
A Rôle for Domain Engineering in
Software Development

Why Current Requirements Engineering
Seems Flawed !

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark
bjorner@gmail.com – www.imm.dtu.dk/~db

April 19, 2012: 14:00

1

Contents

1 Opening 2

2 Domain Engineering 3

2.1 Transport Simple Entities . 3
2.1.1 Transportation Nets . 4
2.1.2 Communities and People . 9
2.1.3 An Aside on Simple Entity Equality Modulo an Attribute 10
2.1.4 Fleets and Vehicles . 11
2.1.5 Vehicles and People . 12
2.1.6 Community & Fleet States . 13
2.1.7 Time . 13
2.1.8 Timetables . 14

2.2 Transport Actions . 16
2.2.1 Transport Net Actions . 17
2.2.2 People and Vehicle Actions . 17
2.2.3 Time Table Actions . 19

2.3 Transport Events . 20
2.3.1 Transport Net Events . 20
2.3.2 People Events . 21

1

2 A Rôle for Domain Engineering in Software Development

2.3.3 Vehicle Events . 21
2.3.4 Timetable Events . 22

2.4 Transport Behaviours . 22
2.4.1 Community and Person Behaviours 22
2.4.2 Fleet and Vehicle Behaviours . 26

2.5 Discussion of Domain Engineering . 29

3 Requirements Engineering 29

3.1 Preliminaries . 29
3.1.1 The Machine = Hardware + Software 29
3.1.2 Requirements Prescription . 29
3.1.3 A Suitable Decomposition of the Requirements Prescription . . 29
3.1.4 An Aside on Our Example . 30

3.2 Business Process Re-engineering (BPR) 30
3.3 Domain Requirements . 30

3.3.1 Projection . 31
3.3.2 Instantiation . 31
3.3.3 Determination . 32
3.3.4 Extension . 34

3.4 Interface and Machine Requirements . 38
3.5 Discussion of Requirements Engineering 39

4 Software Design 39

5 Concluding Remarks 39

5.1 Domain Models as a Prerequisite for RE 40
5.2 Oh Yes, Conventional RE Contains Elements of DE 40
5.3 Domain Engineering as a Free-standing Activity 41
5.4 Domain Theories . 41
5.5 Domain Science . 41
5.6 References . 41

1 Opening

Before we can design software, the how, we must understand its requirements, the what.
Before we can formulate requirements, we must understand the [application] domain.2

Examples of domains are:

• air traffic,

• airports,

• container lines,

• banks,

• hospitals,

• pipelines,

• railways,

• stock exchanges,

• “the market”,

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 3

etcetera. Thus we “divide” the process of developing software into three major phases: 3

• Domain engineering,

• Requirements engineering, and

• Software design.

and pursue these phases such that D, S |= R, that is, such that we can prove the correctness
of the Software design with respect to the Requirements presecription in the context of the
Domain description, that is, under assumptions about the domain. 4

So let’s take a look at what such a domain description might look like and how we
might “derive” a [domain] requirements prescription from a domain description.

We shall not go into a methodology of constructing domain descriptions.

2 Domain Engineering 11

We choose as our example domain that of transportation systems, δ:∆. From any such δ we
can observe (obs) a number of simple entities (Sect. 2.1, Pages 3–16), actions (Sect. 2.2,
Pages 16–20), events (Sect. 2.3, Pages 20–22), and behaviours (Sect. 2.4, Pages 22–29).
This section will therefore be structured accordingly.

Thus domains are composed from one or more simple entities, actions, events and
behaviours; and it is the job of the domain analyser to “discover” these entities, their
composition, use and other properties.

2.1 Transport Simple Entities 12

1. There are five classes of simple entities in our example:

a transportation nets, cf. Sect. 2.1.1 Pages 4–9,

b people, cf. Sect. 2.1.2 Pages 9–11,

c vehicles, cf. Sect. 2.1.4 on page 11,

d time, cf. Sect. 2.1.7 on page 13, and

e timetables, cf. Sect. 2.1.8 on page 14.

type

1a. N
1b. C
1c. F
1d. T
1e. TT

value

1a. obs N: ∆ → N
1b. obs C: ∆ → C
1c. obs F: ∆ → F
1d. obs T: ∆ → T
1e. obs TT: ∆ → TT

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

4 A Rôle for Domain Engineering in Software Development

2.1.1 Transportation Nets 13

Nets, Hubs and Links

2. Nets are composite simple entities from which one can observe

a sets: hs:HS, of zero, one or more hubs and

b sets: ls:LS, of zero, one or more links.

type

2. H, L
value

2a. obs HS: N → HS1

2a. obs Hs: HS → H-set

2b. obs LS: N → LS
2b. obs Ls: LS → L-set

14

Hub and Link Identifiers

3. Hubs and links are uniquely identified.

4. Hub and link identifiers are all distinct.

type

3. HI, LI
value

3. mer HI: H → HI
3. mer LI: L → LI
axiom

4. ∀ n:N, h,h′:H, l,l′:L •

4. {h,h′}⊆obs Hs(n) ∧ {l,l′}⊆obs Ls(n) ⇒
4. h6=h′⇒mer HI(h) 6=mer HI(h′) ∧
4. l6=l′⇒mer LI(l) 6=mer LI(l′)

We say that hub and link identifiers are mereological attributes of hubs, respectively links.
15

5. From a net one can extract (χtr2) the hub identifiers of all its hubs.

6. From a net one can extract the link identifiers of all its links.

1The prefix obs can be pronounced: ‘observe’ (obs erve).
1mer HI reads: “the HI ‘mereology’ contribution from the argument (here H); that is, the prefix mer

can be pronounced ‘mereology’ (mer eology).
2The prefix χtr can be pronounced ‘extract’ (χtract).

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 5

value

5. χtrHIs: N → HI-set
5. χtrHIs(n) ≡ {mer HI(h)|h:H•h ∈ obs Hs(n)}
6. χtrLIs: N → LI-set
6. χtrLIs(n) ≡ {mer LI(l)|l:L•l ∈ obs Ls(n)}

16

7. Given a net and an identifier of a hub of the net one can get (γet3) that hub from
the net.

8. Given a net and an identifier of a link of the net one can get that link from the net.

value

7. γetH: N → HI
∼
→ H

7. γetH(n)(hi) ≡
7. if hi ∈ χtrHIs(n)
7. then let h:H • mer HI(h)=hi in h end

7. else chaos end

8. γetL: N → LI
∼
→ L

8. γetL(n)(li) ≡
8. if li ∈ χtrLIs(n)
8. then let l:L • mer LI(l)=li in l end

8. else chaos end

17

Mereology

9. From a hub one can observe the identifiers of all the (zero or more) links incident
upon (or emanating from), i.e., connected to the hub.

10. From a link one can observe the distinct identifiers of the two distinct hubs the link
connects.

11. The link identifiers observable from a hub must be identifiers of links of the net.

12. The hub identifiers observable from a link must be identifiers of hubs of the net.
18

value

9. mer LIs: H → LI-set
10. mer HIs: L → HI-set
axiom

9. ∀ n:N,h:H,l:L•h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒
10. cardmer HIs(l)=2
11. ∧ ∀ li:LI • li ∈ mer LIs(h) ⇒ li ∈ χtrLIs(n)
12. ∧ ∀ hi:HI • hi ∈ mer HIs(l) ⇒ hi ∈ χtrHIs(n)

19

3The prefix γet can be pronounced ‘get’.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

6 A Rôle for Domain Engineering in Software Development

Maps Maps, m:M, are abstractions of nets. We shall model maps as follows:

13. hub identifiers map into singleton maps from link identifiers to hub identifiers, such
that

a if, in m, hi

b maps into [lij 7→ hj],

c then hj maps into [lij 7→ hi] in m, for all such hi.

type

13. M = HI →m (LI →m HI)
axiom

13a. ∀ m:M,h i:HI • h i ∈ dom m ⇒
13b. let [l ij 7→h j] = m(h i) in

13c. h j ∈ dom m ∧ m(h j)=[l ij 7→h i]
13a. end

20

14. From a net one can extract its map.

value

14. χtrM: N → M
14. χtrM(n) ≡
14. [hi7→[lij 7→hj|
14. lij:LI • lij ∈ mer LIs(γetH(n)(hi))
14. ∧ hj = γetL(n)(lij)\{hi}] |
14. hi:HI•hi ∈ χtrHIs(n)]

21

Routes

15. By a route of a net we shall here understand a non-zero sequence of alternative hub
and link identifiers such that

a adjacent elements of the list are hub and link identifiers of hubs, respectively
links of the net, and such that

b a link identifier identifies a link one of whose adjacent hubs are indeed identified
by the “next” hub identifier of the route, respectively such that

c a hub identifier identifies a hub one of whose connected links are indeed identified
by the “next” link identifier of the route.

22

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 7

type

93. R′ = (LI|HI)∗

93. R = {|r:R′
•∃ n:N•wf R(r)(n)|}

value

93. wf R: R′ → N → Bool

93. wf R(r)(n) ≡ proper adjacency(r) ∧ embedded route(r)(n)

93. proper adjacency: R′ → Bool

93. proper adjacency(r) ≡
93. ∀ i:Nat•{i,i+1}⊆inds r⇒is LI(r(i))∧is HI(r(i+1))∨is HI(r(i))∧is LI(r(i+1))

93. embedded route: R′ → N → Bool

93. embedded route(r)(n) ≡
93. ∀ i:Nat•{i,i+1}⊆inds r ⇒
93. is LI(r(i)) → r(i+1) ∈ mer HIs(γetL(r(i))(n)),
93. is HI(r(i)) → r(i+1) ∈ mer LIs(γetL(r(i))(n))

23

16. Given a net one can calculate the possibly infinite set of all, possibly cyclic but finite
length routes:

a if li is an identifier of a link of a net then 〈li〉 is a route of the net;

b if hi is an identifier of a hub of a net then 〈hi〉 is a route of the net;

c if r and r′ are routes of a net n and if the last identifier of r is the same as the
first identifier of r′ then r̂tlr′ is a route of the net.

d Only such routes which can be constructed by applying rules 96–16c a finite4

number of times are proper routes of the net.

