2. Lecture 2: Domain Analysis: Meaning and Syntax 2.1. Formal Concept Analysis 2.1.1. FCA: Theory

• This section is a transcription of

 Source & Wille's [GanterWille:ConceptualAnalysis1999] Formal Concept Analysis, Mathematical Foundations, the 1999 edition, Pages 17–18.

79

Some Notation:

- By \mathcal{E} we shall understand the type of entities;
- by \mathbb{E} we shall understand a value of type \mathcal{E} ;
- by \mathcal{Q} we shall understand the type of qualities;
- by \mathbb{Q} we shall understand a value of type \mathcal{Q} ;
- by \mathcal{E} -set we shall understand the type of sets of entities;
- by \mathbb{ES} we shall understand a value of type \mathcal{E} -set;
- \bullet by $\mathcal{Q}\text{-set}$ we shall understand the type of sets of qualities; and
- by \mathbb{QS} we shall understand a value of type \mathcal{Q} -set.

Definition: 1 **Formal Context:**

- A formal context $\mathbb{K} := (\mathbb{ES}, \mathbb{I}, \mathbb{QS})$ consists of two sets;
 - $\circledast \mathbb{ES}$ of entities,
 - $\circledast \mathbb{QS}$ of qualities, and a
 - \circledast relation $\mathbb I$ between $\mathbb E$ and $\mathbb Q.$

 \bullet To express that \mathbbm{E} is in relation \mathbbm{I} to a Quality \mathbbm{Q} we write

 $\otimes \mathbb{E} \cdot \mathbb{I} \cdot \mathbb{Q}$, which we read as

 \Leftrightarrow "entity \mathbb{E} has quality \mathbb{Q} ".

ES \ QS	\mathbb{Q}_1	\mathbb{Q}_1	\mathbb{Q}_2	\mathbb{Q}_3	\mathbb{Q}_4	\mathbb{Q}_5	\mathbb{Q}_6	\mathbb{Q}_7
\mathbb{E}_{a}		\oplus					\oplus	
\mathbb{E}_b				\oplus				
\mathbb{E}_{c}			\oplus	\oplus				
\mathbb{E}_d			\oplus	\oplus				
\mathbb{E}_{e}		\oplus	\oplus	\oplus				
\mathbb{E}_{f}	\oplus		\oplus					
\mathbb{E}_{g}	\oplus				\oplus	\oplus		
\mathbb{E}_h							\oplus	
\mathbb{E}_i								\oplus

$\mathbb{E}S \setminus \mathbb{O}S \| \mathbb{O}_1 \| \mathbb{O}_1 \| \mathbb{O}_2 \| \mathbb{O}_3 \| \mathbb{O}_4 \| \mathbb{O}_5 \| \mathbb{O}_6 \| \mathbb{O}_7 \|$

- Example endurant entities are
 - \otimes a specific vehicle,

 - \otimes etcetera;
 - \otimes a specific street segment (link),
 - \otimes another street segment,

- \otimes etcetera,
- \otimes a monitor.

One can also list perdurant entities.

- Example endurant entity qualities are

One can also list perdurant entity qualities.

Definition: 2 **Qualities Common to a Set of Entities:**

• For any subset, $s\mathbb{ES} \subseteq \mathbb{ES}$, of entities we can define \mathcal{DQ} for "derive set of qualities".

 $\begin{array}{l} \mathcal{DQ}: \mathcal{E}\text{-set} \to (\mathcal{E}\text{-set} \times \mathcal{I} \times \ \mathcal{Q}\text{-set}) \to \mathcal{Q}\text{-set} \\ \mathcal{DQ}(s\mathbb{ES})(\mathbb{ES}, \mathbb{I}, \mathbb{QS}) \equiv \{\mathbb{Q} \mid \mathbb{Q}: \mathcal{Q}, \mathbb{E}: \mathcal{E} \cdot \mathbb{E} \in s\mathbb{ES} \land \mathbb{E} \cdot \mathbb{I} \cdot \mathbb{Q}\} \\ \text{pre:} \ s\mathbb{ES} \subseteq \mathbb{ES} \end{array}$

"the set of qualities common to entities in $s \mathbb{ES}$ ".

Definition: 3 Entities Common to a Set of Qualities:

• For any subset, $s\mathbb{QS} \subseteq \mathbb{QS}$, of qualities we can define \mathcal{DE} for "derive set of entiites".

