
424

FINAL LAST HAUL !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 424 Domain Science & Engineering



425

Begin of Lecture 9: Last Session — Conclusion

Comparisons and What Have We Achieved

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 425 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



425

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–110

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 111–142

4 Perdurant Entities: Actions and Events Slides 143–174

5 Perdurant Entities: Behaviours Slides 175–285

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 286–339

7 A Calculus: Function Signatures and Laws Slides 340–377

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 378–424
√

9 Conclusion: Comparison to Other Work Slides 428–460
√

Conclusion: What Have We Achieved Slides 425–427 + 461–472

A Precursor for Requirements Engineering 425 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



426 13.

13. Conclusion

• This document,

⋄⋄ meant as the basis for my tutorial

⋄⋄ at FM 2012 (CNAM, Paris, August 28),

⋄⋄ “grew” from a paper being written for possible journal
publication.

◦◦ Sections 2–3 possibly represent
two publishable journal papers.

◦◦ Section 4 has been “added” to the ‘tutorial’ notes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 426 Domain Science & Engineering



427
13. Conclusion

• The style of the two tutorial “parts”,

⋄⋄ Sects. 2–3 and

⋄⋄ Sect. 4

⋄⋄ are, necessarily, different:

◦◦ Sects. 2–3
are in the form of research notes,

◦◦ whereas Sect. 4
is in the form of “lecture notes” on methodology.

⋄⋄ Be that as it may. Just so that you are properly notified !

A Precursor for Requirements Engineering 427 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



428
13. Conclusion 13.1. Comparison to Other Work

13.1. Comparison to Other Work

• In this section we shall only compare

⋄⋄ our contribution to domain engineering as presented in the
section on domain entities

⋄⋄ to that found in the broader literature with respect to the
software engineering term ‘domain’.

• We shall not compare

⋄⋄ our contribution to requirements engineering

⋄⋄ as surveyed in the section on requirements engineering.

⋄⋄ to that, also, found in the broader requirements engineering
literature.

• Finally we shall also not compare

⋄⋄ our work on a description calculus

⋄⋄ as we find no comparable literature !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 428 Domain Science & Engineering



429
13. Conclusion 13.1. Comparison to Other Work13.1.1. Ontological Engineering:

13.1.1. Ontological Engineering:

• Ontological engineering is described mostly on the Internet, see
however [Benjamins+Fensel98].

• Ontology engineers build ontologies.

• And ontologies are, in the tradition of ontological engineering,
“formal representations of a set of concepts within a domain and the
relationships between those concepts” — expressed usually in some
logic.

• Published ontologies usually consists of thousands of logical
expressions.

• These are represented in some, for example, low-level mechanisable
form so that they can be interchanged between ontology groups
building upon one-anothers work and processed by various tools.

A Precursor for Requirements Engineering 429 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



430
13. Conclusion 13.1. Comparison to Other Work13.1.1. Ontological Engineering:

• There does not seem to be a concern for “deriving” such ontologies
into requirements for software.

• Usually ontology presentations

⋄⋄ either start with the presentation

⋄⋄ or makes reference to its reliance

of an upper ontology.

• Instead the ontology databases

⋄⋄ appear to be used for the computerised

⋄⋄ discovery and analysis

⋄⋄ of relations between ontologies.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 430 Domain Science & Engineering



431
13. Conclusion 13.1. Comparison to Other Work13.1.1. Ontological Engineering:

• The TripTych form of domain science & engineering differs from
conventional ontological engineering in the following, essential ways:

⋄⋄ The TripTych domain descriptions rely essentially
on a “built-in” upper ontology:

◦◦ types, abstract as well as model-oriented (i.e., concrete) and

◦◦ actions, events and behaviours.

⋄⋄ Domain science & engineering is not, to a first degree, concerned
with modalities, and hence do not focus on the modelling of

◦◦ knowledge and belief,

◦◦ necessity and possibility, i.e., alethic modalities,

◦◦ epistemic modality (certainty),

◦◦ promise and obligation (deontic modalities),

◦◦ etcetera.

A Precursor for Requirements Engineering 431 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



432
13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

13.1.2. Knowledge and Knowledge Engineering:

• The concept of knowledge has occupied philosophers since Plato.