17. Similarly one can extract routes from maps.
24

value

94. χtrRs: N → R-set

94. χtrRs(n) ≡ in

16b. let rs={〈li〉|li:LI•li ∈ χtrLIs(n)}∪{〈hi〉|hi:HI•hi ∈ χtrHIs(n)}
16b. ∪ {〈hi,li〉 | hi:HI,li:LI • 〈hi〉 ∈ rs
16b. ∧ li ∈ χtrLIs(n)∧li ∈ mer LIs(γetH(n)(hi))}
16b. ∪ {〈li,hi〉 | li:LI,hi:HI • 〈li〉 ∈ rs
16b. ∧ hi ∈ χtrHIs(n)∧hi ∈ mer HIs(γetL(n)(li))}
16c. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs ∧ r(len rl)=hd r′} in

3is LI and is LI are specification language “built-in” functions, one for each type name. In general
is K(e), where K is a type name, expresses whether the simple entity e is of type K (or not).

4If applied infinitely many times we include infinite length routes.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

8 A Rôle for Domain Engineering in Software Development

94. rs end

17. χtrRs: M → R-set

17. χtrRs(m) as rs
17. pre ∃ n:N • m = χtrM(n)
17. post ∃ n:N • m = χtrM(n) ∧ rs = routes(n)

25

For later use we define a concept of a ‘stuttered sampling’ of a route r. The sequence
ℓ is said to be a ‘sampling’ of a route r if zero or more elements of r are not in ℓ; and the
sequence ℓ is said to be a ‘stuttering’ of a route r if zero or more elements of r are repeated
in ℓ — while, in both cases (‘sampling’ an ‘stuttering’) the elements of r in ℓ follow their
order in r.

18. A sequence, ℓ, of link and hub identifiers (in any order) is a ‘stuttered sampling’ of
a route, r, of a net

a if there exists a mapping, mi, from indices of the former into ascending and
distinct indices of the latter

b such that for all indexes, i, in ℓ, we have that ℓ(i) = r(mi(i)) ∧ i≤mi(i).

26

type

18a. IM′ = Nat →m Nat

18a. IM = {|im:IM′
•wf IM(im)|}

value

18a. wf IM: IM′ → Bool

18a. wf IM(im) ≡
18a. dom im = {1..maxdom im}
18a. ∧ ∀ i:Nat • {i,i+1}⊆dom im ⇒ im(i) ≤ im(i+1)

18. is stuttered sampling: (LI|HI)∗ × R → Bool

18. is stuttered sampling(ℓ,r) ≡
18a. ∃ im:IM • dom im = inds ℓ ∧ rng im⊆inds r ⇒
18b. ∀ i:Nat • i ∈ dom im ⇒ ℓ(i) = r(mi(i))

27

Hub and Link States A state of a hub (a link) indicates which are the permissible flows
of traffic.

19. The state of a hub is a set of pairs of link identifiers where these are the identifiers
of links connected to the hub.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 9

20. The state of a link is a set of pairs of distinct hub identifiers where these are the
identifiers of the two hubs connected to the link.

21. The state space of a hub is a set of hub states.

22. The state space of a link is a set of link states.

We say that states and state spaces are ατributes of hubs and links. 28

type

19. HΣ = (LI × LI)-set
20. LΣ = (HI × HI)-set
21. HΩ = HΣ-set

22. LΩ = LΣ-set

value

19. ατrHΣ: H → HΣ
20. ατrLΣ: L → LΣ
21. ατrHΩ: H → HΩ
22. ατrLΩ: L → LΩ
axiom

∀ n:N, h:H, l:L • h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒
19. let hσ = ατrHΣ(h),
20. lσ = ατrLΣ(l) in

19. ∀ (li,li′):(LI×LI)•(li,li′)∈ hσ⇒{li,li′}⊆χtrLIs(n)
20. ∧ ∀ (hi,hi′):(HI×HI)•(hi,hi′)∈ lσ⇒{hi,hi′}⊆χtrHIs(n)
21. ∧ hσ ∈ ατrHΩ(h)
22. ∧ lσ ∈ ατrLΩ(l) end

2.1.2 Communities and People 29

23. A community is a community of people here considered an unordered set.

24. As simple entities we consider people (persons) to be uniquely identifier atomic dy-
namic inert entities.

We shall later view such people as a main state component of people as behaviours.

25. No two persons have the same unique identifier.

26. Essential attributes of persons are:

a name,

b ancestry,

c gender,

d age,

e height,

f weight,

and others. We omit expressing statistically determined relations between values of
some of these attributes.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

10 A Rôle for Domain Engineering in Software Development

Additional attributes will be brought forward in the next section (Vehicles).30

type

23. P
91. PI
value

23. obs Ps: C → P-set

91. ατrPI: P → PI
axiom

92. ∀ p,p′:P • p6=p′ ⇒ ατrPI(p) 6= ατrPI(p′)
type

26. PNm, PAn, PGd, PAg, PHe, PWe, ...

value

26a. ατrPNm: P → PNm
26b. ατrPAn: P → PAn
26c. ατrPGd: P → PGd
26d. ατrPAg: P → PAg
26e. ατrPHe: P → PHe
26f. ατrPWe: P → PWe

31

27. From any set of persons one can extract its corresponding set of unique person iden-
tifiers.

value

27. χtrPIs: P-set → PI-set
27. χtrPIs(ps) ≡ {obs PI(p)|p:P•p ∈ ps}
axiom

27. ∀ ps:P-set • card ps = card χtrPIs(ps)

2.1.3 An Aside on Simple Entity Equality Modulo an Attribute 32

Attributes have names and values. (Not just people, but also the simple entities of nets,,
hubs and links, as well as of other simple entities to be introduced later.) Some attributes
are dynamic, that is, their values may change. We wish to be able to express that a simple
entity, p, some of whose attribute values may change, is “still, basically, that same” simple
entity, that is, that p = p′ — where we assume that the only thing which does not change
is some notion of a unique simple entity identifier.33

28. The attribute observers of people are those of observing names, ancestry, gender, age,
height, weight, and others.

Let SEατrset stand for the set of attribute functions of the simple entity whose class
(type) is SE.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 11

29. Then to express that a simple entity of type SE in invariant modulo some observer
function ατrA, specifically, in this case, that a person is invariant wrt. height, we
write as is shown in formula 29. below, where p and p′ is the (“before”, “after”)
person that is claimed to be “the same”, i.e. invariant modulo ατrA.

type

28. Pατrset = {| ατrPNm, ατrAn, ατrGd, ατrAg, ατrHe, ατrWe, ...|}
axiom

29. ∀ ατrF :Pατrset• ατrF ∈ Pατrset\{ατrH} ⇒ ατrF(p)=ατrF(p′)

Formula line 28. is not a definition in the specification language, but is a notational con-
vention, that is, it is meta-linguistic and saves us a lot of trivial writing.

2.1.4 Fleets and Vehicles 34

30. A fleet is a composite simple entity.

31. From a fleet one can observe its atomic simple sub-entities of vehicle.

a Vehicles, in addition to their unique vehicle identity,

b may enjoy some static attributes: weight, size, etc., and dynamic attributes:
directed velocity, directed acceleration,

c position on the net:

d at a hub or on a link, etc.

35

type

30. F
31. V
31a. VI
31b. We, Sz, ..., DV, DA, ...

value

31. obs Vs: F → V-set

31a. obs VI: V → VI
31b. ατrWe: V → We, ..., ατrDV: V → DV, ...

31c. ατrVP: V → VP
type

31d. VP == atH(hi) | onL(fhi,li,f:Real,thi) axiom 0<f≪1
axiom

31a. ∀ v,v′:V•v6=v′ ⇒ obs VI(v) 6=obs VI(v′)

36

32. Buses are vehicles, but not all vehicles are buses.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

12 A Rôle for Domain Engineering in Software Development

33. Vehicles are either in the traffic (to be defined later) or are not.

34. From any set of vehicles one can extract its corresponding set of unique vehicle
identifiers.

type

32. B ⊂ V
value

32. is B: V → Bool

33. is InTF: V → Bool

34. χtrVIs: V-set → VI-set
34. χtrVIs(vs) ≡ {obs VI(v)|v:V•v ∈ vs}
axiom

34. ∀ vs:V-set • card vs = card χtrVIs(vs)

2.1.5 Vehicles and People 37

35. Vehicles in traffic have a driver who is a person, and distinct vehicles have distinct
drivers.

36. Vehicles in traffic have zero, one or more passengers – who are persons different from
the driver.

37. Vehicles have one owner (who is a person) and persons own zero or more vehicles.

35. ατrDriver: V
∼
→ PI

35. pre ατrDriver(v): is InTF(v)
36. ατrPass: V → PI-set
36. pre ατrPass(v): is InTF(v) ⇒ ατrDriver(v)6∈ατrPs(v)
37. ατrOwner: V → PI
37. ατrOwn: P → VI-set [..listed here, but not in Sect. 2.1.2..]

38

38. In the (domain state) context of the set of persons, ps, and the set of vehicles, vs, in
the domain (δ:∆), we have the following constraints:

a the person, p, identified by pi, as the owner of a vehicle, v, in vs, is in ps; and

b the vehicle, v, identified by vi, as being owned be a person, p, in ps, is in vs.

