
339

HELLO THERE !

A Precursor for Requirements Engineering 339 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

340

Begin of Lecture 7: Last Session — Calculus II

Function Signature Discoverers and Laws

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 340 Domain Science & Engineering

340

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–110

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 111–142

4 Perdurant Entities: Actions and Events Slides 143–174

5 Perdurant Entities: Behaviours Slides 175–285

Lunch 12:30–14:00

• Lecture 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 286–339
√

7 A Calculus: Function Signatures and Laws Slides 340–377

• Lecture 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 378–424

9 Conclusion: Comparison to Other Work Slides 428–460

Conclusion: What Have We Achieved Slides 425–427 + 461–472

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 340 Domain Science & Engineering

34111. 11.3. 11.3.7. ACTION SIGNATURES

11.3.7. ACTION SIGNATURES

• We really should discover actions, but actually analyse function
definitions.

• And we focus, in this tutorial, on just “discovering” the function
signatures of these actions.

• By a function signature, to repeat, we understand

⋄⋄ a functions name, say fct, and

⋄⋄ a function type expression (te), say dte
∼→rte where

◦◦ dte defines the type of the function’s definition set

◦◦ and rte defines the type of the function’s image, or range set.

A Precursor for Requirements Engineering 341 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

342
11. 11.3. 11.3.7. ACTION SIGNATURES

• We use the term ‘functions’ to cover actions, events and behaviours.

• We shall in general find that the signatures of actions, events and
behaviours depend on types of more than one domain.

⋄⋄ Hence the schematic index set {ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}
⋄⋄ is used in all action, event and behaviour discoverers.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 342 Domain Science & Engineering

343
11. 11.3. 11.3.7. ACTION SIGNATURES

ACTION SIGNATURES I/II

120. The ACTION SIGNATURES meta-function,
besides narrative texts, yields

(a) a set of auxiliary sort or concrete type definitions and

(b) a set of action signatures each consisting of
an action name and
a pair of definition set and range type expressions where

(c) the type names that occur in these type expressions
are defined by in the domains indexed by the index set.

A Precursor for Requirements Engineering 343 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

344
11. 11.3. 11.3.7. ACTION SIGNATURES

ACTION SIGNATURES II/II

120 ACTION SIGNATURES: Index → Index-set
∼→ (Text×RSL)

120 ACTION SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
120 [narrative, possibly enumerated texts ;
120 type ta,tb,... tc,
120(b) value

120(b) acti:teid
∼→teir,actj:tejd

∼→tejr,...,actk:tekd

∼→tekr
120(c) where:
120(c) type names in te(i|j|...|k)d and in te(i|j|...|k)r are either
120(c) type names ta, tb, ... tc or are type names defined by the
120(c) indices which are prefixes of ℓm̂〈Tm〉 and where Tm is
120(c) in some signature acti|j|...|k]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 344 Domain Science & Engineering

345
11. 11.3. 11.3.7. ACTION SIGNATURES

Example: 55 Transport Nets: Action Signatures.

• ACTION SIGNATURES(〈∆,N,HS,Hs,H〉)({〈∆,N,LS,Ls,L〉〉}):
insert H: N → H

∼→ N
remove H: N → HI

∼→ N
· · ·

• ACTION SIGNATURES(〈∆,N,LS,Ls,L〉)({〈∆,N,HS,Hs,H〉〉}):
insert L: N → L

∼→ N
remove L: N → LI

∼→ N
· · ·

• where · · · refer to the possibility of discovering further action
signatures “rooted” in

⋄⋄ 〈∆,N,HS,Hs,H〉, respectively

⋄⋄ 〈∆,N,LS,Ls,L〉.

