
35

NICE TO SEE YOU BACK

A Precursor for Requirements Engineering 35 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

36

Begin of Lecture 2: Last Session — Discrete Endurant Entities

Parts

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 36 Domain Science & Engineering

36

Tutorial Schedule
• Lectures 1–2 9:00–9:40 + 9:50–10:30

1 Introduction Slides 1–35
√

2 Endurant Entities: Parts Slides 36–110

• Lectures 3–5 11:00–11:15 + 11:20–11:45 + 11:50–12:30

3 Endurant Entities: Materials, States Slides 111–142

4 Perdurant Entities: Actions and Events Slides 143–174

5 Perdurant Entities: Behaviours Slides 175–285

Lunch 12:30–14:00

• Lectures 6–7 14:00–14:40 + 14:50–15:30

6 A Calculus: Analysers, Parts and Materials Slides 286–339

7 A Calculus: Function Signatures and Laws Slides 340–377

• Lecture 8–9 16:00–16:40 + 16:50–17:30

8 Domain and Interface Requirements Slides 378–424

9 Conclusion: Comparison to Other Work Slides 428–460

Conclusion: What Have We Achieved Slides 425–427 + 461–472

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 36 Domain Science & Engineering

372.

2. Domain Entities

• The world is divisible into two kinds of people:

⋄⋄ those who divide the population into two kinds of people

⋄⋄ and the others.

• In this tutorial we shall divide the phenomena we can observe and
whose properties we can ascertain into two kinds:

⋄⋄ the endurant entities and

⋄⋄ the perdurant entities.

• Another “division” is of the phenomena and their properties into

⋄⋄ the discrete entities and

⋄⋄ the continuous entities.

• You can have it, i.e., the the analysis and the presentation, either
way.

A Precursor for Requirements Engineering 37 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

38
2. Domain Entities

• By a domain we shall understand a suitably delineated set of
observable entities and abstractions of these, that is, of

⋄⋄ discrete parts and

⋄⋄ continuous materials and,

⋄⋄ discrete actions
(operation applications causing state changes),

⋄⋄ discrete events
(“spurious” state changes not [intentionally] caused by actions),

⋄⋄ discrete discrete behaviours
(seen as sets of sequences of actions, events and behaviours) and

⋄⋄ continuous behaviours
(abstracted as continuous functions in space and/or time).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 38 Domain Science & Engineering

392. Domain Entities 2.1. From Observations to Abstractions

2.1. From Observations to Abstractions

• When we observe a domain we observe instances of entities;

• but when we describe those instances

⋄⋄ (which we shall call values)

⋄⋄ we describe, not the values,

⋄⋄ but their type and properties.

◦◦ Parts and materials have types and values;

◦◦ actions, events and behaviours, all, have types and values,
namely as expressed by their signatures; and

◦◦ actions, events and behaviours have properties,
namely as expressed by their function definitions.

A Precursor for Requirements Engineering 39 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

40
2. Domain Entities 2.2. Algebras

2.2. Algebras

• Algebra: Taking a clue from mathematics, an algebra is considered

⋄⋄ a set of endurants:

◦◦ a set of parts and

◦◦ a set of materials

and

⋄⋄ a set of perdurants: operations on entities.

These operations yield parts or materials.

• With that in mind we shall try view a domain
as an algebra, of some kind, of

⋄⋄ parts and

⋄⋄ actions, events and behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 40 Domain Science & Engineering

41
2. Domain Entities 2.3. Phenomena

2.3. Phenomena

• Phenomena: By a phenomenon we shall understand

⋄⋄ something that can be observed by the human senses

⋄⋄ or by equipment based on laws of physics and chemistry.

• Those phenomena that can be observed by

⋄⋄ the human eye or

⋄⋄ touched, for example, by human hands

⋄⋄ we call parts and materials.

• Those phenomena that can be observed of parts and materials

⋄⋄ can usually be measured

⋄⋄ and we call them properties of these parts and those materials.

A Precursor for Requirements Engineering 41 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

42
2. Domain Entities 2.4. Entities

2.4. Entities

• Ontologically we distinguish between two kinds of domain entities:

⋄⋄ endurant entities and

⋄⋄ perdurant entities.

• We shall characterise these two terms:

⋄⋄ endurants on Slide 49 and

⋄⋄ perdurants on Slide 144.

• This distinction is supported by current literature on ontology
[BarrySmith1993].

• In this section of this lecture we shall not enter a discourse on

⋄⋄ “things”,

⋄⋄ entities,

⋄⋄ objects,

⋄⋄ etcetera.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 42 Domain Science & Engineering

43
2. Domain Entities 2.4. Entities2.4.1. A Description Bias

2.4.1. A Description Bias

• One of several “twists”

⋄⋄ that make the TripTych form of domain engineering

⋄⋄ distinct from that of ontological engineering

⋄⋄ is that we use a model-oriented formal specification approach12

⋄⋄ where usual ontology formalisation languages are variants of
Lisp’s [Lisp1] S-expressions.

⋄⋄ KIF: Knowledge Interchange Format,
http://www.ksl.stanford.edu/knowledge-sharing/kif/

is a leading example.

12RAISE [RaiseMethod]. Our remarks in this section apply equally well had we
instead chosen either of the Alloy [alloy], Event B [JRAbrial:TheBBooks], VDM
[e:db:Bj78bwo,e:db:Bj82b,jf-pgl-97] or Z [m:z:jd+jcppw96] formal specification lan-
guages.

