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Begin of Lecture 5: Last Session — Perdurant Entities

Behaviours, Discussion Entities

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
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Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–110

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 111–142

4 Perdurant Entities: Actions and Events Slides 143–174
√

5 Perdurant Entities: Behaviours Slides 175–285

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 286–339

7 A Calculus: Function Signatures and Laws Slides 340–377

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 378–424

9 Conclusion: Comparison to Other Work Slides 428–460

Conclusion: What Have We Achieved Slides 425–427 + 461–472
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8.4. Discrete Behaviours

• We shall distinguish between

⋄⋄ discrete behaviours (this section) and

⋄⋄ continuous behaviours (Sect. ).

• Roughly discrete behaviours

⋄⋄ proceed in discrete (time) steps —

⋄⋄ where, in this tutorial, we omit considerations of time.

⋄⋄ Each step corresponds to an action or an event or a time interval
between these.

⋄⋄ Actions and events may take some (usually inconsiderable time),

⋄⋄ but the domain analyser has decided that it is not of interest to
understand what goes on in the domain during that time
(interval).

⋄⋄ Hence the behaviour is considered discrete.
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• Continuous behaviours

⋄⋄ are continuous in the sense of the calculus of mathematical;

⋄⋄ to qualify as a continuous behaviour time must be an essential
aspect of the behaviour.

⋄⋄ We shall treat continuous behaviours in Sect. 9.

• Discrete behaviours can be modelled in many ways, for example
using

⋄⋄ CSP [Hoare85+2004].

⋄⋄ MSC [MSCall],

⋄⋄ Petri Nets [m:petri:wr09] and

⋄⋄ Statechart [Harel87].

• We refer to Chaps. 12–14 of [TheSEBook2wo].

• In this tutorial we shall use RSL/CSP.
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8.4.1. What is Meant by ‘Behaviour’ ?

• We give two characterisations of the concept of ‘behaviour’.

⋄⋄ a “loose” one and

⋄⋄ a “slanted one.

• A loose characterisation runs as follows:

⋄⋄ by a behaviour we understand

◦◦ a set of sequences of

◦◦ actions, events and behaviours.
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• A “slanted” characterisation runs as follows:

⋄⋄ by a behaviour we shall understand

◦◦ either a sequential behaviour consisting of a possibly infinite
sequence of zero or more actions and events;

◦◦ or one or more communicating behaviours whose output
actions of one behaviour may synchronise and communicate
with input actions of another behaviour; and

◦◦ or two or more behaviours acting either as internal
non-deterministic behaviours (⌈⌉) or as external
non-deterministic behaviours (⌈⌉⌊⌋).
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• This latter characterisation of behaviours

⋄⋄ is “slanted” in favour of a CSP, i.e., a communicating sequential
behaviour, view of behaviours.

⋄⋄ We could similarly choose to “slant” a behaviour
characterisation in favour of

◦◦ Petri Nets, or

◦◦ MSCs, or

◦◦ Statecharts, or other.
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8.4.2. Behaviour Narratives

• Behaviour narratives may take many forms.

⋄⋄ A behaviour may best be seen as composed from several
interacting behaviours.

◦◦ Instead of narrating each of these,

◦◦ as will be done in Example 36,

◦◦ one may proceed by first narrating the interactions of these
behaviours.

⋄⋄ Or a behaviour may best be seen otherwise,

◦◦ for which, therefore, another style of narration may be called
for,

◦◦ one that “traverses the landscape” differently.

⋄⋄ Narration is an art.

⋄⋄ Studying narrations – and practice – is a good way to learn
effective narration.
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Example: 35 A Transport Behaviour Narrative.

• Our example is that of a vehicle monitoring system.

• That is, a system of a road net, a fleet of vehicles and a road
monitor.

• That is, we take that as a[n existing] domain.

• In other words, it is not a requirements prescription.

28. From a vehicle monitoring system, VMS one can observe

(a) a [road] net, n:N,

(b) a fleet, f:F of vehicles and

(c) a road monitor, m:M.

29. From a fleet of vehicles one can observe a set of uniquely identified
(vi:VI) vehicles (v:V). We consider vehicles to be atomic parts.

30. We consider the road monitor to be an atomic part.
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31. At any one time vehicles are positioned

(a) at hubs or

(b) along links —

(c) where hub positions indicate the link from where the vehicle
arrived at the hub and the link to where it is aimed, i.e.,
atH(fli:LI,hi:HI,tli:LI), and

(d) where link positions indicate the hub from where the vehicle
arrived at the link and the hub to where it is aimed, i.e.,
onL(fhi:HI,li:LI,frac:FRAC,thi:HI), where frac designates the
fraction “down” the link that the vehicle has so far travelled.
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32. And at any one time, t, vehicles

(a) are either standing still

(b) or moving —

(c) where vehicle positions at times t and the immediate next times
t′ are unchanged, respectively

(d) have changed (where we do not record immediate next time, i.e.,
incremental hub position changes):

i. either atH(fli,hi,tli) and atH(fli,hi,tli) or

ii. onL(fhi,li,f,thi) and onL(fhi,li,f+δ,thi) where δ is a tiny positive
increment (0 < δ ≪ 1).

33. Whenever a vehicle has or has not moved the road monitor is
informed about its new position.
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8.4.3. An Aside on Agents, Behaviours and Processes

• “In philosophy and sociology, agency is the capacity of an agent (a
person or other entity) to act in a world.”

• “In philosophy, the agency is considered as belonging to that agent
even if that agent represents a fictitious character, or some other
non-existent entity.”

• That is, we consider agents to be those persons or other entities
that

⋄⋄ are in the domain and

⋄⋄ observes the domain

⋄⋄ evaluates what is being observed

⋄⋄ and invokes actions.

• We describe agents by describing behaviours.
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• A behaviour description denotes a process, that is, a set of

⋄⋄ actions,

⋄⋄ events and

⋄⋄ processes.

• We shall not enter into any further speculations on

⋄⋄ agency,

⋄⋄ agents and

⋄⋄ how agents observe, including

◦◦ what they know and believe (epistemic logic),

◦◦ what is necessary and possible (deontic logic) and

◦◦ what is true at some tie and what is always true (temporal
logic).

⋄⋄ A proper domain science and engineering must, however,
eventually examine these (modal logic) issues.
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8.4.4. On Behaviour Description Components

• When narrating plus, at the same time, formalising,

⋄⋄ i.e., textually alternating between

⋄⋄ narrative texts and

⋄⋄ formal texts,

• one usually starts with what seems to be the most important
behaviour concepts of the given domain:

⋄⋄ which are the important part types characterising the domain;

⋄⋄ which of these parts will become a basis for behaviour processes;

⋄⋄ how are these behaviour processes to interact,

⋄⋄ that is, which channels and what messages may possibly be
communicated.
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Example: 36 A Transport Behaviour Formalisation.
We continue Example 35.