38. axiom ∀ δ:∆,ps:P-set,vs:V-set • ps=obs Ps(δ)∧vs=obs Vs(δ) ⇒
38a. ∀ v:V • v ∈ vs ⇒ ατrOwner(v) ∈ χtrPIs(ps)
38b. ∧ ∀ p:P • p ∈ ps ⇒ ατrOwn(p) ⊆ χtrVIs(vs)

39

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 13

39. Given a set of persons one can extract the set of the unique person identifiers of these
persons.

40. Given a set of persons one can extract the set of the unique vehicle identifiers of
vehicles owned by these persons.

41. Given a set of persons and a unique person identifier (of one of these persons) one
can get that person.

42. Given a set of vehicles one can extract the set of the unique vehicles identifiers of
these vehicles.

40

value

39. χtrPIs: P-set → PI-set
39. χtrPIs(ps) ≡ {ατrPI(p)|p:P•p ∈ ps}

40. γetP: P-set → PI
∼
→ P

40. γetP(ps)(pi) ≡ let p:P• p ∈ ps ∧ pi=ατrPI(p) in p end

40. pre pi ∈ χtrPIs(ps)

41. χtrVIs: V-set → VI-set
41. χtrVIs(vs) ≡ {ατrVI(v)|v:V•v ∈ vs}

42. γetV: V-set → VI
∼
→ V

42. γetV(vs)(vi) ≡ let v:V• v ∈ vs ∧ vi=ατrVI(v) in v end

42. pre vi ∈ χtrVIs(vs)

2.1.6 Community & Fleet States 41

43. We shall later need to refer to a state consisting of pairs of communities and fleets.

43. CFΣ = C × F

2.1.7 Time 42

Time is an elusive “quantity”, ripe, always, for philosophical discourses, for example: [4,
J. M. E. McTaggart], [2, Wayne D. Blizard (1990)] and [7, Johan van Benthem (1991)].
Here we shall take a somewhat more mundane view of time. 43

44. Time is here considered a dense, enumerable set of points.

45. A time interval is the numerical distance between two such points.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

14 A Rôle for Domain Engineering in Software Development

46. There is a time starting point and thus we can speak of the time interval since then!

a One can compare two times and one can compare two time intervals.

b One can add a time and an interval to obtain a time.

c One can subtract a time interval from a time to obtain, conditionally, a time.

d One can subtract a time from a time to obtain, conditionally, a time interval.

e One can multiply a time interval with a real to obtain a time interval.

f One can divide one time interval by another to obtain a real.

44

type

44. T
45. TI
value

46. obs TI: T → TI
46a. <,≤,=,>,≥: ((T×T)|(TI×TI)) → Bool

46b. +: T×TI → T

46c. −: T×TI
∼
→ T axiom ∀ −(t,ti) • obs TI(t)≥ti

46d. −: ((T×T)|(TI×TI))
∼
→ TI axiom ∀ −(τ ,τ ′) • τ ′≤τ

46e. ∗: TI×Real → TI
46f. /: TI×TI → Real

2.1.8 Timetables 45

By a timetable we shall here understand a transport timetable: a listing of the times that
public transport services, say a bus, arrive and depart specified locations. We shall model
a concept of timetables in four “easy” steps by first defining bus stops, then bus schedules
and finally timetables.46

Bus Stops To properly define a timetable we thus need to introduce the notion of ‘spec-
ified locations’.

47. By a bus location (that is, a bus stop), we shall understand a location

a either at a hub

b or down a fraction of the distance between two hubs (a from and a to hub) along
a link.

48. The fraction is a real close to 0 and certainly much less than 1.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 15

type

47. S = atH | onL
47a. atH == µακAtH(hi:HI)
47b. onL == µακOnL(fhi:HI,li:LI,f:Frac,thi:HI)
48. Frac = Real axiom ∀ f:F•0<f≪1

47

Bus Schedules

49. A bus stop visit is modelled as a triple: an arrival time, a bus stop location and a
departure time — such that the latter is larger than (i.e., “after”) the former.

50. A bus schedule is a pair: a route and a list of two or more “consecutive” bus stop
visits where “consecutiveness” has two parts:

a the projection of the list of bus stop visits onto just a list of its “at Hub” and
“on Link” identifiers must form a stuttered sampling of the route,

b departure times of the “former” bus stop visit must be “before” the arrival time
of the latter, and

c if two or more consecutive stops along the same link, then a former stop must
be a fraction down the link less than a latter stop.

48

type

49. BV = T × S × T axiom ∀ (at,bs,dt):S • at<dt
50. BS′ = R × BVL, BVL = BV∗

50. BS = {|bs•wf BS(bs)|}
value

50. wf BS(r,l) ≡
50b. is stuttered sampling(proj(l),r)
50b. ∧ ∀ i:Nat•{i,i+1}<inds l ⇒
50b. case (l(i),l(i+1)) of

50b. ((,atH(hi),dt),(at,atH(hi′),)) → dt<at,
50b. ((,atH(hi),dt),(at,onL(fi,li,f,ti),)) → dt<at,
50b. ((,onL(fi,li,f,ti),dt),(at,atH(hi),)) → dt<at,
50b. ((,onL(fi,li,f,ti),),(at,onL(fi′,li′,f′,ti′),)) → dt<at
50c. ∧ fi=fi′∧li=li′∧ti=ti′ ⇒ f<f′ end

50a. proj: BV∗ → (HI|LI)∗

50a. proj(bvl) ≡
50a. 〈 case bs of atH(hi) → hi, onL(,li, ,) → li end

50a. | i:Nat,bv:BV: i ∈ inds bvl ∧ bv=bvl(i)=(,bs,) 〉

49

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

16 A Rôle for Domain Engineering in Software Development

Bus Transport Timetables

51. Bus schedules are grouped into bus lines

52. and bus schedules have distinct identifiers.

53. A timetable is now a pair of

a a transport map and

b a table which

i. to each bus line associates a sub-timetable

• which to each bus schedule identifier

• associates a bus schedule,

such that

a no bus schedule identifier appears twice in the timetable and

b each bus schedule is commensurate with the transport map.

50

type

51. BLId
52. BSId
53. TT′ = M × TBL
53b. TBL = BLid →m SUB TT
53(b)i. SUB TT = BSId →m BS
53. TT = {|tt:TT′

•wf TT(tt)|}
value

53. wf TT: TT′ → Bool

53. wf TT(m,tbl) ≡
53a. ∀ bsm,bsm′:(BSId →m BS)•{bsm,bsm′}⊆rng tbl⇒dom bsm ∩ dom bsm′={}
53b. ∧ ∀ (r,bvl):BS • (r,bvl) ∈ rng bsm ⇒ r ∈ routes(m)

2.2 Transport Actions 51

We consider each of four of the these three kinds of transport simple entities as being “the
center” of events: the net, people and vehicles and timetables.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 17

2.2.1 Transport Net Actions 52

54. One can insert hubs into a net to obtain an updated net. The inserted hub has no
‘connected link identifiers’.

55. One can remove a hub from a net to obtain an updated net. The removed hub must
have no ‘connected link identifiers’.

56. One can insert a link into a net to obtain an updated net. The inserted link must
have two existing ‘connecting hub identifiers’ and their hubs (cannot have contained
the link identifier of the inserted link) must now record that link identifier as the
only change to their attributes.

57. One can remove a link from a net to obtain an updated net. The hubs identified by
the removed links’ ‘connecting hubs’ must have their ‘connected link identifiers’ no
longer reflecting the removed link — as their only change.

53

value

54. insertH: H → N
∼
→ N

54. insertH(h)(n) as n′

54. pre h 6∈obs Hs(n)
54. post obs Hs(n)=obs Hs(n′) ∪ {h} ∧
54. obs Ls(n)=obs Ls(n′)

55. removeH: HI → N
∼
→ N

55. removeH(hi)(n) as n′

55. pre hi ∈ χtrHIs(n)
55. post obs LIs(get HI(hi)(n))={} ∧
55. obs Hs(n′)=obs Hs(n)\{get HI(hi)(n)}

56. insertL: L → N
∼
→ N

56. insertL(l)(n) as n′

56. pre l6∈obs Ls(n)

56. post obs Ls(n′)=obs Ls(n)∪{l}
56. let {hi,hi′}=obs HIs(l) in

56. let (h,h′)=(γetH(hi)(n),γetH(hi′)(n)),
56. (nh,nh′)=(γetH(hi)(n′),γetH(hi′)(n′)) in

56. obs LIs(nh)=obs LIs(h)∪{obs LI(l)},
56. obs LIs(nh′)=obs LIs(h′)∪{obs LI(l)} end end

57. removeL: LI → N
∼
→ N

57. removeL(li)(n) as n′

57. pre li ∈ χtrLIs(n)
57. post obs Ls(n)=obs Ls(n′)\{l}
57. let {hi,hi′}=obs HIs(get L(li)(n)) in

57. let (h,h′)=(get H(hi)(n),get H(hi′)(n)),
57. (nh,nh′)=(get H(hi)(n′),get H(hi′)(n′)) in

57. obs LIs(nh)=obs LIs(h)\{li},
57. obs LIs(nh′)=obs LIs(h′)\{li} end end

2.2.2 People and Vehicle Actions 54

58. We shall only consider actions on people and vehicles in the (state) context of the commu-
nity and fleet of a transport system, cf. Sect. 2.1.5, Item 38 (Page 12).

59. People can transfer (xfer) ownership of vehicles (being transferred vi,v,v′) one-at-a-time,
from one person (fpi,fp – selling) to another person (tpi,tp buying).

55

value

58. xfer V: PI×VI×PI → (C×F) → (C×F)
58. xfer V(fpi,vi,tpi)(c,f) as (c′,f′)

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

18 A Rôle for Domain Engineering in Software Development

58. pre ...