A Precursor for Requirements Engineering 345 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

346 11. 11.3. 11.3.8. EVENT SIGNATURES

11.3.8. EVENT SIGNATURES

EVENT SIGNATURES I/II

121. The EVENT SIGNATURES meta-function, besides narrative
texts, yields

(a) a set of auxiliary event sorts or concrete type definitions and

(b) a set of event signatures each consisting of

• an event name and

• a pair of definition set and range type expressions

where

(c) the type names that occur in these type expressions
are defined either in the domains indexed by the indices
or by the auxiliary event sorts or types.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 346 Domain Science & Engineering

347
11. 11.3. 11.3.8. EVENT SIGNATURES

EVENT SIGNATURES II/II

121 EVENT SIGNATURES: Index → Index-set
∼→ (Text×RSL)

121 EVENT SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
121(a) [narrative, possibly enumerated texts omitted ;
121(a) type ta,tb,... tc,
121(b) value

121(b) evt predi: tedi
× teri

→ Bool

121(b) evt predj: tedj
× terj

→ Bool

121(b) ...

121(b) evt predk: tedk
× terk

→ Bool]

121(c) where: t is any of ta,tb,...,tc or type names listed in in indices; type
names of the ‘d’efinition set and ‘r’ange set type expressions ted and ter are
type names listed in domain indices or are in ta,tb,...,tc, the auxiliary discovered
event types.

A Precursor for Requirements Engineering 347 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

348
11. 11.3. 11.3.8. EVENT SIGNATURES

Example: 56 Transport Nets: Event Signatures.
We refer to Example 34 on page 169. The omitted narrative text
would, if included, as it should, be a subset of the Items 23–26 texts
on Slide 167.

• EVENT SIGNATURES(〈∆,N,LS,Ls,L〉)({〈∆,N,HS,Hs,H〉〉}):
value

link disappearance: N × N
∼→ Bool

link disappearance(n,n′) ≡
∃ ℓ:L • l ∈ obs Ls(n) ⇒ pre cond(n,ℓ) ∧ post cond(n,ℓ,n′)

... [possibly further, discovered event]

... [signatures “rooted” in 〈∆,N,LS,Ls,L〉]

• The undefined pre and post conditions were “fully discovered” on
Slides 169 and 171.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 348 Domain Science & Engineering

349
11. 11.3. 11.3.9. BEHAVIOUR SIGNATURES

11.3.9. BEHAVIOUR SIGNATURES

• We choose, in this tutorial, to model behaviours in CSP28.

• This means that we model (synchronisation and) communication
between behaviours by means of messages m of type M, CSP
channels (channel ch:M) and CSP

⋄⋄ output: ch!e [offer to deliver value of e on channel ch], and

⋄⋄ input: ch? [offer to accept a value on channel ch].

28Other behaviour modelling languages are Petri Nets, MSCs: Message Sequence
Charts, Statechart etc.

A Precursor for Requirements Engineering 349 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

350 11. 11.3. 11.3.9. BEHAVIOUR SIGNATURES

• We allow for the declaration of single channels as well as of one,
two, ..., n dimensional arrays of channels with indexes ranging over
channel index types

⋄⋄ type Idx, CIdx, RIdx . . . :

⋄⋄ channel ch:M, { ch v[vi]:M′|vi:Idx }, { ch m[ci,ri]:M′′|ci:CIdx,ri:RIdx }, . . .

etcetera.

• We assume some familiarity with CSP [Hoare85+2004]
(or even RSL/CSP [TheSEBook1wo] [Chapter 21]).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 350 Domain Science & Engineering

35111. 11.3. 11.3.9. BEHAVIOUR SIGNATURES

• A behaviour usually involves two or more distinct sub-domains.

Example: 57 Vehicle Behaviour. Let us illustrate that
behaviours usually involve two or more distinct sub-domains.

• A vehicle behaviour, for example, involves

⋄⋄ the vehicle sub-domain,

⋄⋄ the hub sub-domain (as vehicles pass through hubs),

⋄⋄ the link sub-domain (as vehicles pass along links) and,

⋄⋄ for the road pricing system, also the monitor sub-domain.