A Precursor for Requirements Engineering 43 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

44
2. Domain Entities 2.4. Entities2.4.1. A Description Bias

• The bias is now this:

⋄⋄ The model-oriented languages mentioned in this section all share
the following:

◦◦ (a) a type concept and facilities for defining types, that is:
endurants (parts), and

◦◦ (b) a function concept and facilities for defining functions
(notably including predicates), that is: perdurants (actions
and events).

◦◦ (c) RSL further has constructs for defining processes, which we
shall use to model behaviours.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 44 Domain Science & Engineering

45
2. Domain Entities 2.4. Entities2.4.2. An ‘Upper Ontology’

2.4.2. An ‘Upper Ontology’

• By an upper ontology we shall understand

⋄⋄ a relatively small, ground set of ontology expressions

⋄⋄ which form a basis for a usually very much larger set of ontology
expressions.

A Precursor for Requirements Engineering 45 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

46
2. Domain Entities 2.4. Entities2.4.2. An ‘Upper Ontology’

• The need for introducing the notion of an upper ontology arose, in
the late 1980s to early 1990s as follows:

⋄⋄ usually an ontology was (is) expressed in some very basic
language, viz., Lisp-like S-expressions13.

⋄⋄ This was necessitated by the desire to be able to share ontologies
between many computing applications worldwide.

⋄⋄ Then it was found that several ontologies shared initial bases in
terms of which the rest of their ontologies were formulated.

⋄⋄ These shared bases were then referred to as upper ontologies —
and a need to “standardise” these arose
[ontology:guarino97a,StaabStuder2004].

13Ontology languages: KIF http://www.ksl.stanford.edu/knowledge-sharing/kif/-
#manual, OWL [Ontology Web Language] [OWL:2009], ISO Common Logic
[ISO:CL:2007]

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 46 Domain Science & Engineering

472. Domain Entities 2.4. Entities2.4.2. An ‘Upper Ontology’

• We therefore consider the following model-oriented specification
language constructs as forming an upper ontology:

⋄⋄ types, ground types, type expressions and type definitions;

⋄⋄ functions, function signatures and function definitions;

⋄⋄ processes, process signatures and process definitions,

as constituting an upper level ontology for TripTych domain
descriptions.

• That is, every domain description is structured with respect to:

⋄⋄ parts and materials using types,

⋄⋄ actions using functions,

⋄⋄ events using predicates,

⋄⋄ discretebehaviours using processes and

⋄⋄ continuous behaviours using partial differentialequations.

A Precursor for Requirements Engineering 47 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

48
3. Domain Entities

3. Endurants

• There is sort of a dichotomy buried in our treating endurants
before perdurants. The dichotomy is this:

⋄⋄ one could claim that the perdurants,
i.e., the actions, events and behaviours
is “what it, the domain, is all about”;

• To describe these, however, we need refer to endurants !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 48 Domain Science & Engineering

49
3. Endurants 3.1. General

3.1. General
Wikipedia:

• By an endurant (also known as a continuant or a substance) we shall
understand an entity

⋄⋄ that can be observed, i.e., perceived or conceived,

⋄⋄ as a complete concept,

⋄⋄ at no matter which given snapshot of time.

• Were we to freeze time

⋄⋄ we would still be able to observe the entire endurant.

3.2. Discrete and Continuous Endurants

• We distinguish between

⋄⋄ discrete endurants, which we shall call parts, and

⋄⋄ continuous endurants, which we shall call materials.

A Precursor for Requirements Engineering 49 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

50
3. Endurants 3.2. Discrete and Continuous Endurants

We motivate and characterise this distinction.

• By a discrete endurant, that is, a part, we shall understand
something which is

⋄⋄ separate or distinct in form or concept,

⋄⋄ consisting of distinct or separate parts.

• By a continuous endurant, that is, a material, we shall understand
something which is

⋄⋄ prolonged without interruption,

⋄⋄ in an unbroken series or pattern.

• We shall

⋄⋄ first treat the idea of discrete endurant, that is, a part
(Slides 51–110),

⋄⋄ then the idea of continuous endurant, that is, a material
(Slides 112–134).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 50 Domain Science & Engineering

514. Endurants

4. Discrete Endurants: Parts
4.1. Atomic and Composite Parts

• Parts may be analysed into disjoint sets of

• atomic parts and • composite parts.

• Atomic parts are those which,

⋄⋄ in a given context,

⋄⋄ are deemed not to consist of
meaningful, separately observable proper sub-parts.

• Composite parts are those which,

⋄⋄ in a given context,

⋄⋄ are deemed to indeed consist of
meaningful, separately observable proper sub-parts.

• A sub-part is a part.

A Precursor for Requirements Engineering 51 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

52
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts

Example: 4 Atomic and/or Composite Parts. To one person a
part may be atomic; to another person the same part may be
composite.

• It is the domain describer who decides the outcome of this aspect
of domain analysis.

⋄⋄ In some domain analysis a ‘person’ may be considered an atomic
part.

◦◦ For the domain of ferrying cars with passengers

◦◦ persons are considered parts.

⋄⋄ In some other domain analysis a ‘person’ may be considered a
composite part.

◦◦ For the domain of medical surgery

◦◦ persons may be considered composite parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 52 Domain Science & Engineering

53
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts

Example: 5 Container Lines.