 $\begin{array}{ll} \mathcal{DE}: \ \mathcal{Q}\text{-set} \to (\mathcal{E}\text{-set} \times \mathcal{I} \times \ \mathcal{Q}\text{-set}) \to \mathcal{E}\text{-set} \\ \mathcal{DE}(s\mathbb{QS})(\mathbb{ES}, \mathbb{I}, \mathbb{QS}) \equiv \{\mathbb{E} \mid \mathbb{E}: \mathcal{E}, \ \mathbb{Q}: \mathcal{Q} \cdot \mathbb{Q} \in s\mathbb{Q} \land \mathbb{E} \cdot \mathbb{I} \cdot \mathbb{Q} \}, \\ \mathbf{pre:} \ s\mathbb{QS} \subseteq \mathbb{QS} \end{array}$

"the set of entities which have all qualities in $s\mathbb{Q}$ ".

Definition: 4 **Formal Concept:**

- A formal concept of a context \mathbb{K} is a pair:
 - $(s\mathbb{Q}, s\mathbb{E})$ where $\mathcal{D}\mathcal{Q}(s\mathbb{E})(\mathbb{E}, \mathbb{I}, \mathbb{Q}) = s\mathbb{Q}$ and $\mathcal{D}\mathcal{E}(s\mathbb{Q})(\mathbb{E}, \mathbb{I}, \mathbb{Q}) = s\mathbb{E};$

 $\otimes s\mathbb{Q}$ is called the intent of \mathbb{K} and $s\mathbb{E}$ is called the extent of \mathbb{K} .

•
$$s\mathbb{Q} = \{\mathcal{Q}_2, \mathcal{Q}_3\}, s\mathbb{E} = \{\mathcal{E}_c, \mathcal{E}_d\}$$

$\mathbb{ES} \setminus \mathbb{QS}$	\mathbb{Q}_1	\mathbb{Q}_1	\mathbb{Q}_2	\mathbb{Q}_3	\mathbb{Q}_4	\mathbb{Q}_5	\mathbb{Q}_6	\mathbb{Q}_7
\mathbb{E}_{a}								
\mathbb{E}_b								
\mathbb{E}_{c}			\oplus	\oplus				
\mathbb{E}_d			\oplus	\oplus				
\mathbb{E}_{e}								
\mathbb{E}_{f}								
\mathbb{E}_{g}								
\mathbb{E}_h								
\mathbb{E}_i								\oplus

- Now comes the "crunch":
 - In the TripTych domain analysis
 A second secon
 - « we strive to find formal concepts
 - « and, when we think we have found one,
 - *∞* we assign a type
 - \circledast and properties:
 - unique identification,
 - mereology and
 - ${\scriptstyle \scriptsize \odot}$ attributes
 - to it !

- In mathematical terms it turns out that **formal concepts** are **Galois connection**s.
- We can, in other words, characterise **domain analysis** to be the "hunting" for **Galois connections**.
- Or, even more "catchy":

$\Leftrightarrow \textit{domain types},$

 \circledast whether they be endurant entity types

- \circledast or they be perdurant entity signatures
- \circledast are Galois connections.

2.1.2. Formal Concepts: Practice

• Examples of Concepts:

\$\$ street segment (link), \$\$ vehicle, \$\$ valve and
\$\$ street crossing (hub), \$\$ pipe, \$\$ \$\$ pump.

- In our domain analysis we shall therefore take a two-pronged approach.
 - (i) For commonly accepted and identified entity class names we immediately suggest a type name and identify qualities etc.
 - \otimes (ii) For "novel" entities,
 - ∞ for which no commonly agreed concept name are available,
 - ∞ one must carefully analyse a suitable set of entities claimed to "represent that concept", and
 - ∞ then suggest a concept cum type name and a suitable set of qualities.

• That is, we reverse matters.

∞ Postulate a concept, whether concrete or abstract,

- « endow it with a name an properties,
- ∞ and, if challenged, point to instances, i.e., entities.
- We may be forced to retract a postulated concept.⁴

⁴ "There are no theories; there are no proofs. There may be bold conjectures; and someties there are sad refutations." [A Sir Karl Popper essence.]..