A Precursor for Requirements Engineering 351 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

352
11. 11.3. 11.3.9. BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES I/II

122. The BEHAVIOUR SIGNATURES meta-function, besides narrative texts,
yields

123. It applies to a set of indices and results in a pair,

(a) a narrative text and

(b) a formal text:

i. a set of one or more message types,

ii. a set of zero, one or more channel index types,

iii. a set of one or more channel declarations,

iv. a set of one or more process signatures with each signature containing a
behaviour name, an argument type expression, a result type expression,
usually just Unit, and

v. an input/output clause which refers to channels over which the signatured
behaviour may interact with its environment.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 352 Domain Science & Engineering

35311. 11.3. 11.3.9. BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES II/II

122. BEHAVIOUR SIGNATURES: Index→ Index-set
∼→ (Text×RSL)

122. BEHAVIOUR SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
123(a). [narrative, possibly enumerated texts ;
123((b))i. type m = m1 | m 2 | ... | mµ, µ≥1
123((b))ii. i = i1 | i2 | ... | in, n≥0
123((b))iii. channel c:m, {vc[x]|x:ia}:m, {mc[x,y]|x:ib,y:ic}:m,...
123((b))iv. value

123((b))iv. bhv1: ate1 → inout1 rte1,
123((b))iv. ... ,
123((b))iv. bhvm: atem → inoutm rtem.]
123((b))iv. where type expressions ateii and rtei for all i involve at least
123((b))iv. two types t′i, t′′j of respective indexes ℓî〈ti〉, ℓĵ〈tj〉,
123((b))v. where Unit may appear in either atei or rtej or both.
123((b))v. where inouti: in k | out k | in,out k
123((b))v. where k: c or vc[x] or {vc[x]|x:ia•x ∈ xs} or

123((b))v. {mc[x,y]|x:ib,y:ic • x ∈ xs ∧ y ∈ ys} or ...

A Precursor for Requirements Engineering 353 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

354
11. 11.3. 11.3.9. BEHAVIOUR SIGNATURES

Example: 58 Vehicle Transport: Behaviour Signatures. We
refer to Examples 35 and 36.

BEHAVIOUR SIGNATURES(〈∆,F,VS,Vs,V〉)({〈∆,M〉}):
[With each vehicle we associate behaviour with the following

arguments: the vehicle identifier, the vehicle parts, and
the vehicle position. The vehicle communicates with
the monitor process over a vehicle to monitor array of
channels, one for each vehicle ... ;

type

VPos
channel

{vm[vi]|vi:VI • vi ∈ vis}:VPos
value

veh: vi:VI → v:V → vp:VPos → out vm[vi] Unit]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 354 Domain Science & Engineering

35511. 11.3. 11.3.9. BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES(〈∆,M〉)({〈∆,F,VS,Vs,V〉}):
[With the monitor part we associate a behaviour with the monitor

part as only argument. The monitor accepts communications
from vehicle behaviours ... ;

value

mon: M → in {vm[vi]|vi:VI • vi ∈ vis} Unit]

• The “discovery” of vehicle positions into positions

⋄⋄ on a link, some fraction down that link, or

⋄⋄ at a hub,

that “discovery”, is left for further analysis.

We refer to Slide 192 Items 31–31(d),

A Precursor for Requirements Engineering 355 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

356 11. 11.4. Order of Analysis and “Discovery”

11.4. Order of Analysis and “Discovery”

• Analysis and “discovery”, that is, the “application” of

⋄⋄ the analysis meta-functions and

⋄⋄ the “discovery” meta-functions

• has to follow some order:

⋄⋄ starts at the “root”, that is with index 〈∆〉,
⋄⋄ and proceeds with indices appending part domain type names

already discovered.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 356 Domain Science & Engineering

357
11. 11.5. Analysis and “Discovery” of “Leftovers”

11.5. Analysis and “Discovery” of “Leftovers”

• The analysis and discovery meta-functions focus on types, that is,
the types

⋄⋄ of abstract parts, i.e., sorts,

⋄⋄ of concrete parts, i.e., concrete types,

⋄⋄ of unique identifiers,

⋄⋄ of mereologies, and of

⋄⋄ attributes – where the latter has been largely left as sorts.

