
142

HAPPY TO SEE YOU AGAIN

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 142 Domain Science & Engineering



143

Begin of Lecture 4: Middle Session — Perdurant Entities

Actions and Events

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

A Precursor for Requirements Engineering 143 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



143

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35

2 Endurant Entities: Parts Slides 36–110

• Lecture 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 111–142
√

4 Perdurant Entities: Actions and Events Slides 143–174

5 Perdurant Entities: Behaviours Slides 175–285

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 286–339

7 A Calculus: Function Signatures and Laws Slides 340–377

• Lectures 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 378–424

9 Conclusion: Comparison to Other Work Slides 428–460

Conclusion: What Have We Achieved Slides 425–427 + 461–472

A Precursor for Requirements Engineering 143 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



144 8.

8. Discrete Perdurants
8.1. General

• From Wikipedia:

⋄⋄ Perdurant: Also known as occurrent, accident or happening.

⋄⋄ Perdurants are those entities for which only a fragment exists if

we look at them at any given snapshot in time.

⋄⋄ When we freeze time we can only see a fragment of the perdurant.

⋄⋄ Perdurants are often what we know as processes, for example

’running’.

⋄⋄ If we freeze time then we only see a fragment of the running,

without any previous knowledge one might not even be able to

determine the actual process as being a process of running.

⋄⋄ Other examples include an activation, a kiss, or a procedure.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 144 Domain Science & Engineering



145
8. Discrete Perdurants 8.1. General

• We shall consider actions and events

⋄⋄ to occur instantaneously,

⋄⋄ that is, in time, but taking no time

• Therefore we shall consider actions and events to be perdurants.

A Precursor for Requirements Engineering 145 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



146
8. Discrete Perdurants 8.2. Discrete Actions

8.2. Discrete Actions

• By a function we understand

⋄⋄ a thing

⋄⋄ which when applied to a value, called its argument,

⋄⋄ yields a value, called its result.

• An action is

⋄⋄ a function

⋄⋄ invoked on a state value

⋄⋄ and is one that potentially changes that value.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 146 Domain Science & Engineering



147
8. Discrete Perdurants 8.2. Discrete Actions

Example: 28 Transport Net and Container Vessel Actions.

• Inserting and removing hubs and links in a net are considered
actions.

• Setting the traffic signals for a hub (which has such signals) is
considered an action.

• Loading and unloading containers from or unto the top of a
container stack are considered actions.

A Precursor for Requirements Engineering 147 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



148
8. Discrete Perdurants 8.2. Discrete Actions8.2.1. An Aside on Actions

8.2.1. An Aside on Actions

Think’st thou existence doth depend on time?

It doth; but actions are our epochs.

George Gordon Noel Byron,
Lord Byron (1788-1824) Manfred. Act II. Sc. 1.

• “An action is

⋄⋄ something an agent does

⋄⋄ that was ‘intentional under some description’ ” [Davidson1980].

• That is, actions are performed by agents.

⋄⋄ We shall not yet go into any deeper treatment of agency or
agents. We shall do so later.

◦◦ Agents will here, for simplicity, be considered behaviours,

◦◦ and are treated later in this lecture.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 148 Domain Science & Engineering



149
8. Discrete Perdurants 8.2. Discrete Actions8.2.1. An Aside on Actions

• As to the relation between intention and action

⋄⋄ we note that Davidson wrote: ‘intentional under some
description’

⋄⋄ and take that as our cue:

◦◦ the agent follows a script,

◦◦ that is, a behaviour description,

◦◦ and invokes actions accordingly,

◦◦ that is, follow, or honours that script.

• The philosophical notion of ‘action’ is over-viewed in [sep-action].

• We

⋄⋄ observe actions in the domain

⋄⋄ but describe “their underlying” functions.

• Thus we abstract from the times at which actions occur.

A Precursor for Requirements Engineering 149 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



150
8. Discrete Perdurants 8.2. Discrete Actions8.2.2. Action Signatures

8.2.2. Action Signatures

• By an action signature we understand a quadruple:

⋄⋄ a function name,

⋄⋄ a function definition set type expression,

⋄⋄ a total or partial function designator (→, respectively
∼→), and

⋄⋄ a function image set type expression:
fct name: A → Σ (→|∼→) Σ [× R],

where (X | Y ) means either X or Y , and [Z] means optional Z.

