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Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–110

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 111–142

4 Perdurant Entities: Actions and Events Slides 143–174

5 Perdurant Entities: Behaviours Slides 175–285

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30
√

6 A Calculus: Analysers, Parts and Materials Slides 286–339

7 A Calculus: Function Signatures and Laws Slides 340–377

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 378–424

9 Conclusion: Comparison to Other Work Slides 428–460

Conclusion: What Have We Achieved Slides 425–427 + 461–472
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28711.

11. Towards a Calculus of Domain Discoverers

• The ‘towards’ term is significant.

• We are not presenting

⋄⋄ a “ready to serve”

⋄⋄ comprehensive,

⋄⋄ tested and tried

calculus.

• We hope that the one we show you is interesting.

• It is, we think, the first time such a calculus is presented.

A Precursor for Requirements Engineering 287 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



288
11. Towards a Calculus of Domain Discoverers

• By a domain description calculus

⋄⋄ or, as we shall also call it,

◦◦ either a domain discovery calculus

◦◦ or a calculus of domain discoverers

we shall understand an algebra, that is,

⋄⋄ a set of meta-operations and

⋄⋄ a pair of

◦◦ a fixed domain and

◦◦ a varying repository.

• The meta-operations will be outlined in this section.

• The fixed domain is of the kind of domains alluded to in the previous section of
this tutorial.

• The varying repository contains fragments of a description of the fixed domain.
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• The meta-operators are referred to as

⋄⋄ either domain analysis meta-functions

⋄⋄ or domain discovery meta-functions.

• The former are carried out by the domain analyser when inquiring (the domain)
as to its properties.

• The latter are carried out by the domain describer when deciding upon which
descriptions “to go for” !

• The two persons can be the same one domain engineer.

• The operators are referred to as meta-functions,

⋄⋄ or meta-linguistic functions,

⋄⋄ since they are

◦◦ applied and ◦◦ calculated

⋄⋄ by humans, i.e., the domain describers.

• They are directives which can be referred to by the domain describers while
carrying out their analytic and creative work.
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11.1. Introductory Notions

• In order to present the operators of the calculus

⋄⋄ we must clear a few concepts.

11.1.1. Discovery

• By a domain discovery calculus we shall understand

⋄⋄ a set of operations (the domain discoverers),

◦◦ which when applied to a domain

◦◦ by a human agent, the domain describer,

and

◦◦ yield domain description texts.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.1. Discovery

• The domain discoverers are applied “mentally”.

⋄⋄ That is, not in a mechanisable way.

◦◦ It is not like when procedure calls

◦◦ invoke computations

◦◦ of a computer.

⋄⋄ But they are applied by the domain describer.

⋄⋄ That person is to follow the ideas laid down for

⋄⋄ these domain discoverers

◦◦ (as they were in the earlier parts of this talk).

⋄⋄ They serve to guide the domain engineer

◦◦ to discoverer the desired domain entities

◦◦ and their properties.

• In this section we shall review an ensemble of (so far) nine domain
discoverers and (so far) four domain analysers.
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We list the nine domain discoverers.

• [ Slide 320] PART SORTS,
[ Slide 317] MATEREIAL SORTS,
[ Slide 324] PART TYPES,
[ Slide 327] UNIQUE ID,
[ Slide 328] MEREOLOGY,
[ Slide 332] ATTRIBUTES,
[ Slide 341] ACTION SIGNATURES,
[ Slide 346] EVENT SIGNATURES and
[ Slide 349] BEHAVIOUR SIGNATURES.
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11.1.2. Analysis

• In order to “apply” these domain discoverers certain conditions
must be satisfied.

• Some of these condition inquiries can be represented by (so far)
four domain analysers.

⋄⋄ [ Slide 306] IS MATERIALSBASED,
[ Slide 308] IS ATOM,
[ Slide 308] IS COMPOSITE and
[ Slide 312] HAS A CONCRETE TYPE.
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11.1.3. Domain Indexes

• In order to discover, the domain describer must decide on
“where & what in the domain” to analyse and describe.

