
1

Domain Science & Engineering

A New Facet of Informatics

Dines Bjørner, DTU Informatics, Denmark

April 19, 2012

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

2
1.

1. Opening

• Before

– we can design software, the how,

– we must understand its requirements, the what.

• Before

– we can formulate requirements,

– we must understand the [application] domain.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

31. Opening

• Examples of domains are:

– air traffic,

– airports,

– container lines,

– banks,

– hospitals,

– pipelines,

– railways,

– stock exchanges,

– “the market”,

etcetera.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

4
1. Opening

• Thus we “divide” the process of developing software into three
major phases:

– Domain engineering,

– Requirements engineering, and

– Software design.

• and pursue these phases such that D, S |= R,

• that is, such that we can

– prove the correctness of the Software design

– with respect to the Requirements presecription

– in the context of the Domain description,

∗ that is, under assumptions about the domain.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

5
1. Opening

• So let’s take a look at

– what such a domain description might look like.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

6
2. Opening

2. Domain Engineering

• We choose as our example domain that of transportation systems,
δ:∆.

– From any such δ we can observe (obs) a number of

∗ simple entities Slides 7–45,

∗ actions Slides 46–55,

∗ events Slides 56–61,

∗ and behaviours Slides 62–80.

– This section will therefore be structured accordingly.

• Thus domains are composed from one or more

– simple entities,

– actions,

– events and

– behaviours;

• and it is the job of the domain analyser to “discover” these

– entities,

– their composition,

– use and

– other properties.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

7
2. Domain Engineering 2.1. Transport Simple Entities

2.1. Transport Simple Entities

1. There are five classes of simple entities in our example:

(a) transportation nets Slides 8–23,

(b) people Slides 24–28,

(c) vehicles, Slides 29–35,

(d) time, Slides 37–39, and

(e) timetables, Slides 40–45.

type

1(a). N
1(b). C
1(c). F
1(d). T
1(e). TT

value

1(a). obs N: ∆ → N
1(b). obs C: ∆ → C
1(c). obs F: ∆ → F
1(d). obs T: ∆ → T
1(e). obs TT: ∆ → TT

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

8
2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets

2.1.1. Transportation Nets
2.1.1.1. Nets, Hubs and Links

2. Nets are composite simple entities from which one can observe

(a) sets: hs:HS, of zero, one or more hubs and

(b) sets: ls:LS, of zero, one or more links.

type

2. H, L
value

2(a). obs HS: N → HS1

2(a). obs Hs: HS → H-set

2(b). obs LS: N → LS
2(b). obs Ls: LS → L-set

1The prefix obs can be pronounced: ‘observe’ (obs erve).

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

92. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.2. Hub and Link Identifiers

2.1.1.2. Hub and Link Identifiers

3. Hubs and links are uniquely identified.

4. Hub and link identifiers are all distinct.

type

3. HI, LI
value

3. mer HI: H → HI
3. mer LI: L → LI
axiom

4. ∀ n:N, h,h′:H, l,l′:L •

4. {h,h′}⊆obs Hs(n) ∧ {l,l′}⊆obs Ls(n) ⇒
4. h 6=h′⇒mer HI(h)6=mer HI(h′) ∧
4. l 6=l′⇒mer LI(l)6=mer LI(l′)

1mer HI reads: “the HI ‘mereology’ contribution from the argument (here H); that is, the prefix mer can be pronounced ‘mereology’ (mer eology).

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

10 2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.2. Hub and Link Identifiers

5. From a net one can extract (χtr2) the hub identifiers of all its hubs.

6. From a net one can extract the link identifiers of all its links.

value

5. χtrHIs: N → HI-set
5. χtrHIs(n) ≡ {mer HI(h)|h:H•h ∈ obs Hs(n)}
6. χtrLIs: N → LI-set
6. χtrLIs(n) ≡ {mer LI(l)|l:L•l ∈ obs Ls(n)}

2The prefix χtr can be pronounced ‘extract’ (χtract).

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

112. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.2. Hub and Link Identifiers

7. Given a net and an identifier of a hub of the net one can get (γet3) that hub
from the net.

8. Given a net and an identifier of a link of the net one can get that link from the
net.

value

7. γetH: N → HI
∼
→ H

7. γetH(n)(hi) ≡
7. if hi ∈ χtrHIs(n)
7. then let h:H • mer HI(h)=hi in h end

7. else chaos end

8. γetL: N → LI
∼
→ L

8. γetL(n)(li) ≡
8. if li ∈ χtrLIs(n)
8. then let l:L • mer LI(l)=li in l end

8. else chaos end

3The prefix γet can be pronounced ‘get’.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

12 2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.3. Mereology

2.1.1.3. Mereology

9. From a hub one can observe the identifiers of all the (zero or more)
links incident upon (or emanating from), i.e., connected to the hub.

10. From a link one can observe the distinct identifiers of the two
distinct hubs the link connects.

11. The link identifiers observable from a hub must be identifiers of
links of the net.

12. The hub identifiers observable from a link must be identifiers of
hubs of the net.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

13
2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.3. Mereology

value

9. mer LIs: H → LI-set
10. mer HIs: L → HI-set
axiom

9. ∀ n:N,h:H,l:L•h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒
10. cardmer HIs(l)=2
11. ∧ ∀ li:LI • li ∈ mer LIs(h) ⇒ li ∈ χtrLIs(n)
12. ∧ ∀ hi:HI • hi ∈ mer HIs(l) ⇒ hi ∈ χtrHIs(n)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

14 2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.4. Maps

2.1.1.4. Maps

• Maps, m:M, are abstractions of nets.

• We shall model maps as follows:

13. hub identifiers map into singleton maps from link identifiers to hub
identifiers, such that

(a) if, in m, hi

(b) maps into [lij 7→ hj],

(c) then hj maps into [lij 7→ hi] in m, for all such hi.

type

13. M = HI →m (LI →m HI)
axiom

13(a). ∀ m:M,h i:HI • h i ∈ dom m ⇒
13(b). let [l ij7→h j] = m(h i) in

13(c). h j ∈ dom m ∧ m(h j)=[l ij7→h i]
13(a). end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

152. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.4. Maps

14. From a net one can extract its map.

value

14. χtrM: N → M
14. χtrM(n) ≡
14. [hi 7→[lij7→hj|
14. lij:LI • lij ∈ mer LIs(γetH(n)(hi))
14. ∧ hj = γetL(n)(lij)\{hi}] |
14. hi:HI•hi ∈ χtrHIs(n)]

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

16 2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.5. Routes

2.1.1.5. Routes

15. By a route of a net we shall here understand a non-zero sequence of
alternative hub and link identifiers such that

(a) adjacent elements of the list are hub and link identifiers of hubs,
respectively links of the net, and such that

(b) a link identifier identifies a link one of whose adjacent hubs are
indeed identified by the “next” hub identifier of the route,
respectively such that

(c) a hub identifier identifies a hub one of whose connected links are
indeed identified by the “next” link identifier of the route.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

17
2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.5. Routes

type

15. R′ = (LI|HI)∗

15. R = {|r:R′
•∃ n:N•wf R(r)(n)|}

value

15. wf R: R′ → N → Bool

15. wf R(r)(n) ≡ proper adjacency(r) ∧ embedded route(r)(n)

15. proper adjacency: R′ → Bool

15. proper adjacency(r) ≡
15. ∀ i:Nat•{i,i+1}⊆inds r⇒is LI(r(i))∧is HI(r(i+1))∨is HI(r(i))∧is LI(r(i+1))

15. embedded route: R′ → N → Bool

15. embedded route(r)(n) ≡
15. ∀ i:Nat•{i,i+1}⊆inds r ⇒
15. is LI(r(i)) → r(i+1) ∈ mer HIs(γetL(r(i))(n)),
15. is HI(r(i)) → r(i+1) ∈ mer LIs(γetL(r(i))(n))

3is LI and is LI are specification language “built-in” functions, one for each type name. In general is K(e), where K is a type name, expresses whether the simple
entity e is of type K (or not).