Example: 29 Action Signatures: Nets and Vessels.

insert Hub: N→H
∼→N;

remove Hub: N→HI
∼→N;

set Hub Signal: N→HI
∼→HΣ

∼→N
load Container: V→C→StackId

∼→V; and
unload Container: V→StackId

∼→(V×C).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 150 Domain Science & Engineering



1518. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

8.2.3. Action Definitions

• There are a number of ways in which to characterise an action.

• One way is to characterise its underlying function
by a pair of predicates:

⋄⋄ precondition: a predicate over function arguments — which
includes the state, and

⋄⋄ postcondition: a predicate over function arguments, a proper
argument state and the desired result state.

⋄⋄ If the precondition holds, i.e., is true, then the arguments,
including the argument state, forms a proper ‘input’ to the
action.

⋄⋄ If the postcondition holds, assuming that the precondition held,
then the resulting state [and possibly a yielded, additional
“result” (R)] is as they would be had the function been applied.

A Precursor for Requirements Engineering 151 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



152 8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Example: 30 Transport Nets: Insert Hub Action. We give
one example.

19. The insert action applies to a net and a hub and conditionally
yields an updated net.

(a) The condition is that there must not be a hub in the “argument”
net with the same unique hub identifier as that of the hub to be
inserted and

(b) the hub to be inserted does not initially designate links with
which it is to be connected.

(c) The updated net contains all the hubs of the initial net “plus”
the new hub.

(d) and the same links.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 152 Domain Science & Engineering



1538. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

value

19. insert H: N → H
∼→ N

19. insert H(n)(h) as n′, pre: pre insert H(n)(h), post: post insert H(n)(h)

19(a). pre insert H(n)(h) ≡
19(a). ∼∃ h′:H • h′ ∈ obs Hs(n) ∧ uid HI(h)=uid HI(h′)
19(b). ∧ mereo H(h) = {}

19(c). post insert H(n)(h)(n′) ≡
19(c). (n′)obs Hs(n) ∪ {h} = obs Hs(n′)
19(d). ∧ obs Ls(n) = obs Ls(n′)

• We refer to the notes accompanying these lectures.

• There you will find definitions of insert link, remove hub and
remove link action functions.

A Precursor for Requirements Engineering 153 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



154
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

• What is not expressed, but tacitly assume in the above pre- and
post-conditions is

⋄⋄ that the state, here n, satisfy invariant criteria before (i.e. n)
and after (i.e., n′) actions,

⋄⋄ whether these be implied by axioms

⋄⋄ or by well-formedness predicates.

over parts.

• This remark applies to any definition of actions, events and
behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 154 Domain Science & Engineering



155
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Example: 31 Action: Remove Container from Vessel. We
give the second of two examples.

20. The remove Container from Vessel action applies to a vessel and a stack address
and conditionally yields an updated vessel and a container.

(a) We express the ‘remove from vessel’ function primarily by means of an
auxiliary function remove C from BS, remove C from BS(obs BS(v))(stid),
and some further post-condition on the before and after vessel states (cf.
Item 20(d)).

(b) The remove C from BS function yields a pair: an updated set of bays and a
container.

(c) When obs erving the BayS from the updated vessel, v′, and pairing that with
what is assumed to be a vessel, then one shall obtain the result of
remove C from BS(obs BS(v))(stid).

(d) Updating, by means of remove C from BS(obs BS(v))(stid), the bays of a
vessel must leave all other properties of the vessel unchanged.

A Precursor for Requirements Engineering 155 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



156 8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

21. The pre-condition for remove C from BS(bs)(stid) is

(a) that stid is a valid address in bs, and

(b) that the stack in bs designated by stid is non empty.

22. The post-condition for remove C from BS(bs)(stid) wrt. the
updated bays, bs′, is

(a) that the yielded container, i.e., c, is obtained, get C(bs)(stid),
from the top of the non-empty, designated stack,

(b) that the mereology of bs′ is unchanged,
unchanged mereology(bs,bs′). wrt. bs. ,

(c) that the stack designated by stid in the “input” state, bs, is
popped, popped designated stack(bs,bs′)(stid), and

(d) that all other stacks are unchanged in bs′ wrt. bs,
unchanged non designated stacks(bs,bs′)(stid).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 156 Domain Science & Engineering



1578. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

value

20. remove C from V: V → StackId
∼→ (V×C)

20. remove C from V(v)(stid) as (v′,c)
20(c). (obs BS(v′),c) = remove C from BS(obs BS(v))(stid)
20(d). ∧ props(v)=props(v′′)

20(b). remove C from BS: BS → StackId → (BS×C)
20(a). remove C from BS(bs)(stid) as (bs′,c)
21(a). pre: valid address(bs)(stid)
21(b). ∧ non empty designated stack(bs)(stid)
22(a). post: c = get C(bs)(stid)
22(b). ∧ unchanged mereology(bs,bs′)
22(c). ∧ popped designated stack(bs,bs′)(stid)
22(d). ∧ unchanged non designated stacks(bs,bs′)(stid)

A Precursor for Requirements Engineering 157 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



158
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

• This example hints at a theory of container vessel bays, rows

and stacks.