58. post xfer V(fpi,vi,tpi)(obs Ps(c),obs Vs(f)) = (ps′,vs′)
58. ∧ ∀ FC :ατrCs(c)•FC(c)=FC (c′)
58. ∧ ∀ FF :ατrFs(f)•FF (f)=FF (f′)
58. xfer V: PI×VI×PI → (P-set×V-set) → (P-set×V-set)
59. xfer V(fpi,vi,tpi)(ps,vs) as (ps′,vs′)
60a. pre fpi6=tpi∧{fpi,tpi}⊆χtrPIs(ps)∧vi ∈ χtrVIs(vs)
60b. post let (fp,tp)=(γetP(fpi)(ps),γetP(tpi)(ps)),
60c. (fp′,tp′)=(γetP(fpi)(ps′),γetP(tpi)(ps′)),
60d. (v,v′)=(γetV(vi)(vs),γetP(vi)(vs′)) in

60e. ps\{fp,tp} = ps′\{fp′,tp′} ∧ vs\{v} = vs\{v′}
60f. ∧ fp′ = sell(fp,vi) ∧ tp′ = buy(tp,vi) ∧ v′ = xfer Owner(vi,fp,tp) end

We define the three auxiliary functions: sell, buy and xfer Owner below.56

60. We explain the above pre/post conditions:

a The from and to persons must be distinct and they and the identified vehicle must
be in the current domain state.

b We need to be able to refer to the from and to persons before

c and after the transfer vehicle ownership action,

d as well as to the vehicle changing ownership.

e Except for the persons and vehicle involved in the transfer operation no changes occur
to the persons and vehicles of the current domain state.

f Simultaneously the from person sells the vehicle, the to person buys that same vehicle
and the vehicle changes owner.

57

value

61. sell: P × VI → P
61. sell(p,vi) as p′

61a. obs PI(p)=obs PI(p′)
61b. ∧ vi ∈ ατrOwn(p) ∧ vi 6∈ ατrOwn(p′)
61c. ∧ ∀ F:Pατrset\{ατrVI}•F(p)=F(p′)
62. buy: P × VI → P
62. buy(p,vi) as p′

62a. obs PI(p)=obs PI(p′)
62b. ∧ vi 6∈ ατrOwn(p) ∧ vi ∈ ατrOwn(p′)
62c. ∧ ∀ F:Pατrset\{ατrVI}•F(p)=F(p′)
63. xfer Owner: PI × V × PI → V
63. xfer Owner(fpi,v,tpi) as v′

63a. obs VI(v)=obs VI(v′)
63b. ∧ fpi=ατrOwner(v) ∧ tpi6=ατrOwner(v)
63c. ∧ fpi6=ατrOwner(v′) ∧ tpi=ατrOwner(v′)
63d. ∧ ∀ F:Pατrset\{ατrVI}•F(p)=F(p′)

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 19

58

61. The buyer function:

a The seller identity is unchanged.

b The vehicle was owned by the seller before, but not after the transfer.

c All other seller attributes are unchanged.

62. The seller function:

a The buyer identity is unchanged.

b The vehicle was not owned by the buyer before, but is owned by the buyer after the
transfer.

c All other buyer attributes are unchanged.

63. The vehicle ownership change function:

a The vehicle identity is unchanged.

b The seller identity is noted in the vehicle before the transfer but is not noted after
the transfer.

c The buyer identity is not noted in the vehicle before the transfer but is noted after
the transfer.

d All other vehicle attributes are unchanged.

2.2.3 Time Table Actions 59

Timetables are dynamic inert simple entities. They do not change their value by own volition.
Their value is changed only by some external action upon them.

64. One can create an empty timetable.

65. One can inquire whether a timetable is empty.

66. One can inquire as to the set of bus line identifies of a timetable.

67. One can inquire as to the set of all bus lines’ unique bus schedules identifiers.

68. For every bus line identity one can inquire as to the set of unique bus schedule identifiers.

69. One can insert a bus schedule with an appropriate new bus schedule identifier into a
timetable.

70. One can delete an appropriately identified bus schedule from a non-empty timetable.

60

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

20 A Rôle for Domain Engineering in Software Development

value

64. emptyTT: Unit → TT
64. emptyTT() as tt axiom is empty(tt)
65. is emptyTT: TT → Bool

65. is emptyTT(,tbl) ≡ case m of (,[bli7→bsm]∪ tbl′)→false, →true end

66. χtrBLIds: TT → BLId-set
66. χtrBLIds(,tbl) ≡ dom tbl
67. χtrBSIds: TT → BSid-set
67. χtrBSIds(,tbl) ≡ ∪{tbl(bli)|bli:BLid•bli ∈ dom tbl}
68. χtrBSIds: TT × BLid → BSid-set
68. χtrBSIds((,tbl),bli) ≡ dom tbl(bli)

69. insert BS: (BLid × (BSid × BS)) → TT
∼
→ TT

69. insert BS(bli,(bsi,bs))(m,tbl) as (m′,tbl′)
69. pre wf TT(m,tbl) ∧ bsi 6∈ χtrBSids(m,tbl)
69. post wf TT(m′,tbl′) ∧ m=m′

69. ∧ bli6∈ dom tbl ⇒ tbl′ = tbl ∪ [bli7→[bsi7→bs]]
69. ∧ bli ∈ dom tbl ⇒ tbl′ = tbl † [bli7→tbl(bli)∪[bsi7→bs]]

70. delete BS: (BLid × (BSid × BS)) → TT
∼
→ TT

70. delete BS(bli,(bsi,bs))(m,tbl) as (m′,tbl′)
70. pre wf TT(m,tbl) ∧ bli ∈ dom tbl ∧ bsi ∈ dom(tbl(bli))
70. post wf TT(m′,tbl′) ∧ m=m′ ∧ tbl′ = tbl † [bli7→tbl(bli)\{bsi}]

2.3 Transport Events 61

2.3.1 Transport Net Events

Events are characterisable by a predicate over before/after state pairs and times. The event of a
mudslide “removing” the linkage between two hubs can be modelled as follows: first the removal
of the affected link (ℓ, connecting hubs h′ and h′′), then the insertion of two fresh hubs (h′′′ and
h′′′′), and finally the insertion of new links (ℓ′ and ℓ′′ between h′ and h′′′, respectively h′′ and
h′′′′). With these “actions” as the only actions at or during the event we have that:62

71. A link disappearance predicate can be defined as follows:

a there exists h′ and h′′ in net n with these hubs becoming nh′ and nh′′ in net n′, and

b there exists exactly and only h′′′ and h′′′′ in the new net n′ which were not in the old
net n,

c exactly one link, ℓ′, has disappeared from net n (that is: was in n but is not in n′),
and exactly two links, ℓ′′, ℓ′′′, (which were not in n) have appeared in net n′,

d the two new links, ℓ′′ and ℓ′′′, are linking h′ with h′′′, respectively h′′ with h′′′′,

e hub h′ (h′′) is no longer connected to ℓ′ (ℓ′), but includes ℓ′′ (ℓ′′′),

f hub h′′′ (h′′′′) connects to only ℓ′′ (ℓ′′′), and

g link ℓ′ (ℓ′′) connects {h′, h′′′} ({h′, h′′′}).

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 21

63

The event predicate link disappearance is between the nets before and after the event – and some
arbitrary time.

type

T
value

71. link disappearance: N × N → T → Bool

71. link disappearance(n,n′)(t) ≡
71. let (hs,ls)=(obs Hs,obs Ls)(n), (hs′,ls′)=(obs Hs,obs Ls)(n′) in

71a. ∃ h′,h′′:H•{h,h′}⊆hs ∩ hs′

71a. ∧ let (hi′,hi′′)=(obs HI(h′),obs HI(h′′)) in

71a. let (nh′,nh′′)=(get H(hi′)(n′),get H(hi′′)(n′)) in

71b. ∃ h′′′,h′′′′:H•{h′′′,h′′′′}=hs′\hs
71c. ∧ ∃ l′:L•{l′}=obs Ls(n) ∩ obs Ls(n′) ∧ ∃ l′′,l′′′:L•{l′′,l′′′}=obs Ls(n′)\obs Ls(n′)
71d. ∧ ατrHIs(l′′)={hi′,obs HI(h′′′)}∧ατrHIs(l′′′)={hi′′,obs HI(h′′′′)}
71e. ∧ ατrLIs(h′)=ατrLIs(nh′)\{obs LI(l′)}∪ obs LI(l′′) ∧ ατrLIs(h′′)=ατrLIs(nh′′)\{obs LI(l′)}∪ obs LI(l′′′)
71f. ∧ ατrHIs(l′)={obs HI(nh′),obs HI(h′′′)}
71g. ∧ ατrHIs(l′′)={obs HI(nh′′),obs HI(h′′′′)}

end end end

2.3.2 People Events 64

72. People are born and people pass away.

value

72. birth: P-set × P-set → T → Bool

72. birth(ps,ps′)(t) ≡ ∃ p:P • p 6∈ ps ∧ p ∈ ps′ ∧ ps′=ps ∪{p}
72. death: P-set × P-set → T → Bool

72. death(ps,ps′)(t) ≡ ∃ p:P • p ∈ ps ∧ p 6∈ ps′ ∧ ps′=ps\{p}

2.3.3 Vehicle Events 65

73. Vehicles are manufactured and vehicles are scrapped.

74. Two or more vehicles end up in a mass collision.

value

73. mfgd: V-set × V-set → T → Bool

73. mfgd(vs,vs′)(t) ≡ ∃ v:V • v 6∈ vs ∧ v ∈ vs′ ∧ vs′=vs ∪{v}
73. scrpd: V-set × V-set → T → Bool

73. scrpd(vs,vs′)(t) ≡ ∃ v:V • v ∈ vs ∧ v 6∈ ps′ ∧ vs′=vs\{v}
74. coll: V-set × V-set → T → Bool

74. coll(vs,vs′)(t) ≡ χtrVIs(vs)=χtrVIs(vs′)

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

22 A Rôle for Domain Engineering in Software Development

74. ∧ ∃ vs′′:V-set • card vs′′≥2 ∧ vs′′⊂vs′

74. ∧ ∀ v,v′:V-set•v6=b′ ∧ {v,v′}⊆vs′′ ∧ samePos(v,v′)
74. samePos: V × V → T → Bool

74. samePos(v,v′)(t) ≡
74. case (ατrVP,ατrVP) of (onL(fhi,li,f,thi),onL(fhi,li,f,thi)) → true, → false end

2.3.4 Timetable Events 66

Timetables are considered to be concepts. They may be recorded on paper, electronically
or on billboards. Somehow they, i.e., the timetable for some specific form of vehicles and
for some specific net, are all copies of one another. They somehow do not disappear. So
we decide not to conjure an image, or images, of timetable events and then “model” it, or
them.