• We refer to narrative Items 28–28(c) (Page 182).

type

28. VMS, N, F, M
value

28(a). obs N: VMS → N
28(b). obs F: VMS → F
28(c). obs M: VMS → M
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34. Vehicles are here considered atomic parts

35. with unique identifiers.

type

34. V, VI
value

35. uni Π: V → VI

A Precursor for Requirements Engineering 189 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



190 8. 8.4. Discrete Behaviours8.4.4. On Behaviour Description Components

• We refer to Items 29–28(c) (Slide 182).

• We introduce a number of values of the vehicle monitoring system.

36. A net.

37. The set of hubs.

38. The set of links.

39. The vehicle fleet observer function.

40. The fleet.

41. The set of vehicles of that fleet.

42. The set of unique identifiers of those vehicles.

43. The monitor.
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value

36. n:N = obs N(VMS)
37. hs:H-set = obs Hs(n)
38. ls:L-set = obs Ls(n)
39. obs Vs: F → V-set

40. f:F
41. vs:V-set = obs Fs(f)
42. vis:VI-set={uid Π(v)|v:V•v∈vs}
43. m:M
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• We refer to narrative Items 31–31(d) (Page 183).

type

31. VPos = atHub | onLnk
31(c). AtHub = atH(fli:LI,hi:HI,tli:LI)
31(d). onLnk = onL(fhi:HI,li:LI,frac:FRAC,thi:HI)
31(d). FRAC = Real axiom ∀ frac:FRAC • 0 < frac < 1
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• We refer to narrative Item 33 (Page 184).

• It assumes the below.

44. To communicate vehicle movements vehicles communicate their
positions to the monitor by offering outputs on a vehicle to monitor
channel.

44. channel { vm[ vi ] | vi:VI • vi ∈ vis } VePos
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45. A global variable, vps, records all possible initial vehicle positions
(i.e., in an infinite set due to infinitisimality of any vehicle’s “down
link fractional position”:

46. for all possible “at hub” positions, and

47. for all possible “on link” positions

45. variable vps:VPos-infset :=
46. {atH(fi,hi,ti)|fi,ti:LI,hi:HI•mereo H(get H(n)(hi))⊇{fi,ti}⊆lis∧hi ∈ his}
47. ∪ {onL(fi,li,f,ti)|fi,ti:HI,li:LI,f:FRAC•mereo L(get L(n)(li))={fi,ti}⊆his∧li ∈ lis}
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48. The monitor keeps track of vehicle movements — as lists of vehicle
positions.

48. type TBL = VI →m VPos∗

49. Initial positions are obtained by arbitrary selection, get VPos(),
from the global vps variable.

49. value table:TBL = [ vi 7→〈get VPos()〉|vi>VI•vi ∈ vis ]
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50. The get VPos() function applies to the meta state variable (hence
the argument type Unit) component vps and yields a vehicle
position, vp:VPos.

51. That vehicle position is arbitrarily chosen from the contents of the
global variable

52. from which that position is removed in order to avoid that two or
more vehicles are initially piled at the same position;

53. “finally” vp is yielded.

value

50. get VPos: Unit → VPos
50. get VPos() ≡
51. let vp:VPos•vp ∈ vps in

52. vps := vps \ {vp} ;
53. vp end
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54. We consider the

(a) the vehicle monitoring system, vms,

(b) the vehicles, and

(c) the monitor

to be processes.

The Overall System Behaviour

54(a). vms: Unit → Unit

54(a). vms() ≡
54(b). ‖ {veh(uid Π(v))(v)(hd tbl(uid Π(v)))|v:V•v ∈ vs}
54(c). ‖ mon(m)(table)
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55. A vehicle process

• is indexed by the unique vehicle identifier vi:VI,

• the vehicle “as such”, v:V and

• the vehicle position, vp:VPos.

The vehicle process communicates

• with the monitor process on channel vm[vi]

• (sends, but receives no messages), and

• otherwise evolves “infinitely” (hence Unit).
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56. We define here the vehicle behaviour at a Hub (hi).

(a) Either the vehicle remains at that hub informing the monitor of
this (cf. Items 32(a), 32(c), 32((d))i and 33 on page 184),

(b) or, internally non-deterministically,

(c) moves (cf. Items 32(b) on page 184, 32(d) and 32((d))ii on
page 184) onto a link, tli, whose “next” hub, identified by thi, is
obtained from the mereology of the link identified by tli;

(d) informs the monitor, on channel vm[vi], that it is now on the link
identified by tli (cf. Item 33 on page 184),

(e) whereupon the vehicle resumes the vehicle behaviour positioned
at the very beginning (0) of that link,

(f) or, again internally non-deterministically,

(g) the vehicle “disappears — off the radar” !
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The Vehicle Behaviour At Hubs

55. veh: vi:VI → v:V → vp:VPos
55. → out vm[ vi ] Unit, pre: uid Π(v)=vi
56. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
56(a). vm[ vi ]!vp ; veh(vi)(v)(vp)
56(b). ⌈⌉
56(c). let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
56(d). vm[ vi ]!onL(tli,hi,0,thi) ;
56(e). veh(vi)(v)(onL(tli,hi,0,thi)) end

56(f). ⌈⌉
56(g). stop
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57. Either

(a) the vehicle remains at that link position informing the monitor of this
(cf. Item 33 on page 184),

(b) or, internally non-deterministically,

(c) if the vehicle’s position on the link has not yet reached the hub,

i. then the vehicle moves an arbitrary increment δ along the link informing
the monitor of this (cf. Item 33 on page 184), or

ii. else, while obtaining a “next link” from the mereology of the hub (where
that next link could very well be the same as the link the vehicle is about
to leave),

A. the vehicle informs the monitor (cf. Item 33 on page 184) that it is now
at the hub identified by thi,

B. whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

58. or, internally non-deterministically,

59. the vehicle “disappears — off the radar” !
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The Vehicle Behaviour Along Links

55. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
57(a). vm[ vi ]!vp ; veh(vi)(v)(vp)
57(b). ⌈⌉
57(c). if f + δ<1
57((c))i. then vm[ vi ]!onL(fhi,li,f+δ,thi) ;
57((c))i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
57((c))ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

57((c))iiA. vm[ vi ]!atH(li,thi,li′);
57((c))iiB. veh(vi)(v)(atH(li,thi,li′)) end end

58. ⌈⌉
59. stop
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60. The monitor behaviour evolves around the attributes of an own
“state”, m:M, a table of traces of vehicle positions, while accepting
messages about vehicle positions and otherwise progressing
“infinitely”.

61. Either the monitor “does own work”

62. or, internally non-deterministically accepts messages from vehicles.

(a) A message, msg, may arrive from the vehicle identified by vi.

(b) That message is appended to that vehicle’s movement trace,

(c) whereupon the monitor resumes its behaviour —

(d) where the communicating vehicles range over all identified
vehicles.
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The Monitor Behaviour

60. mon: M → TBL → in {vm[ vi ]|vi:VI•vi ∈ vis} Unit

60. mon(m)(tbl) ≡
61. let m′ = own mon work(m)(tbl) i mon(m′)(tbl) end

62. ⌈⌉
62(a). ⌈⌉⌊⌋ { let msg = vm[ vi ]? in

62(b). let tbl′ = tbl † [ vi 7→ tbl(vi)̂〈msg〉 ] in

62(c). mon(m)(tbl′) end

62(d). end | vi:VI • vi ∈ vis }
61. own mon work: M → TBL → M
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• Discussion:

⋄⋄ We have modelled behaviours as co-operating sequences of
actions and events.

