e ——

SOFTWARE

ENGINEERING 1
ABSTRACTION AND MODELLING

LR] E

| 4 --'--
| jf s =N

SOFTWARE
I-Nl:‘lHFFﬁlm-: -

BT EFT W A LR e

339

mEILE

RESETMRY

B] S

SOFTWARE

EMCINEERIMNG 3

Sy T AT L

i .ﬂ‘l‘-

Ik efn

A Precurso

r for Requirements Engineering

HELLO THERE'!

339

o, RRSRkad

jgrner 2012, DTU Informatics, Techn.Univ.o

f Denmark — July 31, 2012: 09:02

340

Begin of Lecture 7: Last Session — Calculus ||

Function Signature Discoverers and Laws

FM 2012 Tutorial, Dines Bjgrner, Paris, 28 August 2012

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 340 Domain Science & Engineering

340

Tutorial Schedule

e Lectures 1-2
1 Introduction

2 Endurant Entities: Parts

9:00-9:40 + 9:50-10:30
Slides 1-35
Slides 36-110

e Lectures 3-5 11:00-11:15 + 11:20-11:45 + 11:50-12:30

3 Endurant Entities: Materials, States
4 Perdurant Entities: Actions and Events
5 Perdurant Entities: Behaviours
Lunch
e Lecture 67

6 A Calculus: Analysers, Parts and Materials

/T |A Calculus:||Function Signatures and Laws

e Lecture 8-9
8 Domain and Interface Requirements
9 Conclusion: Comparison to Other Work

Conclusion: What Have We Achieved

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

Slides 111-142
Slides 143-174
Slides 175-285
12:30-14:00
14:00-14:40 + 14:50-15:30
Slides 286-339
Slides 340-377
16:00-16:40 + 16:50-17:30
Slides 378-424
Slides 428-460
Slides 425427 + 461-472

340 Domain Science & Engineering

11. 11.3. 11.3.7. ACTION_SIGNATURES 341

11.3.7. ACTION SIGNATURES

e We really should discover actions, but actually analyse function
definitions.

e And we focus, in this tutorial, on just “discovering” the function
signatures of these actions.

e By a function signature, to repeat, we understand

@ a functions name, say fct, and
& a function type expression (te), say dte—rte where

o dte defines the type of the function’s definition set
o and rte defines the type of the function’s image, or range set.

341 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

342 11. 11.3. 11.3.7. ACTION_SIGNATURES

e We use the term ‘functions’ to cover actions. events and behaviours.
I

e We shall in general find that the signatures of actions, events and
behaviours depend on types of more than one domain.

o Hence the schematic index set {£17(t1),f9" (ta),....0n " (tn)}

® 18 used in all action, event and behaviour discoverers.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 342 Domain Science & Engineering

11. 11.3. 11.3.7. ACTION_SIGNATURES 343

ACTION SIGNATURES I/11

20. The ACTION_SIGNATURIES meta-function,
besides narrative texts, yields

(a) a set of auxiliary sort or concrete type definitions and

(b) a set of action signatures each consisting of
an action name and
a pair of definition set and range type expressions where

c¢) the type names that occur in these type expressions
y
are defined by in the domains indexed by the index set.

343 © Dines Bjgrner 2012, DTU Informati Techn.Univ.of Denmark I

44 11. 11.3. 11.3.7. ACTION_SIGNATURES

ACTION_SIGNATURES 11/11

120 ACTION SIGNATURES: Index — Index-set — (TextxRSL)
120 ACTION SIGNATURES(¢™(t))({€1 (t1),lo" (t2),.. .0~ (tn) }):

120 | narrative, possibly enumerated texts ;

120 type tq.tp,-.. te,

120(D) value

120(b) actz-:tez-dltez-r,actj:tejdltejr,...,actk:tekdltekr
120(c) where:

120(c) type names in tegj jx), andin teq k), are either
120(c) type names t,, tp, ... t. or are type names defined by the
120(c) indices which are prefixes of ¢,,,” (T},) and where T,, is
120(c) in some signature act;);|_ |

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 344

11. 11.3. 11.3.7. ACTION_SIGNATURES 345

Example: 55 Transport Nets: Action Signatures.

o ACTION SIGNATURES({A,N,HS,Hs, H))({{A,N,LS,Ls, L)) }):
insert HH N — H S N
remove. H: N — HI = N

e ACTION SIGNATURES({A,N,LS,Ls, L)) ({ (A,N,HS Hs,H)) }):
insert L: N — L — N
remove L: N — LI = N

e where - - - refer to the possibility of discovering further action
signatures ‘“rooted” in

o (AN HS Hs H), respectively
o (AN,LS LsL). .