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

18 2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.5. Routes

16. Given a net one can calculate the possibly infinite set of all,
possibly cyclic but finite length routes:

(a) if li is an identifier of a link of a net then 〈li〉 is a route of the net;

(b) if hi is an identifier of a hub of a net then 〈hi〉 is a route of the
net;

(c) if r and r′ are routes of a net n and if the last identifier of r is the
same as the first identifier of r′ then r̂tlr′ is a route of the net.

(d) Only such routes which can be constructed by applying rules
16(a)–16(c) a finite4 number of times are proper routes of the
net.

17. Similarly one can extract routes from maps.

4If applied infinitely many times we include infinite length routes.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

19
2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.5. Routes

value

16. χtrRs: N → R-set

16. χtrRs(n) ≡ in

16(b). let rs={〈li〉|li:LI•li ∈ χtrLIs(n)}∪{〈hi〉|hi:HI•hi ∈ χtrHIs(n)}
16(b). ∪ {〈hi,li〉 | hi:HI,li:LI • 〈hi〉 ∈ rs
16(b). ∧ li ∈ χtrLIs(n)∧li ∈ mer LIs(γetH(n)(hi))}
16(b). ∪ {〈li,hi〉 | li:LI,hi:HI • 〈li〉 ∈ rs
16(b). ∧ hi ∈ χtrHIs(n)∧hi ∈ mer HIs(γetL(n)(li))}
16(c). ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs ∧ r(len rl)=hd r′} in

16. rs end

17. χtrRs: M → R-set

17. χtrRs(m) as rs
17. pre ∃ n:N • m = χtrM(n)
17. post ∃ n:N • m = χtrM(n) ∧ rs = routes(n)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

20 2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.5. Routes

• For later use we define a concept of a ‘stuttered sampling’ of a
route r.

– The sequence ℓ is said to be a ‘sampling’ of a route r

∗ if zero or more elements of r are not in ℓ;

– and the sequence ℓ is said to be a ‘stuttering’ of a route r

∗ if zero or more elements of r are repeated in ℓ —

– while, in both cases (‘sampling’ an ‘stuttering’) the elements of r
in ℓ follow their order in r.

18. A sequence, ℓ, of link and hub identifiers (in any order) is a
‘stuttered sampling’ of a route, r, of a net

(a) if there exists a mapping, mi, from indices of the former into
ascending and distinct indices of the latter

(b) such that for all indexes, i, in ℓ, we have that ℓ(i) = r(mi(i)) ∧
i≤mi(i).

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

212. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.5. Routes

type

18(a). IM′ = Nat →m Nat

18(a). IM = {|im:IM′

•wf IM(im)|}

value

18(a). wf IM: IM′ → Bool

18(a). wf IM(im) ≡
18(a). dom im = {1..maxdom im}
18(a). ∧ ∀ i:Nat • {i,i+1}⊆dom im ⇒ im(i) ≤ im(i+1)

18. is stuttered sampling: (LI|HI)∗ × R → Bool

18. is stuttered sampling(ℓ,r) ≡
18(a). ∃ im:IM • dom im = inds ℓ ∧ rng im⊆inds r ⇒
18(b). ∀ i:Nat • i ∈ dom im ⇒ ℓ(i) = r(mi(i))

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

22 2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.6. Hub and Link States

2.1.1.6. Hub and Link States

• A state of a hub (a link) indicates which are the permissible flows
of traffic.

19. The state of a hub is a set of pairs of link identifiers where these are
the identifiers of links connected to the hub.

20. The state of a link is a set of pairs of distinct hub identifiers where
these are the identifiers of the two hubs connected to the link.

21. The state space of a hub is a set of hub states.

22. The state space of a link is a set of link states.

We say that states and state spaces are ατributes of hubs and links.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

23
2. Domain Engineering 2.1. Transport Simple Entities 2.1.1. Transportation Nets 2.1.1.6. Hub and Link States

type

19. HΣ = (LI × LI)-set
20. LΣ = (HI × HI)-set
21. HΩ = HΣ-set

22. LΩ = LΣ-set

value

19. ατrHΣ: H → HΣ
20. ατrLΣ: L → LΣ
21. ατrHΩ: H → HΩ
22. ατrLΩ: L → LΩ
axiom

∀ n:N, h:H, l:L • h ∈ obs Hs(n)∧l ∈ obs Ls(n) ⇒
19. let hσ = ατrHΣ(h),
20. lσ = ατrLΣ(l) in

19. ∀ (li,li′):(LI×LI)•(li,li′)∈ hσ⇒{li,li′}⊆χtrLIs(n)
20. ∧ ∀ (hi,hi′):(HI×HI)•(hi,hi′)∈ lσ⇒{hi,hi′}⊆χtrHIs(n)
21. ∧ hσ ∈ ατrHΩ(h)
22. ∧ lσ ∈ ατrLΩ(l) end

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

24 2. Domain Engineering 2.1. Transport Simple Entities 2.1.2. Communities and People

2.1.2. Communities and People

23. A community is a community of people here considered an
unordered set.

24. As simple entities we consider people (persons) to be uniquely
identifier atomic dynamic inert entities.

We shall later view such people as a main state component of
people as behaviours.

25. No two persons have the same unique identifier.

26. Essential attributes of persons are:

(a) name,

(b) ancestry,

(c) gender,

(d) age,

(e) height,

(f) weight,

and others.

Additional attributes will be brought forward in the next section
(Vehicles).

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

252. Domain Engineering 2.1. Transport Simple Entities 2.1.2. Communities and People

type

23. P
24. PI
value

23. obs Ps: C → P-set

24. ατrPI: P → PI
axiom

25. ∀ p,p′:P • p 6=p′ ⇒ ατrPI(p) 6= ατrPI(p′)
type

26. PNm, PAn, PGd, PAg, PHe, PWe, ...

value

26(a). ατrPNm: P → PNm
26(b). ατrPAn: P → PAn
26(c). ατrPGd: P → PGd
26(d). ατrPAg: P → PAg
26(e). ατrPHe: P → PHe
26(f). ατrPWe: P → PWe

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

26 2. Domain Engineering 2.1. Transport Simple Entities 2.1.2. Communities and People

27. From any set of persons one can extract its corresponding set of
unique person identifiers.

value

27. χtrPIs: P-set → PI-set
27. χtrPIs(ps) ≡ {obs PI(p)|p:P•p ∈ ps}
axiom

27. ∀ ps:P-set • card ps = card χtrPIs(ps)

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

272. Domain Engineering 2.1. Transport Simple Entities 2.1.3. An Aside on Simple Entity Equality Modulo an Attribute

2.1.3. An Aside on Simple Entity Equality Modulo an Attribute

• Attributes have names and values.

– (Not just people,

– but also the simple entities of nets,, hubs and links,

– as well as of other simple entities to be introduced later.)

• Some attributes are dynamic, that is, their values may change.

• We wish to be able to express that a simple entity, p,

– some of whose attribute values may change,

– is “still, basically, that same” simple entity,

– that is, that p = p′ —

– where we assume that the only thing which does not change is
some notion of a unique simple entity identifier.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

28
2. Domain Engineering 2.1. Transport Simple Entities 2.1.3. An Aside on Simple Entity Equality Modulo an Attribute

28. The attribute observers of people are those of observing names,
ancestry, gender, age, height, weight, and others.

Let SEατrset stand for the set of attribute functions of the simple
entity whose class (type) is SE.

29. Then to express that a simple entity of type SE in invariant modulo
some observer function ατrA, specifically, in this case, that a
person is invariant wrt. height, we write as is shown in formula 29.
below, where p and p′ is the (“before”, “after”) person that is
claimed to be “the same”, i.e. invariant modulo ατrA.

type

28. Pατrset = {| ατrPNm, ατrAn, ατrGd, ατrAg, ατrHe, ατrWe, ...|}
axiom

29. ∀ ατrF :Pατrset• ατrF ∈ Pατrset\{ατrH} ⇒ ατrF(p)=ατrF(p′)

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

292. Domain Engineering 2.1. Transport Simple Entities 2.1.4. Fleets and Vehicles

2.1.4. Fleets and Vehicles

30. A fleet is a composite simple entity.

31. From a fleet one can observe its atomic simple sub-entities of
vehicle.

(a) Vehicles, in addition to their unique vehicle identity,

(b) may enjoy some static attributes: weight, size, etc., and dynamic
attributes: directed velocity, directed acceleration,

(c) position on the net:

(d) at a hub or on a link, etc.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

30 2. Domain Engineering 2.1. Transport Simple Entities 2.1.4. Fleets and Vehicles

type

30. F
31. V
31(a). VI
31(b). We, Sz, ..., DV, DA, ...

value

31. obs Vs: F → V-set

31(a). obs VI: V → VI
31(b). ατrWe: V → We, ..., ατrDV: V → DV, ...