- Therefore, if an entity has quality \mathcal{Q} ,
 - \otimes that is, $has_{\mathcal{Q}}$ holds,
 - \otimes then values of that quality are obtained by either
 - \circ uid_P,
 - \odot mereo_P or
 - ∞ attr_A,

2.2. Basic Domain Concepts

- - « within which the requirements "reside".

[1] **Domain**

- By a **domain** we shall⁵ understand
 - « an area of human activity
 - « characterised by observable phenomena, that is,
 - on entities whether
 - * endurants (manifest parts and materials)
 * or perdurants (actions, events or behaviours),
 whether
 - * discrete or
 - * continuous,
 - ∞ and of their [further] qualities.

© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark - November 17, 2012: 09:45

⁵This characterisation is additional to that of the introductory summary.

• For practical reasons we name domains.

 \otimes In the below example we rely on your intuition

 ∞ in "filling out the details"

 ∞ when given the domain names.

Example: 4 Areas of Human Activity. Informal examples of domain names are:

- air traffic,
- banks,
- container line,

- \bullet hospitals,
- manufacturing,
- pipelines,

- railways,
- waste management,
- etcetera.

• A key term above was that of entity. Other terms for the same are:

∞ 'thing',	« 'individual',	∞'term',	∞ 'quantity'.
∞ 'object',	∞'unit',	∞ 'particular',	⇔ etcetera.

- Henceforth we shall think of domains without any reference
 - \otimes to requirements to software
 - \otimes let alone software.
- That is, we shall consider
 - \otimes the study of domains
 - \otimes like the study of physics,
 - \otimes something that is of importance in and of itself.

- Thus we "equate"
 - \otimes observable phenomena \otimes with entities.

[2] Entity

- By a **domain entity** we shall understand
 - « a manifest domain phenomenon

or

- « a domain concept,
 - ∞ *i.e.*, an abstraction,
 - ∞ derived from a domain entity.
- The distinction between
 - « a manifest domain phenomenon and
 - $\circledast a \mbox{ concept}$ thereof, i.e., a domain concept,

is important.

- Really, what we describe are the **domain concept**s derived
 - $\circledast {\rm from}\ domain\ phenomena\ {\rm or}$
 - « from other **domain concept**s.

Example: 5 Entity Instances versus Entity Types. Thus we do not specifically describe

- that street segment there,
- that vehicle passing us, but focus on
 - street segments (links),
 - vehicle,

- this barrel of oil here,
- etcetera,

- oil,
- etcetera.

- - extensional qualities (entity form),
 which we shall call entity syntax (i.e., entity form or entity structure), and
 - intensional qualities (entity attribute),
 which we shall call entity properties (i.e., entity content or just property).

[3] Phenomena

• By a **domain phenomenon** we shall understand

« something that can be observed by the human senses

« or by equipment based on laws of physics and chemistry.

- \bullet We shall make a distinction between
 - \otimes spatial and
 - \otimes temporal
 - phenomena, respectively concepts derived from
 - \otimes spatial and
 - $\ll {\rm temporal}$
 - phenomena.
- The former we shall call **endurants**, the latter **perdurants**.

[4] Endurants

• By an **endurant** we shall understand

- « a specific kind of phenomenon, that is,
- « an entity that can be observed, i.e., perceived or conceived,
- « as a complete physical entity or as a concept
- « at no matter which given snapshot of time;

• were we to freeze time

 ∞ we would still be able to observe the entire endurant⁶.

• Colloquially you may think of endurants

 \otimes as data (structures)

⁶edited from Wikipedia

[©] Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – November 17, 2012: 09:45

Example: 6 Endurant Entities. Rephrasing Example 5 we get:

- road nets,
- links,
- hubs,

- pipelines,
- valves, gas,
- pumps, etcetera,

• oil,

[5] **Discrete Endurants: Parts**

• By a discrete endurant, that is, a part, we shall understand *« an endurant which is*

- « separate or distinct in form or concept,
- « consisting of distinct or separate parts.

Example: 7 Parts. Examples of parts:

- container,
- freight item,
- vessel,

- truck,
- crane,
- port,

- person,
- vehicle,
- etcetera.

[6] Continuous Endurants: Materials

- - « in an unbroken spatial series or pattern.

Example: 8 Materials. Examples of materials:

- oil,
- \bullet gas,
- water,

- sand, grain,
- gravel,
- garbage,

- \bullet milk,
- etcetera.