• One can, for this purpose, think of the domain as
semi-lattice-structured.

⋄⋄ The root of the lattice is then labelled ∆.

⋄⋄ Let us refer to the domain as ∆.

⋄⋄ We say that it has index 〈∆〉.
⋄⋄ Initially we analyse the usually composite ∆ domain to consist of

one or more distinctly typed parts p1:t1, p2:t2, . . . , pm:tm.

⋄⋄ Each of these have indexes 〈∆, ti〉.
⋄⋄ So we view ∆, in the semi-lattice, to be the join of m

sub-semi-lattices whose roots we shall label with t1, t2, . . . , tm.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

⋄⋄ And so forth for any composite part type ti, etcetera.

⋄⋄ It may be that any two or more such sub-semi-lattice root types,
tij, tij, . . . , tik designate the same, shared type tix, that is tij =
tij = . . . = tik = tix.

⋄⋄ If so then the k sub-semi-lattices are “collapsed” into one
sub-semi-lattice.

⋄⋄ The building of the semi-lattice terminates when one can no
longer analyse part types into further sub-semi-lattices, that is,
when these part types are atomic.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• That is, the roots of the sub-trees of the ∆ tree are labelled with
type names.

⋄⋄ Every point in the semi-lattice can be identified by a domain
index.

◦◦ The root is defined to have index 〈∆〉.
◦◦ The immediate sub-semi-lattices of ∆ have domain indexes
〈∆,t1〉, 〈∆,t2〉, . . . , 〈∆,tm〉.

◦◦ And so forth.

◦◦ If ℓ̂〈t〉 is a prefix of another domain index, say ℓ̂〈t,t′〉,
then t designates a composite type.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• For every domain index, ℓ̂〈t〉,
that index designates the type t domain type texts.

• These texts consists of several sub-texts.

• There are the texts directly related to the parts, p:P:

⋄⋄ the observer functions, obs · · · , if type t is composite,

⋄⋄ the unique identifier functions, uid P,

⋄⋄ the mereology function, mereo P, and

⋄⋄ the attribute functions, attr · · · .
⋄⋄ To the above “add”

◦◦ possible auxiliary types and auxiliary functions

◦◦ as well as possible axioms.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• Then there are the texts related to

⋄⋄ actions,

⋄⋄ events, and

⋄⋄ behaviours

“based” (primarily) on parts p:P.

• These texts consists of

⋄⋄ function signatures (for actions, events, and behaviours),

⋄⋄ function definitions for these, and

⋄⋄ channel

◦◦ declarations and

◦◦ channel message type definitions

for behaviours.

We shall soon see examples of the above.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• But not all can be “discovered” by just examining the domain from
the point of view of a sub-semi-lattice type.

⋄⋄ Many interesting action, event and behaviour signatures depend
on domain type texts designated by “roots” of disjoint sub-trees
of the semi-lattice.

⋄⋄ Each such root has its own domain index.

⋄⋄ Together a meet of the semi-lattice is defined by the set of
disjoint domain indices: {ℓi, ℓj, · · · , ℓk}.

• It is thus that we arrive at a proper semi-lattice structure relating
the various entities of the domain rooted in ∆.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.3. Domain Indexes

• The domain discoverers are therefore provided with arguments:

⋄⋄ either a single domain index, DOMAIN FUNCTION(ℓ),

⋄⋄ or a pair, DOMAIN FUNCTION(ℓ)({ℓi, ℓj, · · · ,ℓk}),
◦◦ the single domain index ℓ and

◦◦ a set of domain indices, {ℓi, ℓj, · · · , ℓk}
where DOMAIN FUNCTION is any of the

◦◦ domain discoverers or

◦◦ domain analysers

listed earlier.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.4. The ℜepository

11.1.4. The ℜepository

• We have yet to give the full signature of the domain discoverers and
domain analysers.

⋄⋄ One argument of these meta-functions

◦◦ was parts of the actual domain

◦◦ as designated by the domain indices.