31(c). ατrVP: V → VP
type

31(d). VP == atH(hi) | onL(fhi,li,f:Real,thi) axiom 0<f≪1
axiom

31(a). ∀ v,v′:V•v6=v′ ⇒ obs VI(v)6=obs VI(v′)

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

312. Domain Engineering 2.1. Transport Simple Entities 2.1.4. Fleets and Vehicles

32. Buses are vehicles, but not all vehicles are buses.

33. Vehicles are either in the traffic (to be defined later) or are not.

34. From any set of vehicles one can extract its corresponding set of
unique vehicle identifiers.

type

32. B ⊂ V
value

32. is B: V → Bool

33. is InTF: V → Bool

34. χtrVIs: V-set → VI-set
34. χtrVIs(vs) ≡ {obs VI(v)|v:V•v ∈ vs}
axiom

34. ∀ vs:V-set • card vs = card χtrVIs(vs)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

32 2. Domain Engineering 2.1. Transport Simple Entities 2.1.5. Vehicles and People

2.1.5. Vehicles and People

35. Vehicles in traffic have a driver who is a person, and distinct
vehicles have distinct drivers.

36. Vehicles in traffic have zero, one or more passengers – who are
persons different from the driver.

37. Vehicles have one owner (who is a person) and persons own zero or
more vehicles.

35. ατrDriver: V
∼
→ PI

35. pre ατrDriver(v): is InTF(v)
36. ατrPass: V → PI-set
36. pre ατrPass(v): is InTF(v) ⇒ ατrDriver(v)6∈ατrPs(v)
37. ατrOwner: V → PI
37. ατrOwn: P → VI-set

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

332. Domain Engineering 2.1. Transport Simple Entities 2.1.5. Vehicles and People

38. In the (domain state) context of the set of persons, ps, and the set
of vehicles, vs, in the domain (δ:∆), we have the following
constraints:

(a) the person, p, identified by pi, as the owner of a vehicle, v, in vs,
is in ps; and

(b) the vehicle, v, identified by vi, as being owned be a person, p, in
ps, is in vs.

38. axiom ∀ δ:∆,ps:P-set,vs:V-set • ps=obs Ps(δ)∧vs=obs Vs(δ) ⇒
38(a). ∀ v:V • v ∈ vs ⇒ ατrOwner(v) ∈ χtrPIs(ps)
38(b). ∧ ∀ p:P • p ∈ ps ⇒ ατrOwn(p) ⊆ χtrVIs(vs)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

34 2. Domain Engineering 2.1. Transport Simple Entities 2.1.5. Vehicles and People

39. Given a set of persons one can extract the set of the unique person
identifiers of these persons.

40. Given a set of persons one can extract the set of the unique vehicle
identifiers of vehicles owned by these persons.

41. Given a set of persons and a unique person identifier (of one of
these persons) one can get that person.

42. Given a set of vehicles one can extract the set of the unique
vehicles identifiers of these vehicles.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

35
2. Domain Engineering 2.1. Transport Simple Entities 2.1.5. Vehicles and People

value

39. χtrPIs: P-set → PI-set
39. χtrPIs(ps) ≡ {ατrPI(p)|p:P•p ∈ ps}

40. γetP: P-set → PI
∼
→ P

40. γetP(ps)(pi) ≡ let p:P• p ∈ ps ∧ pi=ατrPI(p) in p end

40. pre pi ∈ χtrPIs(ps)

41. χtrVIs: V-set → VI-set
41. χtrVIs(vs) ≡ {ατrVI(v)|v:V•v ∈ vs}

42. γetV: V-set → VI
∼
→ V

42. γetV(vs)(vi) ≡ let v:V• v ∈ vs ∧ vi=ατrVI(v) in v end

42. pre vi ∈ χtrVIs(vs)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

36 2. Domain Engineering 2.1. Transport Simple Entities 2.1.6. Community & Fleet States

2.1.6. Community & Fleet States

43. We shall later need to refer to a state consisting of pairs of

• communities and

• fleets.

43. CFΣ = C × F

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

372. Domain Engineering 2.1. Transport Simple Entities 2.1.7. Time

2.1.7. Time

• Time is an elusive “quantity” ripe, always, for philosophical
discourses, for example:

– J. M. E. McTaggart:
The Unreality of Time (1908),

– Wayne D. Blizard:
A Formal Theory of Objects, Space and Time (1990) and

– Johan van Benthem:
The Logic of Time (1991).

• Here we shall take a somewhat more mundane view of time.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

38
2. Domain Engineering 2.1. Transport Simple Entities 2.1.7. Time

44. Time is here considered a dense, enumerable set of points.

45. A time interval is the numerical distance between two such points.

46. There is a time starting point and thus we can speak of the time
interval since then!

(a) One can compare two times and one can compare two time intervals.

(b) One can add a time and an interval to obtain a time.

(c) One can subtract a time interval from a time to obtain, conditionally, a time.

(d) One can subtract a time from a time to obtain, conditionally, a time interval.

(e) One can multiply a time interval with a real to obtain a time interval.

(f) One can divide one time interval by another to obtain a real.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

39
2. Domain Engineering 2.1. Transport Simple Entities 2.1.7. Time

type

44. T
45. TI
value

46. obs TI: T → TI
46(a). <,≤,=,>,≥: ((T×T)|(TI×TI)) → Bool

46(b). +: T×TI → T

46(c). −: T×TI
∼
→ T axiom ∀ −(t,ti) • obs TI(t)≥ti

46(d). −: ((T×T)|(TI×TI))
∼
→ TI axiom ∀ −(τ ,τ ′) • τ ′≤τ

46(e). ∗: TI×Real → TI
46(f). /: TI×TI → Real

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

40 2. Domain Engineering 2.1. Transport Simple Entities 2.1.8. Timetables

2.1.8. Timetables

• By a timetable we shall here understand a transport timetable:
a listing of the times that public transport services, say a bus,
arrive and depart specified locations.

• We shall model a concept of timetables in four “easy”

– steps by first defining bus stops,

– then bus schedules

– and finally timetables.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

41
2. Domain Engineering 2.1. Transport Simple Entities 2.1.8. Timetables 2.1.8.1. Bus Stops

2.1.8.1. Bus Stops

• To properly define a timetable we thus need to introduce the notion
of ‘specified locations’.

47. By a bus location (that is, a bus stop), we shall understand a
location

(a) either at a hub

(b) or down a fraction of the distance between two hubs (a from
and a to hub) along a link.

48. The fraction is a real close to 0 and certainly much less than 1.

type

47. S = atH | onL
47(a). atH == µακAtH(hi:HI)
47(b). onL == µακOnL(fhi:HI,li:LI,f:Frac,thi:HI)
48. Frac = Real axiom ∀ f:F•0<f≪1

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

42 2. Domain Engineering 2.1. Transport Simple Entities 2.1.8. Timetables 2.1.8.2. Bus Schedules

2.1.8.2. Bus Schedules

49. A bus stop visit is modelled as a triple: an arrival time, a bus stop
location and a departure time — such that the latter is larger than
(i.e., “after”) the former.