345 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

346 11. 11.3. 11.3.8. EVENT.SIGNATURES

11.3.8. EVENT SIGNATURES

EVENT SIGNATURES 1/11

21. The EVENT SIGNATURES meta-function, besides narrative
texts, yields

(a) a set of auxiliary event sorts or concrete type definitions and
(b) a set of event signatures each consisting of

e an event name and
e a pair of definition set and range type expressions
where

(¢) the type names that occur in these type expressions
are defined either in the domains indexed by the indices
or by the auxiliary event sorts or types.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 346 Domain Science & Eng ineering

11. 11.3. 11.3.8. EVENT_SIGNATURES 347

EVENT SIGNATURES /I

121 EVENT SIGNATURES: Index — Index-set = (TextxRSL)
121 EVENT SIGNATURES(£™(6)) ({617 (t1),6s™ (ta) ool (t0) }):

121(a) | narrative, possibly enumerated texts omitted ;
121(a) type tg.tp,... te,

121(b) value

121(b) evt_pred;: teq, X te,, — Bool

121(b) evt_pred;: teg; X te,, — Bool

121(b)

121(b) evt_predy: teq, X te, — Bool |

121(c) where: t is any of ty,ty,....t. or type names listed in in indices; type
names of the ‘d’efinition set and ‘r’ange set type expressions te; and te, are
type names listed in domain indices or are in t,,t,...,t., the auxiliary discovered
event types. L]

347 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

348 11. 11.3. 11.3.8. EVENT_SIGNATURES

Example: 56 Transport Nets: Event Signatures.

We refer to Example 34 on page 169. The omitted narrative text
would, if included, as it should, be a subset of the Items 23-26 texts
on Slide 167.

e EVENT SIGNATURES((A,N,LS,Ls,L))({ (AN HS,Hs,H)) }):
value

link disappearance: N x N = Bool
link disappearance(n,n’) =
3 ¢:1.-1 € obs Ls(n) = pre_cond(n,f) A post_cond(n.Zn)

... | possibly further, discovered event |
.. | signatures “rooted” in (AN LS Ls,L) | O

e The undefined pre_ and post_conditions were “fully discovered” on
Slides 169 and 171.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 348 Domain Science & Eng ineering

349
11. 11.3. 11.3.9. BEHAVIOUR_SIGNATURES

11.3.9. BEHAVIOUR SIGNATURES

e \We choose, in this tutorial, to model behaviours in CSP2%.

e This means that we model (synchronisation and) communication
between behaviours by means of messages m of type M, CSP

channels (channel ch:M) and CSP

o output: chle |offer to deliver value of e on channel ch], and

o input: ch? [offer to accept a value on channel ch].

=Other behaviour modelling languages are Petri Nets, MSCs: Message Sequence
Charts, Statechart etc.

349 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

350 11. 11.3. 11.3.9. BEHAVIOUR_SIGNATURES

e We allow for the declaration of single channels as well as of one,
two, ..., n dimensional arrays of channels with indexes ranging over
channel index types

® type ldx, Cldx, Rldx ...:
& channel ch:M, { ch_v|vi]:M’|vi:ldx }, { ch_m[ci,ri]:M"|ci:Cldx,ri:RIdx }, ...
etcetera.

e We assume some familiarity with CSP [Hoare85+2004]
(or even RSL/CSP [TheSEBooklwo| [Chapter 21]).

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 350

11. 11.3. 11.3.9. BEHAVIOUR_SIGNATURES 351

e A behaviour usually involves two or more distinct sub-domains.

Example: 57 Vehicle Behaviour. Let us illustrate that
behaviours usually involve two or more distinct sub-domains.

e A vehicle behaviour, for example, involves

® the vehicle sub-domain,
o the hub sub-domain (as vehicles pass through hubs),
o the link sub-domain (as vehicles pass along links) and,

@ for the road pricing system, also the monitor sub-domain. O

A Precursor for Requirements Engineerin 351 Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02
q g g

—_

352 11. 11.3. 11.3.9. BEHAVIOUR_SIGNATURES

BEHAVIOUR SIGNATURES 1/11

22. The BEHAVIOUR_SIGNATURES meta-function, besides narrative texts,
yields

23. It applies to a set of indices and results in a pair,

(a) a narrative text and
(b) a formal text:

i. a set of one or more message types,
ii. a set of zero, one or more channel index types,
iii. a set of one or more channel declarations,

iv. a set of one or more process signatures with each signature containing a
behaviour name, an argument type expression, a result type expression,
usually just Unit, and

v. an input/output clause which refers to channels over which the signatured
behaviour may interact with its environment.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 352 Domain Science & Engineering