[7] Endurant Attributes

- By an **endurant attribute** we shall understand
 - « a phenomenon that can be observed of a part or a material,
 - « not by manifest means,
 - « but by using equipment based on laws of physics (incl. chemistry),
 - « or by being related to other parts and materials,
 - « or by being counted !

Example: 9 Endurant Attributes. Some examples are:

- length of a street segment,
- setting of a street signal,
- colour of current signal,
- velocity of a vehicle,
- colour of a car,
- decibel level of car horn,
- frequency of alarm signal,

- flow capacity of a pipe,
- denomination of a bank note,
- viscosity of oil,
- temperature of water,
- gender of a person,
- weight of a person,
- etcetera.

[8] Perdurants

- By a **perdurant** we shall understand
 - « an entity which exists
 - ∞ only instantaneously, at some point in time,
 - ∞ or during a time interval
 - * such that if we freeze time, in that interval,
 - * then we only see a proper fragment of the perdurant.

Example: 10 Perdurant Entities. Examples of perdurant entities:

- inserting a link between two hubs (an action),
- disappearance of a link (an event),
- movement (traffic) of vehicles (a behaviour).
- \bullet etcetera.

[9] Discrete Perdurant

- By a **discrete perdurant** we shall understand
 - *∞* a perdurant which we consider as taking place
 - « either instantaneously, in no time,
 - « or where whatever time interval it may take to complete that time interval is considered immaterial,

Example: 11 Discrete Perdurants. Example discrete perdurants are:

- the deposit of funds into a bank account (an action),
- the overdraft on a deposit/withdrawal account (an event),
- the sequence of actions and events with respect to a bank account (a *behaviour*):
 - « opening the account,
 - « deposits and withdrawals,
 - \otimes occasional statements, ending with
 - \circledast the closing of the account.

[10] Continuous Perdurant

• By a **continuous perdurant** we shall understand

- « a perdurant whose temporal characteristics are likewise
- « prolonged, without interruption,
- « in an unbroken temporal series or pattern.

Example: 12 Continuous Perdurants. Example of continuous perdurants are:

- the flow of oil in a pipeline,
- the traffic of vehicles on a road net,
- the change of weather at a given geographical spot,
- etcetera.

[11] Atomic Parts

- By an **atomic part** we shall understand
 - *∞* is a part which,
 - *∞* in a given context,
 - is deemed not to consist of meaningful, separately observable proper sub-parts,
 - « where sub-parts are parts.

Example: 13 Atomic Parts. We consider

- street segments,
- street intersections and
- \bullet vehicles

to be atomic parts [of transport systems].

[12] Composite Parts

• By a **composite part** we shall understand

« a part which, in a given context,

 is deemed to indeed consist of meaningful, separately observable proper sub-parts,
 .

« where sub-parts are parts.

Example: 14 Composite Parts. We consider

- road transport systems,
- \bullet hospitals and
- \bullet pipelines
- to be composite parts.

[13] Entity Properties

• By an entity property we shall understand *a quality such as*

- « whether the entity is an endurant or a perdurant,
- « whether the entity is discrete or continuous,
- « whether an endurant entity is atomic or composite, or
- whether a perdurant entity is an action, or an event or a behaviour.

[14] Entity Qualities

• By an entity quality we shall understand *a proposition*

- « such as a property,
- *∞* or as an attribute.

[15] Domain Description

- By a **domain description** we shall understand
 - « a narrative description
 - tightly coupled (say line-number-by-line-number)
 - *∞* to a formal description
 - « of a domain:
 - o its entities
 - ∞ and their qualities.

Example: 15 A Domain Description. The following is a tiny fragment of a domain description:

Narrative:

72. A road net is a composition of

- a composition of hubs and
- a composition of links.
- 73. A composition of hubs is a set of hubs.
- 74. A composition of links is a set of links.
- 75. Hubs and links are here considered atomic endurants.

Formalisation:

type

- 72. N, HS, LS, Hs, Ls
- 75. H, L,

value

- 72. **<u>obs_</u>HS**: $N \rightarrow HS$,
- 72. <u>**obs_**</u>LS: $N \rightarrow LS$,
- 73. <u>obs_</u>Hs: $HS \rightarrow H$ -set,
- 74. <u>**obs_</u>Ls: LS \rightarrow L-set,</u>**

- The example does not illustrate a full complement of road net properties and attributes.
- This example will therefore reappear in many forms and extensions in this seminar.