50. A bus schedule is a pair: a route and a list of two or more
“consecutive” bus stop visits where “consecutiveness” has two
parts:

(a) the projection of the list of bus stop visits onto just a list of its
“at Hub” and “on Link” identifiers must form a stuttered
sampling of the route,

(b) departure times of the “former” bus stop visit must be “before”
the arrival time of the latter, and

(c) if two or more consecutive stops along the same link, then a
former stop must be a fraction down the link less than a latter
stop.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

43
2. Domain Engineering 2.1. Transport Simple Entities 2.1.8. Timetables 2.1.8.2. Bus Schedules

type

49. BV = T × S × T axiom ∀ (at,bs,dt):S • at<dt
50. BS′ = R × BVL, BVL = BV∗

50. BS = {|bs•wf BS(bs)|}
value

50. wf BS(r,l) ≡
50(b). is stuttered sampling(proj(l),r)
50(b). ∧ ∀ i:Nat•{i,i+1}<inds l ⇒
50(b). case (l(i),l(i+1)) of

50(b). ((,atH(hi),dt),(at,atH(hi′),)) → dt<at,
50(b). ((,atH(hi),dt),(at,onL(fi,li,f,ti),)) → dt<at,
50(b). ((,onL(fi,li,f,ti),dt),(at,atH(hi),)) → dt<at,
50(b). ((,onL(fi,li,f,ti),),(at,onL(fi′,li′,f′,ti′),)) → dt<at
50(c). ∧ fi=fi′∧li=li′∧ti=ti′ ⇒ f<f′ end

50(a). proj: BV∗ → (HI|LI)∗

50(a). proj(bvl) ≡
50(a). 〈 case bs of atH(hi) → hi, onL(,li, ,) → li end

50(a). | i:Nat,bv:BV: i ∈ inds bvl ∧ bv=bvl(i)=(,bs,) 〉

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

44 2. Domain Engineering 2.1. Transport Simple Entities 2.1.8. Timetables 2.1.8.3. Bus Transport Timetables

2.1.8.3. Bus Transport Timetables

51. Bus schedules are grouped into bus lines

52. and bus schedules have distinct identifiers.

53. A timetable is now a pair of

(a) a transport map and

(b) a table which

i. to each bus line associates a sub-timetable

• which to each bus schedule identifier

• associates a bus schedule,

such that

(a) no bus schedule identifier appears twice in the timetable and

(b) each bus schedule is commensurate with the transport map.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

452. Domain Engineering 2.1. Transport Simple Entities 2.1.8. Timetables 2.1.8.3. Bus Transport Timetables

type

51. BLId
52. BSId
53. TT′ = M × TBL
53(b). TBL = BLid →m SUB TT
53((b))i. SUB TT = BSId →m BS
53. TT = {|tt:TT′

•wf TT(tt)|}
value

53. wf TT: TT′ → Bool

53. wf TT(m,tbl) ≡
53(a). ∀ bsm,bsm′:(BSId →m BS)•{bsm,bsm′}⊆rng tbl⇒dom bsm ∩ dom bsm′={}
53(b). ∧ ∀ (r,bvl):BS • (r,bvl) ∈ rng bsm ⇒ r ∈ routes(m)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

46 2. Domain Engineering 2.2. Transport Actions

2.2. Transport Actions

• We consider each of four of the these three kinds of transport
simple entities as being “the center” of events:

– the net,

– people and vehicles and

– timetables.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

47
2. Domain Engineering 2.2. Transport Actions 2.2.1. Transport Net Actions

2.2.1. Transport Net Actions

54. One can insert hubs into a net to obtain an updated net. The
inserted hub has no ‘connected link identifiers’.

55. One can remove a hub from a net to obtain an updated net. The
removed hub must have no ‘connected link identifiers’.

56. One can insert a link into a net to obtain an updated net. The
inserted link must have two existing ‘connecting hub identifiers’
and their hubs (cannot have contained the link identifier of the
inserted link) must now record that link identifier as the only
change to their attributes.

57. One can remove a link from a net to obtain an updated net. The
hubs identified by the removed links’ ‘connecting hubs’ must have
their ‘connected link identifiers’ no longer reflecting the removed
link — as their only change.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

48
2. Domain Engineering 2.2. Transport Actions 2.2.1. Transport Net Actions

value

54. insertH: H → N
∼
→ N

54. insertH(h)(n) as n′

54. pre h 6∈obs Hs(n)
54. post obs Hs(n)=obs Hs(n′) ∪ {h} ∧
54. obs Ls(n)=obs Ls(n′)

55. removeH: HI → N
∼
→ N

55. removeH(hi)(n) as n′

55. pre hi ∈ χtrHIs(n)
55. post obs LIs(get HI(hi)(n))={} ∧
55. obs Hs(n′)=obs Hs(n)\{get HI(hi)(n)}

56. insertL: L → N
∼
→ N

56. insertL(l)(n) as n′

56. pre l6∈obs Ls(n)

56. post obs Ls(n′)=obs Ls(n)∪{l}
56. let {hi,hi′}=obs HIs(l) in

56. let (h,h′)=(γetH(hi)(n),γetH(hi′)(n)),
56. (nh,nh′)=(γetH(hi)(n′),γetH(hi′)(n′)) in

56. obs LIs(nh)=obs LIs(h)∪{obs LI(l)},
56. obs LIs(nh′)=obs LIs(h′)∪{obs LI(l)} end

57. removeL: LI → N
∼
→ N

57. removeL(li)(n) as n′

57. pre li ∈ χtrLIs(n)
57. post obs Ls(n)=obs Ls(n′)\{l}
57. let {hi,hi′}=obs HIs(get L(li)(n)) in

57. let (h,h′)=(get H(hi)(n),get H(hi′)(n)),
57. (nh,nh′)=(get H(hi)(n′),get H(hi′)(n′)) in

57. obs LIs(nh)=obs LIs(h)\{li},
57. obs LIs(nh′)=obs LIs(h′)\{li} end end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

49
2. Domain Engineering 2.2. Transport Actions 2.2.2. People and Vehicle Actions

2.2.2. People and Vehicle Actions

58. We shall only consider actions on people and vehicles in the (state)
context of the community and fleet of a transport system, cf.
Item 38 (Slide 33).

59. People can transfer (xfer) ownership of vehicles (being transferred
vi,v,v′) one-at-a-time, from one person (fpi,fp – selling) to another
person (tpi,tp buying).

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

50 2. Domain Engineering 2.2. Transport Actions 2.2.2. People and Vehicle Actions

value

58. xfer V: PI×VI×PI → (C×F) → (C×F)
58. xfer V(fpi,vi,tpi)(c,f) as (c′,f′)
58. pre ...

58. post xfer V(fpi,vi,tpi)(obs Ps(c),obs Vs(f)) = (ps′,vs′)
58. ∧ ∀ FC :ατrCs(c)•FC(c)=FC(c′)
58. ∧ ∀ FF :ατrFs(f)•FF (f)=FF (f′)
58. xfer V: PI×VI×PI → (P-set×V-set) → (P-set×V-set)
59. xfer V(fpi,vi,tpi)(ps,vs) as (ps′,vs′)
60(a). pre fpi 6=tpi∧{fpi,tpi}⊆χtrPIs(ps)∧vi ∈ χtrVIs(vs)
60(b). post let (fp,tp)=(γetP(fpi)(ps),γetP(tpi)(ps)),
60(c). (fp′,tp′)=(γetP(fpi)(ps′),γetP(tpi)(ps′)),
60(d). (v,v′)=(γetV(vi)(vs),γetP(vi)(vs′)) in

60(e). ps\{fp,tp} = ps′\{fp′,tp′} ∧ vs\{v} = vs\{v′}
60(f). ∧ fp′ = sell(fp,vi) ∧ tp′ = buy(tp,vi) ∧ v′ = xfer Owner(vi,fp,tp)

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

512. Domain Engineering 2.2. Transport Actions 2.2.2. People and Vehicle Actions

60. We explain the above pre/post conditions:

(a) The from and to persons must be distinct and they and the
identified vehicle must be in the current domain state.

(b) We need to be able to refer to the from and to persons before

(c) and after the transfer vehicle ownership action,

(d) as well as to the vehicle changing ownership.

(e) Except for the persons and vehicle involved in the transfer
operation no changes occur to the persons and vehicles of the
current domain state.