• We shall presently consider containers (as used in container line
shipping) to be atomic parts.

• And we shall consider a container vessel to be a composite part
consisting of

⋄⋄ an indexed set of container bays

⋄⋄ where each container bay consists of indexed set of container rows

⋄⋄ where each container row consists of indexed set of container
stacks

⋄⋄ where each container stack consists of a linearly indexed sequence
of containers.

• Thus container vessels, container bays, container rows and
container stacks are composite parts.

A Precursor for Requirements Engineering 53 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

54
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

4.1.1. Atomic Parts

• When we observe

⋄⋄ what we have decided, i.e., analysed, to be an endurant,

⋄⋄ more specifically an atomic part, of a domain,

⋄⋄ we are observing an instance of an atomic part.

• When we describe those instances

⋄⋄ we describe, not their values, i.e., the instances,

⋄⋄ but their

◦◦ type and

◦◦ properties.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 54 Domain Science & Engineering

55
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

• In this section on endurant entities
we shall unfold what these properties might be.

• But, for now, we focus on the type of the observed atomic part.

• So the situation is that we are observing a number of atomic parts

⋄⋄ and we have furthermore decided that

⋄⋄ they are all of “the same kind”.

A Precursor for Requirements Engineering 55 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

56
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

• What does it mean for a number of atomic parts to be of “the
same kind” ?

⋄⋄ It means

◦◦ that we have decided,

◦◦ for any pair of parts considered of the same kind,

◦◦ that the kinds of properties,

∗ for such two parts,

◦◦ are “the same”,

∗ that is, of the same type, but possibly of different values,

◦◦ and that a number of different, other “facets”,

◦◦ are not taken into consideration.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 56 Domain Science & Engineering

57
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

• That is,

⋄⋄ we abstract a collection of atomic parts

⋄⋄ to be of the same kind,

⋄⋄ thereby “dividing the domain of endurants” into possibly two
distinct sets

◦◦ those that are of the analysed kind, and

◦◦ those that are not.

A Precursor for Requirements Engineering 57 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

58
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

• It is now our description choice to associate with a set of atomic
parts of “the same kind”

⋄⋄ a part type (by suggesting a name for that type, for example, T)

and

⋄⋄ a set of properties (of its values):

◦◦ unique identifier,

◦◦ mereology and

◦◦ attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 58 Domain Science & Engineering

59
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

• Later we shall introduce discrete perdurants
(actions, events and behaviours)
whose signatures involves (possibly amongst others) type T.

• Now we can characterise “of the same kind” atomic part facets14

⋄⋄ being of the same, named part type,

⋄⋄ having the same unique identifier type,

⋄⋄ having the same mereology
(but not necessarily the same mereology values), and

⋄⋄ having the same set of attributes
(but not necessarily of the same attribute values),

• The “same kind” criteria apply equally well to composite part
facets.

14as well as “of the same kind” composite part facets.

A Precursor for Requirements Engineering 59 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

60
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

Example: 6 Transport Nets: Atomic Parts (I).

• The types of atomic transportation net parts are:

⋄⋄ hubs, say of type H, and

⋄⋄ links, say of type L.

• The chosen mereology associates with every hub and link a

⋄⋄ distinct unique identifiers

⋄⋄ (of types HI and LI respectively), and, vice versa,

⋄⋄ how hubs and links are connected:

◦◦ hubs to any number of links and

◦◦ links to exactly two distinct hubs.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 60 Domain Science & Engineering

61
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

• The chosen attributes of

⋄⋄ hubs include

◦◦ hub location,

◦◦ hub design15,

◦◦ hub traffic state16,

◦◦ hub traffic state space17, etc.;

⋄⋄ and of links include

◦◦ link location,

◦◦ link length,

◦◦ link traffic state18,

◦◦ link traffic state space19, etc.

• With these mereologies and attributes we see that we can consider hubs and
links as different kinds of atomic parts.

15Design: simple crossing, freeway “cloverleaf” interchange, etc.
16A hub traffic state is (for example) a set of pairs of link identifiers where each such pair designates

that traffic can move from the first designated link to the second.
17A hub state space is (for example) the set of all hub traffic states that a hub may range over.
18A link traffic state is (for example) a set of zero to two distinct pairs of the hub identifiers of the

link mereology.
19A link traffic state space is (for example) the set of all link traffic states that a link may range over.

A Precursor for Requirements Engineering 61 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

62
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.1. Atomic Parts

Observers for Atomic Parts

• Let the domain describer decide

⋄⋄ that a type, A (or ∆), is atomic,

⋄⋄ hence that it does not consists of sub-parts.

• Hence there are no observer to be associated with A (or ∆).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 62 Domain Science & Engineering

63
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.2. Composite Parts

4.1.2. Composite Parts

• The domain describer has chosen to consider

⋄⋄ a part (i.e., a part type)

⋄⋄ to be a composite part (i.e., a composite part type).

• Now the domain describer has to analyse the types of the sub-parts
of the composite part.

⋄⋄ There may be just one “kind of” sub-part of a composite part20,

⋄⋄ or there may be more than one “kind of”21.

• For each such sub-part type

⋄⋄ the domain describer decides on

⋄⋄ an appropriate, distinct type name and

⋄⋄ a sub-part observer (i.e., a function signature).