⋄⋄ Another argument

◦◦ is to be the ℜepository of description texts

◦◦ being inspected (together with the sub-domain) when

∗ analysing that sub-domain and

◦◦ being updated

∗ when “generating” the “discovered” description texts.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.4. The ℜepository

⋄⋄ We can assume, without loss of generality, that

◦◦ the ℜepository of description texts

◦◦ is the description texts discovered so far.

⋄⋄ The result of domain analysis is either undefined or a truth value.
We can assume, without any loss of generality that that result is
not recorded.

⋄⋄ The result of domain discovery is either undefined or is a
description text consisting of two well-defined fragments:

◦◦ a narrative text, and

◦◦ a formal text.

⋄⋄ Those well-defined texts are “added” to the text of the
ℜepository of description texts.

◦◦ For pragmatic reasons,

◦◦ when we explain the positive effect of domain discovery,

◦◦ then we show just this “addition” to the ℜepository.
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11. Towards a Calculus of Domain Discoverers 11.1. Introductory Notions11.1.4. The ℜepository

102. The proper type of the discover functions is therefore:

102. DISCOVER FUNCTION: Index→Index-set→ℜ∼→ℜ

• In the following we shall omit the ℜepository argument and result.

103. So, instead of showing the discovery function invocation and result
as:

103. DISCOVER FUNCTION(ℓ)(ℓset)(ρ) = ρ′

• where ρ′ incorporates a pair of texts and RSL formulas,

104. we shall show the discover function signature, the invocation and
the result as:

104. DISCOVER FUNCTION: Index→Index-set
∼→(Narr Text×RSL Text)

104. DISCOVER FUNCTION(ℓ)(ℓset): (narr text,RSL text)
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11.2. Domain Analysers

• Currently we identify four analysis functions.

• As the discovery calculus evolves

⋄⋄ (through further practice and research)

⋄⋄ we expect further analysis functions to be identified.
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11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.1. IS MATERIALS BASED

11.2.1. IS MATERIALS BASED

• You are reminded of the Continuous Endurant Modelling frame
on Slide 132.

IS MATERIALS BASED

• An early decision has to be made as to whether a domain is signifi-
cantly based on materials or not:

105. IS MATERIALS BASED(〈∆Name〉).
• If Item 105 holds of a domain ∆Name

⋄⋄ then the domain describer can apply

⋄⋄ MATERIAL SORTS (Item 107 on page 317).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 306 Domain Science & Engineering



307
11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.1. IS MATERIALS BASED

Example: 45 Pipelines and Transports: Materials or Parts.

• IS MATERIALS BASED(〈∆Pipeline〉) = true.

• IS MATERIALS BASED(〈∆Transport〉)= false.
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11.2.2. IS ATOM, IS COMPOSITE

• During the discovery process

⋄⋄ discrete part types arise (i.e., the names are yielded)

⋄⋄ and these may either denote atomic or composite parts.

• The domain describer

⋄⋄ must now decide as to

⋄⋄ whether a named, discrete type is atomic or is composite.
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11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.2. IS ATOM, IS COMPOSITE

IS ATOM

• The IS ATOM analyser serves that purpose:

value

IS ATOM: Index
∼→ Bool

IS ATOM(ℓ̂〈t〉) ≡ true | false | chaos

• The analysis is undefined for ill-formed indices.

Example: 46 Transport Nets: Atomic Parts (II). We refer to
Example 3 (Slide 16).

IS ATOM(〈∆,N,HS,Hs,H〉), IS ATOM(〈∆,N,LS,Ls,L〉)
∼ IS ATOM(〈∆,N,HS,Hs〉), ∼ IS ATOM(〈∆,N,LS,Ls〉)
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IS COMPOSITE

• The IS COMPOSITE analyser is

⋄⋄ similarly applied by the domain describer

⋄⋄ to a part type t

⋄⋄ to help decide whether t is a composite type.

value

IS COMPOSITE: Index
∼→ Bool

IS COMPOSITE(ℓ̂〈t〉) ≡ true | false | chaos

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 310 Domain Science & Engineering



311
11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.2. IS ATOM, IS COMPOSITE