• More on that is found in Appendix C.

• There are other ways of defining functions.

• But the form of these are not material to the aims of this tutorial.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 158 Domain Science & Engineering



159
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Modelling Actions, I/III

• The domain describer has decided that an entity is a perdurant and
is, or represents an action: was “done by an agent and intentionally

under some description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed ac-
tion is of a class of actions — of the “same kind” — that need be
described.

⋄⋄ By actions of the ‘same kind’ is meant that these can be described
by the same function signature and function definition.

A Precursor for Requirements Engineering 159 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



160
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Modelling Actions, II/III

• First the domain describer must decide on the underlying function
signature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts and/or materials,

◦◦ unique part identifiers, and/or

◦◦ attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 160 Domain Science & Engineering



161
8. Discrete Perdurants 8.2. Discrete Actions8.2.3. Action Definitions

Modelling Actions, III/III

• Sooner or later the domain describer must decide on the function
definition.

⋄⋄ The form must be decided upon.

⋄⋄ For pre/post-condition forms it appears to be convenient to have
developed, “on the side”, a theory of mereology for the part types
involved in the function signature.

A Precursor for Requirements Engineering 161 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



162
8. Discrete Perdurants 8.3. Discrete Events

8.3. Discrete Events

• By an event we understand

⋄⋄ a state change

⋄⋄ resulting indirectly from an
unexpected application of a function,

⋄⋄ that is, that function was performed “surreptitiously”.

• Events can be characterised by a pair of (before and after) states, a
predicate over these and, optionally, a time or time interval.

• Events are thus like actions:

⋄⋄ change states,

⋄⋄ but are usually

◦◦ either caused by “previous” actions,

◦◦ or caused by “an outside action”.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 162 Domain Science & Engineering



163
8. Discrete Perdurants 8.3. Discrete Events

Example: 32 Events.

• Container vessel: A container falls overboard
sometimes between times t and t′.

• Financial service industry: A bank goes bankrupt
sometimes between times t and t′.

• Health care: A patient dies
sometimes between times t and t′.

• Pipeline system: A pipe breaks
sometimes between times t and t′.

• Transportation: A link “disappears”
sometimes between times t and t′.

A Precursor for Requirements Engineering 163 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



164
8. Discrete Perdurants 8.3. Discrete Events8.3.1. An Aside on Events

8.3.1. An Aside on Events

• We may observe an event, and

⋄⋄ then we do so at a specific time or

⋄⋄ during a specific time interval.

• But we wish to describe,

⋄⋄ not a specific event

⋄⋄ but a class of events of “the same kind”.

• In this tutorial

⋄⋄ we therefore do not ascribe

⋄⋄ time points or time intervals

⋄⋄ with the occurrences of events.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 164 Domain Science & Engineering



165
8. Discrete Perdurants 8.3. Discrete Events8.3.2. Event Signatures

8.3.2. Event Signatures

• An event signature

⋄⋄ is a predicate signature

⋄⋄ having an event name,

⋄⋄ a pair of state types (Σ × Σ),

⋄⋄ a total function space operator (→)

⋄⋄ and a Boolean type constant:

⋄⋄ evt: (Σ×Σ) → Bool.

• Sometimes there may be a good reason

⋄⋄ for indicating the type, ET, of an event cause value,

⋄⋄ if such a value can be identified:

⋄⋄ evt: ET × (Σ × Σ) → Bool.

A Precursor for Requirements Engineering 165 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



166 8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

8.3.3. Event Definitions

• An event definition takes the form of a predicate definition:

⋄⋄ A predicate name and argument list, usually just a state pair,

⋄⋄ an existential quantification

◦◦ over some part (of the state) or

◦◦ over some dynamic attribute of some part (of the state)

◦◦ or combinations of the above

⋄⋄ a pre-condition expression over the input argument(s),

⋄⋄ an implication symbol (⇒), and

⋄⋄ a post-condition expression over the argument(s).