A Precursor for Requirements Engineering 357 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

358
11. 11.5. Analysis and “Discovery” of “Leftovers”

• In this tutorial we do not suggest any meta-functions for such
analyses that may lead to

⋄⋄ concrete types from non-part sorts, or to

⋄⋄ action, event and behaviour definitions

◦◦ say in terms of pre/post-conditions,

◦◦ etcetera.

⋄⋄ So, for the time, we suggest, as a remedy for the absence of such
“helpers”, good “old-fashioned” domain engineer ingenuity.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 358 Domain Science & Engineering

359
11. 11.6. Laws of Domain Descriptions

11.6. Laws of Domain Descriptions

• By a domain description law we shall understand

⋄⋄ some desirable property

⋄⋄ that we expect (the ‘human’) results of

⋄⋄ the (the ‘human’) use of the domain description calculus

⋄⋄ to satisfy.

• We may think of these laws as axioms

⋄⋄ which an ideal domain description ought satisfy,

⋄⋄ something that domain describers should strive for.

A Precursor for Requirements Engineering 359 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

360
11. 11.6. Laws of Domain Descriptions

Notational Shorthands:

• (f ; g; h)(ℜ) = h(g(f (ℜ)))

• (f1; f2; . . . ; fm)(ℜ) ≃ (g1; g2; . . . ; gn)(ℜ)
means that the two “end” states are equivalent modulo appropriate
renamings of types, functions, predicates, channels and behaviours.

• [f ; g; . . . ; h; α]
stands for the Boolean value yielded by α (in state ℜ).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 360 Domain Science & Engineering

36111. 11.6. Laws of Domain Descriptions11.6.1. 1st Law of Commutativity

11.6.1. 1st Law of Commutativity

• We make a number of assumptions:

⋄⋄ the following two are well-formed indices of a domain:

◦◦ ι′: 〈∆〉̂ℓ′̂〈A〉, ◦◦ ι′′: 〈∆〉̂ℓ′′̂〈B〉,
where ℓ′ and ℓ′′ may be different or empty (〈〉)
and A and B are distinct;

⋄⋄ that F and G are two, not necessarily distinct
discovery functions; and

⋄⋄ that the domain at ι′ and at ι′′ have not yet been explored.

A Precursor for Requirements Engineering 361 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

362
11. 11.6. Laws of Domain Descriptions11.6.1. 1st Law of Commutativity

• We wish to express,

⋄⋄ as a desirable property of domain description development

⋄⋄ that exploring domain ∆ at

◦◦ either ι′ first and then ι′′

◦◦ or at ι′′ first and then ι′,
⋄⋄ the one right after the other (hence the “;”),

⋄⋄ ought yield the same partial description fragment:

124. (G(ι′′) ; (F(ι′)))(ℜ) ≃ (F(ι′) ; (G(ι′′)))(ℜ)

When a domain description development satisfies Law 124.,

under the above assumptions,

⋄⋄ then we say that the development,

⋄⋄ modulo type, action, event and behaviour name “assignments”,

⋄⋄ satisfies a mild form of commutativity.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 362 Domain Science & Engineering

363
11. 11.6. Laws of Domain Descriptions11.6.2. 2nd Law of Commutativity

11.6.2. 2nd Law of Commutativity

• Let us assume

⋄⋄ that we are exploring the sub-domain at index

⋄⋄ ι: 〈∆〉̂ℓ̂〈A〉.
• Whether we

⋄⋄ first “discover” Attributes

⋄⋄ and then Mereology (including Unique identifiers)

or

⋄⋄ first “discover” Mereology (including Unique identifiers)

⋄⋄ and then Attributes

should not matter.