(f) Simultaneously the from person sells the vehicle, the to person
buys that same vehicle and the vehicle changes owner.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

52
2. Domain Engineering 2.2. Transport Actions 2.2.2. People and Vehicle Actions

value

61. sell: P × VI → P
61. sell(p,vi) as p′

61(a). obs PI(p)=obs PI(p′)
61(b). ∧ vi ∈ ατrOwn(p) ∧ vi 6∈ ατrOwn(p′)
61(c). ∧ ∀ F:Pατrset\{ατrVI}•F(p)=F(p′)
62. buy: P × VI → P
62. buy(p,vi) as p′

62(a). obs PI(p)=obs PI(p′)
62(b). ∧ vi 6∈ ατrOwn(p) ∧ vi ∈ ατrOwn(p′)
62(c). ∧ ∀ F:Pατrset\{ατrVI}•F(p)=F(p′)
63. xfer Owner: PI × V × PI → V
63. xfer Owner(fpi,v,tpi) as v′

63(a). obs VI(v)=obs VI(v′)
63(b). ∧ fpi=ατrOwner(v) ∧ tpi6=ατrOwner(v)
63(c). ∧ fpi6=ατrOwner(v′) ∧ tpi=ατrOwner(v′)
63(d). ∧ ∀ F:Pατrset\{ατrVI}•F(p)=F(p′)

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

532. Domain Engineering 2.2. Transport Actions 2.2.2. People and Vehicle Actions

61. The buyer function:

(a) The seller identity is unchanged.

(b) The vehicle was owned by the seller before, but not after the transfer.

(c) All other seller attributes are unchanged.

62. The seller function:

(a) The buyer identity is unchanged.

(b) The vehicle was not owned by the buyer before, but is owned by the buyer
after the transfer.

(c) All other buyer attributes are unchanged.

63. The vehicle ownership change function:

(a) The vehicle identity is unchanged.

(b) The seller identity is noted in the vehicle before the transfer but is not noted
after the transfer.

(c) The buyer identity is not noted in the vehicle before the transfer but is noted
after the transfer.

(d) All other vehicle attributes are unchanged.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

54 2. Domain Engineering 2.2. Transport Actions 2.2.3. Time Table Actions

2.2.3. Time Table Actions

• Timetables are dynamic inert simple entities.

– They do not change their value by own volition.

– Their value is changed only by some external action upon them.

64. One can create an empty timetable.

65. One can inquire whether a timetable is empty.

66. One can inquire as to the set of bus line identifies of a timetable.

67. One can inquire as to the set of all bus lines’ unique bus schedules identifiers.

68. For every bus line identity one can inquire as to the set of unique bus schedule
identifiers.

69. One can insert a bus schedule with an appropriate new bus schedule identifier
into a timetable.

70. One can delete an appropriately identified bus schedule from a non-empty
timetable.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

55
2. Domain Engineering 2.2. Transport Actions 2.2.3. Time Table Actions

value

64. emptyTT: Unit → TT

64. emptyTT() as tt axiom is empty(tt)

65. is emptyTT: TT → Bool

65. is emptyTT(,tbl) ≡ case m of (,[bli7→bsm]∪ tbl′)→false, →true end

66. χtrBLIds: TT → BLId-set

66. χtrBLIds(,tbl) ≡ dom tbl

67. χtrBSIds: TT → BSid-set

67. χtrBSIds(,tbl) ≡ ∪{tbl(bli)|bli:BLid•bli ∈ dom tbl}

68. χtrBSIds: TT × BLid → BSid-set

68. χtrBSIds((,tbl),bli) ≡ dom tbl(bli)

69. insert BS: (BLid × (BSid × BS)) → TT
∼
→ TT

69. insert BS(bli,(bsi,bs))(m,tbl) as (m′,tbl′)

69. pre wf TT(m,tbl) ∧ bsi 6∈ χtrBSids(m,tbl)

69. post wf TT(m′,tbl′) ∧ m=m′

69. ∧ bli 6∈ dom tbl ⇒ tbl′ = tbl ∪ [bli 7→[bsi 7→bs]]

69. ∧ bli ∈ dom tbl ⇒ tbl′ = tbl † [bli 7→tbl(bli)∪[bsi 7→bs]]

70. delete BS: (BLid × (BSid × BS)) → TT
∼
→ TT

70. delete BS(bli,(bsi,bs))(m,tbl) as (m′,tbl′)

70. pre wf TT(m,tbl) ∧ bli ∈ dom tbl ∧ bsi ∈ dom(tbl(bli))

70. post wf TT(m′,tbl′) ∧ m=m′ ∧ tbl′ = tbl † [bli 7→tbl(bli)\{bsi}]
11

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

56 2. Domain Engineering 2.3. Transport Events

2.3. Transport Events
2.3.1. Transport Net Events

• Events are characterisable by a predicate over before/after state
pairs and times.

• The event of a mudslide “removing” the linkage between two hubs
can be modelled as follows:

– first the removal of the affected link
(ℓ, connecting hubs h′ and h′′),

– then the insertion of two fresh hubs
(h′′′ and h′′′′), and

– finally the insertion of new links
(ℓ′ and ℓ′′ between h′ and h′′′, respectively h′′ and h′′′′).

• With these “actions” as the only actions at or during the event we
have that:

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

57
2. Domain Engineering 2.3. Transport Events 2.3.1. Transport Net Events

71. A link disappearance predicate can be defined as follows:

(a) there exists h′ and h′′ in net n with these hubs becoming nh′

and nh′′ in net n′, and

(b) there exists exactly and only h′′′ and h′′′′ in the new net n′

which were not in the old net n,

(c) exactly one link, ℓ′, has disappeared from net n (that is: was in
n but is not in n′), and exactly two links, ℓ′′, ℓ′′′, (which were
not in n) have appeared in net n′,

(d) the two new links, ℓ′′ and ℓ′′′, are linking h′ with h′′′,
respectively h′′ with h′′′′,

(e) hub h′ (h′′) is no longer connected to ℓ′ (ℓ′), but includes ℓ′′

(ℓ′′′),

(f) hub h′′′ (h′′′′) connects to only ℓ′′ (ℓ′′′), and

(g) link ℓ′ (ℓ′′) connects {h′, h′′′} ({h′, h′′′}).

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

58 2. Domain Engineering 2.3. Transport Events 2.3.1. Transport Net Events

The event predicate link disappearance is between the nets before and after the
event – and some arbitrary time.

type

T
value

71. link disappearance: N × N → T → Bool

71. link disappearance(n,n′)(t) ≡
71. let (hs,ls)=(obs Hs,obs Ls)(n), (hs′,ls′)=(obs Hs,obs Ls)(n′) in

71(a). ∃ h′,h′′:H•{h,h′}⊆hs ∩ hs′

71(a). ∧ let (hi′,hi′′)=(obs HI(h′),obs HI(h′′)) in

71(a). let (nh′,nh′′)=(get H(hi′)(n′),get H(hi′′)(n′)) in

71(b). ∃ h′′′,h′′′′:H•{h′′′,h′′′′}=hs′\hs
71(c). ∧ ∃ l′:L•{l′}=obs Ls(n) ∩ obs Ls(n′) ∧ ∃ l′′,l′′′:L•{l′′,l′′′}=obs Ls(n′)\obs Ls(n′)
71(d). ∧ ατrHIs(l′′)={hi′,obs HI(h′′′)}∧ατrHIs(l′′′)={hi′′,obs HI(h′′′′)}
71(e). ∧ ατrLIs(h′)=ατrLIs(nh′)\{obs LI(l′)}∪ obs LI(l′′) ∧ ατrLIs(h′′)=ατrLIs(nh′′)\{obs LI(l
71(f). ∧ ατrHIs(l′)={obs HI(nh′),obs HI(h′′′)}
71(g). ∧ ατrHIs(l′′)={obs HI(nh′′),obs HI(h′′′′)}

end end end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

592. Domain Engineering 2.3. Transport Events 2.3.2. People Events

2.3.2. People Events

72. People are born and people pass away.

value

72. birth: P-set × P-set → T → Bool

72. birth(ps,ps′)(t) ≡ ∃ p:P • p 6∈ ps ∧ p ∈ ps′ ∧ ps′=ps ∪{p}
72. death: P-set × P-set → T → Bool