◦◦ Actions included the movement or decisions, of vehicles, not to
move.

◦◦ Events were (just) modelled by vehicles “disappearing off the
‘radar’ ”.
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⋄⋄ The reader is kindly asked to compare the

◦◦ narrative of the vehicle monitoring system (Items 28–33,
Pages 182–184) with its

◦◦ formalisation (Items 34–62(d), Pages 189–203).

⋄⋄ The former is brief and is independent of a particular
understanding of “the nature” of the processes which model the
system behaviour.

⋄⋄ The latter is less brief and

◦◦ appears to require narrative descriptions

◦◦ that pertain to the specific set-up necessary to

◦◦ “explain the nature” of the processes which model the system
behaviour.
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8.4.5. A Model of Parts and Behaviours

• How often have you not “confused”

⋄⋄ the perdurant notion of a train process: progressing from railway
station to railway station,

⋄⋄ with the endurant notion of the train, say as it appears listed in
a train time table, or as it is being serviced in workshops, etc.

• There is a reason for that — as we shall now see:
parts may be considered syntactic quantities
denoting semantic quantities.

⋄⋄ We therefore describe a general model of parts of domains

⋄⋄ and we show that for each instance of such a model

⋄⋄ we can ‘compile’ that instance into a CSP‘program’.
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A Model of Parts

63. The whole contains a set of
parts.

64. Parts are either atomic or
composite.

65. From composite parts one can
observe a set of parts.

66. All parts have unique

identifiers

type

63. W, P, A, C
64. P = A | C
value

65. obs Ps: (W|C) → P-set

type

66. PI
value

66. uid Π: P → Π
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67. From a whole and from any part of
that whole we can extract all
contained parts.

68. Similarly one can extract the unique

identifiers of all those contained
parts.

69. Each part may have a mereology

which may be “empty”.

70. A mereology ’s unique part

identifiers must refer to some other
parts other than the part itself.

value

67. xtr Ps: (W|P) → P-set

67. xtr Ps(w) ≡
67. {xtr Ps(p)|p:P•p ∈ obs Ps(p)}
67. pre: is W(p)
67. xtr Ps(p) ≡
67. {xtr Ps(p)|p:C•p∈ obs Ps(p)}∪{p}
67. pre: is P(p)
68. xtr Πs: (W|P) → Π-set

68. xtr Πs(wop) ≡
68. {uid P(p)|p ∈ xtr Ps(wop)}
69. mereo P: P → Π-set

axiom

70. ∀ w:W
70. let ps = xtr Ps(w) in

70. ∀ p:P • p ∈ ps •

70. ∀ π:Π • π ∈ mereo P(p) ⇒
70. π ∈ xtr Πs(p) end
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71. An attribute map of a part associates
with attribute names, i.e., type

names, their values, whatever they
are.

72. From a part one can extract its
attribute map.

73. Two parts share attributes if their

respective attribute maps share
attribute names.

74. Two parts share properties if the y

(a) either share attributes

(b) or the unique identifier of one is
in the mereology of the other.

type

71. AttrNm, AttrVAL,
71. AttrMap = AttrNm →m AttrVAL
value

72. attr AttrMap: P → AttrMap
73. share Attributes: P×P → Bool

73. share Attributes(p,p′) ≡

73. dom attr AttrMap(p) ∩
73. dom attr AttrMap(p′) 6= {}
74. share Properties: P×P → Bool

74. share Properties(p,p′) ≡
74(a). share Attributes(p,p′)
74(b). ∨ uid P(p) ∈ mereo P(p′)
74(b). ∨ uid P(p′) ∈ mereo P(p)
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Conversion of Parts into CSP Programs

75. We can define the set of two element
sets of unique identifiers where

• one of these is a unique part

identifier and

• the other is in the mereology of
some other part.

• We shall call such two element
“pairs” of unique identifiers

connectors.

• That is, a connector is a two
element set, i.e., “pairs”, of unique

identifiers

⋄⋄ for which the identified parts
share properties.

76. Let there be given a ‘whole’, w:W.

77. To every such “pair” of unique

identifiers we associate a channel

• or rather a position in a matrix of
channels indexed over the “pair
sets” of unique identifiers.

• and communicating messages m:M.

type

75. K = Π-set axiom ∀ k:K•card k=2
value

75. xtr Ks: (W|P) → K-set

75. xtr Ks(wop) ≡
75. let ps = xtr Ps(w) in

75. {{uid P(p),π}|p:P,π:Π•p∈ ps
75. ∧ ∃ p′:P•p′6=p∧π=uid P(p′)
75. ∧ uid P(p)∈uid P(p′)} end

76. w:W
77. channel {ch[ k ]|k:xtr Ks(w)}:M
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78. Now the ‘whole’ behaviour

whole is the parallel
composition of part processes,
one for each of the immediate
parts of the whole.

79. A part process is

(a) either an atomic part

process, atom, if the part is
an atomic part,

(b) or it is a composite part

process, comp, if the part is
a composite part.

78. whole: W → Unit

78. whole(w) ≡
78. ‖ {part(uid P(p))(p) |
78. p:P•p ∈ xtr Ps(w)}

79. part: π:Π → P → Unit

79. part(π)(p) ≡
79(b). is A(p) → atom(π)(p),
79(b). → comp(π)(p)
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80. A composite process, part,
consists of

(a) a composite core process,
comp core, and

(b) the parallel composition of

part processes one for each
contained part of part.

81. An atomic process consists of
just an atomic core process,
atom core.

value

80. comp: π:Π → p:P →
80. in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]}
80. Unit

80. comp(π)(p) ≡
80(a). comp core(π)(p) ‖

80(b). ‖ {part(uid P(p′))(p′) |
80(b). p′:P•p′ ∈ obs Ps(p)}
81. atom: π:Π → p:P →
81. in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]}
81. Unit

81. atom(π)(p) ≡ atom core(π)(p)
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82. The core behaviours both

(a) update the part properties and

(b) recurses with the updated
properties,

(c) without changing the part
identification.

We leave the update action undefined.

value

82. core: π:Π → p:P →
82. in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]}
82. Unit

82. core(π)(p) ≡
82(a). let p′ = update(π)(p)

82(b). in core(π)(p′) end

82(b). assert: uid P(p)=π=uid P(p′)
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• The model of parts can be said to be a syntactic model.

⋄⋄ No meaning was “attached” to parts.

• The conversion of parts into CSP programs can be said to be a
semantic model of parts,

⋄⋄ one which to every part associates a behaviour

⋄⋄ which evolves “around” a state

⋄⋄ which is that of the properties of the part.
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8.4.6. Sharing Properties ≡ Mutual Mereologies

• In the model of the tight relationship between parts and behaviours

⋄⋄ we “equated” two-element set of unique identifiers of parts that
share properties

⋄⋄ with the concept of connectors, and these again with channels.