20that is, only one sub-part type
21that is, more than one sub-part type

A Precursor for Requirements Engineering 63 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

64 4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.2. Composite Parts

Example: 7 Container Vessels: Composite Parts. We bring
pairs of informal, narrative description texts and formalisations.

• For a container vessel, say of type V, we have

⋄⋄ Narrative:

◦◦ A container vessel, v:V, consists of container bays, bs:BS.

◦◦ A container bay, b:B, consists of container rows, rs:RS.

◦◦ A container row, r:R, consists of container stacks, ss:SS.

◦◦ A container stack, s:S, consists of a linearly indexed sequence of containers.

⋄⋄ Formalisation:

type V,BS, value obs BS: V→BS,
type B,RS, value obs RS: B→RS,
type R,SS, value obs CS: R→SS,
type SS,S, value obs S: SS→S,
type S = C∗.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 64 Domain Science & Engineering

65
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.3. Abstract Types, Sorts, and Concrete Types

4.1.3. Abstract Types, Sorts, and Concrete Types

• By an abstract type, or a sort, we shall understand a type

⋄⋄ which has been given a name

⋄⋄ but is otherwise undefined, that is,

◦◦ is a space of undefined mathematical quantities,

∗ where these are given properties

∗ which we may express in terms of axioms over
sort (including property) values.

A Precursor for Requirements Engineering 65 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

66 4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.3. Abstract Types, Sorts, and Concrete Types

• By a concrete type we shall understand a type, T,

⋄⋄ which has been given both a name
⋄⋄ and a defining type expression of, for example the form

◦◦ T = A-set,

◦◦ T = A-infset,

◦◦ T = A×B×· · ·×C,

◦◦ T = A∗,

◦◦ T = Aω,

◦◦ T = A →m B,

◦◦ T = A→B,

◦◦ T = A
∼→B, or

◦◦ T = A|B|· · · |C.

⋄⋄ where A, B, . . . , C are type names or type expressions.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 66 Domain Science & Engineering

67
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.3. Abstract Types, Sorts, and Concrete Types

Example: 8 Container Bays. We continue Example 7 on page 64.

type Bs = BId →m B,
value obs Bs: BS→Bs,

type Rs = RId →m R,
value obs Rs: B→Rs,

type Ss = SId →m S,
value obs Ss: R→Ss,

type S = C∗.

A Precursor for Requirements Engineering 67 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

68
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.3. Abstract Types, Sorts, and Concrete Types

Observers for Composite Parts I/II

• Let the domain describer decide

⋄⋄ that a type, A (or ∆), is composite

⋄⋄ and that it consists of sub-parts of types B, C, . . . , D.

• We can initially consider these types B, C, . . . , D, as abstract types,
or sorts, as we shall mostly call them.

• That means that there are the following formalisations:

⋄⋄ type A, B, C, ..., D;

⋄⋄ value obs B: A→B, obs C: A→C, . . . , obs D: A→D.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 68 Domain Science & Engineering

69
4. Discrete Endurants: Parts 4.1. Atomic and Composite Parts4.1.3. Abstract Types, Sorts, and Concrete Types

Observers for Composite Parts II/II

• We can also consider the types B, C, . . . , D, as concrete types,

⋄⋄ type Bc = TypBex, Cc = TypCex, ..., Dc = TypDex;

⋄⋄ value obs Bc: B→Bc, obs Cc: C→Cc, . . . , obs Dc: D→Dc,

⋄⋄ where TypBex, TypCex, . . . , TypDex are type expressions as, for
example, hinted at above.

• The prefix obs distinguishes part observers

⋄⋄ from mereology observers (uid , mereo) and

⋄⋄ attribute observers (attr).

A Precursor for Requirements Engineering 69 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

70
4. Discrete Endurants: Parts 4.2. Properties

4.2. Properties

• Endurants have properties.

⋄⋄ Properties are

◦◦ what makes up a parts (and materials) and,

◦◦ with property values distinguishes
one part from another part and
one material from another material.

⋄⋄ We name properties.

◦◦ Properties of parts and materials can be given distinct names.

◦◦ We let these names also be the property type name.

◦◦ Hence two parts (materials) of the same part type (material
type)
have the same set of property type names.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 70 Domain Science & Engineering

71
4. Discrete Endurants: Parts 4.2. Properties

• Properties are all that distinguishes parts (and materials).

⋄⋄ The part types (material types)
in themselves do not express properties.

⋄⋄ They express a class of parts (respectively materials).

⋄⋄ All parts (materials) of the same type

⋄⋄ have the same property types.

⋄⋄ Parts (materials) of the different types
have different sets of property types,

A Precursor for Requirements Engineering 71 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

72
4. Discrete Endurants: Parts 4.2. Properties

• For pragmatic reasons we distinguish between three kinds of
properties:

⋄⋄ unique identifiers, ⋄⋄ mereology, and ⋄⋄ attributes.

• If you “remove” a property from a part

⋄⋄ it “looses” its (former) part type,

⋄⋄ to, in a sense, attain another part type:

◦◦ perhaps of another, existing one,

◦◦ or a new “created” one.

• But we do not know how to model
removal of a property from an endurant value !22

22And we see no need for describing such type-changes. Crude oil does not “morph”
into fuel oil, diesel oil, kerosene and petroleum. Crude oil is consumed and the fractions
result from distillation, for example, in an oil refinery.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 72 Domain Science & Engineering

73
4. Discrete Endurants: Parts 4.2. Properties

Example: 9 Atomic Part Property Kinds.