Example: 47 Transport Nets: Composite Parts. We refer to
Example 3 (Slide 16)

IS COMPOSITE(〈∆〉),
IS COMPOSITE(〈∆,N〉)
IS COMPOSITE(〈∆,N,HS,Hs〉),
IS COMPOSITE(〈∆,N,LS,Ls〉)
∼ IS COMPOSITE(〈∆,N,HS,Hs,H〉),
∼ IS COMPOSITE(〈∆,N,LS,Ls,L〉)
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11.2.3. HAS A CONCRETE TYPE

• Sometimes we find it expedient

⋄⋄ to endow a “discovered” sort with a concrete type expression,
that is,

⋄⋄ “turn” a sort definition into a concrete type definition.

HAS A CONCRETE TYPE

106. Thus we introduce the analyser:

106 HAS A CONCRETE TYPE: Index
∼→ Bool

106 HAS A CONCRETE TYPE(ℓ̂〈t〉): true | false | chaos
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11. Towards a Calculus of Domain Discoverers 11.2. Domain Analysers11.2.3. HAS A CONCRETE TYPE

Example: 48 Transport Nets: Concrete Types . We refer to
Example 3 (Slide 16) while exemplifying four cases:

HAS A CONCRETE TYPE(〈∆,N,HS,Hs〉)
HAS A CONCRETE TYPE(〈∆,N,LS,Ls〉)
∼ HAS A CONCRETE TYPE(〈∆,N,HS,Hs,H〉)
∼ HAS A CONCRETE TYPE(〈∆,N,LS,Ls,L〉)
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• We remind the listener that

⋄⋄ it is a decision made by the domain describer

⋄⋄ as to whether a part type is

◦◦ to be considered a sort or

◦◦ be given a concrete type.

• We shall later cover a domain discoverer related to the positive
outcome of the above inquiry.
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11.3. Domain Discoverers

• A domain discoverer is a mental tool.

⋄⋄ It takes a written form shown earlier.

⋄⋄ It is to be “applied” by a human, the domain describer.

⋄⋄ The domain describer applies the domain discoverer to a
fragment of the domain, as it is: “out there” !
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• ‘Application’ means the following.

⋄⋄ The domain describer examines the domain as directed by the
explanation given for the domain discoverer — as here, in these
lectures.

⋄⋄ As the brain of the domain describer views, examines, analyses, a
domain index-designated fragment of the domain,

◦◦ ideas as to which domain concepts to capture arise

◦◦ and these take the form of pairs of narrative and formal texts.
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11.3.1. MATERIAL SORTS

MATERIAL SORTS – I/II

107. The MATERIAL SORTS discovery function applies to a domain,
usually designated by 〈∆Name〉
where Name is a pragmatic hinting at the domain by name.

108. The result of the domain discoverer applying this meta-function
is some narrative text

109. and the types of the discovered materials

110. usually affixed a comment

(a) which lists the “somehow related” part types

(b) and their related materials observers.
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MATERIAL SORTS II/II

107. MATERIAL SORTS: 〈∆〉 → (Text × RSL)
107. MATERIAL SORTS(〈∆Name〉):
108. [ narrative text ;
109. type Ma, Mb, ..., Mc materials

110. comment: related part types: Pi, Pj, ..., Pk

110. obs Mn : Pm → Mn, ... ]
105. pre: IS MATERIALS BASED(〈∆Name〉)
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Example: 49 Pipelines: Material.

• MATERIAL SORTS(〈∆Oil Pipeline System〉):
[ The oil pipeline system is focused on oil ;
type O material

comment related part type: U, obs O: U → O ]
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11.3.2. PART SORTS

PART SORTS I/II

111. The part type discoverer PART SORTS

(a) applies to a simply indexed domain, ℓ̂〈t〉,
(b) where t denotes a composite type, and yields a pair

i. of narrative text and

ii. formal text which itself consists of a pair:

A. a set of type names

B. each paired with a part (sort) observer.
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PART SORTS II/II

value

111. PART SORTS: Index
∼→ (Text×RSL)

111(a). PART SORTS(ℓ̂〈t〉):
111((b))i. [ narrative, possibly enumerated texts ;
111((b))iiA. type t1,t2,...,tm,
111((b))iiB. value obs t1:t→t1,obs t2:t→t2,...,obs tm:t→tm
111(b). pre: IS COMPOSITE(ℓ̂〈t〉) ]
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11. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.2. PART SORTS

Example: 50 Transport: Part Sorts. We apply a concrete
version of the above sort discoverer to the vehicle monitoring domain
∆. See Example 36 (Slide 188).