72. death(ps,ps′)(t) ≡ ∃ p:P • p ∈ ps ∧ p 6∈ ps′ ∧ ps′=ps\{p}

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

60 2. Domain Engineering 2.3. Transport Events 2.3.3. Vehicle Events

2.3.3. Vehicle Events

73. Vehicles are manufactured and vehicles are scrapped.

74. Two or more vehicles end up in a mass collision.

value

73. mfgd: V-set × V-set → T → Bool

73. mfgd(vs,vs′)(t) ≡ ∃ v:V • v 6∈ vs ∧ v ∈ vs′ ∧ vs′=vs ∪{v}
73. scrpd: V-set × V-set → T → Bool

73. scrpd(vs,vs′)(t) ≡ ∃ v:V • v ∈ vs ∧ v 6∈ ps′ ∧ vs′=vs\{v}
74. coll: V-set × V-set → T → Bool

74. coll(vs,vs′)(t) ≡ χtrVIs(vs)=χtrVIs(vs′)
74. ∧ ∃ vs′′:V-set • card vs′′≥2 ∧ vs′′⊂vs′

74. ∧ ∀ v,v′:V-set•v6=b′ ∧ {v,v′}⊆vs′′ ∧ samePos(v,v′)
74. samePos: V × V → T → Bool

74. samePos(v,v′)(t) ≡
74. case (ατrVP,ατrVP) of (onL(fhi,li,f,thi),onL(fhi,li,f,thi)) → true, → false end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

612. Domain Engineering 2.3. Transport Events 2.3.4. Timetable Events

2.3.4. Timetable Events

• Timetables are considered to be concepts.

• They may be recorded on paper, electronically or on billboards.

• Somehow they, i.e., the timetable for some specific form of vehicles
and for some specific net, are all copies of one another.

• They somehow do not disappear.

• So we decide not to conjure an image, or images, of timetable
events and then “model” it, or them.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

62
2. Domain Engineering 2.4. Transport Behaviours

2.4. Transport Behaviours

• One thing is a simple entity, or a constellation of simple entities;

• another thing is a behaviour “centered around” that, or those, simple entities:

– a net, – a person, – a vehicle,

or other such simple entities as behaviours.

• As we shall soon see,

– we model behaviours as processes

– with a notion of a state

– which significantly includes

∗ a simple net entity, ∗ a simple person entity, ∗ a simple vehicle entity.

• Colloquially we can thus speak of some phenomenon, both

– by referring to it as a simple entity and

– by referring to it as a behaviour.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

632. Domain Engineering 2.4. Transport Behaviours

• The complexity of transport behaviours is such that we “stepwise”
refine a sketch of transport behaviours;

– first we sketch some aspects of People Behaviours 64–72

– then similarly of Vehicle Behaviours 73–80

– of Timetable Behaviours

– before tackling the more composite Net Behaviours.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

64
2. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours

2.4.1. Community and Person Behaviours

• We make a distinction between describing

– the dynamically varying number of people of our domain, δ:∆ —
modelled as the behaviour community — and

– the individual person, modelled as the behaviours nascent and
person.

• We need to model each individual person behaviour and do so as a
CSP process.

• We also need to model the dynamically varying number of person
behaviours. But CSP cannot model that “easily”.

– So we use some technical tricks — of which we are not “proud”.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

65
2. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours

• The model, with one community and an indefinite number of
nascent and person behaviours, is not really a proper model of the
domain of people.

– The model of the birth of persons —

∗ reflected in the community and nascent/person behaviours —

– and the decease of persons —

∗ reflected in the same behaviours —

– is not a very good model.

– The problem is that we know of no formal specification language
which handles the dynamic creation and demise of processes.5

5The π-Calculus is a mathematical system (a notation etc.) for investigating mobile processes and for giving semantics to the kind of formal specification
language which handles the dynamic creation and demise of processes.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

66
2. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours 2.4.1.1. A Community System Behaviour

2.4.1.1. A Community System Behaviour

75. The concurrent constellation of

• one community and • an indefinite number of pairs of
nascent and person

behaviours will be referred to as the people system behaviour.

76. The people system behaviour is refers to a global (constant) value pids: an
indefinite set of the unique identifiers of nascent (as yet unborn) and persons.

77. Each individual of the indefinite number of nascent behaviours is initialised with
its (future) unique person identity.

78. The community behaviour models the birth of persons and kicks off the identified
nascent behaviour by communicating a person (i.e., a “baby”) to the nascent
behaviour.

79. The identity of a "deceased" person behaviour is communicated to the
community behaviour.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

672. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours 2.4.1.1. A Community System Behaviour

80. The communications mentioned in Items 78–79 are modelled by CSP

output/inputs over a set of unique person identified community to nascent
channels, CtN(pi), and person to community channels, NtC(pi) channels.

81. Once a nascent behaviour “comes alive” (i.e., a person is alive), communication
related to "death" notification concerning that person is from that person’s
behaviour to the community behaviour via the appropriate person to community,
PtC(pi) channel.

value

76. pids:PI-set

75. people system: Unit → Unit

75. people system() ≡
76. community()
77. ‖ ‖{nascent(pi)|pi:PI•pi ∈ pids}

channel

80. {CtN(pi)|pi:PI•pi ∈ pids}: mkBirth(pi:PI,p:P)
81. {PtC(pi)|pi:PI•pi ∈ pids}: mkDeceased(pi:PI,′′deceased′′)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

68 2. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours 2.4.1.2. A Community Behaviour

2.4.1.2. A Community Behaviour

82. The community behaviour refers to a global (constant) value of the
set of unique person identifiers — of unborn, living or ”deceased”
persons.

83. We distinguish between two distinct sets of events:

(a) persons being born (a singleton event) and

(b) persons passing away (a singleton event).

84. A birth gives rise to a person, p, being communicated to its
identified (obs PI(p)) nascent behaviour.

85. A person behaviour informs the community behaviour of the
decease of that person.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

69
2. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours 2.4.1.2. A Community Behaviour

variable

lps:P-set := {} [living persons]
value

82. community: Unit →
82. out {CtN[i]|i:PI•i ∈ pids}
82. in {PtC[i]|i:PI•i ∈ pids} Unit

82. community() ≡
84. (let p:P•p 6∈ lps ∧ obs PI(p) ∈ pids in

84. (lps := lps ∪ {p} ‖ CtN(obs PI(p)) ! mkBirth(obs PI(p),p)) end

84. community())
82. ⌈⌉
85. (let m = ⌈⌉⌊⌋{PtC(pi)?|pi:PI•pi ∈ pids} in

85. assert: ∃ pi:PI•m = mkDeceased(′′

deceased
′′,pi) ;

85. let mkDeceased(′′

deceased
′′,pi) = m in

85. let p:P • p ∈ lps ∧ obs PI(p)=pi in

85. lps := lps \ {p} end end end

85. community())

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

70 2. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours 2.4.1.3. A Nascent Behaviour

2.4.1.3. A Nascent Behaviour

86. A nascent behaviour

87. awaits a “birth” notification (in the form of a person identifier and
a person) from the community behaviour and

88. becomes an appropriate person behaviour.

value

86. nascent: pi:PI → in CtN(pi) out ... Unit

86. nascent(pi) ≡
87. let m = CtN(pi) ? in

88. if m=mkMfgd(pi,p)
88. then let mkBirth(pi,p) = m in person(pi)(p) end

88. else chaos end end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

712. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours 2.4.1.4. A Person Behaviour

2.4.1.4. A Person Behaviour

89. The person behaviour has as state-component the atomic simple
person entity.

90. We distinguish between four distinct sets of pairs of events and
actions:

(a) death;

(b) buying and

(c) selling;

(d) driver on and

(e) driver off; and

(f) passenger on and

(g) passenger off.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

72
2. Domain Engineering 2.4. Transport Behaviours 2.4.1. Community and Person Behaviours 2.4.1.4. A Person Behaviour

type

90. PAoE == death|buy|sell|start|stop|enter|leave
value

89. person: pi:PI × P → in ... out PtPs(pi) ... Unit

90. person(pi)(p) ≡
90. let a = death⌈⌉buy⌈⌉sell⌈⌉start⌈⌉stop⌈⌉enter⌈⌉leave in

90. let p′ = case a of

90(a). death → ′′

deceased
′′,

90(b). buy → buy act(p), 90(c). sell → sell act(p),
90(d). driv on → driv on act(p), 90(e). driv off → driv off act(p),
90(f). pass on → pass act(p) 90(g). pass off → pass off act(p)
89. end in

89. if p′=′′

deceased
′′

89. then PtoPs(pi) ! mkDeceased(′′

deceased
′′) ; stop

89. else person(pi)(p′)
89. assert: pi=obs PI(p)=obs PI(p′) end end end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

732. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours

2.4.2. Fleet and Vehicle Behaviours

• We describe the concepts of

– a fleet of a dynamically varying number of vehicles

– and individual vehicles

• using identical modelling techniques as those used for the
description of a community of persons.