• We need secure that this relationship,

⋄⋄ between the two-element connector sets of unique identifiers of
parts that share properties

⋄⋄ and the channels

with the following theorem:
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83. For every whole, i.e., domain,

84. if two distinct parts share properties

85. then their respective mereologies refer to one another,

86. and vice-versa

⋄⋄ if two distinct parts

⋄⋄ have their respective mereologies refer to one another,

⋄⋄ then they share properties.

theorem:

83. ∀ w:W,p,p′:P•p 6=p′∧{p,p′}⊆xtr Ps(w) ⇒
84. share Properties(p,p′)
86. ≡
85. uid P(p)∈mereo P(p′)∧uid P(p′)∈mereo P(p)
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8.4.7. Behaviour Signatures

• By a behaviour signature we shall understand the combination of three clauses:

⋄⋄ a message type clause,

◦◦ type M,

⋄⋄ possibly a channel index type clause,

◦◦ type Idx,

⋄⋄ a channel declaration clause

◦◦ channel ch:M or
channel {ch[ i ]|i:Idx•i ∈is}:M

where is is a set of Idx values (defined somehow, e.g., value is:Idx-set = ...
where . . . is an expression of Idx values), and, finally,

⋄⋄ a behaviour function signature:

◦◦ value beh: Π → P → out ch Unit or
value beh: Π → P → out ch Unit or
value beh: Π → P → in, out ch Unit or
value beh: Π → P → in, out {ch[i]|i:Idx• ∈is′} Unit or
value beh: Π → P → in {ch[i]|i:Idx• ∈is′} out {ch[j]|j:Idx• ∈is′} Unit,
etc.
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• The Conversion of Parts into CSP Programs “story” gives the
general idea:

⋄⋄ To associate, in principle, with every part an own behaviour.

⋄⋄ (Example 36 (Slides 188–??) did not do that:

◦◦ in principle it did, but then it omitted describing

◦◦ behaviours of “un-interesting” parts !)

⋄⋄ Tentatively each behaviour signature, that is, each part
behaviour, is

◦◦ specified having a unique identifier type, respectively

◦◦ given a unique identifier argument.

Whether this tentative provision

◦◦ for unique identifiers is necessary

◦◦ will soon be revealed by further domain analysis.
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⋄⋄ Before defining the behaviour process signatures

◦◦ the domain analyser examines each of the chosen behaviours

◦◦ with respect to its interaction with other chosen behaviours

◦◦ in order to decide on

∗ interaction message types and

∗ “dimensionality” of channels,

∗ whether singular or an array.

⋄⋄ Then the

◦◦ message types can be defined,

◦◦ the channels declared, and

◦◦ the behaviour function signature can be defined,

i.e., the full behaviour signature can be defined.
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8.4.8. Behaviour Definitions

• We observe from the ‘Conversion of Parts into CSP Programs’
section, Slide 211,

⋄⋄ that the “generation” of the core processes was syntax directed,

⋄⋄ yet “delivered” a “flat” structure of parallel processes,

⋄⋄ that is, no processes “running”, embedded, within other
processes.

• We make this remark since parts did not follow that prescription:

⋄⋄ parts can, indeed, be embedded within one another.
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• So our first “conclusion”25, with respect to the structure of domain
behaviours, is

⋄⋄ that we shall model all behaviours of the “whole” domain

⋄⋄ as a flat structure of concurrent behaviours —

◦◦ one for each part contained in the whole —

⋄⋄ which, when they need refer to properties of

⋄⋄ behaviours of parts within which the part

◦◦ on which “their” behaviour

is embedded

⋄⋄ then they interact with the behaviours of those parts,

⋄⋄ that is, communicate messages.

25We put double quotes around the term ‘conclusion’ (above) since that conclusion
was and is a choice, that is, not governed by necessity.
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• The ‘Conversion of Parts into CSP Programs’ section, Slide 211,

⋄⋄ then suggested that there be

◦◦ one atom core behaviour for each atomic part, and

◦◦ one composite core behaviour for each composite part

of the domain.

• The domain analyser may find that some of these core behaviours

⋄⋄ are not necessary,

⋄⋄ that is, that they — for the chosen scope of the domain model —

⋄⋄ do not play a meaningful rôle.

A Precursor for Requirements Engineering 223 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



224
8. 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

Example: 37 “Redundant” Core Behaviours. We refer to the
series of examples around the transport net domain.

• Transport nets, n:N, consist of

⋄⋄ sets, hs:HS, of hubs and

⋄⋄ sets, ls:LS, of links.

• Yet we may decide, for one domain scope,

⋄⋄ to model only

◦◦ hub,

◦◦ link and

◦◦ vehicle

behaviours,

• and not ‘set of hubs’ and ‘set of links’ behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 224 Domain Science & Engineering



225
8. 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• Then the domain analyser can focus on exploring each individual
process behaviour.

• Again the Conversion of Parts into CSP Programs “story” gives the
general ideas that motivate the following:

• For each of the parts, p,
a behaviour expression can be “generated”:

⋄⋄ beh p(uid P(p))(p).

The idea is

⋄⋄ that (uid P(p)) uniquely identifies the part behaviour and

⋄⋄ that the part properties of (p) serve as the local state for beh p.

A Precursor for Requirements Engineering 225 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



226 8. 8.4. Discrete Behaviours8.4.8. Behaviour Definitions

• Now we present an analysis of part behaviours around three
‘alternatives’:

⋄⋄ (i) a part behaviour which basically represents
a proactive behaviour;

⋄⋄ (ii) one which basically represents
a reactive behaviour; and

⋄⋄ (iii) one which, so-to-speak alternates between
proactive and reactive behaviours.

• What we are doing now is to examine

⋄⋄ the form of the core behaviours,

⋄⋄ cf. Item 82 (Slide 214).
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• (i) A proactive behaviour is characterised by three facets.

⋄⋄ (i.1) taking the initiative to interact with other part behaviours
by offering output,

⋄⋄ (i.2) internally non-deterministically (⌈⌉) ranging interactions
over several alternatives, and

⋄⋄ (i.3) externally non-deterministically (⌈⌉⌊⌋) selecting which other
behaviour to interact with, i.e., to offer output to.

• (i.1) A proactive behaviour takes the initiative to interact by
expressing output clauses:

87. OP : ch ! val or ch[i] ! val or ch[i,j] ! val etc.
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• (i.2) The proactive behaviour interaction request

⋄⋄ may range over either of a finite number of alternatives,

⋄⋄ one for each alternative, ai, “kind” of interaction.

⋄⋄ We may express such a non-deterministic (alternative) choice
either as follows:

88. NIP : type Choice = a1 ⌈⌉ a2 ⌈⌉ ... ⌈⌉ an

value let c:Choice in

case c of a1 → E1, a2 → E2, ..., an → En end end

⋄⋄ or, which is basically the same,

89. NIP : value ... E1 ⌈⌉ ... ⌈⌉ En ...

⋄⋄ where each Ei usually contains an input clause, for example, ch ?.
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• (i.3) The proactive external non-deterministic choice is directed at
either of a number of other part behaviours.