• PART SORTS(〈∆〉):
[ the vehicle monitoring domain contains three sub-parts:
net, fleet and monitor ;
type N, F, M,
value obs N: ∆ → N, obs F: ∆ → F, obs M: ∆ → M ]

• PART SORTS(〈∆,N〉):
[ the net domain contains two sub-parts:
sets of hubs and sets of link ;
type HS, LS,
value obs HS: N → HS, obs LS: N → LS ]
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• PART SORTS(〈∆,F〉):
[ the fleet domain consists of one sub-domain:
set of vehicles;
type VS,
value obs VS: F → VS ]
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11.3.3. PART TYPES

PART TYPES I/II

112. The PART TYPES discoverer applies to a composite sort, t,
and yields a pair

(a) of narrative, possibly enumerated texts [omitted], and

(b) some formal text:

i. a type definition, tc = te,

ii. together with the sort definitions
of so far undefined type names of te.

iii. An observer function observes tc from t.

iv. The PART TYPES discoverer is not defined
if the designated sort is judged
to not warrant a concrete type definition.
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PART TYPES II/II

112. PART TYPES: Index
∼→ (Text×RSL)

112. PART TYPES(ℓ̂〈t〉):
112(a). [ narrative, possibly enumerated texts ;
112((b))i. type tc = te,
112((b))ii. tα, tβ, ..., tγ,
112((b))iii. value obs tc: t → tc
112((b))iv. pre: HAS CONCRETE TYPE(ℓ̂〈t〉) ]
112((b))ii. where: type expression te contains
112((b))ii. type names tα, tβ, ..., tγ
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Example: 51 Transport: Concrete Part Types. Continuing
Examples 36–50 and Example 3 – we omit narrative informal texts.

PART TYPES(〈∆,F,VS〉):
type V, Vs=V-set, value obs Vs: VS→Vs

PART TYPES(〈∆,N,HS〉):
type H, Hs=H-set, value obs Hs: HS→Hs

PART TYPES(〈∆,N,LS〉):
type L, Ls=L-set, value obs Ls: LS→Ls
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11.3.4. UNIQUE ID

UNIQUE ID

113. For every part type t we postulate a unique identity analyser function uid t.

value

113. UNIQUE ID: Index → (Text×RSL)
113. UNIQUE ID(ℓ̂〈t〉):
113. [ narrative, possibly enumerated text ;
113. type ti
113. value uid t: t → ti ]

Example: 52 Transport Nets: Unique Identifiers. Continuing Example 3:

UNIQUE ID(〈∆,HS,Hs,H〉): type H, HI, value uid H→HI
UNIQUE ID(〈∆,LS,Ls,L〉): type L, LI, value uid L→LI
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11.3.5. MEREOLOGY

• Given a part, p, of type t, the mereology, MEREOLOGY, of that
part

⋄⋄ is the set of all the unique identifiers
of the other parts to which part p is part-ship-related

⋄⋄ as “revealed” by the mereo tii functions applied to p.

• Henceforth we omit the otherwise necessary narrative texts.
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MEREOLOGY I/II

114. Let type names t1, t2, . . . , tn
denote the types of all parts of a domain.

115. Let type names ti1, ti2, . . . , tin
26, be the corresponding

type names of the unique identifiers of all parts of that domain.

116. The mereology analyser MEREOLOGY is a generic function
which applies to a pair of an index and an index set
and yields some structure of unique identifiers.
We suggest two possibilities,
but otherwise leave it to the domain analyser
to formulate the mereology function.