2.4 Transport Behaviours 67

One thing is a simple entity, or a constellation of simple entities; another thing is a be-
haviour “centered around” that, or those, simple entities: a net, a person, a vehicle, or
other such simple entities as behaviours. As we shall soon see, we model behaviours as
processes with a notion of a state which significantly includes a simple net entity, a simple
person entity, respectively a simple vehicle entity. Colloquially we can thus speak of some
phenomenon, both by referring to it as a simple entity and by referring to it as a be-
haviour. The complexity of transport behaviours is such that we “stepwise” refine a sketch68

of transport behaviours; first we sketch some aspects of People Behaviours (Sect. 2.4.1),
then similarly of Vehicle Behaviours (Sect. 2.4.2), of Timetable Behaviours before tackling
the more composite Net Behaviours

2.4.1 Community and Person Behaviours 69

We make a distinction between describing the dynamically varying number of people of
our domain, δ:∆ — modelled as the behaviour community — and the individual person,
modelled as the behaviours nascent and person.

We need to model each individual person behaviour and do so as a CSP process [3]. We
also need to model the dynamically varying number of person behaviours. But CSP cannot
model that “easily”. So we use some technical tricks — of which we are not “proud”.70

The model, with one community and an indefinite number of nascent and person be-
haviours, is not really a proper model of the domain of people. The model of the birth of
persons — reflected in the community and nascent/person behaviours — and the decease
of persons — reflected in the same behaviours — is not a very good model. The problem
is that we know of no formal specification language which handles the dynamic creation
and demise of processes.571

5The π-Calculus is a mathematical system (a notation etc.) for investigating mobile processes and

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 23

A Community System Behaviour

75. The concurrent constellation of one community and an indefinite number of pairs of
nascent and person behaviours will be referred to as the people system behaviour.

76. The people system behaviour is refers to a global (constant) value pids: an indefinite
set of the unique identifiers of nascent (as yet unborn) and persons.

77. Each individual of the indefinite number of nascent behaviours is initialised with its
(future) unique person identity.

78. The community behaviour models the birth of persons and kicks off the identified
nascent behaviour by communicating a person (i.e., a “baby”) to the nascent be-
haviour.

79. The identity of a "deceased" person behaviour is communicated to the community
behaviour. 72

80. The communications mentioned in Items 78–79 are modelled by CSP output/inputs
over a set of unique person identified community to nascent channels, CtN(pi), and
person to community channels, NtC(pi) channels.

81. Once a nascent behaviour “comes alive” (i.e., a person is alive), communication re-
lated to "death" notification concerning that person is from that person’s behaviour
to the community behaviour via the appropriate person to community, PtC(pi) chan-
nel.

value

76. pids:PI-set

75. people system: Unit → Unit

75. people system() ≡
76. community()
77. ‖ ‖{nascent(pi)|pi:PI•pi ∈ pids}

channel

80. {CtN(pi)|pi:PI•pi ∈ pids}: mkBirth(pi:PI,p:P)
81. {PtC(pi)|pi:PI•pi ∈ pids}: mkDeceased(pi:PI,′′deceased′′)

73

for giving semantics to the kind of formal specification language which handles the dynamic creation and
demise of processes.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

24 A Rôle for Domain Engineering in Software Development

A Community Behaviour

82. The community behaviour refers to a global (constant) value of the set of unique
person identifiers — of unborn, living or ”deceased” persons.

83. We distinguish between two distinct sets of events:

a persons being born (a singleton event) and

b persons passing away (a singleton event).

84. A birth gives rise to a person, p, being communicated to its identified (obs PI(p))
nascent behaviour.

85. A person behaviour informs the community behaviour of the decease of that person.
74

variable

lps:P-set := {} [living persons]
value

82. community: Unit →
82. out {CtN[i]|i:PI•i ∈ pids}
82. in {PtC[i]|i:PI•i ∈ pids} Unit

82. community() ≡
84. (let p:P•p 6∈ lps ∧ obs PI(p) ∈ pids in

84. (lps := lps ∪ {p} ‖ CtN(obs PI(p)) !mkBirth(obs PI(p),p)) end

84. community())
82. ⌈⌉
85. (let m = ⌈⌉⌊⌋{PtC(pi)?|pi:PI•pi ∈ pids} in

85. assert: ∃ pi:PI•m = mkDeceased(′′deceased′′,pi) ;
85. let mkDeceased(′′deceased′′,pi) = m in

85. let p:P • p ∈ lps ∧ obs PI(p)=pi in

85. lps := lps \ {p} end end end

85. community())

75

A Nascent Behaviour

86. A nascent behaviour

87. awaits a “birth” notification (in the form of a person identifier and a person) from
the community behaviour and

88. becomes an appropriate person behaviour.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 25

value

86. nascent: pi:PI → in CtN(pi) out ... Unit

86. nascent(pi) ≡
87. let m = CtN(pi) ? in

88. if m=mkMfgd(pi,p)
88. then let mkBirth(pi,p) = m in person(pi)(p) end

88. else chaos end end

76

A Person Behaviour

89. The person behaviour has as state-component the atomic simple person entity.

90. We distinguish between four distinct sets of pairs of events and actions:

a death;

b buying and

c selling;

d driver on and

e driver off; and

f passenger on and

g passenger off.

77

type

90. PAoE == death|buy|sell|start|stop|enter|leave
value

89. person: pi:PI × P → in ... out PtPs(pi) ... Unit

90. person(pi)(p) ≡
90. let a = death⌈⌉buy⌈⌉sell⌈⌉start⌈⌉stop⌈⌉enter⌈⌉leave in

90. let p′ = case a of

90a. death → ′′deceased′′,
90b. buy → buy act(p), 90c. sell → sell act(p),
90d. driv on → driv on act(p), 90e. driv off → driv off act(p),
90f. pass on → pass act(p) 90g. pass off → pass off act(p)
89. end in

89. if p′=′′deceased′′

89. then PtoPs(pi) !mkDeceased(′′deceased′′) ; stop

89. else person(pi)(p′)
89. assert: pi=obs PI(p)=obs PI(p′) end end end

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

26 A Rôle for Domain Engineering in Software Development

2.4.2 Fleet and Vehicle Behaviours 78

We describe the concepts of a fleet of a dynamically varying number of vehicles and indi-
vidual vehicles using identical modelling techniques as those used for the description of a
community of persons.

We shall therefore restart the numbering of the narrative and formalised items below
as from Item 75 on page 23. The reader can then “verify” that the two models, that of
a community of persons and that of a fleet of vehicles have rather identical behavioural
structures.79

A Vehicle System Behaviour

75. The concurrent constellation of one fleet (of vehicles) and an indefinite number of
pairs of latent and vehicle behaviours will be referred to as the vehicle system be-
haviour.

76. The fleet behaviour refers to a global constant value, vids: an indefinite set of the
unique identifiers of latent, actual and "scrapped" vehicles.

77. Each individual of the indefinite number of latent behaviours is initialised with its
(future) unique vehicle identity.

78. The fleet behaviour models the manufacturing of vehicles and kicks off the identi-
fied latent behaviour by communicating a properly identified vehicle to that latent
behaviour.

79. The identity of of a ”scrapped” vehicle behaviour is communicated to the fleet be-
haviour.80

80. The communications mentioned in Items 78–79 are modelled by CSP output/inputs
over a set of unique vehicle identified fleet to latent vehicle channels, FtL(vi).

81. Once a latent vehicle behaviour “comes alive” (i.e., a vehicle has been manufactured
and is operating), communication related to "scrap" notification concerning that
vehicle is from that vehicle’s behaviour to the fleet behaviour via the appropriate
vehicle to fleet, VtF(pi) channel.

value

76. vids:VI-set

75. vehicle system: Unit → Unit

75. vehicle system() ≡
76. fleet(vids)
77. ‖ ‖{latent(vi)|vi:VI•vi ∈ vids}

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 27

channel

80. {FtL(pi)|vi:VI•vi ∈ vids}: mkMfgd(vi:VI,v:V)
81. {VtF(pi)|vi:VI•vi ∈ vids}: mkScrapped(vi:VI,′′scrapped′′)

81

A Vehicle Fleet Behaviour

82. The fleet behaviour refers to a global (constant) value, vids. the set of unique vehicle
identifiers — of yet to be manufactured, manufactured and scrapped vehicles.

83. We distinguish between two distinct sets of events:

a vehicles being manufactured (a singleton event) and

b vehicles being scrapped (a singleton event).