• We shall therefore restart the numbering of the narrative and
formalised items below as from Item 75 on page 66.

• The listener can then “verify” that the two models, that of a
community of persons and that of a fleet of vehicles have rather
identical behavioural structures.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

74
2. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours 2.4.2.1. A Vehicle System Behaviour

2.4.2.1. A Vehicle System Behaviour

75. The concurrent constellation of

• one fleet (of vehicles) and • an indefinite number of pairs of
latent and vehicle

behaviours will be referred to as the vehicle system behaviour.

76. The fleet behaviour refers to a global constant value, vids: an indefinite set of the
unique identifiers of latent, actual and "scrapped" vehicles.

77. Each individual of the indefinite number of latent behaviours is initialised with
its (future) unique vehicle identity.

78. The fleet behaviour models the manufacturing of vehicles and kicks off the
identified latent behaviour by communicating a properly identified vehicle to that
latent behaviour.

79. The identity of of a ”scrapped” vehicle behaviour is communicated to the fleet
behaviour.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

75
2. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours 2.4.2.1. A Vehicle System Behaviour

80. The communications mentioned in Items 78–79 are modelled by CSP

output/inputs over a set of unique vehicle identified fleet to latent vehicle
channels, FtL(vi).

81. Once a latent vehicle behaviour “comes alive” (i.e., a vehicle has been
manufactured and is operating), communication related to "scrap" notification
concerning that vehicle is from that vehicle’s behaviour to the fleet behaviour via
the appropriate vehicle to fleet, VtF(pi) channel.

value

76. vids:VI-set

75. vehicle system: Unit → Unit

75. vehicle system() ≡
76. fleet(vids)
77. ‖ ‖{latent(vi)|vi:VI•vi ∈ vids}

channel

80. {FtL(pi)|vi:VI•vi ∈ vids}: mkMfgd(vi:VI,v:V)
81. {VtF(pi)|vi:VI•vi ∈ vids}: mkScrapped(vi:VI,′′scrapped′′)

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

76 2. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours 2.4.2.2. A Vehicle Fleet Behaviour

2.4.2.2. A Vehicle Fleet Behaviour

82. The fleet behaviour refers to a global (constant) value, vids. the set
of unique vehicle identifiers — of yet to be manufactured,
manufactured and scrapped vehicles.

83. We distinguish between two distinct sets of events:

(a) vehicles being manufactured (a singleton event) and

(b) vehicles being scrapped (a singleton event).

84. Vehicle manufacturing gives rise to a vehicle, v, being
communicated to its identified (obs VI(v)) latent behaviour.

85. A vehicle behaviour informs the fleet behaviour of the scrapping of
that vehicle.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

77
2. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours 2.4.2.2. A Vehicle Fleet Behaviour

variable

avs:V-set := {} [active or scrapped vehicles]
value

82. fleet: Unit →
82. out {FtL[vi]|vi:VI•i ∈ vids}
82. in {CtF[vi]|vi:VI•i ∈ vids} Unit

82. fleet() ≡
84. (let v:V•v 6∈ avs ∧ obs VI(v) ∈ vids in

84. (avs := avs ∪ {v} ‖ FtL(obs VI(v)) ! mkMfgd(obs VI(v),v)) end

84. fleet())
82. ⌈⌉
85. (let m = ⌈⌉⌊⌋{VtF(vi)?|vi:VI•vi ∈ vids} in

85. assert:∃ vi:VI • m = mkScrapped(vi,′′scrapped′′) ;
85. let mkScrapped(vi,′′scrapped′′) = m in

85. let v:V • v ∈ avs ∧ obs VI(v)=vi in

85. avs := avs \ {v} end end end

85. fleet())

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

78 2. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours 2.4.2.3. A Latent Behaviour

2.4.2.3. A Latent Behaviour

86. A latent behaviour

87. awaits a manufactured notification (including a vehicle) from the
fleet behaviour and

88. becomes an appropriate vehicle behaviour.

value

86. latent: vi:VI → in VtL(vi) out ... Unit

86. latent(vi) ≡
87. let m = PstN(vi) ? in

88. if m=mkMfgd(′′

manufactured
′′,v) assert: vi=obs VI(v)

88. then let mkMfgd(,v) = m in vehicle(vi)(v) end

88. else chaos end end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

792. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours 2.4.2.4. A Vehicle Behaviour

2.4.2.4. A Vehicle Behaviour

89. The vehicle behaviour has as state-component the atomic simple
vehicle entity.

90. We distinguish between one event and four distinct sets of pairs or
triples of actions:

(a) scrap (event);

(b) buying

(c) and selling;

(d) driver on

(e) and driver off;

(f) passenger on,

(g) and passenger off;

(h) and entering the net,

(i) driving on the net,

(j) and leaving the net.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

80
2. Domain Engineering 2.4. Transport Behaviours 2.4.2. Fleet and Vehicle Behaviours 2.4.2.4. A Vehicle Behaviour

type

90. VAoE == scrap|buy|sell|driv on|driv off|pass on‖pass off|enter|drive|leave
value

89. vehicle: vi:VI → V → in ... out VtF(pi) ... Unit

90. vehicle(vi)(v) ≡
90. let a = scrap⌈⌉buy⌈⌉sell⌈⌉driv on⌈⌉driv off⌈⌉pass on⌈⌉pass off⌈⌉enter⌈⌉drive⌈⌉leave in

90. let v′ = case a of

90(a). scrap → ′′

scrapped
′′,

90(b). buy → buy act(v), 90(c). sell → sell act(v),
90(d). driv on → driv on act(v), 90(e). driv off → driv off act(v),
90(f). pass on → pass on act(v), 90(g). pass off → pass off act(v),
90(h). enter → enter act(v), 90(i). drive → drive act(v),
90(j). leave → leave act(v),
89. end in

89. if v′=′′

scrapped
′′

89. then VtF(vi) ! mkScrapped(vi,′′scrapped′′) ; stop

89. else vehicle(vi)(v′)
89. assert: vi=obs VI(v)=obs VI(v′) end end end

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

812. Domain Engineering 2.5. Discussion of Domain Engineering

2.5. Discussion of Domain Engineering

• We have just touched a few issues of a methodology for domain
engineering.

• Thus we have not dealt with principles and techniques of describing
domain facets:

– intrinsics,

– support technologies,

– rules and regulations,

– scripts,

– management and organisation, and

– human behaviour.

• Each of these, and other methodological topics have an own set of
principles and techniques and an emerging underlying theory.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

82
2. Domain Engineering 2.6. From Domains to Requirements

2.6. From Domains to Requirements

• We shall not illustrate

– how sizable parts of computing systems requirements
prescriptions

– can be systematically ’derived” from domain descriptions.

• But we shall just mention that it can be done through theory-based
(algebraic) operation techniques such as

– projection,

– instantiation,

– determination,

– extension and

– fitting.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

83
2. Domain Engineering 2.6. From Domains to Requirements

• Applying these techniques

– a domain description

– is gradually “transformed” into

– a requirements prescription

– with each operational step entailing formal analysis to help
ensure consistency and completeness.

• The specific issues dealt with in this talk namely domain science
and engineering —

– can, in the context of software,

– be seen as part of the triptych:

∗ domains (domain engineering),

∗ requirements (requirements engineering) and

∗ software (design).