⋄⋄ This proactive selection is expressed

90. NXP : Ci ⌈⌉⌊⌋ Cj ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ Ck

◦◦ where each of the Clauses

◦◦ express respective output clauses

◦◦ (usually) directed at different part behaviours,

◦◦ say ch[i] ! val. ch[j] ! val, etc., ch[k] ! val.

⋄⋄ Another way of expressing external non-deterministic choice
selection is

91. NXP : ⌈⌉⌊⌋ { ...; ch[ i ] ! fct(i) ; ... | i:Idx•i ∈ is }
• Output clauses [(i.1)], Item 88 OP ,

⋄⋄ may [(i.2)] occur in the Ei clauses of NIP , Items 89 and 90 and

⋄⋄ must [(i.3)] occur in each of the Ci clauses of NXP , Item 91.
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• (ii) A reactive behaviour is characterised by three

⋄⋄ (ii.1) offering to interact with other part behaviours by offering to
accept input,

⋄⋄ (ii.2) internally non-deterministically (⌈⌉) ranging interactions
over several alternatives, and

⋄⋄ (ii.3) externally non-deterministically (⌈⌉⌊⌋) selecting which other
behaviour to interact with, i.e., to accept input from.

• (ii.1) A reactive behaviour expresses input clauses:

92. IR: ch ? or ch[i] ? or ch[i,j] ? etc.
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• (ii.2) The reactive behaviour

⋄⋄ may range over either of a finite number of alternatives,

⋄⋄ one for each alternative, ai, “kind” of interaction.

⋄⋄ We may express such a non-deterministic (alternative) choice
either as follows:

93. NIR: value let c:Choice in

case c of a1 → E1, ..., an → En end end

where each of the expressions, Ei, may, and usually contains a
input clause (I, Item 92 on the facing page).

⋄⋄ Thus the NIR clause is almost identical to the NIP clause,
Item 89 on page 228.

⋄⋄ Hence another way of expressing external non-deterministic
choice is

94. NXR: ⌈⌉ { ...; ch[ i ] ! fct(i) ; ... | i:Idx•i ∈ is }.
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• (ii.3) The reactive behaviour selection is directed at either of a
number of other part behaviours.

⋄⋄ This external non-deterministic choice is expressed

95. NXR: Ci ⌈⌉⌊⌋ Cj ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ Ck

◦◦ where each of the Clauses

◦◦ express respective input clauses

◦◦ (usually) directed at different part behaviours,

◦◦ say ch[i] ?. ch[j] ?, etc., ch[k] ?.

⋄⋄ Another way of expressing external non-deterministic choice
selection is

96. NXR: ⌈⌉⌊⌋ { ...; ch[ i ] ? ; ... | i:Idx•i ∈ is }
⋄⋄ Thus the NXR clauses are almost identical to the NXP

clauses, Items 90–91.
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• Input clauses [(ii.1)], Item 92 IR,

⋄⋄ may [(ii.2)] occur in the Ei clauses of NIR, Items 93–94 and

⋄⋄ must [(ii.3)] occur in each of the Ci clauses of NXR, Items 95–96.
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• (iii) An alternating proactive behaviour and reactive behaviour

⋄⋄ is characterised by expressing both

◦◦ reactive behaviour and

◦◦ proactive behaviours

combined by either

◦◦ non-deterministic internal choice (⌈⌉) or

◦◦ non-deterministic external choice (⌈⌉⌊⌋) combinators.

For example:

97. (NIPi
[⌈⌉or⌈⌉⌊⌋]NXPj

)[⌈⌉or⌈⌉⌊⌋](NIRk
[⌈⌉or⌈⌉⌊⌋]NXRℓ

).

• The meta-clause [⌈⌉or⌈⌉⌊⌋] stands for either ⌈⌉ or ⌈⌉⌊⌋.
• Here there usually is a disciplined use of input/output clauses.
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Example: 38 A Pipeline System Behaviour.

• We refer to Examples

⋄⋄ 14 (Slide 90) and

⋄⋄ 21–23 (Slides

⋄⋄ 117–125)

⋄⋄ and especially Examples 24–25 (Slides 127–131).
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• We consider (cf. Example 22) the pipeline system units to represent
also the following behaviours:

⋄⋄ pls:PLS, Item 4(a) on page 119, to also represent the system
process, pipeline system, and for each kind of unit,
cf. Example 14, there are the unit processes:

◦◦ unit,

◦◦ well (Item 3(c) on page 91),

◦◦ pipe (Item 3(a)),

◦◦ pump (Item 3(a)),

◦◦ valve (Item 3(a)),

◦◦ fork (Item 3(b)),

◦◦ join (Item 3(b)) and

◦◦ sink (Item 3(d) on page 91).
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channel

{ pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } MUPLS
{ u u ch[ ui,uj ]:ui,uj:UI•{ui,uj}⊆UIs(pls) } MUU

type

MUPLS, MUU
value

pipeline system: PLS → in,out { pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } Unit

pipeline system(pls) ≡ ‖ { unit(u)|u:U•u ∈ obs Us(pls) }
unit: U → Unit

unit(u) ≡
3(c). is We(u) → well(uid U(u))(u),
3(a). is Pu(u) → pump(uid U(u))(u),
3(a). is Pi(u) → pipe(uid U(u))(u),
3(a). is Va(u) → valve(uid U(u))(u),
3(b). is Fo(u) → fork(uid U(u))(u),
3(b). is Jo(u) → join(uid U(u))(u),
3(d). is Si(u) → sink(uid U(u))(u)
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• We illustrate essentials of just one of these behaviours.

3(b). fork: ui:UI → u:U → out,in pls u ch[ ui ],
in { u u ch[ iui,ui ] | iui:UI • iui ∈ sel UIs in(u) }
out { u u ch[ ui,oui ] | iui:UI • oui ∈ sel UIs out(u) } Unit

3(b). fork(ui)(u) ≡
3(b). let u′ = core fork behaviour(ui)(u) in

3(b). fork(ui)(u′) end

• The core fork behaviour(ui)(u) distributes

⋄⋄ what oil (or gas) in receives,

◦◦ on the one input sel UIs in(u) = {iui},
◦◦ along channel u u ch[iui]

⋄⋄ to its two outlets

◦◦ sel UIs out(u) = {oui1,oui2},
◦◦ along channels u u ch[oui1], u u ch[oui2].
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• The core fork behaviour(ui)(u) also communicates with the
pipeline system behaviour.

⋄⋄ What we have in mind here is to model a traditional supervisory
control and data acquisition, SCADA system.

Figure 1: A supervisory control and data acquisition system
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• SCADA is then part of the pipeline system behaviour.

98.

98. pipeline system: PLS → in,out { pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } Unit

98. pipeline system(pls) ≡ scada(props(pls)) ‖ ‖{ unit(u)|u:U•u ∈ obs Us(pls)

• props was defined on Slide 133.
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99. scada non-deterministically (internal choice, ⌈⌉), alternates between
continually

(a) doing own work,

(b) acquiring data from pipeline units, and

(c) controlling selected such units.

type

99. Props
value

99. scada: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis } Unit

99. scada(props) ≡
99(a). scada(scada own work(props))
99(b). ⌈⌉ scada(scada data acqui work(props))
99(c). ⌈⌉ scada(scada control work(props))
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• We leave it to the listeners imagination to describe scada own work.