84. Vehicle manufacturing gives rise to a vehicle, v, being communicated to its identified
(obs VI(v)) latent behaviour.

85. A vehicle behaviour informs the fleet behaviour of the scrapping of that vehicle.

82

variable

avs:V-set := {} [active or scrapped vehicles]
value

82. fleet: Unit →
82. out {FtL[vi]|vi:VI•i ∈ vids}
82. in {CtF[vi]|vi:VI•i ∈ vids} Unit

82. fleet() ≡
84. (let v:V•v 6∈ avs ∧ obs VI(v) ∈ vids in

84. (avs := avs ∪ {v} ‖ FtL(obs VI(v)) !mkMfgd(obs VI(v),v)) end

84. fleet())
82. ⌈⌉
85. (let m = ⌈⌉⌊⌋{VtF(vi)?|vi:VI•vi ∈ vids} in

85. assert:∃ vi:VI • m = mkScrapped(vi,′′scrapped′′) ;
85. let mkScrapped(vi,′′scrapped′′) = m in

85. let v:V • v ∈ avs ∧ obs VI(v)=vi in

85. avs := avs \ {v} end end end

85. fleet())

83

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

28 A Rôle for Domain Engineering in Software Development

A Latent Behaviour

86. A latent behaviour

87. awaits a manufactured notification (including a vehicle) from the fleet behaviour and

88. becomes an appropriate vehicle behaviour.

value

86. latent: vi:VI → in VtL(vi) out ... Unit

86. latent(vi) ≡
87. let m = PstN(vi) ? in

88. if m=mkMfgd(′′manufactured′′,v) assert: vi=obs VI(v)
88. then let mkMfgd(,v) = m in vehicle(vi)(v) end

88. else chaos end end

84

A Vehicle Behaviour

89. The vehicle behaviour has as state-component the atomic simple vehicle entity.

90. We distinguish between one event and four distinct sets of pairs or triples of actions:

a scrap (event);

b buying

c and selling;

d driver on

e and driver off;

f passenger on,

g and passenger off;

h and entering the net,

i driving on the net,

j and leaving the net.

85

type

90. VAoE == scrap|buy|sell|driv on|driv off|pass on‖pass off|enter|drive|leave
value

89. vehicle: vi:VI → V → in ... out VtF(pi) ... Unit

90. vehicle(vi)(v) ≡
90. let a = scrap⌈⌉buy⌈⌉sell⌈⌉driv on⌈⌉driv off⌈⌉pass on⌈⌉pass off⌈⌉enter⌈⌉drive⌈⌉leave in

90. let v′ = case a of

90a. scrap → ′′scrapped′′,
90b. buy → buy act(v), 90c. sell → sell act(v),
90d. driv on → driv on act(v), 90e. driv off → driv off act(v),
90f. pass on → pass on act(v), 90g. pass off → pass off act(v),
90h. enter → enter act(v), 90i. drive → drive act(v),
90j. leave → leave act(v),

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 29

89. end in

89. if v′=′′scrapped′′

89. then VtF(vi) !mkScrapped(vi,′′scrapped′′) ; stop

89. else vehicle(vi)(v′)
89. assert: vi=obs VI(v)=obs VI(v′) end end end

2.5 Discussion of Domain Engineering 86

We have just touched a few issues of a methodology for domain engineering. Thus we have
not dealt with principles and techniques of describing domain facets: intrinsics, support
technologies, rules and regulations, scripts, management and organisation, and human
behaviour. Each of these, and other methodological topics have an own set of principles
and techniques and an emerging underlying theory. One will be touched upon in tomorrow’s
10:30 am colloquium.

3 Requirements Engineering 87

3.1 Preliminaries

3.1.1 The Machine = Hardware + Software

By ‘the machine’ we shall understand the software to be developed and hardware (equip-
ment + base software) to be configured for the domain application.

3.1.2 Requirements Prescription 88

The core part of the requirements engineering of a computing application is the require-
ments prescription. A requirements prescription tells us which parts of the domain are to
be supported by ‘the machine’. A requirements is to satisfy some goals. Usually the goals
cannot be prescribed in such a manner that they can served directly as a basis for software
design. Instead we derive the requirements from the domain descriptions and then argue
(incl. prove) that the goals satisfy the requirements. In this paper we shall not show the
latter but shall show the former.

3.1.3 A Suitable Decomposition of the Requirements Prescription 89

We consider three forms of requirements prescription: the domain requirements, the inter-
face requirements and the machine requirements. Recall that the machine is the hardware
and software (to be required). Domain requirements are those whose technical terms are
from the domain only. Machine requirements are those whose technical terms are from the
machine only. Interface requirements are those whose technical terms are from both.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

30 A Rôle for Domain Engineering in Software Development

3.1.4 An Aside on Our Example 90

We shall continue our “ongoing” example. Our requirements is for a toll-road system.
The goals of having a toll-road system are: to decrease transport times between selected
hubs of a general net; and to decrease traffic accidents and fatalities while moving on the
toll-road net as compared to comparable movements on the general net. The toll-road net,91

however, must be paid for by its users. Therefore toll-road net entries and exits occur at
toll-road plazas with these plazas containing entry and exit toll-booths where tickets can
be issued, respectively collected and travel paid for. We shall very briefly touch upon these
toll-booths, in the Extension part (as from Page 34) of the next section, Sect. 3.3. So all
the other parts of the next section (Sect. 3.3) serve to build up to the Extension part.

3.2 Business Process Re-engineering (BPR) 92

Before embarking on the detailed elaboration of requirements it is advised that a thorough,
rough-sketching of the re-engineering of the business processes take place.

A toll-road system is a special net consisting of a linear sequence of toll-road links separated
by toll-road hubs. Vehicles gain access to these hubs and links by entering (and leaving) the
toll-road net at toll plazas, through entry (respectively exit) booths connected to the toll-road
hubs by plaza to toll-road hub hubs. Vehicles collect tickets upon entering the toll-road net.
Vehicles move around the toll-road hubs and links. And vehicles return tickets and pay for using
the toll-road net upon leaving that net.

3.3 Domain Requirements 93

Domain requirements cover all those aspects of the domain — simple entities, actions,
events and behaviours — which are to be supported by ‘the machine’. Thus domain94

requirements are developed by systematically “revising” cum “editing” the domain de-
scription: which parts are to be projected: left in or out; which general descriptions are to
be instantiated into more specific ones; which non-deterministic properties are to be made
more determinate; and which parts are to be extended with such computable domain
description parts which are not feasible without IT.95

Projection, instantiation, determination and extension are the basic engineering tasks
of domain requirements engineering. An example may best illustrate what is at stake.
The example is that of a toll-way system — in contrast to the general nets covered by
description Items 1a–22 (Pages 3–9). See Fig. 1.

The links of the general net of Fig. 1 are all two-way links, so are the plaza-to-toll-way
links of the toll-way net of Fig. 1. The toll-way links are all one-way links. The hubs of the
general net of Fig. 1 are assumed to all allow traffic to move in from any link and onto any
link. The plaza hubs do not show links to “an outside” — but they are assumed. Vehicles
enter the toll-way system from the outside and leave to the outside. The toll-way hubs
allow traffic to move in from the plaza-to-toll-way link and back onto that or onto the one

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 31

or two toll-way links emanating from that hub, as well as from toll-way links incident upon
that hub onto toll-way links emanating from that hub or onto the toll-way-to-plaza link. 96

.....

.....
hubs

links

h1 h2 h7 h8

p1 p3p2 p7 p8

hub
plaza

to
plaza

h4

General Net

toll−way

toll−way hub

links

toll−way links
"twinned"

Toll−way Net

Figure 1: General and Toll-way Nets

3.3.1 Projection 97

We keep what is needed to prescribe the toll-road system and leave out the rest.

91. We keep the description, narrative and formali-
sation,

a nets, hubs, links,

b hub and link identifiers,

c hub and link states,

92. as well as related observer functions.

type

91a. N, H, L
91b. HI, LI
91c. HΣ, LΣ
value

92. obs Hs,obs Ls,obs HI,obs LI,
92. obs HIs,obs LIs,obs HΣ,obs L Σ

3.3.2 Instantiation 98
99

From the general net model of earlier formalisations we instantiate the toll-way net model
now described.

93. The net is now concretely modelled as a pair of
sequences.

94. One sequence models the plaza hubs, their
plaza-to-toll-way link and the connected toll-
way hub.

95. The other sequence models the pairs of
“twinned” toll-way links.

96. From plaza hubs one can observe their hubs and
the identifiers of these hubs.

97. The former sequence is of m such plaza “com-
plexes” where m ≥ 2; the latter sequence is of
m − 1 “twinned” links.

98. From a toll-way net one can abstract a proper
net.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

32 A Rôle for Domain Engineering in Software Development

99. One can show that the posited abstraction func-
tion yields well-formed nets, i.e., nets which sat-
isfy previously stated axioms.

type

93. TWN = PC∗ × TL∗

94. PC = PH × L × H
95. TL = L × L
value

94. obs H: PH → H, obs HI: PH → HI
axiom

97. ∀ (pcl,tll):TWN •

97. 2≤len pcl∧len pcl=len tll+1
value

98. abs N: TWN → N
98. abs N(pcl,tll) as n
98. pre: wf TWN(pcl,tll)
98. post:
98. obs Hs(n) =
98. {h,h′|(h, ,h′):PC•(h, ,h′)∈ elems pcl} ∧
98. obs Ls(n) =
98. {l|(,l,):PC•(,l,)∈ elems pcl} ∪
98. {l,l′|(l,l′):TL•(l,l′)∈ elems tll}

theorem:

99. ∀ twn:TWN • wf TWN(twn) ⇒ wf N(abs N(twn))

101

Model Well-formedness wrt. Instantiation Instantiation restricts general nets to toll-
way nets. Well-formedness deals with proper mereology: that observed identifier references
are proper. The well-formedness of instantiation of the toll-way system model can be
defined as follows:

100. The i’plaza complex, (pi, li, hi), is
instantiation-well-formed if

a link li identifies hubs pi and hi, and

b hub pi and hub hi both identifies link li;
and if

101. the i’th pair of twinned links, tli, tl
′

i,

a has these links identify the toll-way hubs
of the i’th and i+1’st plaza complexes
((pi, li, hi) respectively (pi+1, li+1, hi1)).