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

84 2. Domain Engineering 2.6. From Domains to Requirements

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

85
2. Domain Engineering 2.7. Formal Description Languages

2.7. Formal Description Languages

• The partial descriptions given were expressed in RSL, the Raise
Specification Language.

• But other formal specification languages can be used:

– Alloy,

– B/Event-B,

– VDM or

– Z,

• as augmented by, for example,

– Petri Nets,

– MSC,

– State Charts,

– DC,

– TLA+

– or other.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

86
3. Domain Engineering

3. Broader Aspects of Domain Science & Engineering
3.1. From Science to Technology

• Natural science researchers study “mother nature” to in order to
understand it.

• Domain scientists study human-made infrastructures order to
understand them.

• Engineers “walk the bridge” between science and technology

– constructing technology based on scientific theories and

– studying technologies to find new scientific facts.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

87
3. Broader Aspects of Domain Science & Engineering 3.2. Natural Science Engineering vs. Domain Engineering

3.2. Natural Science Engineering vs. Domain Engineering

• We cannot design software before we have a reasonable grasp of the
requirements put to that software.

• We cannot express requirements before we have a reasonable grasp
of the domain in which that software is to serve:

3.2.1. Some Examples
3.2.1.1. Automotive Engineering

• An automotive engineer,

– when designing an automobile transmission system,

– makes extensive use of basic laws of the theories of mechanics,

– and would not be hired unless he had a certified, deep knowledge
of the laws of mechanics.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

88
3. Broader Aspects of Domain Science & Engineering 3.2. Natural Science Engineering vs. Domain Engineering 3.2.1. Some Examples 3.2.1.2. Communications Engineering

3.2.1.2. Communications Engineering

• A radio communications engineer,

– when designing a radio antenna,

– makes extensive use of the theories relating to Maxwell’s
Equations,

– and would not be hired unless she had a certified, deep
knowledge of the laws of electromagnetic wave propagation.

• Maxwell’s Equations are an example of mathematical modelling.

∇× E = −∂B
∂t

∇× H = J + ∂D
∂t

∇ • B = 0
∇ • D = ρ

∇ • J = −∂ρ
∂t

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

89
3. Broader Aspects of Domain Science & Engineering 3.2. Natural Science Engineering vs. Domain Engineering 3.2.1. Some Examples 3.2.1.3. Building Engineering

3.2.1.3. Building Engineering

• A civil engineer,

– when designing, for example, a bridge,

– makes extensive use of the theories of structural statics,

– and would not be hired unless he had a certified, deep knowledge
of the laws of structural statics.

3.2.1.4. Aeronautical Engineering

• An aeronautics engineer,

– when designing, say, a supersonic aircraft,

– makes extensive use of the theories of aerodynamics,

– and would not be hired unless she had a certified, deep
knowledge of the laws of aero-, thermo- and hydrodynamics.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

90
3. Broader Aspects of Domain Science & Engineering 3.2. Natural Science Engineering vs. Domain Engineering 3.2.1. Some Examples 3.2.1.5. Software Engineering

3.2.1.5. Software Engineering

• A software engineer is, today,

– often asked to develop software for such diverse fields as

∗ transportation,

∗ health-care,

∗ financial services,

∗ production,

∗ the e-market,

∗ pipelines,

∗ etc.

– without having any theories about

∗ transportation,

∗ health-care,

∗ financial services,

∗ production,

∗ marketing & sales,

∗ pipelines,

∗ etc.

to refer to.

– Moreover, the software engineers are not expected to be
knowledgeable about any such theories.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

91
3. Broader Aspects of Domain Science & Engineering 3.3. Constructing Domain Descriptions vs. Using Domain Models

3.3. Constructing Domain Descriptions vs. Using Domain Models

• Domains are researched, that is,

– analysed,

– described and

– theories established,

by domain scientists and domain engineers.

• Domain models, i.e., domain descriptions, are used, that is,

– studied,

– adapted to ‘subset’ domains,

– combined with other (such) domain descriptions,

– transformed into specific requirements prescriptions,

– etcetera,

by domain and requirements engineers.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

92
3. Broader Aspects of Domain Science & Engineering 3.3. Constructing Domain Descriptions vs. Using Domain Models

• Domain scientists are like physicists,

– able to create the equivalent of Maxwell’s equations,

– and thus typically at PhD level.

• Domain engineers

– need not be able to “discover” the equivalent of Maxwell’s
equations,

– but must be able to understand such models,

– “massage” them:

∗ edit,

∗ combined,

∗ projected,

∗ instantiated,

∗ determinated,

∗ extended,

∗ etc.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

93
3. Broader Aspects of Domain Science & Engineering 3.4. Domain Science Independent of Software Engineering

3.4. Domain Science Independent of Software Engineering

• But domain science is — potentially — a much wider field of study
and knowledge than sketched here.

– First we must recall that domain science is concerned with

∗ what – of man-made infrastructure components – can be
described,

∗ how to describe and analyse that,

∗ and with formal properties of domain description languages.

– Thus domain science embodies or borders on topics of
philosophy, for example:

∗ mereology, ∗ ontology and ∗ epistemelogy.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

94
3. Broader Aspects of Domain Science & Engineering 3.4. Domain Science Independent of Software Engineering

• Domain engineering need not “be followed” by requirements
engineering and software design.

– One can create a domain description just in order to simply
understand that domain.

– And one can use domain models for

∗ business process modelling and

∗ business process re-engineering.

• In this talk we shall not elaborate these topics further.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

95
3. Broader Aspects of Domain Science & Engineering 3.5. Domain Science Transgressing Other Sciences

3.5. Domain Science Transgressing Other Sciences

• Domain science and engineering is not “restricted” to computing
science and software engineering.

– Just like mathematics is practised: studied and applied across
such disciplines as

∗ life sciences,

∗ social science and economics,

∗ natural sciences and

∗ engineering,

with each discipline itself developing “an own mathematics”,

– so domain sciences can be practised across

∗ air traffic,

∗ banking,

∗ container lines,

∗ health care,

∗ pipelines,

∗ securities trading,

∗ transportation,

∗ etcetera.

where each discipline will itself develop “an own mathematics”.

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

96
4. Broader Aspects of Domain Science & Engineering

4. Conclusion
4.1. Informatics: A New Universe

• We define ‘informatics’ as the confluence of

– the immaterial sciences and engineering of computing (software),

– the material sciences and engineering of computers (IT: hardware),

– the immaterial sciences and engineering of domain models, and

– mathematics (including mathematical modelling).

• Whereas IT is a universe of material quantity:

– faster,

– smaller,

– cheaper,

– large capacity, etc.

• informatics is primarily a universe of intellectual quality:

– fit for purpose,

– human6,

– pleasing,

– fun, etc.
6Through the phase-, stage- and stepwise “refinement” of domain models via requirements into software while

ensuring that that software reflects and only reflects proper domain concepts, one can ensure “user-fiendliness”.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

97
4. Conclusion 4.2. An Exact Sciences Motivation for Interdisciplinarity

4.2. An Exact Sciences Motivation for Interdisciplinarity

• Examples of interdisciplinary models:

– gas or oil pipe line systems
http://www2.imm.dtu.dk/˜dibj/pipelines.pdf,

– stock exchanges
http://www2.imm.dtu.dk/˜dibj/tse-1.pdf,

– road transport systems
http://www2.imm.dtu.dk/˜dibj/comet/comet1.pdf,

– railway systems
http://www.railwaydomain.org/,

– container line industry
http://www2.imm.dtu.dk/˜dibj/container-paper.pdf,

– logistics
http://www2.imm.dtu.dk/˜dibj/logistics.pdf,

– the market7

http://www2.imm.dtu.dk/˜dibj/themarket.pdf,
7consumers, retailers, wholesalers, producers

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

98

– etcetera.

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

99
4. Conclusion 4.3. Closing

4.3. Closing

• Thanks

• Questions ?

Why Current Requirements Engineering is Flawed ! c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark

100
4. Conclusion 4.3. Closing

/home/db/2011/swansea/DEroleinSE.tex

c© Dines Bjørner 2011, Fredsvej 11, DK–2840 Holte, Denmark The Róle of Domain Engineering in Software Development.