100. The scada data acqui work

(a) non-deterministically, external choice, ⌈⌉⌊⌋, offers to accept data,

(b) and scada input updates the scada state —

(c) from any of the pipeline units.

value

100. scada data acqui work: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis
100. scada data acqui work(props) ≡
100(a). ⌈⌉⌊⌋ { let (ui,data) = pls ui ch[ ui ] ? in

100(b). scada input update(ui,data)(props) end

100(c). | ui:UI • ui ∈ uis }

100(b). scada input update: UI × Data → Props → Props
type

100(a). Data
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101. The scada control work

(a) analyses the scada state (props) thereby selecting a pipeline unit,
ui, and the controls, ctrl, that it should be subjected to;

(b) informs the units of this control, and

(c) scada output updates the scada state.

101. scada control work: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis }
101. scada control work(props) ≡
101(a). let (ui,ctrl) = analyse scada(ui,props) in

101(b). pls ui ch[ ui ] ! ctrl ;
101(c). scada output update(ui,ctrl)(props) end

101(c). scada output update UI × Ctrl → Props → Props
type

101(a). Ctrl
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Modelling Behaviours, I/II

• The domain describer has decided that an entity is a perdurant
and is, or represents a behaviour.

⋄⋄ The domain describer has further decided that the observed
behaviour is of a class of behaviours — of the “same kind” —
that need be described.

⋄⋄ By behaviours of the ‘same kind’ is meant that these can be
described by the same channel declarations, function signature
and function definition.
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Modelling Behaviours, II/II

• First the domain describer must decide on
the underlying function signature.

⋄⋄ It must be decided which synchronisation and communication

◦◦ inputs and

◦◦ outputs

this behaviour requires, i.e., the in,out clause of the signature,

⋄⋄ that also includes the “discovery” of
necessary channel declarations.

• Finally the function definition must be decided upon.
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9. Continuous Perdurants

• By a continuous perdurant we shall understand
a continuous behaviour.

• This section serves two purposes:

⋄⋄ to point out that believable system descriptions must entail both

◦◦ a discrete phenomena domain description and

◦◦ a continuous phenomena mathematical model.

⋄⋄ and this poses some semantics problems:

◦◦ the formal semantics of the
discrete phenomena description language and

◦◦ the meta-mathematics of, for example, differential equations,

at least as of today, July 31, 2012, are not commensurable !

⋄⋄ That is, we have a problem —
as will be outlined later in this lecture.
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9.1. Some Examples

Example: 39 Continuous Behaviour: The Weather. We give a familiar
example of continuous behaviour.

• The weather — understood as the time-wise evolution of a number of attributes
of the weather material:

⋄⋄ temperature,

⋄⋄ wind direction,

⋄⋄ wind force,

⋄⋄ atmospheric pressure,

⋄⋄ humidity,

⋄⋄ sky formation

(clear, cloudy, ...),

⋄⋄ precipitation,

⋄⋄ etcetera.

• That is, weather is seen as the state of the atmosphere as it evolves over time.
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Example: 40 Continuous Behaviour: Road Traffic. We give another
familiar example of continuous behaviour.

• The automobile traffic is the time-wise evolution of cars along a net has the
following additional attributes:

⋄⋄ car identity (CI),

⋄⋄ position (P, on the net),

⋄⋄ direction (D),

⋄⋄ velocity (V),

⋄⋄ acceleration (A),

⋄⋄ etcetera (...).

• The equation below captures this:

TF = T → (CI →m (P×D×V×A×...))

• We refer to Example 36

⋄⋄ specifically the veh, hub and mon behaviours.

⋄⋄ These “mimic” a discretised version of the above:

TF = T →m (CI →m (P×D×V×A×...))
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Example: 41 Pipeline Flows. A last example of continuous
behaviour.

• We refer to Examples 12, 14, 21–25, 41–45 and 49.

• These examples focused on

⋄⋄ the atomicparts and the composite parts of pipelines,

⋄⋄ and dealt with the liquid or gas materials as they related to
pipeline units.

• In the present example we shall focus on

⋄⋄ the overall material flow “across” a pipeline.

⋄⋄ in particular the continuity as

⋄⋄ as contrasted with the pipeline unit discrete

⋄⋄ aspects of flow.
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• Which, then, are these pipeline system continuity concerns ?

⋄⋄ In general we are interested in

1. whether the flow is laminar or turbulent:

(a) within a unit, or

(b) within an entire, possibly intricately networked pipeline;

2. what the shear stresses are;

3. whether there are undesirable pressures ;

4. whether there are leaks above normal values;

etcetera.

• To answer questions like those posed in

⋄⋄ Items 1(a) and 2, we need not build up the models sketched in
Examples 12, 14, 24, 25, 41–45 and 49.

⋄⋄ But for questions like those posed in Items 1(b), 3 and 4 we need
such models.
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• To answer any of the above questions, and many others,
we need establish, in the case of pipelines, fluid dynamics models

[Batchelor1967,Thorley1991,Wendt1992,Coulbeck2010].

• These models involve such mathematical as are based,
for example, on

⋄⋄ Newtonian Fluid Behaviours,

⋄⋄ Bernoulli Equations,

⋄⋄ Navier–Stokes Equations,

⋄⋄ etcetera.

• Each of these mathematical models

⋄⋄ capture the dynamics of one specific pipeline unit,

⋄⋄ not assemblies of two or more.
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9.2. Two Kinds of Continuous System Models

• There are at least two different kinds of mathematical models for
continuous systems.

⋄⋄ There are the models which are based on physics models
mentioned above, for example

◦◦ the dynamics of flows in networks,

⋄⋄ and there are the models which builds on control theory to
express automatic control solutions to the monitoring & control
of pipelines, for example:

◦◦ the opening, closing and setting of pumps, and

◦◦ the opening, closing and setting of valves

depending on monitored values of dynamic well, pipe, pump,
valve, fork, join and sink attributes.
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⋄⋄ Example 41 on page 249 assumes

◦◦ the fluid mechanics domain models

◦◦ to complement the discrete domain model of Example 38 on
page 235,

whereas

⋄⋄ Example 44 on page 272

◦◦ builds on Examples 41 and 38

◦◦ but assumes that automatic monitoring & control
requirements prescriptions

◦◦ have been derived, in the usual way from the former fluid
mechanics domain models.
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9.3. Motivation for Consolidated Models

• By a consolidated model

⋄⋄ we shall understand a formal description

⋄⋄ that brings together both

◦◦ discrete

∗ for example TripTych style domain description

and

◦◦ continuous

∗ for example classical mathematical description

⋄⋄ models of a system.
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• We shall motivate the need for consolidated models,
that is for building both

⋄⋄ the novel domain descriptions,

◦◦ such as this tutorial suggests,

◦◦ with its many aspects of discreteness,

and the

⋄⋄ the classical mathematical models,

◦◦ as this section suggests,

◦◦ including, for example, as in the case of Example 41, fluid
dynamics mathematics.
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• This motivation really provides the justification
for bringing the two disciplines together:

⋄⋄ discrete system domain modelling with

⋄⋄ continuous system physics modelling

in this tutorial.
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• The classical mathematical models of, for example, pipelines,

⋄⋄ model physical phenomena within parts or within materials;

⋄⋄ and also combinations of neighbouring,

◦◦ parts with parts and ◦◦ parts with materials.