• We distinguish between two kinds of persons:

⋄⋄ ‘living persons’ and ‘deceased persons’;

⋄⋄ they could be modelled by two different part types:

◦◦ LP: living person, with a set of properties,

◦◦ DP: deceased person, with a, most likely, different set of
properties.

• All persons have been born, hence have a birth date (static
attributes).

• Only deceased persons have a (well-defined) death date.

A Precursor for Requirements Engineering 73 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

74 4. Discrete Endurants: Parts 4.2. Properties

• All persons also have height and weight profiles
(i.e., with dated values, i.e., dynamic attributes).

• One can always associate a unique identifier with each person.

• Persons are related, family-wise:

⋄⋄ have parents (living or deceased),

⋄⋄ (up to four known) grandparents, etc.,

⋄⋄ may have brothers and sisters (zero or more),

⋄⋄ may have children (zero or more), etc.

⋄⋄ These family-relations can be considered the mereology for living
persons.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 74 Domain Science & Engineering

75
4. Discrete Endurants: Parts 4.2. Properties4.2.1. Unique Identification

4.2.1. Unique Identification

• We can assume that all parts

⋄⋄ of the same part type

⋄⋄ can be uniquely distinguished,

⋄⋄ hence can be given unique identifications.

A Precursor for Requirements Engineering 75 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

76
4. Discrete Endurants: Parts 4.2. Properties4.2.1. Unique Identification

Unique Identification

• With every part, whether atomic or composite we shall associate a
unique part identifier, of just unique identifier.

• Thus we shall associate with part type T

⋄⋄ the unique part type identifier type TI,

⋄⋄ and a unique part identifier observer function, uid TI: T→TI.

• These associations (TI and uid TI) are, however,

⋄⋄ usually expressed explicitly,

⋄⋄ whether they are (“subsequently”) needed !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 76 Domain Science & Engineering

77
4. Discrete Endurants: Parts 4.2. Properties4.2.1. Unique Identification

• The unique identifier of a part

⋄⋄ can not be changed;

⋄⋄ hence we can say that

◦◦ no matter what a given part’s property values may take on,

◦◦ that part cannot be confused with any other part.

• Since we can talk about this concept of unique identification,

⋄⋄ we can abstractly describe it —

◦◦ and do not have to bother about any representation,

◦◦ that is, whether we can humanly observe unique identifiers.

A Precursor for Requirements Engineering 77 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

78
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

4.2.2. Mereology

• Mereology [CasatiVarzi1999]23 (from the Greek µǫρoς ‘part’) is

⋄⋄ the theory of part-hood relations:

⋄⋄ of the relations of part to whole and

⋄⋄ the relations of part to part within a whole.

23Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 78 Domain Science & Engineering

79
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

• For pragmatic reasons we choose to model the mereology of a
domain in either of two ways

⋄⋄ either by defining a concrete type
as a model of the composite type,

⋄⋄ or by endowing the sub-parts of the composite part with
structures of unique part identifiers.

or by suitable combinations of these.

A Precursor for Requirements Engineering 79 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

80
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

Example: 10 Container Bays, Etcetera: Mereology. First we
show how to model indexed set of container bays, rows and stacks for
the previous example.

• Narrative:

⋄⋄ (i) An indexed set, bs:BS, of bays is a bijective map
from unique bay identifiers, bid:BId, to bays, b:B.

⋄⋄ (ii) An indexed set, rs:RS, of rows is a bijective map
from unique row identifiers, rid:RId, to rows, r:R.

⋄⋄ (iii) An indexed set, ss:SS, of stacks is a bijective map
from unique stack identifiers, sid:SId, to stacks, s:S.

⋄⋄ (iv) A stack is a linear indexed sequence of containers, c:C.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 80 Domain Science & Engineering

814. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

• Formalisation:

⋄⋄ (i) type BS, B, BId,
Bs=BId →m B,

value obs Bs: BS→Bs
(or obs Bs: BS→(BId →m B));

⋄⋄ (ii) type RS, R, RId,
Rs=RId →m R,

value obs Rs: RS→Rs
(or obs Rs: RS→(RId →m R));

⋄⋄ (iii) type SS, S, SId,
Ss=SId →m S;

⋄⋄ (iv) type C,
S=C∗.

A Precursor for Requirements Engineering 81 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

82
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

Example: 11 Transport Nets: Mereology.

• We show how to model a mereology

⋄⋄ for a transport net of links and hubs.

• Narrative:

(i) Hubs and links are endowed with unique hub, respectively link
identifiers.

(ii) Each hub is furthermore endowed with a hub mereology which
lists the unique link identifiers of all the links attached to the
hub.

(iii) Each link is furthermore endowed with a link mereology which
lists the set of the two unique hub identifiers of the hubs
attached to the link.

(iv) Link identifiers of hubs and hub identifiers of links must
designate hubs, respectively links of the net.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 82 Domain Science & Engineering

83
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

• Formalisation:

(i) type H, HI, L, LI;

value

(ii) uid HI:H→HI, uid LI:L→LI,

mereo H:H→LI-set, mereo L:L→HI-set,

axiom

(iii) ∀ l:L • card mereo L(l) = 2
(iv) ∀ n:N, l:L, h:H • l ∈ obs Ls(obs LS(n)) ∧ h ∈ obs Hs(obs HS(n))

∀ hi:HI • hi ∈ mereo L(l) ⇒
∃ h′:H•h′ ∈ obs Hs(obs HS(n)) ∧ uid HI(h)=hi

∧ ∀ li:LI • li ∈ mereo H(h) ⇒
∃ l′:L•l′ ∈ obs Ls(obs LS(n)) ∧ uid LI(l)=li

A Precursor for Requirements Engineering 83 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

84
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

Concrete Models of Mereology
The concrete mereology example models above illustrated maps and sequences as
such models.