[16] Domain Engineering

- By **domain engineering** we shall understand
 - « the engineering of a domain description,
 - \otimes that is,
 - the rigorous construction of domain descriptions, and
 the further analysis of these, creating theories of domains, etc.
- We are not engineering a domain, but [only] its description.

Example: 16 Domain Engineering. Examples of facets of domain engineering are:

- (i) the planning, selection, scheduling and allocation of resources for the development of a domain description,
- (ii) the selection of proper tools and techniques for domain description,
- \bullet (iii) the decisions made in abstraction and description choices,
- \bullet (iv) the instrumentation of proofs, model checks and test data,
- \bullet (v) the decisions made to possibly redo a description section,
- (vi) the decisions made when regrettably replacing domain engineering staff,
- etcetera.

- In this seminar we shall not cover such aspects as
 - « planning, selection, scheduling and allocation of resources,
 - \otimes selection of proper tools and techniques for domain description and
 - \otimes instrumentation of proofs, model checks and test data.
- but shall focus on
 - \otimes analysis techniques,
 - \otimes abstraction and
 - \otimes description.

[17] Domain Science

• By **domain science** we shall understand

 \otimes either

(i) the general study and knowledge of
 * how to create and handle domain descriptions
 * (a general theory of domain descriptions)

or

(ii) the specific study and knowledge of a particular domain.
 The two studies intertwine.

Example: 17 Domain Science. Examples of possible domain science elements:

- general
 - \otimes laws of domain descriptions and
 - \otimes a possible calculus of domain description operators
 - are of the first kind (i), and
- specific, proven
 - « properties of a domain
 - are of the second kind (ii).

[18] Extensionality

• By extensionality we shall mean

« something which relates to, or is marked by extension,

 \otimes that is, concerned with objective reality.⁷

• Our use basically follows this characterisation:

We think of extensionality as a syntactic notion,one that characterises an exterior appearance or form

 \bullet We shall therefore think of

 \circledast part types and material types

***** whether **parts** are **atomic** or **composite**, and

 \otimes how composite parts are composed

as extensional features.

⁷Extensionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com (16 August 2012).

$[19] \ \textbf{Intentionality}$

- By intentionality we shall mean
 - « done by intention or design,
 - *∞* intended,
 - \circledast of or relating to epistemological intention, \circledast having external reference. 8
- Our use basically follows this characterisation:
 - ∞ we think of intentionality as a semantic notion,
 ∞ one that characterises an intention.
- We shall therefore think of
 - \circledast part attributes and material attributes
 - ${\rm as}$ intentional features.

^sIntentionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com (16 August 2012).

2.3. Discussion

- The crucial characterisation (above) is that of **domain entity** (Slide 99).
 - \otimes It is pivotal since all we describe are domain entities and their qualities.
 - \otimes If we get the characterisation wrong we get everything wrong !
 - & What might get the characterisation, or its interpretation, wrong is the interpretation of **domain entities**:
 - $\ensuremath{\scriptstyle \odot}$ those phenomena that can be observed by
 - * the human eye or
 - * touched, for example, by human hands,

and

- © manifest domain phenomena or
- omain concepts, i.e., abstractions,
- o derived from domain entities.

- The whole thing hinges of
 - « what can be described,
 - \circledast what constitutes a description and
 - « when is a text a bona fide description.
- Another set of questions are

- Philosophers have dealt with these questions.
 - \otimes Recent writings are

[Badiou1988,BarrySmith1993,ChrisFox2000] and

[CasatiVarzi2010, HenryLaycock2011, WilsonScpall2012].

 \otimes Going back in time we find

[LeonardGoodman1940,Kripke1980,BowmanLClarke81].

 \otimes Among the classics we mention

[Russell1905,Russell1922,RudolfCarnap1928,StanislawLesniewksi1927-19

- We shall only indirectly contribute to this philosophical discussion and do so by presenting the material of this paper.
 - We have studied, over the years, fragments of the above cited publications.
 - \otimes And we humbly suggest that
 - ∞ following the principles, techniques and tools presented here
 - ∞ can lead the **domain engineer** to
 - ∞ a large class of domain descriptionss,
 - ∞ large enough for our "immediate future" needs !
- \bullet We shall, in the conclusion, return to the questions of
 - ∞ what can be described,
 - \otimes what constitutes a description and
 - \otimes when is a text a bona fide description ?