⋄⋄ No common agreement on what ‘knowledge’ is has been reached.

⋄⋄ From Wikipedia we may learn that

◦◦ knowledge is a familiarity with someone or something;

∗ it can include facts, information, descriptions, or skills
acquired through experience or education;

∗ it can refer to the theoretical or practical understanding of a
subject;

◦◦ knowledge is produced by socio-cognitive aggregates

∗ (mainly humans)

∗ and is structured according to our understanding of how
human reasoning and logic works.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 432 Domain Science & Engineering



433
13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• The aim of knowledge engineering was formulated, in 1983, by an
originator of the concept, Edward A. Feigenbaum [Feigenbaum83]:

⋄⋄ knowledge engineering is an engineering discipline

⋄⋄ that involves integrating knowledge into computer systems

⋄⋄ in order to solve complex problems

⋄⋄ normally requiring a high level of human expertise.

A Precursor for Requirements Engineering 433 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



434
13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• Knowledge engineering focuses on

⋄⋄ continually building up (acquire) large,
shared data bases (i.e., knowledge bases),

⋄⋄ their continued maintenance,

⋄⋄ testing the validity of the stored ‘knowledge’,

⋄⋄ continued experiments with respect to knowledge representation,

⋄⋄ etcetera.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 434 Domain Science & Engineering



435
13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• Knowledge engineering can, perhaps, best be understood in contrast
to algorithmic engineering:

⋄⋄ In the latter we seek more-or-less conventional, usually
imperative programming language expressions of algorithms
◦◦ whose algorithmic structure embodies the knowledge

◦◦ required to solve the problem being solved by the algorithm.

⋄⋄ The former seeks to solve problems based on an interpreter
inferring possible solutions from logical data. This logical data
has three parts:
◦◦ a collection that “mimics” the semantics of, say, the imperative

programming language,

◦◦ a collection that formulates the problem, and

◦◦ a collection that constitutes the knowledge particular to the problem.

• We refer to [BjornerNilsson1992].

A Precursor for Requirements Engineering 435 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



436 13. Conclusion 13.1. Comparison to Other Work13.1.2. Knowledge and Knowledge Engineering:

• The concerns of TripTych domain science & engineering is based
on that of algorithmic engineering.

⋄⋄ Domain science & engineering is not aimed at

◦◦ letting the computer solve problems based on

◦◦ the knowledge it may have stored.

⋄⋄ Instead it builds models based on knowledge of the domain.

• Further references to seminal exposés of knowledge engineering are
[Studer1998,Kendal2007].

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 436 Domain Science & Engineering



43713. Conclusion 13.1. Comparison to Other Work13.1.3. Domain Analysis:

13.1.3. Domain Analysis:

• There are different “schools of domain analysis”.

⋄⋄ Domain analysis, or product line analysis (see below), as it was
first conceived in the early 1980s by James Neighbors

◦◦ is the analysis of related software systems in a domain

◦◦ to find their common and variable parts.

◦◦ It is a model of wider business context for the system.

⋄⋄ This form of domain analysis turns matters “upside-down”:

◦◦ it is the set of software “systems” (or packages)

◦◦ that is subject to some form of inquiry,

◦◦ albeit having some domain in mind,

◦◦ in order to find common features of the software

◦◦ that can be said to represent a named domain.

A Precursor for Requirements Engineering 437 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



438
13. Conclusion 13.1. Comparison to Other Work13.1.3. Domain Analysis:

• In this section we shall mainly be comparing the TripTych
approach to domain analysis to that of Reubén Prieto-D̃ıaz’s
approach [Prieto-Diaz:1987,Prieto-Diaz:1990,Prieto-Diaz:1991].

• Firstly, the two meanings of domain analysis basically coincide.

• Secondly, in, for example, [Prieto-Diaz:1987], Prieto-D̃ıaz’s domain
analysis is focused on the very important stages that precede the
kind of domain modelling that we have described:

⋄⋄ major concerns are

◦◦ selection of what appears to be similar, but specific entities,

◦◦ identification of common features,

◦◦ abstraction of entities and

◦◦ classification.