117. Together with the “discovery” of the mereology function
there usually follows some axioms.
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MEREOLOGY II/II

type

114. t1, t2, ..., tn
115. tidx = ti1 | ti2 | ... | tin

116. MEREOLOGY: Index
∼→ Index-set

∼→ (Text×RSL)
116. MEREOLOGY(ℓ̂〈t〉)({ℓî〈tj〉,...,ℓk̂〈tl〉}):
116. [ narrative, possibly enumerated texts ;
116. either: {}
116. or: value mereo t: t → tix
116. or: value mereo t: t → tix-set × tiy-set × ... × tix-set
117. axiom Predicate over values of t′ and tidx ]

where none of the tix, tiy, . . . , tiz are equal to ti.

26We here assume that all parts have unique identifications.
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Example: 53 Transport Net Mereology. Examples:

• MEREOLOGY(〈∆,N,HS,Hs,H〉)({〈∆,N,LS,Ls,L〉}):
value mereo H→LI-set

• MEREOLOGY(〈∆,N,LS,Ls,L〉)({〈∆,N,HS,Hs,H〉}):
value mereo L→HI-set
axiom see Example 10 Slide 83.
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11.3.6. ATTRIBUTES

• A general attribute analyser analyses parts beyond their unique
identities and possible mereologies.

⋄⋄ Part attributes have names.

⋄⋄ We consider these names to also abstractly name the
corresponding attribute types.
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ATTRIBUTES I/II

118. Attributes have types.
We assume attribute type names to be distict from part type names.

119. ATTRIBUTES applies to parts of type t and yields a pair of

(a) narrative text and

(b) formal text, here in the form of a pair

i. a set of one or more attribute types, and

ii. a set of corresponding attribute observer functions attr at, one
for each attribute sort at of t.
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ATTRIBUTES II/II

type

118. at = at1 | at2 | ... | atn
value

119. ATTRIBUTES: Index → (Text×RSL)
119. ATTRIBUTES(ℓ̂〈t〉):
119(a). [ narrative, possibly enumerated texts ;
119((b))i. type at1, at2, ..., atm
119((b))ii. value attr at1:t→at1,attr at2:t→at2,...,attr atm:t→atm ]

• where m≤n
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Example: 54 Transport Nets: Part Attributes. We exemplify
attributes of composite and of atomic parts — omitting narrative
texts:

ATTRIBUTES(〈∆〉):
type Domain Name, ...

value attr Domain Name: ∆ → Domain Name, ...

• where

⋄⋄ Domain Name could include State Roads or Rail Net.

⋄⋄ etcetera.
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ATTRIBUTES(〈∆,N〉):
type

Sub Domain Name ex.: State Roads

Sub Domain Location ex.: Denmark

Sub Domain Owner ex.: The Danish Road Directorate

...

Length ex.: 3.786 Kms.

value

attr Sub Domain Name: N → Sub Domain Name
attr Sub Domain Location: N → Sub Domain Location
attr Sub Domain Owner: N → Sub Domain Owner
...

attr Length: N → Length

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 336 Domain Science & Engineering



33711. Towards a Calculus of Domain Discoverers 11.3. Domain Discoverers11.3.6. ATTRIBUTES

ATTRIBUTES(〈∆,N,LS,Ls,L〉):
type LOC, LEN, ...

value attr LOC: L → LOC, attr LEN: L → LEN, ...

ATTRIBUTES(〈∆,N,LS,Ls,L〉)({,〈∆,N,HS,Hs,H〉}):
type

LΣ=HI-set
LΩ=LΣ-set

value

attr LΣ:L→LΣ
attr LΩ:L→LΩ
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• where

⋄⋄ LOC might reveal some Bézier curve27 representation of the
possibly curved three dimensional location of the link in question,

⋄⋄ LEN might designate length in meters,

⋄⋄ LΣ designates the state of the link,

⋄⋄ LΩ designates the space of all allowed states of the link.

27http://en.wikipedia.org/wiki/Bézier curve
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End of Lecture 6: First Session — Calculus I

Part and Material Discoverers

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
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SHORT BREAK
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