⋄⋄ But classical mathematical modelling

◦◦ cannot model continuous phenomena

◦◦ for other than definite concrete,
specific combinations of parts and/or materials.
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• The kind of domain modelling,

⋄⋄ that is brought forward in this tutorial can,

⋄⋄ within one domain description

⋄⋄ model a whole class,

⋄⋄ indeed an indefinite,

⋄⋄ class of systems.
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9.4. Generation of Consolidated Models

• The idea is therefore this

⋄⋄ create a domain description
for a whole, the indefinite class of “alike” systems, to wit

◦◦ for an indefinite class of pipelines,

◦◦ for an indefinite class of container lines,

◦◦ for an indefinite class of health care systems,

⋄⋄ and then “adorn” such a description

◦◦ first with classical mathematical models
of simple parts of such systems; and

◦◦ then “replicate” these mathematical models across the
indefinite class of discrete models

◦◦ by “pairing”

∗ each definite classical concrete mathematical model

∗ with an, albeit abstract general discrete model.
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9.4.1. The Pairing Process

• The “pairing process” depends on a notion of boundary condition.

⋄⋄ The boundary conditions for mereology-related parts are, yes,

◦◦ expressed by their mereology,

◦◦ that is, by how the parts fit together.

⋄⋄ The boundary conditions for continuous models are understood as

◦◦ the set of conditions specified for the solution

◦◦ to a set of differential equations at the boundary
between the parts being individually modelled.
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• In pairing we take the “cue”, i.e., directives, from

⋄⋄ the discrete domain model
for the generic part and its related material

⋄⋄ since it is the more general, and

⋄⋄ “match” its mereology with

⋄⋄ the continuous mathematics model
of a part and its related material
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9.4.2. Matching

• Matching now means the following.

⋄⋄ Let DP,M
◦◦ designate a Domain Description

◦◦ for a part and/or a material, of type P, respectively M,

◦◦ zero or one part type and zero or one material type(s).

⋄⋄ Let MP,M
◦◦ designate a Mathematical Model

◦◦ for a part and/or a material of type P, respectively M,

◦◦ zero or one part type and zero or one material type(s).
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Example: 42 A Transport Behaviour Consolidation.

• An example DP,M could be

⋄⋄ the one, for vehicles, shown in Example 36 (Slides 188–206)

⋄⋄ as specifically expressed in the two frames:

◦◦ ‘The Vehicle Behaviour at Hubs’ on Slide 200 and

◦◦ ‘The Vehicle Behaviour along Links’ on Slide 202.

• On Slide 200 of Example 36 notice vehicle vi movement at hub in formula line

⋄⋄ 56(a) — apparently not showing any movement and

⋄⋄ 56(e) — showing movement from hub onto link.

• On Slide 202 notice vehicle vi movements along link in formula lines

⋄⋄ 57(a) — no movement (stopped or parked),

⋄⋄ 57((c))i — incremental movement along link, and

⋄⋄ 57((c))iiB — movement from link into hub.
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• The corresponding example MP,M might then be

⋄⋄ modelling these movements and no movements

⋄⋄ requiring access to such attributes as

◦◦ link length,

◦◦ vehicle position,

◦◦ vehicle velocity,

◦◦ vehicle acceleration,

etcetera.

• This model would need to abstract the non-deterministic behaviour
of the driver:

⋄⋄ accelerating, ⋄⋄ decelerating or ⋄⋄ steady velocity.

• Example 36’s model of vehicles’ link position in terms of a fragment
(δ) can be expected to appear in MP,M as an x, viewing the link
as an x-axis.
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Example: 43 A Pipeline Behaviour Consolidation. We continue the line of
exemplifying formalisations of pipelines, cf. Examples 14 (Slide 90) and 21–23
(Slides 117–125) and especially Examples 24–25 (Slides 127–131).

• Let the DP,M model be focused on the flows and leaks of pipeline units,
cf. Examples 24 and 25.

• The MP,M model would then Mathematically model the fluid dynamics of the
pipeline material per pipeline unit: flow and part actions and reactions for any of
the corresponding Domain models:

⋄⋄ wells, Dwell
U,O → Mwell

U,O,

⋄⋄ pipes, Dpipe
U,O

→ Mpipe
U,O

,

⋄⋄ pumps, Dpump
U,O

→ Mpump
U,O

,

⋄⋄ valves, Dvalve
U,O → Mvalve

U,O ,

⋄⋄ forks, Dfork
U,O → Mfork

U,O,

⋄⋄ joins, Djoin
U,O

→ Mjoin
U,O

, and

⋄⋄ sinks Dsink
U,O → Msink

U,O.
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• Some more model annotations,

⋄⋄ reflecting the match between DP,M and MP,M,

seem relevant.

⋄⋄ Thus we further subscript DP,M optionally with

◦◦ a unique identifier variable, π, and

◦◦ the properties pi, pj, ..., pk where

∗ pi is a property name of part type P or of material type M,

∗ and where these property names typically are the distinct attribute
names of P and/or M,

to arrive at Dπ

P,Mpi,pj,...,pk

.

⋄⋄ Here π is a variable name for p:P, i.e., π is uid P(p).

⋄⋄ Do not confuse property names, pi etc., with part names, p.
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• And we likewise adorn MP,M optionally with

⋄⋄ superscripts pi, pj, ..., pk and

⋄⋄ subscripts xi, xj, ..., xk where

◦◦ pi, pj, ..., pk are as for Dπ
P,Mpi,pj,...,pk

and

◦◦ xi, xj, ..., xk are the names of the variables occurring in
MP,M
∗ possibly in its partial differential equations,

∗ possibly in its difference equations,

∗ possibly in its other mathematical expressions of the MP,M
model.

to arrive at Mπ

P,M
pi,pj,...,pk
xi,xj,...,xk
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• The “adornments” are the result of an analysis which

⋄⋄ identifies the variables of MP,M
⋄⋄ with the properties of DP,M.

• Common to all conventional mathematical models

⋄⋄ is that they all operate with a very simple type concept:

◦◦ Reals, Integers,

◦◦ arrays (vectors, matrices, and tensors),

◦◦ sets of the above and sets.

• Common to all domain model descriptions

⋄⋄ is that they all operate with a rather sophisticated type concept:

◦◦ abstract types and concrete types,

◦◦ union (Ti|Tj...) of these,

◦◦ sets, Cartesians, lists, maps, and partial functions and total
functions over these, etcetera.
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9.4.3. Model Instantiation

• The above models, DP,M and MP,M, differ as follows.

⋄⋄ The DP,M models (are claimed to) hold for indefinite sets of
domains “of the same kind”:

◦◦ The axioms and invariants, cf.

∗ Example 11 on page 82,

∗ Examples 24–25 (Slides 127–130) and

∗ Example 27 on page 138,

are universally quantified over all transport nets.