102

value

Instantiation wf TWN: TWN → Bool

Instantiation wf TWN(pcl,tll) ≡
100. ∀ i:Nat • i ∈ inds pcl⇒
100. let (pi,li,hi)=pcl(i) in

100a. obs LIs(li)={obs HI(pi),obs HI(hi)}
100b. ∧ obs LI(li)∈ obs LIs(pi)∩ obs LIs(hi)
101. ∧ let (li′,li′′) = tll(i) in

101. i < len pcl ⇒
101. let (pi′,li′′′,hi′) = pcl(i+1) in

101a. obs HIs(li) = obs HIs(li′) = {obs HI(hi),obs HI(hi′)}
end end end

3.3.3 Determination 103

Determination, in this example, fixes states of hubs and links. The state sets contain only
one set. Twinned toll-way links allow traffic only in opposite directions. Plaza to toll-way
hubs allow traffic in both directions. Toll-way hubs allow traffic to flow freely from plaza
to toll-way links and from incoming toll-way links to outgoing toll-way links and toll-way
to plaza links.

We omit formalisation. The determination-well-formedness of the toll-way system
model can be defined as follows6:104

6i ranges over the length of the sequences of twinned toll-way links, that is, one less than the length
of the sequences of plaza complexes. This “discrepancy” is reflected in out having to basically repeat
formalisation of both Items 103a and 103b.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 33

Model Well-formedness wrt. Determination We need define well-formedness wrt. de-
termination. Please study Fig. 2.

l1 li ln

lm’li’lj’

lj’’ li’’ lm’’l1’’

l1’

j=i−1 m = n−1 = len tll = len pcl − 1

... ...

Figure 2: Hubs and Links

105

102. All hub and link state spaces contain just one
hub, respectively link state.

103. The i’th plaza complex, pcl(i):(pi, li, hi) is
determination-well-formed if

a li is open for traffic in both directions and

b pi allows traffic from hi to “revert”; and
if

104. the i’th pair of twinned links (li′, li′′) (in
the context of the i+1st plaza complex,
pcl(i+1):(pi+1, li+1, hi+1)) are determination-
well-formed if

a link l′i is open only from hi to hi+1 and

b link l′′i is open only from hi+1 to hi; and
if

105. the jth toll-way hub, hj (for 1 ≤ j ≤ len pcl)
is determination-well-formed if, depending on
whether j is the first, or the last, or any “in-
between” plaza complex positions,

a [the first:] hub i = 1 allows traffic in from
l1 and l′′1 , and onto l1 and l′1.

b [the last:] hub j = i+ 1 = len pcl allows
traffic in from llen tll and l′′

len tll−1
, and

onto llen tll and l′
len tll−1

.

c [in-between:] hub j = i allows traffic in
from li, l′′i and l′i and onto li, l′i−1 and
l′′i .

106

value

103. Determination wf TWN: TWN → Bool

103. Determination wf TWN(pcl,tll) ≡
103. ∀ i:Nat• i ∈ inds tll ⇒
103. let (pi,li,hi) = pcl(i),
103. (npi,nli,nhi) = pcl(i+1), in

103. (li′,li′′) = tll(i) in

102. obs HΩ(pi)={obs HΣ(pi)}∧obs HΩ(hi)={obs HΣ(hi)}
102. ∧ obs LΩ(li)={obs LΣ(li)}∧obs LΩ(li′)={obs LΣ(li′)}
102. ∧ obs LΩ(li′′)={obs LΣ(li′′)}
103a. ∧ obs LΣ(li)
103a. = {(obs HI(pi),obs HI(hi)),(obs HI(hi),obs HI(pi))}
103a. ∧ obs LΣ(nli)
103a. = {(obs HI(npi),obs HI(nhi)),(obs HI(nhi),obs HI(npi))}
103b. ∧ {(obs LI(li),obs LI(li))}⊆obs HΣ(pi)
103b. ∧ {(obs LI(nli),obs LI(nli))}⊆obs HΣ(npi)
104a. ∧ obs LΣ(li′)={(obs HI(hi),obs HI(nhi))}
104b. ∧ obs LΣ(li′′)={(obs HI(nhi),obs HI(hi))}
105. ∧ case i+1 of

105a. 2 → obs HΣ(h 1)=
105a. {(obs LΣ(l 1),obs LΣ(l 1)),
105a. (obs LΣ(l 1),obs LΣ(l 1′′)),
105a. (obs LΣ(l′′ 1),obs LΣ(l 1)),
105a. (obs LΣ(l′′ 1),obs LΣ(l′ 1))},
105b. len pcl → obs HΣ(h i+1)=
105b. {(obs LΣ(l len pcl),obs LΣ(l len pcl)),
105b. (obs LΣ(l len pcl),obs LΣ(l′ len tll)),
105b. (obs LΣ(l′′ len tll),obs LΣ(l len pcl)),
105b. (obs LΣ(l′′ len tll),obs LΣ(l′ len tll))},
105c. → obs HΣ(h i)=
105c. {(obs LΣ(l i),obs LΣ(l i)),
105c. (obs LΣ(l i),obs LΣ(l′ i)),
105c. (obs LΣ(l i),obs LΣ(l′′ i−1)),
105c. (obs LΣ(l′′ i),obs LΣ(l′ i)),
105c. (obs LΣ(l′′ i),obs LΣ(l′ i−1)),
105c. (obs LΣ(l′′ i),obs LΣ(l′ i))}
103. end end

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

34 A Rôle for Domain Engineering in Software Development

3.3.4 Extension 107

For our example we choose to consider the toll plazas. A toll plaza, in addition to its hub,
also contains vehicle entry and exit booths. We refer to Fig. 3.108

Entry
Booth

Exit
Booth

Car

Car

Exit Booth
Exit Gate

Enter Sensor Exit Sensor
Exit Booth

Entry Booth
Exit Sensor

Exit Booth
Enter Sensor

Payment Display & Acceptor

Ticket Collector

Entry Booth
Exit Gate

Vehicle
Direction

Vehicle
Direction

Entry Booth

Ticket Dispensor

Figure 3: Entry and Exit Toll Boths

109

The following is a prolonged example. It contains three kinds of formalisations: a
RAISE/CSP model, a Duration Calculus model [8, 5] and a Timed Automata model [1, 5].

A RAISE/CSP Model: Without much ado:110

106. A toll plaza consists of a one pair of an entry booth and and entry gate and one pair
of an exit booth and an exit gate.

107. Entry booths consist of an entry sensor, a ticket dispenser and an exit sensor.

108. Exit booths consist of an entry sensor, a ticket collector, a payment display and a
payment component.

type

106. PZ = (EB×G) × (XB×G)
107. EB = ...

108. XB = ...

Cars: We summarize an earlier model of vehicles:111

109. There are vehicles.

110. Vehicles have unique vehicle identifications.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 35

type

109. V
110. VId
value

110. obs VId: V → VId
axiom

110. ∀ v,v′:V • v6=v′ ⇒ obs VId(v) 6= obs VId(v′)

Entry Booths: The description now given is an idealisation. It assumes that every- 112

thing works: that the vehicles behave as expected and that the electro-mechanics of booths
and gates do likewise.

111. An entry sensor registers whether a car is entering the entry booth or not,

a that is, for the duration of the car passing the entry sensor that sensor senses
the car identification cid

b otherwise it senses “nothing”.
113

112. A ticket dispenser

a either holds a ticket or does not hold a ticket, i.e., no ticket;

b normally it does not hold a ticket;

c the ticket dispenser holds a ticket soon after a car has passed the entry sensor;

d the passing car collects the ticket –

e after which the ticket dispenser no longer holds a ticket.

113. An exit sensor

a registers the identification of a car leaving the toll booth

b otherwise it senses “nothing”.

— Gates: As part of entry/exit booths: 114

114. A gate

a is either closed or open;

b it is normally closed;

c if a car is entering it is secured set to close (as a security measure);

d once a car has collected a ticket it is set to open;

e and once a car has passed the exit sensor it is again set to close.