• evt(σ, σ′) = ∃ (ev:ET) • pre evt(ev)(σ) ⇒ post evt(ev)(σ, σ′).

• There may be variations to the above form.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 166 Domain Science & Engineering



167
8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Example: 33 Narrative of Link Event. The disappearance of a
link in a net, for example due to a mud slide, or a bridge falling down,
or a fire in a road tunnel, can, for example be described as follows:

23. Link disappearance is expressed as a predicate on the “before” and
“after” states of the net. The predicate identifies the “missing”
ℓink (!).

24. Before the disappearance of link ℓ in net n

(a) the hubs h′ and h′′ connected to link ℓ

(b) were connected to links identified by {l′1, l′2, . . . , l′p} respectively

{l′′1 , l′′2 , . . . , l′′q}
(c) where, for example, l′i, l

′′
j are the same and equal to uid Π(ℓ).

A Precursor for Requirements Engineering 167 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



168 8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

25. After link ℓ disappearance there are instead

(a) two separate links, ℓi and ℓj, “truncations” of ℓ

(b) and two new hubs h′′′ and h′′′′

(c) such that ℓi connects h′ and h′′′ and

(d) ℓj connects h′′ and h′′′′;
(e) Existing hubs h′ and h′′ now have mereology

i. {l′1, l′2, . . . , l′p} \ {uid Π(ℓ)} ∪ {uid Π(ℓi)} respectively

ii. {l′′1 , l′′2 , . . . , l′′q} \ {uid Π(ℓ)} ∪ {uid Π(ℓj)}
26. All other hubs and links of n are unaffected.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 168 Domain Science & Engineering



169
8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Example: 34 Formalisation of Link Event. Continuing
Example 33 above:

23. link disappearance: N × N → Bool

23. link disappearance(n,n′) ≡
23. ∃ ℓ:L • pre link dis(n,ℓ) ⇒ post link dis(n,ℓ,n′)

24. pre link dis: N × L → Bool

24. pre link dis(n,ℓ) ≡ ℓ ∈ obs Ls(n)

A Precursor for Requirements Engineering 169 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



170 8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

27. We shall “explain” link disappearance as the combined,
instantaneous effect of

(a) first a remove link “event” where the removed link connected
hubs hij and hik;

(b) then the insertion of two new, “fresh” hubs, hα and hβ;

(c) “followed” by the insertion of two new, “fresh” links ljα and lkβ

such that

i. ljα connects hij and hα and

ii. lkβ connects hik and hkβ

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 170 Domain Science & Engineering



1718. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

value

27. post link dis(n,ℓ,n′) ≡
27(a). let n′′ = remove link(n)(uid L(ℓ)) in

27(b). let hα,hβ:H • {hα,hβ}∩ obs Hs(n)={} in

27(b). let n′′′ = insert H(n′′)(hα) in

27(b). let n′′′′ = insert H(n′′′)(hβ) in

27(c). let ljα,lkβ:L • {ljα,lkβ}∩ obs Ls(n)={} in

27((c))i. let n′′′′′ = insert L(n′′′′)(ljα) in

27((c))ii. n′ = insert L(n′′′′′)(lkβ) end end end end end end

• We refer to the notes accompanying these lectures.

• There you will find definitions of insert link, remove hub and
remove link action functions.

A Precursor for Requirements Engineering 171 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



172
8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Modelling Events I/II

• The domain describer has decided that an entity is a perdurant and
is, or represents an event: occurred surreptitiously, that is, was not
an action that was “done by an agent and intentionally under some

description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed event
is of a class of events — of the “same kind” — that need be
described.

⋄⋄ By events of the ‘same kind’ is meant that these can be described
by the same predicate function signature and predicate function
definition.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 172 Domain Science & Engineering



173
8. Discrete Perdurants 8.3. Discrete Events8.3.3. Event Definitions

Modelling Events, II/II

• First the domain describer must decide on the underlying predicate
function signature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts,

◦◦ unique part identifiers, or

◦◦ attributes.

• Sooner or later the domain describer must decide on the predicate
function definition.

⋄⋄ For predicate function definitions it appears to be convenient to
have developed, “on the side”, a theory of mereology for the part
types involved in the function signature.

A Precursor for Requirements Engineering 173 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02



174

End of Lecture 4: Middle Session — Perdurant Entities

Actions and Events

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 174 Domain Science & Engineering



174

MINI BREAK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 174 Domain Science & Engineering


