋄ Ontological Engineering

⋄⋄ Knowledge and Knowledge Engineering, KE

⋄⋄ Prieto-Dı̃az’s Domain Analysis

⋄⋄ Software Product Line Engineering

⋄⋄ M.A. Jackson’s Problem Frames

⋄⋄ Domain Specific Software Architectures, DSS

⋄⋄ Domain Driven Design, DDD

⋄⋄ Feature-oriented Domain Analysis, FODA

⋄⋄ Unified Modelling Language, UML

Lectures at BeiDa and ECNU 263 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

264 6. Seminar Conclusion 6.1. Other Work on Domain Analysis6.1.2. Summary of Comparisons

6.1.2. Summary of Comparisons

• It should now be clear from the above that there are basically two
notions from above that relate to our notion of domain analysis.

⋄⋄ (i) Prieto-D̃ıaz’s notion of ‘Domain Analysis’ , and

⋄⋄ (ii) Jackson’s notion of Problem Frames .

• But it should also be clear that none of the surveyed literature,

⋄⋄ except, of course, Ganter & Wille’s
[GanterWille:ConceptualAnalysis1999]

Formal Concept Analysis, Mathematical Foundations,

⋄⋄ covers our notion of domain analysis

⋄⋄ as it hinges crucially on Ganter & Wille’s formal concept analysis.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 264 Domain Science & Engineering

265
6. Seminar Conclusion 6.2. What Have We Achieved ?

6.2. What Have We Achieved ?

• Identification and modelling of domain entities

⋄⋄ endurants

◦◦ atomic parts and composite parts (obs P),

◦◦ part properties

∗ unique identification (uid P),

∗ mereology (mereo P),

∗ attributes (attr Q),

⋄⋄ and perdurants

◦◦ action signatures and actions,

◦◦ event signaures and events, and

◦◦ behaviour signatures and behaviours.

• As ontological concepts the structuring and treatment

⋄⋄ of the above is possibly new to you.

Lectures at BeiDa and ECNU 265 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

266
6. Seminar Conclusion 6.3. What Needs Further Research

6.3. What Needs Further Research

• Endurants and Perdurants

• Mereology

• Formal Conceot Analysis of Perdurants

• Etcetera, etcetera !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45 266 Domain Science & Engineering

267
7. Seminar Conclusion

7. Questions ?

Lectures at BeiDa and ECNU 267 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