• In general we can model mereologies in terms of

⋄⋄ (i) sets: A-set,

⋄⋄ (ii) Cartesians: A1×A2×...×Am,

⋄⋄ (iii) lists: A∗, and

⋄⋄ (iv) maps: A →m B,

where A, A1, A2,...,Am and B are types [we assume that they are type names] and
where the A1, A2,...,Am type names need not be distinct.

• Additional concrete types, say D, can be defined by concrete type definitions,
D=E, where E is either of the type expressions (i–iv) given above or (v) Ei|Ej, or
(vi) (Ei). where Ek (for suitable k) are either of (i–vi).

• Finally it may be necessary to express well-formedness predicates for concretely
modelled mereologies.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 84 Domain Science & Engineering

85
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

Abstract Models of Mereology
Abstractly modelling mereology of parts, to us, means the following.

• With part types P1, P2, . . . , Pn

⋄⋄ is associated the unique part identifier types, Π1, Π2, . . . , Πn,

⋄⋄ that is uid Πi: Pi→Πi for i ∈ {1..n},
• and with each part type, Pi,

⋄⋄ is then associated a mereology observer,

⋄⋄ mereo Pi: Pi → Πj-set×Πk-set×...×Πℓ-set,

• such that for all p:Pi we have that

⋄⋄ if mereo Pi(p) = ({..., πja, ...},{..., πkb
, ...},...,{..., πℓc, ...})

⋄⋄ for i, j, k, ...ℓ ∈ {1..n}
⋄⋄ then part p:Pi is connected (related) to the parts identified by

..., πja, ... πkb
, ..., πℓc,

• Finally it may be necessary to express axioms for abstractly modelled mereologies.

A Precursor for Requirements Engineering 85 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

86
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

• How parts are related to other parts

⋄⋄ is really a modelling choice, made by the domain describer.

⋄⋄ It is not necessarily something
that is obvious
from observing the parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 86 Domain Science & Engineering

87
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

Example: 12 Pipelines: A Physical Mereology.

• Let pipes of a pipe line be composed with valves, pumps, forks and
joins of that pipe line.

• Pipes, valves, pumps, forks and joins (i.e., pipe line units) are given
unique pipe, valve, pump, fork and join identifiers.

• A mereology for the pipe line could now endow pipes, valves and
pumps with

⋄⋄ one input unique identifier, that of the predecessor successor
unit, and

⋄⋄ one output unique identifier, that of the successor unit.

• Forks would then be endowed with

⋄⋄ two input unique identifiers, and

⋄⋄ one out put unique identifier;

• and joins “the other way around”.

A Precursor for Requirements Engineering 87 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

88
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

Example: 13 Documents: A Conceptual Mereology.

• The mereology of, for example, this document,

⋄⋄ that is, of the tutorial slides,

is determined by the author.

• There unfolds, while writing the document,

⋄⋄ a set of unique identifiers

⋄⋄ for section, subsection, sub-subsection, paragraph, etc., units.
and

⋄⋄ between texts of a “paper version” of the document
and slides of a “slides version” of the document.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 88 Domain Science & Engineering

89
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

• This occurs as the author necessarily

⋄⋄ inserts cross-references,

◦◦ in unit texts to other units, and

◦◦ from unit texts to other documents (i.e., ‘citations’);

⋄⋄ and while inserting “page” shifts for the slides.

• From those inserted references
there emerges what we could call the document mereology.

• So the determination of a, or the, mereology of composite parts

⋄⋄ is either given by physical considerations,

⋄⋄ or are given by (more-or-less) logical (or other) considerations,

⋄⋄ or by combinations of these.

• The “design” of mereologies improves with experience.

A Precursor for Requirements Engineering 89 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

90
4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

Example: 14 Pipelines: Mereology.

• We divert from our line of examples centered around

⋄⋄ transport nets and, to some degree,

⋄⋄ container transport,

• to bring a second, in a series of examples

⋄⋄ on pipelines

⋄⋄ (for liquid or gaseous material flow).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 90 Domain Science & Engineering

914. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

1. A pipeline consists of connected units, u:U.

2. Units have unique identifiers.

3. And units have mereologies, ui:UI:

(a) pump, pu:Pu, pipe, pi:Pi, and valve, va:Va, units have one input
connector and one output connector;

(b) fork, fo:Fo, [join, jo:Jo] units have one [two] input connector[s]
and two [one] output connector[s];

(c) well, we:We, [sink, si:Si] units have zero [one] input connector
and one [zero] output connector.

(d) Connectors of a unit are designated by the unit identifier of the
connected unit.

(e) The auxiliary sel UIs in selector funtion selects the unique
identifiers of pipeline units providing input to a unit;

(f) sel UIs out selects unique identifiers of output recipients.