⋄⋄ Selection and identification is assumed in our approach, but we suggest to
follow the ideas of Prieto-Dı̃az.

⋄⋄ Abstraction (from values to types and signatures) and classification into parts,
materials, actions, events and behaviours is what we have focused on.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 438 Domain Science & Engineering



439
13. Conclusion 13.1. Comparison to Other Work13.1.3. Domain Analysis:

• All-in-all we find Prieto-Dı̃az’s work very relevant to our work:

⋄⋄ relating to it by providing guidance to pre-modelling steps,

⋄⋄ thereby emphasising issues that are necessarily informal,

⋄⋄ yet difficult to get started on by most software engineers.

• Where we might differ is on the following:

⋄⋄ although Prieto-Dı̃az does mention a need for domain specific languages,

⋄⋄ he does not show examples of domain descriptions in such DSLs.

⋄⋄ We, of course, basically use mathematics as the DSL.

• In the TripTych approach to domain analysis

⋄⋄ we provide a full ontology — cf. Sects. 2.–10. and

⋄⋄ suggest a domain description calculus.

• In our approach

⋄⋄ we do not consider requirements, let alone software components,

⋄⋄ as do Prieto-Dı̃az,

but we find that that is not an important issue.

A Precursor for Requirements Engineering 439 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



440 13. Conclusion 13.1. Comparison to Other Work13.1.4. Software Product Line Engineering:

13.1.4. Software Product Line Engineering:

• Software product line engineering,
earlier known as domain engineering,

⋄⋄ is the entire process of reusing domain knowledge in the
production of new software systems.

• Key concerns of software product line engineering are

⋄⋄ reuse,

⋄⋄ the building of repositories of reusable software components, and

⋄⋄ domain specific languages with which to, more-or-less
automatically build software based on reusable software

components.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 440 Domain Science & Engineering



441
13. Conclusion 13.1. Comparison to Other Work13.1.4. Software Product Line Engineering:

• These are not the primary concerns of
TripTych domain science & engineering.

⋄⋄ But they do become concerns as we move from domain

descriptions to requirements prescriptions.

⋄⋄ But it strongly seems that software product line engineering is
not really focused on the concerns of domain description — such
as is TripTych domain engineering.

⋄⋄ It seems that software product line engineering is primarily based,
as is, for example, FODA: Feature-oriented Domain

Analysis, on analysing features of software systems.

⋄⋄ Our [dines-maurer] puts the ideas of software product lines and
model-oriented software development in the context of the
TripTych approach.

• Notable sources on software product line engineering are
[dom:Bayer:1999,dom:Weiss:1999,dom:Ardis:2000,dom:Thiel:2000,dom:Harsu

A Precursor for Requirements Engineering 441 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



442 13. Conclusion 13.1. Comparison to Other Work13.1.5. Problem Frames:

13.1.5. Problem Frames:

• The concept of problem frames is covered in [mja2001a].

• Jackson’s prescription for software development focuses on the
“triple development” of descriptions of

⋄⋄ the problem world,

⋄⋄ the requirements and

⋄⋄ the machine (i.e., the hardware and software) to be built.

• Here domain analysis means, the same as for us, the problem world

analysis.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 442 Domain Science & Engineering



443
13. Conclusion 13.1. Comparison to Other Work13.1.5. Problem Frames:

• In the problem frame approach the software developer plays three,
that is, all the TripTych rôles:

⋄⋄ domain engineer,

⋄⋄ requirements engineer and

⋄⋄ software engineer

“all at the same time”,

• well, iterating between these rôles repeatedly.

• So, perhaps belabouring the point,

⋄⋄ domain engineering is done only to the extent needed by the
prescription of requirements and the design of software.

• These, really are minor points.

A Precursor for Requirements Engineering 443 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



444
13. Conclusion 13.1. Comparison to Other Work13.1.5. Problem Frames:

• But in “restricting” oneself to consider

⋄⋄ only those aspects of the domain which are mandated by the
requirements prescription

⋄⋄ and software design

one is considering a potentially smaller fragment [Jackson2010Facs]
of the domain than is suggested by the TripTych approach.