11. 11.3. 11.3.9. BEHAVIOURSIGNATURES

353

BEHAVIOUR SIGNATURES I1/11

122. BEHAVIOUR _SIGNATURES: Index— Index-set — (TextxRSL)
122. BEHAVIOUR SIGNATURES(£™(t)) ({1 (t1),ls " (ta),...0n " (tu) }):

123(a). | narrative, possibly enumerated texts ;

123((b))i. type m=m; |[moy|..|m, p>1

123((b)). =y g | .. | i, 220

123((b))iii. channel c:m, {ve|x||xi,}:m, {me|x,y||x:1p, v }m,...
123((b))iv. value

123((b))iv. bhvy: ate; — inout; rteq,

123((b))iv. e

123((b))iv. bhv,,: ate,, — inout,, rte,,. |

123((b))iv. where type expressions atei; and rte; for all i involve at least
123((b))iv. two types t;, t7 of respective indexes £, (t;), £ (t;),
123((b))v. where Unit may appear in either ate; or rte; or both.
123((b))v. where inout;: in k | out k | in,out k

123((b))v. where k: ¢ or vc[x]| or {ve[x|[x:i,;x € xs} or

123((b))v. {mc[x,y||x:ipyiie - X €EXS Ay € ys}or ...

353 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

354 11. 11.3. 11.3.9. BEHAVIOUR_SIGNATURES

Example: 58 Vehicle Transport: Behaviour Signatures. We
refer to Examples 35 and 36.

BEHAVIOUR SIGNATURES({AF,VS,Vs,V))({{AM)}):

| With each vehicle we associate behaviour with the following

arguments: the vehicle identifier, the vehicle parts, and
the vehicle position. The vehicle communicates with
the monitor process over a vehicle to monitor array of
channels, one for each vehicle ...

type
VPos

channel
{vm|vi||vi:VI - vi € vis}:VPos

value
veh: vi:VI — v:V — vp:VPos — out vin|vi| Unit |

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 354 Domain Science & Eng ineering

11. 11.3. 11.3.9. BEHAVIOURSIGNATURES 355

BEHAVIOUR SIGNATURES((A,M))({({A,F,VS,Vs,V)}):

| With the monitor part we associate a behaviour with the monitor
part as only argument. The monitor accepts communications
from vehicle behaviours ... ;
value
mon: M — in {vm|vi]|vi:VI-vi € vis} Unit |

e The “discovery” of vehicle positions into positions

@ on a link, some fraction down that link, or

& at a hub,

that “discovery”, is left for further analysis.

We refer to Slide 192 Items 31-31(d), O

355 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

356 11. 11.4. order of Analysis and “Discovery”

11.4. Order of Analysis and “Discovery”

e Analysis and “discovery”, that is, the “application” of

® the analysis meta-functions and

@ the “discovery” meta-functions
e has to follow some order:

o starts at the “root”, that is with index (A),

@ and proceeds with indices appending part domain type names

already discovered.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 356

357

11. 11.5. Analysis and “Discovery” of “Leftovers”

11.5. Analysis and “Discovery” of “Leftovers”

e The analysis and discovery meta-functions focus on types, that is,
the types
& of abstract parts, i.e., sorts,
@ of concrete parts, i.e., concrete types,
» of unique identifiers,
& of mereologies, and of

o attributes — where the latter has been largely left as sorts.

A Precursor for Requirements Engineering 357 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

358 11

. 11.5. Analysis and “Discovery” of “Leftovers”

e In this tutorial we do not suggest any meta-functions for such
analyses that may lead to
& concrete types from non-part sorts, or to
@ action, event and behaviour definitions

@ say in terms of pre/post-conditions,
o eteetera.

@ 50, for the time, we suggest, as a remedy for the absence of such
“helpers”, good “old-fashioned” domain engineer ingenuity:.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 358 Domain Science & Engineerin

359

11. 11.6. Laws of Domain Descriptions

11.6. Laws of Domain Descriptions

e By a domain description law we shall understand

& some desirable property
o that we expect (the ‘human’) results of
o the (the ‘human’) use of the domain description calculus

® to satisfy.
e We may think of these laws as axioms

@ which an ideal domain description ought satisfy,

®» something that domain describers should strive for.