A Precursor for Requirements Engineering 363 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

364
11. 11.6. Laws of Domain Descriptions11.6.2. 2nd Law of Commutativity

• We make some abbreviations:

⋄⋄ A stand for the ATTRIBUTES,

⋄⋄ U stand for the UNIQUE IDENTIFIER,

⋄⋄ M stand for the MEREOLOGY,

⋄⋄ ι for index 〈∆〉̂ℓ̂〈A〉, and

⋄⋄ ιs for a suitable set of indices.

• Thus we wish the following law to hold:

125. (A(ι);U(ι);M(ι)(ιs))(ℜ) ≃
(U(ι);M(ι)(ιs);A(ι))(ℜ) ≃
(U(ι);A(ι);M(ι)(ιs))(ℜ).

⋄⋄ here modulo attribute and unique identifier type name renaming.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 364 Domain Science & Engineering

365
11. 11.6. Laws of Domain Descriptions11.6.3. 3rd Law of Commutativity

11.6.3. 3rd Law of Commutativity

• Let us again assume

⋄⋄ that we are exploring the sub-domain at index

⋄⋄ ι: 〈∆〉̂ℓ̂〈A〉
⋄⋄ where ιs is a suitable set of indices.

• Whether we are

⋄⋄ exploring actions, events or behaviours at that domain index

⋄⋄ in that order,

⋄⋄ or some other order

ought be immaterial.

A Precursor for Requirements Engineering 365 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

366
11. 11.6. Laws of Domain Descriptions11.6.3. 3rd Law of Commutativity

• Hence with

⋄⋄ A now standing for the ACTION SIGNATURES,

⋄⋄ E standing for the EVENT SIGNATURES,

⋄⋄ B standing for the BEHAVIOUR SIGNATURES,

• discoverers, we wish the following law to hold:

126. (A(ι)(ιs); E(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(A(ι)(ιs);B(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);A(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);B(ι)(ιs);A(ι)(ιs))(ℜ) ≃
(B(ι)(ιs);A(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(B(ι)(ιs); E(ι)(ιs);A(ι)(ιs))(ℜ).

⋄⋄ here modulo action function, event predicate, channel, message
type and behaviour (and all associated, auxiliary type)
renamings.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 366 Domain Science & Engineering

367
11. 11.6. Laws of Domain Descriptions11.6.4. 1st Law of Stability

11.6.4. 1st Law of Stability

• Re-performing

⋄⋄ the same discovery function

⋄⋄ over the same sub-domain,

⋄⋄ that is with identical indices,

⋄⋄ one or more times,

ought not produce any new description texts.

• That is:

127. (D(ι)(ιs);A and D seq)(ℜ) ≃
(D(ι)(ιs);A and D seq;D(ι)(ιs))(ℜ)

• where

⋄⋄ D is any discovery function,

⋄⋄ A and D seq is any specific sequence of
intermediate analyses and discoveries, and where

⋄⋄ ι and ιs are suitable indices, respectively sets of indices.

A Precursor for Requirements Engineering 367 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

368
11. 11.6. Laws of Domain Descriptions11.6.5. 2nd Law of Stability

11.6.5. 2nd Law of Stability

• Re-performing

⋄⋄ the same analysis functions

⋄⋄ over the same sub-domain,

⋄⋄ that is with identical indices,

⋄⋄ one or more times,

ought not produce any new analysis results.

• That is:

128. [A(ι)] = [A(ι); . . . ;A(ι)]

• where

⋄⋄ A is any analysis function,

⋄⋄ “. . . ” is any sequence of intermediate analyses and discoveries,
and where

⋄⋄ ι is any suitable index.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 368 Domain Science & Engineering

369
11. 11.6. Laws of Domain Descriptions11.6.6. Law of Non-interference

11.6.6. Law of Non-interference

• When performing a discovery meta-operation, D
⋄⋄ on any index, ι, and possibly index set, ιs, and

⋄⋄ on a repository state, ℜ,

⋄⋄ then using the [D(ι)(ιs)] notation

⋄⋄ expresses a pair of a narrative text and some formulas, [txt,rsl],

⋄⋄ whereas using the (D(ι)(ιs))(ℜ) notation

⋄⋄ expresses a next repository state, ℜ′.
• What is the “difference” ?