• At the same time one is, however, sure to

⋄⋄ consider aspects of the domain

⋄⋄ that might have been overlooked when pursuing domain

description development

⋄⋄ the TripTych, “more general”, approach.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 444 Domain Science & Engineering



445
13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

13.1.6. Domain Specific Software Architectures (DSSA):

• It seems that the concept of DSSA

⋄⋄ was formulated by a group of ARPA30 project “seekers”

⋄⋄ who also performed a year long study
(from around early-mid 1990s);

⋄⋄ key members of the DSSA project were Will Tracz, Bob Balzer,
Rick Hayes-Roth and Richard Platek [dom:Trasz:1994].

• The [dom:Trasz:1994] definition of domain engineering is “the

process of creating a DSSA:

⋄⋄ domain analysis and domain modelling

⋄⋄ followed by creating a software architecture

⋄⋄ and populating it with software components.”

30ARPA: The US DoD Advanced Research Projects Agency

A Precursor for Requirements Engineering 445 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



446
13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

• This definition is basically followed also by
[Mettala+Graham:1992,Shaw+Garlan:1996,Medvidovic+Colbert:2004].

• Defined and pursued this way, DSSA appears,

⋄⋄ notably in these latter references, to start with the

⋄⋄ with the analysis of software components, “per domain”,

⋄⋄ to identify commonalities within application software,

⋄⋄ and to then base the idea of software architecture

⋄⋄ on these findings.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 446 Domain Science & Engineering



447
13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

• Thus DSSA turns matter “upside-down” with respect to
TripTych requirements development

⋄⋄ by starting with software components,

⋄⋄ assuming that these satisfy some requirements,

⋄⋄ and then suggesting domain specific software

⋄⋄ built using these components.

• This is not what we are doing:

⋄⋄ We suggest that requirements

◦◦ can be “derived” systematically from,

◦◦ and related back, formally to domain descriptionss

◦◦ without, in principle, considering software components,

◦◦ whether already existing, or being subsequently developed.

A Precursor for Requirements Engineering 447 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



448
13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

⋄⋄ Of course, given a domain descriptions

◦◦ it is obvious that one can develop, from it, any number of
requirements prescriptions

◦◦ and that these may strongly hint at shared, (to be)
implemented software components;

⋄⋄ but it may also, as well, be the case

◦◦ two or more requirements prescriptions

◦◦ “derived” from the same domain description

◦◦ may share no software components whatsoever !

⋄⋄ So that puts a “damper” of my “enthusiasm” for DSSA.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 448 Domain Science & Engineering



449
13. Conclusion 13.1. Comparison to Other Work13.1.6. Domain Specific Software Architectures (DSSA):

• It seems to this author that had the DSSA promoters

⋄⋄ based their studies and practice on also using formal
specifications,

⋄⋄ at all levels of their study and practice,

⋄⋄ then some very interesting insights might have arisen.

A Precursor for Requirements Engineering 449 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



450
13. Conclusion 13.1. Comparison to Other Work13.1.7. Domain Driven Design (DDD)

13.1.7. Domain Driven Design (DDD)

• Domain-driven design (DDD)31

⋄⋄ “is an approach to developing software for complex needs

⋄⋄ by deeply connecting the implementation to an evolving

model of the core business concepts;

⋄⋄ the premise of domain-driven design is the following:

◦◦ placing the project’s primary focus on the core domain

and domain logic;

◦◦ basing complex designs on a model;

◦◦ initiating a creative collaboration between technical and

domain experts to iteratively cut ever closer to the

conceptual heart of the problem.”32

31Eric Evans: http://www.domaindrivendesign.org/
32http://en.wikipedia.org/wiki/Domain-driven design

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 450 Domain Science & Engineering



451
13. Conclusion 13.1. Comparison to Other Work13.1.7. Domain Driven Design (DDD)

• We have studied some of the DDD literature,

⋄⋄ mostly only accessible on The Internet, but see also
[Haywood2009],

⋄⋄ and find that it really does not contribute to new insight into
domains such as wee see them:

⋄⋄ it is just “plain, good old software engineering cooked up with a
new jargon.