A Precursor for Requirements Engineering 359 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

360 11. 11.6. Laws of Domain Descriptions

Notational Shorthands:

o (f;9;h)(R) = h(g(f(RN)))
o (f1; [fm)(R) = (g1;92; - -5 gn) ()

means that the two “end” states are equivalent modulo appropriate
renamings of types, functions, predicates, channels and behaviours.

o [fig:-..1hia
stands for the Boolean value yielded by « (in state R).

360 Domain Science & Eng ineering

361

11. 11.6. Laws of Domain Descriptions].]..6.1. 1st Law of Commutativity

11.6.1. 1st Law of Commutativity

e We make a number of assumptions:

» the following two are well-formed indices of a domain:
ot (A)YTUT(A), o0 (NYT0"(B),

where ¢ and ¢ may be different or empty ({))
and A and B are distinct;

» that F and G are two, not necessarily distinct
discovery functions; and

» that the domain at ¢/ and at ¢/ have not yet been explored.

A Precursor for Requirements Engineering 361 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

362 11. 11.6. Laws of Domain Descriptions].]..6.1. 1st Law of Commutativity

e We wish to express,

® as a desirable property of domain description development
@ that exploring domain A at

o either ¢/ first and then ¢

o or at ¢/ first and then ¢/
» the one right after the other (hence the),

)

» ought yield the same partial description fragment:
124.(G(") s (F())R) = (F() 5 (GE)))HR)
When a domain description development satisfies Law 124..
under the above assumptions,

@ then we say that the development.,
» modulo type, action, event and behaviour name “assignments”

o satisfies a mild form of commutativity.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 362

363

11. 11.6. Laws of Domain Descriptions].]..6.2. 2nd Law of Commutativity

11.6.2. 2nd Law of Commutativity

e Let us assume
& that we are exploring the sub-domain at index
oL (AY L (A).

e Whether we

& first “discover” Attributes

o and then Mereology (including Unique identifiers)
or

o first “discover” Mereology (including Unique identifiers)
o and then Attributes

should not matter.

A Precursor for Requirements Engineering 363 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

364
11. 11.6. Laws of Domain Descriptions].]..6.2. 2nd Law of Commutativity

e We make some abbreviations:

» A stand for the ATTRIBUTES,

o U stand for the UNIQUE_IDENTIFIER,
» M stand for the MEREOLOGY,

o ¢ for index (A)" ¢ (A), and

® (s for a suitable set of indices.

e Thus we wish the following law to hold:

125 (A(e); U(1); M(1)(1s))(R)
(U(1); M()(e5); Ae))(R)
(U(e); Ale); M(2)(es))(R).

[12

@ here modulo attribute and unique identifier type name renaming.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 364

365

11. 11.6. Laws of Domain Descriptions].]..6.3. 3rd Law of Commutativity

11.6.3. 3rd Law of Commutativity

e Let us again assume

& that we are exploring the sub-domain at index
oL (A0 (A)
& where ¢s is a suitable set of indices.

e Whether we are

& exploring actions, events or behaviours at that domain index
& in that order,

& Or some other order

ought be immaterial.

A Precursor for Requirements Engineering 365 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

366 11. 11.6. Laws of Domain Descriptions].]..6.3. 3rd Law of Commutativity

e Hence with

» A now standing for the ACTION SIGNATURES.
o & standing for the EVENT _SIGNATURES,
@ B standing for the BEHAVIOUR_SIGNATURIS.

e discoverers, we wish the following law to hold:

126. (A(e)(es); E(¢)(e5); B(e)(15))(R) =~
(A(e)(e8); B(e)(8); E(t)(15)) (M) =
(E(e)(es); A(e)(es); B(e)(1s)) () =~
(E()(es); B(1)(1s); Ale)(1s)) () =
(B(e)(es); Ale)(es); E(t)(1s))(R) ~
(B(e)(es); E()(es); Ale)(es)) ().

& here modulo action function, event predicate, channel, message
type and behaviour (and all associated, auxiliary type)
renamings.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 366

11. 11.6. Laws of Domain Descriptions11.6.4. 1st Law of Stability

367

11.6.4. 1st Law of Stability

e Re-performing

@ the same discovery function & that is with identical indices,

& over the same sub-domain, & one or more times,

ought not produce any new description texts.
e That is:
127. (D(¢)(ts); A and D seq)(R) ~
(D(1)(ts); A_and_D_seq; D(¢)(1s))(R)
e where

®» D is any discovery function,

» A_and_D seq is any specific sequence of
intermediate analyses and discoveries, and where

@ ¢ and ¢s are suitable indices, respectively sets of indices.