A Precursor for Requirements Engineering 91 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

92 4. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

type

1. U = Pu | Pi | Va | Fo | Jo | Si | We
2. UI
value

2. uid U: U → UI
3. mereo U: U → UI-set × UI-set
3. wf mereo U: U → Bool

3. wf mereo U(u) ≡
3(a). is (Pu|Pi|Va)(u) → card iusi = 1 = card ouis,
3(b). is Fo(u) → card iuis = 1 ∧ card ouis = 2,
3(b). is Jo(u) → card iuis = 2 ∧ card ouis = 1,
3(c). is We(u) → card iuis = 0 ∧ card ouis = 1,
3(d). is Si(u) → card iuis = 1 ∧ card ouis = 0

3(e). sel UIs in
3(e). sel UIs in(u) ≡ let (iuis,)=mereo U(u) in iuis end

3(f). sel out: U → UI-set
3(f). sel UIs out(u) ≡ let (,ouis)=mereo U(u) in ouis end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 92 Domain Science & Engineering

934. Discrete Endurants: Parts 4.2. Properties4.2.2. Mereology

• We omit treatment of axioms for pipeline units

⋄⋄ being indeed connected to existing other pipeline units.

⋄⋄ We refer to Example 22 on page 119 and 23 on page 123.

A Precursor for Requirements Engineering 93 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

94
4. Discrete Endurants: Parts 4.2. Properties4.2.3. Attributes

4.2.3. Attributes

• By an attribute of a part, p:P, we shall understand

⋄⋄ some observable property, some phenomenon,

⋄⋄ that is not a sub-part of p

⋄⋄ but which characterises p

⋄⋄ such that all parts of type P have that attribute and

⋄⋄ such that “removing” that attribute from p
(if such was possible)
“renders” the type of p undefined.

• We ascribe types to attributes — not, therefore, to be confused
with types of (their) parts.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 94 Domain Science & Engineering

954. Discrete Endurants: Parts 4.2. Properties4.2.3. Attributes

Example: 15 Attributes.

• Example attributes of links of a transport net are:

⋄⋄ length LEN,

⋄⋄ location LOC,

⋄⋄ state LΣ and

⋄⋄ state space LΩ,

• Example attributes of a person could be:

⋄⋄ name NAM,

⋄⋄ birth date BID,

⋄⋄ gender GDR,

⋄⋄ weight WGT,

⋄⋄ height HGT and

⋄⋄ address ADR.

A Precursor for Requirements Engineering 95 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

96
4. Discrete Endurants: Parts 4.2. Properties4.2.3. Attributes

• Example attributes of a transport net could be:

⋄⋄ name of the net,

⋄⋄ legal owner of the net,

⋄⋄ a map of the net,

⋄⋄ etc.

• Example attributes of a container vessel could be:

⋄⋄ name of container vessel,

⋄⋄ vessel dimensions,

⋄⋄ vessel tonnage (TEU),

⋄⋄ vessel owner,

⋄⋄ current stowage plan,

⋄⋄ current voyage plan, etc.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 96 Domain Science & Engineering

97
4. Discrete Endurants: Parts 4.2. Properties4.2.3. Attributes4.2.3.1. Static and Dynamic Attributes

4.2.3.1 Static and Dynamic Attributes

• By a static attribute we mean an attribute (of a part) whose value
remains fixed.

• By a dynamic attribute we mean an attribute (of a part) whose
value may vary.

A Precursor for Requirements Engineering 97 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

98
4. Discrete Endurants: Parts 4.2. Properties4.2.3. Attributes4.2.3.1. Static and Dynamic Attributes

Example: 16 Static and Dynamic Attributes.

• The length and location attributes of links are static.

• The state and state space attributes of links and hubs are dynamic.

• The birth-date attribute of a person is considered static.

• The height and weight attributes of a person are dynamic.

• The map of a transport net may be considered dynamic.

• The current stowage and the current voyage plans of a vessel
should be considered dynamic.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 98 Domain Science & Engineering

99
4. Discrete Endurants: Parts 4.2. Properties4.2.3. Attributes4.2.3.1. Static and Dynamic Attributes

Attribute Types and Observers, I/II

• Let the domain describer decide that parts of type P

• have attributes of types A1, A2, ..., At.

• This means that the following two formal clauses arise:

⋄⋄ P, A1, A2, ..., At and

⋄⋄ attr A1:P→A1, attr A2:P→A2, ..., attr At:P→At

A Precursor for Requirements Engineering 99 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

100
4. Discrete Endurants: Parts 4.2. Properties4.2.3. Attributes4.2.3.1. Static and Dynamic Attributes

Attribute Types and Observers, II/II

• We may wish to annotate the list of attribute type names as to
whether they are static or dynamic, that is,

⋄⋄ whether values of some attribute type

⋄⋄ vary or

⋄⋄ remain fixed.

• The prefix attr distinguishes attribute observers
from part observers (obs) and mereology observers (uid , mereo).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 100 Domain Science & Engineering

101
4. Discrete Endurants: Parts 4.3. Shared Attributes and Properties

4.3. Shared Attributes and Properties

• Shared attributes and shared properties

⋄⋄ play an important rôle in understanding domains.

4.3.1. Attribute Naming

• We now impose a restriction on the naming of part attributes.

⋄⋄ If attributes

◦◦ of two different parts

◦◦ of different part types

◦◦ are identically named

◦◦ then attributes must be somehow related, over time !

⋄⋄ The “somehow” relationship must be described.