• Informally and simplifying we can say that the relation between the
two expressions is:

129. [D(ι)(ιs)]: [txt,rsl]
(D(ι)(ιs))(ℜ) = ℜ′

where ℜ′ = ℜ ∪ {[txt,rsl]}
A Precursor for Requirements Engineering 369 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

370 11. 11.6. Laws of Domain Descriptions11.6.6. Law of Non-interference

• We say that when 129. is satisfied

⋄⋄ for any discovery meta-function D,

⋄⋄ for any indices ι and ιs

⋄⋄ and for any repository state ℜ,

then the repository is not interfered with,

⋄⋄ that is, “what you see is what you get:”

and therefore that

⋄⋄ the discovery process satisfies the law on non-interference.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 370 Domain Science & Engineering

371
11. 11.7. Discussion

11.7. Discussion

• The above is just a hint at domain development laws
that we might wish orderly developments to satisfy.

• We invite the audience to suggest other laws.

• The laws of the analysis and discovery calculus

⋄⋄ forms an ideal set of expectations

⋄⋄ that we have of not only one domain describer

⋄⋄ but from a domain describer team

⋄⋄ of two or more domain describers

⋄⋄ whom we expect to work, i.e., loosely collaborate,

⋄⋄ based on “near”-identical domain development principles.

A Precursor for Requirements Engineering 371 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

372
11. 11.7. Discussion

• These are quite some expectations.

⋄⋄ But the whole point of

◦◦ a highest-level

◦◦ academic scientific education and

◦◦ engineering training

⋄⋄ is that one should expect commensurate development results.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 372 Domain Science & Engineering

373
11. 11.7. Discussion

• Now, since the ingenuity and creativity in the analysis and
discovery process does differ between domain developers

⋄⋄ we expect that a daily process of “buddy checking”,

⋄⋄ where individual team members present their findings

⋄⋄ and where these are discussed by the team

⋄⋄ will result in adherence to the laws of the calculus.

• The laws of the analysis and discovery calculus

⋄⋄ expressed some properties that we wish the repository to exhibit.

A Precursor for Requirements Engineering 373 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

374
11. 11.7. Discussion

• We have deliberately abstained from “over-defining”

⋄⋄ the structure of repositories and

⋄⋄ the “hidden” operations (i.e., ‘update’, etc.)

repositories.

• We expect further

⋄⋄ research into,

⋄⋄ development of,

⋄⋄ possible changes to

⋄⋄ and use

of the calculus to yield such insight as to lead to

⋄⋄ a firmer understanding of

⋄⋄ the nature of repositories.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 374 Domain Science & Engineering

375
11. 11.7. Discussion

• In the analysis and discovery calculus

⋄⋄ such as we have presented it

• we have emphasised

⋄⋄ the types of parts, sorts and immediate part concrete types, and

⋄⋄ the signatures of actions, events and behaviours —

⋄⋄ as these predominantly featured type expressions.

A Precursor for Requirements Engineering 375 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

376
11. 11.7. Discussion

• We have therefore, in this tutorial, not investigated, for example,

⋄⋄ pre/post conditions of action function,

⋄⋄ form of event predicates, or

⋄⋄ behaviour process expressions.

• We leave that, substantially more demanding issue, for future
explorative and experimental research.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 376 Domain Science & Engineering

377

End of Lecture 7: Last Session — Calculus II

Function Signature Discoverers and Laws

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 377 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

377

LONG BREAK

A Precursor for Requirements Engineering 377 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