A Precursor for Requirements Engineering 451 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



452
13. Conclusion 13.1. Comparison to Other Work13.1.8. Feature-oriented Domain Analysis (FODA):

13.1.8. Feature-oriented Domain Analysis (FODA):

• Feature oriented domain analysis (FODA)

⋄⋄ is a domain analysis method

⋄⋄ which introduced feature modelling to domain engineering

⋄⋄ FODA was developed in 1990 following several U.S. Government
research projects.

⋄⋄ Its concepts have been regarded as critically advancing software
engineering and software reuse.

• The US Government supported report [KyoKang+et.al.:1990]
states: “FODA is a necessary first step” for software reuse.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 452 Domain Science & Engineering



453
13. Conclusion 13.1. Comparison to Other Work13.1.8. Feature-oriented Domain Analysis (FODA):

• To the extent that

⋄⋄ TripTych domain engineering

⋄⋄ with its subsequent requirements engineering

indeed encourages reuse at all levels:

⋄⋄ domain descriptions and

⋄⋄ requirements prescription,

we can only agree.

• Another source on FODA is [Czarnecki2000].

• Since FODA “leans” quite heavily on ‘Software Product Line
Engineering’ our remarks in that section, above, apply equally well
here.

A Precursor for Requirements Engineering 453 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



454
13. Conclusion 13.1. Comparison to Other Work13.1.9. Unified Modelling Language (UML)

13.1.9. Unified Modelling Language (UML)

• Three books representative of UML are
[Booch98,Rumbaugh98,Jacobson99].

• The term domain analysis appears numerous times in these books,

⋄⋄ yet there is no clear, definitive understanding

⋄⋄ of whether it, the domain, stands for entities in the domain such
as we understand it,

⋄⋄ or whether it is wrought up, as in several of the ‘approaches’
treated in this section, to wit, Items [3,4,6,7,8], with

◦◦ either software design (as it most often is),

◦◦ or requirements prescription.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 454 Domain Science & Engineering



455
13. Conclusion 13.1. Comparison to Other Work13.1.9. Unified Modelling Language (UML)

• Certainly, in UML,

⋄⋄ in [Booch98,Rumbaugh98,Jacobson99] as well as

⋄⋄ in most published papers claiming “adherence” to UML,
⋄⋄ that domain analysis usually

◦◦ is manifested in some UML text

◦◦ which “models” some requirements facet.

⋄⋄ Nothing is necessarily wrong with that;

⋄⋄ but it is therefore not really the TripTych form of domain

analysis

◦◦ with its concepts of abstract representations of endurant and perdurants,
and

◦◦ with its distinctions between domain and requirements, and

◦◦ with its possibility of “deriving”

∗ requirements prescriptions from

∗ domain descriptions.

A Precursor for Requirements Engineering 455 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



456
13. Conclusion 13.1. Comparison to Other Work13.1.9. Unified Modelling Language (UML)

• There is, however, some important notions of UML

⋄⋄ and that is the notions of

◦◦ class diagrams,

◦◦ objects, etc.

⋄⋄ How these notions relate to the discovery

◦◦ of part types, unique part identifiers, mereology and
attributes, as well as

◦◦ action, event and behaviour signatures and channels,

⋄⋄ as discovered at a particular domain index,

⋄⋄ is not yet clear to me.

⋄⋄ That there must be some relation seems obvious.

• We leave that as an interesting, but not too difficult, research topic.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 456 Domain Science & Engineering



457
13. Conclusion 13.1. Comparison to Other Work13.1.10. Requirements Engineering:

13.1.10. Requirements Engineering:

• There are in-numerous books and published papers on requirements

engineering.

⋄⋄ A seminal one is [AvanLamsweerde2009].

⋄⋄ I, myself, find [SorenLauesen2002] full of very useful, non-trivial
insight.

⋄⋄ [Dorfman+Thayer:1997:IEEEComp.Soc.Press] is seminal in that
it brings a number or early contributions and views on
requirements engineering.

A Precursor for Requirements Engineering 457 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



458
13. Conclusion 13.1. Comparison to Other Work13.1.10. Requirements Engineering:

• Conventional text books, notably
[Pfleeger2001,Pressman2001,Sommerville2006] all have their
“mandatory”, yet conventional coverage of requirements

engineering.