A Precursor for Requirements Engineerin 367 Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02
q g g

368 11. 11.6. Laws of Domain Descriptions11.0.5. 2nd Law of Stability

11.6.5. 2nd Law of Stability

e Re-performing

® the same analysis functions & that is with identical indices,

& over the same sub-domain, & one or more times,

ought not produce any new analysis results.
e That is:
128. [A(L)] = [A(¢);...; A()]

e where

» A 1s any analysis function,

44 77

®» “...7 is any sequence of intermediate analyses and discoveries,
and where

® L 18 any suitable index.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 368 Domain Science & Engineerin

369

11. 11.6. Laws of Domain Descriptions].]..6.6. Law of Non-interference

11.6.6. Law of Non-interference
e When performing a discovery meta-operation, D

¢ on any index, ¢, and possibly index set, s, and

@ on a repository state, R,

o then using the [D(¢)(ts)] notation

o expresses a pair of a narrative text and some formulas, [txt,rsl],
o whereas using the (D(¢)(ts))(R) notation

& expresses a next repository state, R’

e What is the “difference” 7

e Informally and simplifying we can say that the relation between the
two expressions 1s:

129. |D(¢)(¢s)]: [txt,rs]]
(D(1)(15))(R) = R
where ' = R U {[txt 11|}

369 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark I

370 1

. 11.6. Laws of Domain Descriptions].]..6.6. Law of Non-interference

e We say that when 129. is satisfied

& for any discovery meta-function D,
® for any indices ¢ and s

@ and for any repository state R,
then the repository is not interfered with,
® that is, “what you see is what you get:”

and therefore that

» the discovery process satisfies the law on non-interference.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 370 Domain Science & Engineering

11. 11.7. Discussion 371

11.7. Discussion

e The above is just a hint at domain development laws
that we might wish orderly developments to satisty.

e We invite the audience to suggest other laws.

e The laws of the analysis and discovery calculus

» forms an ideal set of expectations

» that we have of not only one domain describer

& but from a domain describer team

& of two or more domain describers

® whom we expect to work, i.e., loosely collaborate,

& based on “near’-identical domain development principles.

A Precurso

r for Requirements Engineering 371 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

372 11. 11.7. Discussion

e These are quite some expectations.

@ But the whole point of

@ a highest-level
o academic scientific education and
@ engineermg traming

& 1s that one should expect commensurate development results.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 372 Domain Science & Engineerin

11. 11.7. Discussion 373

e Now, since the ingenuity and creativity in the analysis and
discovery process does differ between domain developers

» we expect that a daily process of “buddy checking”.
@ where individual team members present their findings
@ and where these are discussed by the team

& will result in adherence to the laws of the calculus.

e The laws of the analysis and discovery calculus

& expressed some properties that we wish the repository to exhibit.

A Precursor for Requirements Engineering 373 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

374 11. 11.7. Discussion

e \We have deliberately abstained from “over-defining”

& the structure of repositories and

o the “hidden” operations (i.e., ‘update’; etc.)
repositories.

e We expect further

& research into, & possible changes to

& development of, & and use

of the calculus to yield such insight as to lead to

» a firmer understanding of

@ the nature of repositories.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 374

11. 11.7. Discussion 375

e In the analysis and discovery calculus
& such as we have presented it
e we have emphasised

» the types of parts, sorts and immediate part concrete types, and
® the signatures of actions, events and behaviours —

® as these predominantly featured type expressions.

recursor for Requirements Engineering ines Bjgrner) nformatics, Techn.Univ.of Denmark — July 31, : 09:
AP for Requi Engi i 375 Di Bj 2012, DTU Inf ics, Techn.Univ.of D k = July 31, 2012: 09:02

376 11. 11.7. Discussion

e We have therefore, in this tutorial, not investigated, for example,

» pre/post conditions of action function,
» form of event predicates, or

& behaviour process expressions.

e We leave that, substantially more demanding issue, for future
explorative and experimental research.

© Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02 376 Domain Science & Engineerin

377

End of Lecture 7: Last Session — Calculus |l

Function Signature Discoverers and Laws

FM 2012 Tutorial, Dines Bjgrner, Paris, 28 August 2012

A Precursor for Requirements Engineering 377 © Dines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

Software

Engineering 1

Software

Engineering 2

LONG BREAK

377

377

Software

Engineering 3

ines Bjgrner 2012, DTU Informatics, Techn.Univ.of Denmark — July 31, 2012: 09:02