A Precursor for Requirements Engineering 101 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

102
4. Discrete Endurants: Parts 4.3. Shared Attributes and Properties4.3.1. Attribute Naming

Example: 17 Shared Bus Time Tables.

• Let our domain include that of bus time tables for busses on a
bus transport net as described in many examples in this tutorial.

• We can then imagine a bus transport net as containing the
following parts:

⋄⋄ a net, ⋄⋄ a management
system,

⋄⋄ a set of busses.

• For the sake of argument we consider a bus time table to be an
attribute of the bus management system.

• And we also consider bus time tables to be attributes of busses.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 102 Domain Science & Engineering

103
4. Discrete Endurants: Parts 4.3. Shared Attributes and Properties4.3.1. Attribute Naming

• We think of the bus time table of a bus

⋄⋄ to be that subset of the
bus management system bus time table

⋄⋄ which corresponds to the bus’ line number.

• By saying that bus time tables

⋄⋄ “corresponds” to well-defined subsets of

⋄⋄ the bus management system bus time table

we mean the following

⋄⋄ The value of the bus bus time table

⋄⋄ must at every time

⋄⋄ be equal to the corresponding bus line entry in the
bus management system bus time table.

A Precursor for Requirements Engineering 103 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

104
4. Discrete Endurants: Parts 4.3. Shared Attributes and Properties4.3.2. Attribute Sharing

4.3.2. Attribute Sharing

• We say that two parts,

⋄⋄ of no matter what part type,

⋄⋄ share an attribute,

⋄⋄ if the following is the case:

◦◦ the corresponding part types (and hence the parts)

◦◦ have identically named attributes.

◦◦ We say that identically named attributes designate
shared attributes.

⋄⋄ We do not present the corresponding invariants
over parts with identically named attributes.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 104 Domain Science & Engineering

105
4. Discrete Endurants: Parts 4.4. Shared Properties

4.4. Shared Properties

• We say that two parts,

⋄⋄ of no matter what part type,

⋄⋄ share a property,

⋄⋄ if either of the following is the case:

◦◦ (i) either the corresponding part types (and hence the parts)
have shared attributes;

◦◦ (ii) or the unique identifier type of one of the parts
potentially is in the mereology type of the other part;

◦◦ (iii) or both.

⋄⋄ We do not present the corresponding invariants over parts with
shared properties.

A Precursor for Requirements Engineering 105 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

106
4. Discrete Endurants: Parts 4.5. Summary of Discrete Endurants

4.5. Summary of Discrete Endurants

• We have introduced the endurant notions of atomic parts and
composite parts:

⋄⋄ part types,

⋄⋄ part observers (obs),

◦◦ sort observers, and

◦◦ concrete type observers;

⋄⋄ part properties:

◦◦ unique identifiers:

∗ unique part identifier
observers (uid),

∗ unique part identifier
types,

◦◦ mereology:

∗ part mereologies,

∗ part mereology observers
(mereo);

and

◦◦ attributes:

∗ attribute observers (attr)
and

∗ attribute types.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 106 Domain Science & Engineering

107
4. Discrete Endurants: Parts 4.5. Summary of Discrete Endurants

• The unique identifier property cannot necessarily be observed:

⋄⋄ it is an abstract concept and

⋄⋄ can be objectively “assigned”.

That is: unique identifiers are not required to be manifest.

• The mereology property also cannot usually be observed:

⋄⋄ it is also an abstract concept,

⋄⋄ but can be deduced from careful analysis.

That is: mereology is not required to be manifest.

• The attributes can be observed:

⋄⋄ usually by simple physical measurements,

⋄⋄ or by deduction from (conceptual) facts,

That is: attributes are usually only “indirectly” manifest.

A Precursor for Requirements Engineering 107 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

108
4. Discrete Endurants: Parts 4.5. Summary of Discrete Endurants

Discrete Endurant Modelling I/II
Faced with a phenomenon the domain analyser has to decide

• whether that phenomenon is an entity or not, that is, whether

⋄⋄ an endurant or

⋄⋄ a perdurant or

⋄⋄ neither.

• If endurant and if discrete, then whether it is

⋄⋄ an atomic part or

⋄⋄ a composite part.

• Then the domain analyser must decide on its type,

⋄⋄ whether an abstract type (a sort)

⋄⋄ or a concrete type, and, if so, which concrete form.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 108 Domain Science & Engineering

109
4. Discrete Endurants: Parts 4.5. Summary of Discrete Endurants

Discrete Endurant Modelling II/II

• Next the unique identifier and the
mereology of the part type (e.g., P) must be dealt with:

⋄⋄ type name (e.g., PI) for and, hence, unique identifier observer name
(uid PI) of unique identifiers and the

⋄⋄ part mereology types and mereology observer name (mereo P).

• Finally the designer must decide on the
part type attributes for parts p:P:

⋄⋄ for each such a suitable attribute type name,
for example, Ai for suitable i,

⋄⋄ a corresponding attribute observer signature, attr Ai:P→Ai,

⋄⋄ and whether an attribute is considered static or dynamic.

A Precursor for Requirements Engineering 109 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02

110

End of Lecture 2: Last Session — Discrete Endurant Entities

Parts

FM 2012 Tutorial, Dines Bjørner, Paris, 28 August 2012

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 110 Domain Science & Engineering

110

LONG BREAK

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – July 31, 2012: 09:02 110 Domain Science & Engineering