⋄⋄ None of them “derive” requirements from domain descriptions,

◦◦ yes, OK, from domains,

◦◦ but since their description is not mandated

◦◦ it is unclear what “the domain” is.

⋄⋄ Most of them repeatedly refer to domain analysis

◦◦ but since a written record of that domain analysis is not
mandated

◦◦ it is unclear what “domain analysis” really amounts to.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 458 Domain Science & Engineering



459
13. Conclusion 13.1. Comparison to Other Work13.1.10. Requirements Engineering:

• Axel van Laamsweerde’s book [AvanLamsweerde2009] is
remarkable.

⋄⋄ Although also it does not mandate descriptions of domains

⋄⋄ it is quite precise as to the relationships between domains and
requirements.

⋄⋄ Besides, it has a fine treatment of the distinction between goals
and requirements,

⋄⋄ also formally.

• Most of the advices given in [SorenLauesen2002]

⋄⋄ can beneficially be followed also in

⋄⋄ TripTych requirements development.

• Neither [AvanLamsweerde2009] nor [SorenLauesen2002] preempts
TripTych requirements development.

A Precursor for Requirements Engineering 459 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



460
13. Conclusion 13.1. Comparison to Other Work13.1.11. Summary of Comparisons

13.1.11. Summary of Comparisons

• It should now be clear from the above that

⋄⋄ basically only Jackson’s problem frames really take

◦◦ the same view of domains and,

◦◦ in essence, basically maintain similar relations between

∗ requirements prescription and

∗ domain description.

⋄⋄ So potential sources of, we should claim, mutual inspiration

◦◦ ought be found in one-another’s work —

◦◦ with, for example, [ggjz2000,Jackson2010Facs],

◦◦ and the present document,

◦◦ being a good starting point.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 460 Domain Science & Engineering



461
13. Conclusion 13.2. What Have We Achieved and Future Work

13.2. What Have We Achieved and Future Work

• Sect. 13.1 has already touched upon, or implied,

⋄⋄ a number of ‘achievement’ points and

⋄⋄ issues for future work.

• Here is a summary of ‘achievement’ and future work items.

A Precursor for Requirements Engineering 461 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



462
13. Conclusion 13.2. What Have We Achieved and Future Work

• We claim that there are three major contributions being reported
upon:

⋄⋄ (i) the separation of domain engineering from requirements

engineering,

⋄⋄ (ii) the separate treatment of domain science & engineering:

◦◦ as “free-standing” with respect, ultimately, to computer
science,

◦◦ and endowed with quite a number of domain analysis principles
and domain description principles; and

⋄⋄ (iii) the identification of a number of techniques

◦◦ for “deriving” significant fragments of requirements

prescriptions from domain descriptions —

◦◦ where we consider this whole relation between domain

engineering and requirements engineering to be novel.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 462 Domain Science & Engineering



463
13. Conclusion 13.2. What Have We Achieved and Future Work

• Yes, we really do consider the possibility of a systematic

⋄⋄ ‘derivation’ of significant fragments of requirements prescriptions
from domain descriptions

⋄⋄ to cast a different light on requirements engineering.

• What we have not shown in this tutorial is

⋄⋄ the concept of domain facets;

⋄⋄ this concept is dealt with in [dines:facs:2008] —

⋄⋄ but more work has to be done to give a firm theoretical
understanding of domain facets of

◦◦ domain intrinsics,

◦◦ domain support technology,

◦◦ domain scripts,

◦◦ domain rules and regulations,

◦◦ domain management and

organisation, and

◦◦ human domainbehaviour.

A Precursor for Requirements Engineering 463 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



464
13. Conclusion 13.3. General Remarks

13.3. General Remarks

• Perhaps belaboring the point:

⋄⋄ one can pursue creating and studying domain descriptions

⋄⋄ without subsequently aiming at requirements development,

⋄⋄ let alone software design.