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

36 A Rôle for Domain Engineering in Software Development

— A Simple Formalisation: 115

type

C, CI
G = open | close
TK == Ticket | no ticket

value

obs CI: (C|Ticket) → CI
channel

entry sensor:CI
ticket dispenser:Ticket
exit sensor:CI
gate ch:G

value

vs:V-set

eb:EB,xb:XB,eg,xg:G

116

value

eg,xg:G, eb:EB, xb:XB, vs:V-set

system: G×EV×V-set×XB×G → Unit

system(eg,eb,vs,xb,xg) ≡
entry gate(eg)
‖ entry booth(eb)
‖ ‖{car(obs CId(c),c)|ci:C,v:C•c ∈ cs}
‖ exit booth(xb)
‖ exit gate(xg)

117

car: CI × C → out entry sensor,exit sensor
in ticket dispenser Unit

car(ci,c) ≡
entry sensor ! ci ;
let ticket = ticket dispenser ? assert: ticket 6= no ticket in

ticket dispenser ! no ticket ;
exit sensor ! ci ;
car(add(ticket,c)) end

118

entry booth: Unit → in entry sensor, exit sensor
out ticket dispenser
out gate ch Unit

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 37

entry booth(b) ≡
gate ch ! close ;
let ci = entry sensor ? in

gate ch ! open ;
ticket dispenser ! make ticket(cid) ;
let res = ticket dispenser ? assert: res = no ticket ;
let ci′ = exit sensor ? assert: ci′ = ci ;
gate ch ! close ;
entry booth(add ticket(ticket,b)) end end end

119

entry gate: G → in gate Unit

entry gate(g) ≡
case gate ch ? of

close → exit gate(close) assert: g = open,
open → exit gate(open) assert: g = close

end

120

add ticket: Ticket × C
∼
→ C

pre add Ticket(t,c): ∼has Ticket(c)
post: add Ticket(t,c): has Ticket(c)

has ticket: (C|B) → Bool

obs ticket: (C|B)
∼
→ Ticket

pre obs ticket(cb): has Ticket(cb)

rem ticket: (C
∼
→ C) | (B

∼
→ B)

pre rem ticket(cb): has Ticket(cb)
post rem ticket(cb): ∼has Ticket(cb)

In the next section, “A Duration Calculus Model” we shall start refining the descriptions
given above. We do so in order to handle failures of vehicles to behave as expected and of
the electro-mechanics of booths and gates.

A Duration Calculus Model: For DC we refer to [8, 5]. 121

We abstract the channels of the RAISE/CSP model to now be Boolean-valued variables.

type

ES = Bool [true=passing, false=not passing]
TD = Bool [true=ticket, false=no ticket]
G = Bool [true=open, false=closing⌈⌉closed⌈⌉opening]
XS = Bool [true=car has just passed, false=car passing⌈⌉no-one passing]

variable

entry sensor:ES := false ;

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

38 A Rôle for Domain Engineering in Software Development

ticket dispenser:TD := false ;
gate:G := false ;
exit sensor:XS := false ;

122

115. No matter its position, the gate must be closed within no more than δeg time units
after the entry sensor has registered that a car is entering the toll booth.

116. A ticket must be in the ticket dispenser within δet time units after the entry sensor
has registered that a car is entering the toll booth.

117. The ticket is in the ticket dispenser at most δtdc time units

118. The gate must be open within δgo time units after a ticket has been collected.

119. The exit sensor is registering (i.e., is on) the identification of exiting cars and is not
registering anything when no car is passing (i.e., is off).

115. ∼(⌈entry sensor⌉ ; (ℓ = δeg ∧ ⌈gate⌉))
116. ∼(⌈entry sensor⌉ ; (ℓ = δet ∧ ⌈∼ticket dispenser⌉))
117. �(⌈∼ticket dispenser⌉ ⇒ ℓ < δtdc)
118. ∼(⌈ticket dispenser⌉ ; (⌈∼ticket dispenser ∧ ∼gate⌉ ∧ ℓ ≥ δgo))
119. �(⌈gate=closing⌉ ⇒ ⌈∼ exit sensor⌉)

A Timed Automata Model: A timed automaton [1, 5] for a configuration of an entry123

gate, its entry booth and a car is shown in Fig. 4 on the facing page. Figure 5 on page 40
shows the a car, an exit booth and its exit gate interactions. They are more-or-less “de-
rived” from the example of Sect. 7.5 of [1, Alur & Dill, 1994] (Pages 42–45). The right half
of the car timed automaton of Fig. 4 on the facing page is to be thought of as the same

as the left half of the car timed automaton of Fig. 5 on page 40, cf. the vertical dotted (
...)

line.
124

3.4 Interface and Machine Requirements 125

Interface requirements take into consideration both the domain description and the ma-
chine: the hardware + base systems software upon which the software to be designed is
to be implemented. So interface requirements are not exclusively “derived” from the nar-
rated and formalised domain description. And the machine requirements make hardly any
concrete reference to the domain description.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 39

x

e

c

td

tc

o

tc

x

e

c

Entry Booth Car

ig

ca

ca

o:open, ig: idle gate, c:close, ib: idle booth, ca:cruise around,e:entry, td:ticket deposit, tc:ticket collection, x:exit

ib

c

o

_

_

Cd

On

Cd: closed, Cg:closing, On:open, Og:opening

Plaza j

Entry Gate

keg > 5

keg < 7_

keg:=0

keg < 7

keg:=0 keg > 5_

Og Cg

ig o

Figure 4: A timed automata model of gate, entry booth and car interactions

3.5 Discussion of Requirements Engineering 126

As was the case for our coverage of domain engineering, there is more to requirements
engineering than shown in this talk !

4 Software Design 127

We shall likewise omit any serious coverage of the software design process — except for
these remarks: (1) As the domain description serves as a model for the development of
the requirements development, (2) so do the requirements prescription serve as a model
for software design; that is, (3) our whole software development is model-oriented.

5 Concluding Remarks 128

We have over-viewed the Triptych approach to software development: core aspects of
domain engineering and core aspects of requirements. The conclusions that one may be able
to draw from the example — or at least a reasonable small number of such examples — are
that domains can be described, informally as well as formally; that domain requirements
can be systematically (but not automatically) “derived” from domain descriptions; and

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

40 A Rôle for Domain Engineering in Software Development

e

pd

td

x

o

pd

e
tc

c

p
p

Car

Plaza k

Exit Booth

x

Exit Gate

ca

ca

ib

ig c

ig

ca:cruise around, ib:idle, e:entry, td:ticket deposit, pd:payment display, p: payment, x:exit, c:close, o:open, ig:idle gate

kxg:=0
c

kxg < 7_

o
kxg:=0

kxg < 7

kxg > 5

kxg > 5_

_

o

On

Cd

Cg Og

Figure 5: A timed automata model of car, exit booth and gate interactions

that this approach puts requirements engineering in a rather new light.

5.1 Domain Models as a Prerequisite for RE 129

Domains are seldomly computable, requirements must always be. It has been suggested —
and strongly so — that requirements engineering be based on a domain description covering
at least the “area of requirements interest”. We have not covered ‘Interface Requirements’,
those aspects of requirements which can be expressed using terms from both the domain
and the machine — there shared entities, but, again, a concise domain model would help
significantly we claim. And we have also not covered ‘Machine Requirements’, those aspects
of requirements which can be expressed using terms from just the machine, so here domain
models do not contribute much. So I suggest that we revise research into and practice of
RE.

5.2 Oh Yes, Conventional RE Contains Elements of DE 130

Indeed, most RE texts contain repeated references to the necessity of considering “the
domain”. But these “necessity references” do not require that the requirements engineer
separately model the domain, do not really expect the requirements engineer to go well
beyond the scope and span of the requirements when considering the domain, and do

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

Why Current Requirements Engineering Seems Flawed ! 41

not formally relate domains and requirements. Here, we are strongly suggesting that do-
mains be understood, be described (informally and formally) independent of requirements
considerations.

5.3 Domain Engineering as a Free-standing Activity 131

Aim is to just understand a domain: “What is a container line industry” “What is a railway
system” “What is a hospital” “What is a financial service industry” Just like a physicist
try understand “the big bang”, an economist try understand a country’s national debt
process, a biologist try understand some aspects of evolution. To create a domain model,
to study it and make it ready for general use make take 10-20 years. It took physicists
many years before their theory of matter could be applied. But that is no reason for not
doing domain engineering and science.

5.4 Domain Theories 132

By a domain theory we shall understand a theory about the model of the domain as de-
scribed. A domain description is a foundation for a theory. The proof system of the formal
specification language in which the domain description is expressed is another foundation.
Theorems derived from these two foundations contribute to the theory. An examples of 133

a domain theorem for railways could be: Assuming that train traffic is on time wrt. a train
timetable we can expect the following to hold: given that a train timetable is modulo some time
interval, then the # of trains arriving at a station minus the # of trains ending their journey
at that station plus the # of trains starting their journey at that station equals the # of trains
leaving that station.

Domain models should be aimed at establishing domain theories.

5.5 Domain Science 134

By domain science we understand the theoretical foundation specific to the engineering of
domain descriptions. Examples of issues of domain science are: (i) a theory of a calculus
of domain description constructors such as illustrated in tomorrow’s speculative talk; (ii)
a theory of mereology models, cf. my April 2009 [TonyHoare75thBirthday] paper: for every
Mereology there is “a correspondning CSPM expression”, and for every CSPM expression
there is “a corresponding Mereology”. (iii) etcetera. 135

5.6 References

[1] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994. (Preliminary versions appeared in Proc. 17th ICALP, LNCS 443,
1990, and Real Time: Theory in Practice, LNCS 600, 1991).

A Rôle for Domain Engineering in Software Development: 14 June 2011 c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

42 A Rôle for Domain Engineering in Software Development

[2] W. D. Blizard. A Formal Theory of Objects, Space and Time. The Journal of Symbolic
Logic, 55(1):74–89, March 1990.

[3] C. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/csp-
book.pdf (2004).

[4] J. M. E. McTaggart. The Unreality of Time. Mind, 18(68):457–84, October 1908. New
Series. See also: [6].

[5] E.-R. Olderog and H. Dierks. Real-Time Systems: Formal Specification and Automatic
Verification. Cambridge University Press, UK, 2008.

[6] R. L. Poidevin and M. MacBeath, editors. The Philosophy of Time. Oxford University
Press, 1993.

[7] J. van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Episte-
mology, Logic, Methhodology, and Philosophy of Science (Editor: Jaakko Hintika). Kluwer
Academic Publishers, P.O.Box 17, NL 3300 AA Dordrecht, The Netherlands, second edition,
1983, 1991.

[8] C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real–time
Systems. Monographs in Theoretical Computer Science. An EATCS Series. Springer–Verlag,
2004.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark Why Current Requirements Engineering Seems Flawed !: 14 June 2011