• The MP,M models express no such logic.
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• The above difference can, however, be ameliorated.

⋄⋄ For a given, that is, an instantiated domain,

◦◦ we can “compile” the DP,M models

◦◦ into a set of models,

◦◦ one per part of that domain;

⋄⋄ similarly, with the binding of model MP,M variables to
instantiated model DP,M attributes,

◦◦ we can “compile” the MP,M models

◦◦ into as set of — instantiated MP,M models,

◦◦ one per part of that domain.
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9.4.3.1 Model Instantiation – in Principle

• Since this partial evaluation compilation can be (almost) automated,

⋄⋄ there is really no reason to actually perform it;

⋄⋄ all necessary theorems should be derivable from the annotated
models.

◦◦ Dπ
P,Mpi,pj,...,pk

and ◦◦ Mπ

P,M
pi,pj,...,pk
xi,xj,...,xk

.

• That is, as far as a domain understanding concerns

⋄⋄ we might, with

◦◦ continuous mathematical modelling and

◦◦ mostly discrete domain modelling

⋄⋄ very well have achieved all we can possibly, today, achieve.
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9.4.3.2 Model Instantiation – in Practice

• We continue Example 38 (Slides 235–243).

⋄⋄ The definition of pipeline system function (Slide 240)
indicates the basis for an instantiation.

Example: 44 An Instantiated Pipeline System.

• Figure 2 indicates an instantiation.
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Figure 2: A specific pipeline
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• That pipeline system gives rise to the following instantiation.

scada(pro)‖
unit(ua)‖unit(ub)‖unit(uc)‖unit(ud)‖unit(ue)‖unit(uf)‖unit(ug)‖
unit(uh)‖
unit(ui)‖unit(uj)‖unit(uk)‖unit(ul)‖
unit(um)‖unit(un)‖...‖unit(uo)‖unit(up)‖unit(uq)‖
unit(ur)‖
unit(us)‖unit(ut)‖unit(uu)‖
unit(uv)‖unit(uw)‖unit(ux)‖unit(uy)‖unit(uz)

• It is in the scada behaviour, that each of the Muid U(u)
U,O models are

‘instantiated’.

• The above instantiated model

⋄⋄ is not a domain model of a generic pipeline system

⋄⋄ but is a requirements model for the monitoring & control
of a specific pipeline system.
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9.5. An Aside on Time

• An important aspect of domain modelling is the description of time
phenomena:

⋄⋄ absolute time (or just time) and

⋄⋄ time intervals.

• We shall, regrettably, not cover this facet in this tutorial, but refer
to

⋄⋄ a number of specifications expressed in combined uses of

◦◦ the RAISE [RaiseMethod] combined with

◦◦ the DC: Duration Calculus [zcc+mrh2002].

⋄⋄ We could also express these specifications using TLA+

[Lamport-TLA+02]: Lamport’s Temporal Logic of

Actions.

• We otherwise refer to [TheSEBook2wo] (Chap. 15.).
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9.6. A Research Agenda

• This section opens two main lines of research problems;

⋄⋄ methodology problems cum computing science problems and

⋄⋄ computer science cum mathematics problems.
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9.6.1. Computing Science cum Programming Methodology Problems

• Some of the methodology problems are

⋄⋄ techniques for developing continuous mathematics models —
which we leave to the relevant fields of

◦◦ physics and

◦◦ control theory

to “deliver”;

⋄⋄ contained in this are more detailed techniques for matching
DD,M and MD,M models,

◦◦ that is, for identifying and pairing the pis and xis in

∗ Dπ
P,Mpi,pj,...,pk

and ∗ Mπ

P,M
pi,pj,...,pk
xi,xj,...,xk

and

◦◦ for instantiating these.
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• A problem of current programming methodology in

⋄⋄ that it has for most of its “existence”

⋄⋄ relied on discrete mathematics

⋄⋄ and not sufficiently educated and trained

⋄⋄ its candidates in continuous mathematics.
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9.6.2. Mathematical Modelling Problems

• Some of the open mathematics problems are

⋄⋄ the lack of well-understood interfaces between

◦◦ discrete mathematics models and

◦◦ continuous mathematics models;

⋄⋄ and the lack of proof systems across the two modes of expression.
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• By well-understood interfaces between the two modes of expression,

⋄⋄ the discrete mathematics models and

⋄⋄ the continuous mathematics models;

we mean that the semantics models of

⋄⋄ the discrete mathematics formal specification languages and

⋄⋄ the continuous mathematics specification notations,

at this time, July 31, 2012, are not commensurate, that is, do not
“carry over”:

⋄⋄ a variable, a of some, even abstract type, say A,

⋄⋄ cannot easily be related to what it has to be related to, namely

⋄⋄ a variable, x of some concrete, mathematical type, say Real or
Integer, or arrays of these, etc.
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9. Continuous Perdurants 9.6. A Research Agenda9.6.2. Mathematical Modelling Problems

• Lack of proof systems across the two modes of expression.

⋄⋄ the discrete mathematics models and

⋄⋄ the continuous mathematics models;

we mean,

⋄⋄ firstly, that the former problem of lack of clear a↔x relations is
taken to prevent such proof systems,

⋄⋄ secondly, that mathematics essentially does not embody a
“formal language”.

• But nobody is really looking into, that is, researching possible
“solutions” to these problems.
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10. Continuous Perdurants

10. Discussion of Entities

• We have examined the concepts of entities, endurant and perdurant.

• We have not examined those “things” (of a domain)
which “fall outside” this categorisation.

⋄⋄ That would lead to a rather lengthy discourse.

⋄⋄ In the interest of “really understanding” what can be described
such a computer science study should be made.

⋄⋄ Philosophers have clarified the issues in centuries of studies.

◦◦ Their interest is in

∗ identifying the issues and

∗ clarifying the questions.

◦◦ Computer scientists are interested in answers.
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10. Discussion of Entities

• We see entities as either

⋄⋄ endurants or

⋄⋄ perdurants

or as either

⋄⋄ discrete or

⋄⋄ continuous.

• We analyse discrete endurants into atomic and composite parts with

⋄⋄ observers,

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ attributes.

• And we analyse perdurants into actions, events and behaviours.
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10. Discussion of Entities

• This domain ontology is entirely a pragmatic one:

⋄⋄ it appears to work;

⋄⋄ it has been used in the description of numerous cases;

⋄⋄ it leads to descriptions which in a straightforward manner lend

◦◦ themselves to the “derivation”

◦◦ of significant fragments of requirements;

⋄⋄ and appears not to stand in the way of obtaining remaining
requirements.
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10. Discussion of Entities

• Most convincingly to us is that the concepts of our approach

⋄⋄ endurants and perdurants,

⋄⋄ atomic and composite parts,

⋄⋄ mereology and attributes,

⋄⋄ actions, events and behaviours

fit it with major categories of philosophically analyses.
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End of Lecture 5: Last Session — Perdurant Entities

Behaviours, Discussion Entities

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012
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HAVE A GOOD LUNCH – SEE YOU BACK AT 2 PM
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