• That is, domain descriptions

⋄⋄ can be seen as

◦◦ “free-standing”,

◦◦ of their “own right”,

◦◦ useful in simply just understanding

◦◦ domains in which humans act.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 464 Domain Science & Engineering



465
13. Conclusion 13.3. General Remarks

• Just like it is deemed useful

⋄⋄ that we study “Mother Nature”,

⋄⋄ the physical world around us,

⋄⋄ given before humans “arrived”;

• so we think that

⋄⋄ there should be concerted efforts to study and create domain

models,

⋄⋄ for use in

◦◦ studying “our man-made domains of discourses”;

◦◦ possibly proving laws about these domains;

◦◦ teaching, from early on, in middle-school, the domains in
which the middle-school students are to be surrounded by;

◦◦ etcetera

A Precursor for Requirements Engineering 465 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



466
13. Conclusion 13.3. General Remarks

• How far must one formalise such domain descriptions ?

⋄⋄ Well, enough, so that possible laws can be mathematically
proved.

⋄⋄ Recall that domain descriptions usually will or must be developed
by domain researchers — not necessarily domain engineers —

◦◦ in research centres, say universities,

◦◦ where one also studies physics.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 466 Domain Science & Engineering



467
13. Conclusion 13.3. General Remarks

⋄⋄ And, when we base requirements development on domain

descriptions,

◦◦ as we indeed advocate,

◦◦ then the requirements engineers

◦◦ must understand the formal domain descriptions,

◦◦ that is, be able to perform formal

∗ domain projection,

∗ domain instantiation,

∗ domain determination,

∗ domain extension,

etcetera.

A Precursor for Requirements Engineering 467 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



468
13. Conclusion 13.3. General Remarks

• This is similar to the situation in classical engineering

⋄⋄ which rely on the sciences of physics,

⋄⋄ and where, for example,

◦◦ Bernoulli’s equations,

◦◦ Navier-Stokes equations,

◦◦ Maxwell’s equations,

◦◦ etcetera

⋄⋄ were developed by physicists and mathematicians,

⋄⋄ but are used, daily, by engineers:

◦◦ read and understood,

◦◦ massaged into further differential equations, etcetera,

◦◦ in order to calculate (predict, determine values), etc.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 468 Domain Science & Engineering



46913. Conclusion 13.3. General Remarks

• Nobody would hire non-skilled labour

⋄⋄ for the engineering development of airplane designs

◦◦ unless that “labourer” was skilled in Navier-Stokes equations,

or

⋄⋄ for the design of mobile telephony transmission towers

◦◦ unless that person was skilled in Maxwell’s equations.

A Precursor for Requirements Engineering 469 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



470
13. Conclusion 13.3. General Remarks

• So we must expect a future, we predict,

⋄⋄ where a subset of the software engineering candidates from
universities

◦◦ are highly skilled in the development of

∗ formal domain descriptions

∗ formal requirements prescriptions

⋄⋄ in at least one domain, such as

◦◦ transportation, for example,

∗ air traffic,

∗ railway systems,

∗ road traffic and

∗ shipping;

or

◦◦ manufacturing,

◦◦ services (health care, public administration, etc.),

◦◦ financial industries, or the like.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 470 Domain Science & Engineering



471
13. Conclusion 13.4. Acknowledgements

13.4. Acknowledgements

• I thank the tutorial organisers of the FM 2012 event for accepting my Dec. 31.
2011 tutorial proposal.

• I thank that part of participants

⋄⋄ who first met up for this tutorial this morning (Tuesday 28 August, 2012)

⋄⋄ to have remained in this room for most, if not all of the time.

• I thank colleagues and PhD students around Europe

⋄⋄ for having listened to previous,

⋄⋄ somewhat less polished versions of this tutorial.

⋄⋄ I in particular thank Drs. Magne Haveraaen and Marc Bezem of the
University of Bergen for providing an important step in the development of
the present material.

• And I thank my wife

⋄⋄ for her patience during the spring and summer of 2012

⋄⋄ where I ought to have been tending to the garden, etc. !

A Precursor for Requirements Engineering 471 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



472

3

End of Lecture 9: Last Session — Conclusion

Comparisons and What Have We Achieved

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 472 Domain Science & Engineering



472

THANKS AGAIN — HAVE A NICE CONFERENCE

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 472 Domain Science & Engineering


